
ALGORITHMIC REDISTRIBUTIONMETHODS FOR BLOCK CYCLICDECOMPOSITIONS
A DissertationPresented for theDoctor of Philosophy DegreeThe University of Tennessee, KnoxvilleAntoine PetitetDecember 1996

Copyright c
 1996 by Antoine PetitetAll rights reserved

ii

To my parents

iii

AcknowledgmentsThe writer expresses gratitude and appreciation to the members of his disser-tation committee, Michael Berry, Charles Collins, Jack Dongarra, Mark Jones andDavid Walker for their encouragement and participation throughout my doctoralexperience.Special appreciation is due to Professor Jack Dongarra, Chairman, who pro-vided sound guidance, support and appropriate commentaries during the courseof my graduate study.I also would like to thank Yves Robert and R. Clint Whaley for many usefuland instructive discussions on general parallel algorithms and message passingsoftware libraries. Many valuable comments for improving the presentation ofthis document were received from L. Susan Blackford. Finally, I am grateful tothe Department of Computer Science at the University of Tennessee for allowingme to do this doctoral research work here.A special debt of gratitude is owed to Joanne Martin, IBM POWERparallelDivision, for awarding me an IBM Corporation Fellowship covering the tuition aswell as a stipend for the 1994-96 academic years. This work was also supportedby the Defense Advanced Research Projects Agency under contract DAAH04-95-1-0077, administered by the Army Research O�ce.The author acknowledges the use of the Intel Paragon XP/S 5 computer, lo-iv

cated in the Oak Ridge National Laboratory Center for Computational Sciences(CCS), funded by the Department of Energy's Mathematical, Information, andComputational Sciences (MICS) Division of the O�ce of Computational and Tech-nology Research.This research was also conducted using the resources of the Cornell The-ory Center, which receives major funding from the National Science Foundation(NSF) and New York State, with additional support from the Advanced ResearchProjects Agency (ARPA), the National Center for Research Resources at the Na-tional Institutes of Health (NIH), IBM Corporation, and other members of thecenter's Corporate Partnership Program.

v

AbstractThis research aims at creating and providing a framework to describe algo-rithmic redistribution methods for various block cyclic decompositions. To do soproperties of this data distribution scheme are formally exhibited. The exami-nation of a number of basic dense linear algebra operations illustrates the appli-cation of those properties. This study analyzes the extent to which the generaltwo-dimensional block cyclic data distribution allows for the expression of e�cientas well as
exible matrix operations. This study also quanti�es theoretically andpractically how much of the e�ciency of optimal block cyclic data layouts can bemaintained.The general block cyclic decomposition scheme is shown to allow for the ex-pression of
exible basic matrix operations with little impact on the performanceand e�ciency delivered by optimal and restricted kernels available today. Second,block cyclic data layouts, such as the purely scattered distribution, which seemless promising as far as performance is concerned, are shown to be able to achieveoptimal performance and e�ciency for a given set of matrix operations. Conse-quently, this research not only demonstrates that the restrictions imposed by theoptimal block cyclic data layouts can be alleviated, but also that e�ciency and
exibility are not antagonistic features of the block cyclic mappings. These resultsare particularly relevant to the design of dense linear algebra software libraries aswell as to data parallel compiler technology.vi

Contents1 Introduction 11.1 The Parallel Programming Problem : A Concrete Example : : : : 61.2 Motivation : 111.3 Problem Statement : 161.4 Organization of This Dissertation : : : : : : : : : : : : : : : : : : 172 Properties of The Block Cyclic Data Distribution 192.1 Introduction : 192.2 De�nitions : 212.3 Block Properties : 272.3.1 Notation and Elementary Theorems : : : : : : : : : : : : : 272.3.2 Properties : 282.4 Solving Linear Diophantine Equations : : : : : : : : : : : : : : : 382.5 LCM Tables : 412.6 Rationale : 56vii

3 Algorithmic Redistribution 583.1 Introduction : 583.2 Terminology : 613.3 One-Dimensional Redistribution : : : : : : : : : : : : : : : : : : : 653.3.1 Non-Unit Stride : 683.4 Blocking Strategies : 693.4.1 Static Blocking : 703.4.2 Cyclic Ordering : 763.4.3 Physical Blocking : 783.4.4 Aggregation and Disaggregation : : : : : : : : : : : : : : : 813.4.5 LCM Blocking : 833.4.6 Aggregated LCM Blocking or Hybrid Schemes : : : : : : : 863.5 Two-Dimensional Redistribution : : : : : : : : : : : : : : : : : : : 863.6 Conclusions : 894 Performance Analysis 904.1 Introduction : 904.2 The Machine Model : 924.3 Estimation of the Machine Parameters : : : : : : : : : : : : : : : 954.3.1 The Intel XP/S Paragon : : : : : : : : : : : : : : : : : : : 964.3.2 The IBM Scalable POWERparallel System : : : : : : : : : 99viii

4.4 Performance Analysis : 1014.4.1 Physical Blocking : 1044.4.2 Aggregation : 1074.4.3 LCM Blocking : 1094.4.4 One Dimensional Redistribution : : : : : : : : : : : : : : : 1104.4.5 Two Dimensional Redistribution : : : : : : : : : : : : : : : 1114.5 Conclusions : 1125 Experimental Results 1165.1 Introduction : 1165.2 Determining a \Good" Block Size : : : : : : : : : : : : : : : : : : 1185.3 Speci�cation of the Experiments : : : : : : : : : : : : : : : : : : : 1215.4 Aligned Experiments : 1255.4.1 Physical Blocking : 1255.4.2 Aggregation - Disaggregation : : : : : : : : : : : : : : : : 1275.4.3 LCM Blocking : 1285.4.4 Complete Redistribution : : : : : : : : : : : : : : : : : : : 1305.5 Non-Aligned Experiments : 1335.5.1 Physical Blocking : 1345.5.2 Aggregation - Disaggregation : : : : : : : : : : : : : : : : 1365.5.3 LCM Blocking : 138ix

5.5.4 Complete Redistribution : : : : : : : : : : : : : : : : : : : 1415.6 Conclusions : 1446 Conclusions 1486.1 Application Domain of Algorithmic Operations : : : : : : : : : : 1506.2 Recommendations for a Software library : : : : : : : : : : : : : : 1536.3 Contributions of this Dissertation : : : : : : : : : : : : : : : : : : 1556.4 Further Research Directions : 158Bibliography 160Appendix 176A LCM Tables 177A.1 LCM Table with First Partial Block : : : : : : : : : : : : : : : : : 177A.2 Examples of LCM tables : 179B Performance Results 183Vita 192
x

List of Tables2.1 Generalization of the block properties to the square block cyclicdistribution : 382.2 Properties of the k-diagonal for the block cyclic distribution : : : 504.1 Estimated parallel e�ciencies for various blocking variants : : : : 1135.1 Performance in M
ops for distinct distribution block sizes : : : : 1195.2 Speci�cation of the experiments : : : : : : : : : : : : : : : : : : : 122A.1 The LCMT bounds characterizing block owning k-diagonals : : : 178B.1 Performance results obtained on the Intel XP/S Paragon : : : : : 184B.2 Performance results obtained on the IBM SP : : : : : : : : : : : : 188
xi

List of Figures2.1 A 2 � 3 process grid : 212.2 A block-partitioned matrix, with M = 22, N = 40, r = 4, s = 6. : 232.3 The previous block-partitioned matrix mapped onto a 2�3 processgrid. : 242.4 A P � Q process grid with P = 4, Q = 6, lcm(P;Q) = 12,gcd(P;Q) = 2. : 332.5 A square block-partitioned matrix distributed over a 2� 3 processgrid. : 352.6 The quadruplet solution intervals �h : : : : : : : : : : : : : : : : 402.7 Meaning of di�erent values of LCMT p;ql;m with r = 6, s = 8 : : : : 422.8 LCM template : 442.9 The 1-LCM block obtained for P = 2, r = 2, Q = 2 and s = 3. : : 452.10 The 1-LCM tables obtained for P = 2, r = 2, Q = 2 and s = 3. : : 462.11 Ratio of tuples (P; r;Q; s)in[1::n]4 such that gcd(P r;Q s) = 1. : : 53xii

2.12 Ratios of tuples (P; r;Q; s)in[1::n]4 such that r + s � gcd(r; s) orr + s is greater or equal to gcd(P r;Q s). : : : : : : : : : : : : : : 553.1 Global view of one-dimensional redistribution : : : : : : : : : : : 653.2 Local view in process (pX ; qY) of one-dimensional redistribution : 663.3 Static general rank-K update : 713.4 Static symmetric rank-K update : : : : : : : : : : : : : : : : : : 723.5 Trapezoidal symmetric rank-K update (C22 = CT22) : : : : : : : : 743.6 Physically blocked rank-K update : : : : : : : : : : : : : : : : : : 793.7 Global view of the LCM blocked rank-K update : : : : : : : : : : 843.8 Global view of two-dimensional redistribution : : : : : : : : : : : 874.1 A 3 � 4 processor mesh with wraparound connections : : : : : : : 934.2 Performance of the rank-K update on one processor of the IntelParagon : 974.3 Performance of the rank-K update on one processor of the IntelParagon : 984.4 Performance of the rank-K update on one processor of the IBM SP21004.5 Time repartition of the aligned LCM blocking variant (LCM) on a4 � 8 IBM SP : 1144.6 Time repartition of the non-aligned complete redistribution (RED)variant on a 4� 8 IBM SP : 115xiii

5.1 Performance in M
ops of algorithmic blocking variants for a \good"physical data layout case and various process grids on the IntelXP/S Paragon : 1235.2 Performance in M
ops of algorithmic blocking variants for a \good"physical data layout case and various process grids on the IBM SP 1245.3 Performance of aligned physical blocking on a 4 � 4 Intel XP/SParagon : 1255.4 Performance of aligned physical blocking on a 4� 8 IBM SP : : : 1265.5 Performance of aligned aggregation on a 4� 4 Intel XP/S Paragon 1275.6 Performance of aligned aggregation on a 4� 8 IBM SP : : : : : : 1285.7 Performance of aligned LCM blocking on a 4� 4 Intel XP/S Paragon1295.8 Performance of aligned LCM blocking on a 4 � 8 IBM SP : : : : : 1305.9 Performance of aligned redistribution on a 4� 4 Intel XP/S Paragon1315.10 Performance of aligned redistribution on a 4 � 8 IBM SP : : : : : 1325.11 Performance in M
ops of algorithmic blocking variants for Experi-ment XP NA on a 4� 4 Intel XP/S Paragon : : : : : : : : : : : : 1335.12 Performance in M
ops of algorithmic blocking variants for Experi-ment XP NA on a 2� 4 IBM SP : : : : : : : : : : : : : : : : : : 1345.13 Performance of non-aligned physical blocking on a 4�4 Intel XP/SParagon : 1355.14 Performance of non-aligned physical blocking on a 4� 8 IBM SP : 136xiv

5.15 Performance of non-aligned aggregation on a 4�4 Intel XP/S Paragon1375.16 Performance of non-aligned aggregation on a 4 � 8 IBM SP : : : : 1385.17 Performance of non-aligned LCM blocking on a 4 � 4 Intel XP/SParagon : 1395.18 Performance of non-aligned LCM blocking on a 4� 8 IBM SP : : 1405.19 Performance of non-aligned redistribution on a 4 � 4 Intel XP/SParagon : 1425.20 Performance of non-aligned hybrid (HYB) versus redistribution(RED) techniques on a 4� 8 IBM SP : : : : : : : : : : : : : : : : 1435.21 Performance of non-aligned hybrid (HYB) versus LCM blockingtechniques on a 4 � 4 Intel XP/S Paragon : : : : : : : : : : : : : 1466.1 Application domain of algorithmically redistributed operations : : 151A.1 The 1-LCM block obtained for P = 2, r = 2, Q = 3 and s = 4. : : 179A.2 The 1-LCM tables obtained for P = 2, r = 2, Q = 3 and s = 4. : : 180A.3 The 1-LCM block obtained for P = 3, ir = 2, r = 2, Q = 2, is = 3and s = 4. : 181A.4 The 1-LCM tables obtained for P = 2, ir = 2, r = 2, Q = 2, is = 3and s = 4. : 182xv

Chapter 1IntroductionIl y a trois savoirs, le savoir proprement dit, le savoir-vivre et le savoir-faire.Les deux derniers dispensent assez bien du premier.Charles Maurice de Talleyrand (1754-1838)In the past several years, the emergence of Distributed Memory Concurrent Com-puters (DMCCs) and their potential for the numerical solution of Grand Challengeproblems [28, 62, 76, 77] has led to extensive research. As a result, DMCCs havebecome not only indispensable machines for large-scale engineering and scienti�capplications, but also common and viable platforms for commercial and �nancialapplications. Many DMCCs, such as the IBM Scalable POWERparallel SP-2, theIntel Paragon, the Cray T3D, the nCube-2/3, Networks and Clusters of Work-stations (NoWs and CoWs) have achieved scalable performance in these domains.1

These scalable parallel computers comprise an ensemble of Processing Units (PUs)where each unit consists of a processor, local memories organized in a hierarchicalmanner, and other supporting devices. These PUs are interconnected by a point-to-point (direct) or switch-based (indirect) network. Without modifying the basicmachine architecture, these distributed memory systems are capable of propor-tional increases in performance as the number of PUs, their memory capacity andbandwidth, and the network and I/O bandwidth are increased. As of today, DM-CCs are still being produced and their success is apparent when considering howcommon they have become. Still, their limitations have been revealed and theirsuccessors have already appeared. The latter are constructed from a small numberof nodes, where each node is a small DMCC featuring a virtual shared memory.These nodes are interconnected by a simple bus- or crossbar-based interconnectionnetwork. Programming these machines as well as their production is facilitated bythe relative simplicity of the interconnection network. In addition, increasing thecomputational capabilities of the PUs appears to be an easier task than increas-ing the performance of the network. As opposed to large scale DMCCs where allprocessors are much less powerful than the whole, the collection of nodes of thishierarchical architecture is only slightly more powerful than its components. TheSGI SMP Power Challenge is an existing example of such an architecture. Thescalability of these machines can simultaneously take advantage of the progressesmade by the processor and network technologies as well as the hardware and/or2

software mechanisms implementing the virtual shared memory. It is still unclearhow these machines will be programmed. Whether these machines will in thefuture completely replace DMCCs is also a question that is di�cult to answertoday. In this dissertation, these machines will also be considered as DMCCs.In order to fully exploit the increasing computational power of DMCCs, theapplication software must be scalable, that is, able to take advantage of largermachine con�gurations to solve larger problems with the same e�ciency. Thus,the design of parallel algorithms and their software implementations should at thevery early stages plan for larger, maybe not even existing, hardware platforms.These concerns usually cause the complexity of this software to become an im-portant limiting factor and constraint. Indeed, the application software shouldalso be \easy to produce and maintain". Ideally, one would like to automaticallyproduce a parallel scalable executable from an existing serial program. In reality,programming DMCCs has been a major challenge impeding the greater successof these systems. In order to alleviate this di�culty, parallel programming modelshave been speci�cally designed for DMCCs. A programming model is a collectionof program abstractions providing a programmer with a simpli�ed and transparentview of the computer hardware/software system [58]. The basic computationalunits in a running parallel program are processes corresponding to operations per-formed by related code segments on the process's data set. A running programcan then be de�ned as a collection of processes [58]. Inter-process communication3

de�nes what is called a running parallel program. In general there may be severalprocesses executed by one physical processor; therefore, without loss of generality,the underlying DMCC will be regarded henceforth as a set of processes ratherthan physical processors.This dissertation is primarily focused on two parallel programming models,the message passing model and the data parallel model. In the message pass-ing model, two processes may communicate with each other by passing messagesthrough the interconnection network. This model is usually based on the sendand receive paradigm that requires matching operations by sender and receiver.Such a semantic is often referred to as a two-sided communication. It has beenobserved, however, that the coding of some applications can be facilitated whenusing a one-sided communication semantic. Remote memory access allows oneprocess to specify all communication parameters, both for the sending side andthe receiving side. Such a semantic is usually based on the put and get paradigm.The one-sided communication primitives can be implemented in terms of asyn-chronous send and receive primitives as it is suggested in the current draft ofthe extensions to the Message-Passing Interface [44]. Independently from thesemantic of the message passing model, this programming paradigm is tedious,time-consuming, and error-prone for programmers in general, as it is ultimatelybased on separate name spaces. In the data parallel model, parallelism, i.e.,inter-process communication, is explicitly handled by hardware synchronization4

and
ow control. Data parallelism can be implemented on DMCCs; however, be-cause the communication delay caused by message passing is much longer thanthat caused by accessing shared variables in a common memory, DMCCs areconsidered to be loosely-coupled multiprocessors. In order to avoid global syn-chronization after each instructions, the same program can be executed by eachprocessor asynchronously. Synchronization takes place only when processors needto exchange data. This programming model is referred to as the Single ProgramMultiple Data (SPMD) programming model [67]. This model is based on distinctname spaces and loosely synchronous parallel computation with a distinct dataset for each process. Thus, data parallelism can be exploited on DMCCs by usingthe data parallel programming model or the SPMD programming model. Finally,the data parallel programming model requires a regular distribution of the data aswell as the tasks to be performed concurrently. These requirements considerablyfacilitate the design of data parallel languages. In practice, such a language can bedirectly derived from standard serial programming languages such as C or Fortran.It follows that data parallel programs are easier to write and debug. However,when the problem's data or even the tasks to be performed are irregular, the dataparallel programming model may not be a viable and/or useful abstraction.In this dissertation, DMCCs will be regarded as MIMD computers from thearchitectural point of view according to Flynn's classi�cation [42]. DMCCs willhowever be considered as SPMD multicomputers from the programming point of5

view; that is, the same program is executed by all of the processes simultaneously.This parallel program operates on multiple data streams, and more precisely eachprocess of the parallel program operates on its own data set. Finally, the compu-tations performed by these processes are loosely coupled.1.1 The Parallel Programming Problem : A ConcreteExampleThe tremendous commercial success of micro (personal) computing technologycan be attributed to a large extent to the early development and availability ofspreadsheet software products (VisiCalc). Indeed, preparing such worksheets is avery common task in nearly all businesses. Likewise, to a lesser extent however,the development of numerical linear algebra software has played a similar role forthe scienti�c supercomputing community, since linear algebra { in particular, thesolution of linear systems of equations { lies at the heart of a very large number ofcalculations in scienti�c computing. The well-known BLAS [36, 35] and LAPACK[5] numerical linear algebra software libraries are typical examples of such usefuland successful software packages for shared-memory vector and parallel processors.The programming languages used to encode VisiCalc and LAPACK respec-tively, have ultimately been essential building tools for the existence and successof these software packages. Indeed, in a serial model of computation the transla-6

tion of basic linear algebra expressions into a procedural programming languageis a well understood and relatively easy operation. The basic data structuresand
ow of control constructs available in such programming languages generallymatch the concise mathematical notation reasonably well. Consequently, one candevelop general,
exible and re-usable numerical software in a reasonable amountof time concentrating on its design, quality and e�ciency.In a distributed memory computational environment these basic algebra ex-pressions become meta-expressions. The simple global mathematical notationdoes not adequately describe the actual operations that the individual processesmust perform. The di�erences between the translation of a concise mathematicalformula in a serial, versus distributed, computational environment cannot solelybe reduced to the addition of a few message exchanges across the interconnec-tion network. The local operations di�er to a large extent too, and can be bestillustrated through the use of a simple example.Let us consider the computation of the trace of a matrix. This operation istrivially expressed in a serial model of computation using a simple loop constructavailable in most programming languages. However, in a distributed memorycomputational environment, because the data is distributed among the processesmemories, di�culty arises in locating the diagonal entries of the matrix owned byeach process, rather than in combining or computing the local results.In the last decade three main approaches to designing dense linear algebra7

libraries for DMCCs computers have been followed. These three approaches arepresented below and focus on di�erent optimality criteria.1. optimal data layout and e�ciency,2. data decomposition independence,3. software reuse via high-level language support for data parallel programming.First, because the data decomposition largely determines the performance andscalability of a concurrent algorithm [21, 46, 48], a great deal of research [7, 12, 55]has aimed at determining optimal data distributions [27, 54, 57, 72]. This ap-proach tacitly makes two assumptions worth reiterating about the user's data andthe target architecture. First, the user's data may need to be redistributed tomatch this optimal distribution [6]. Second, the target architecture is such thatall processes can be treated equally in terms of local performance, and, the com-munication rate between two processes is independent of the processes considered.E�ciency is the primary consideration justifying any restriction or requirementthat an implementation may have. As a result, the two-dimensional block cyclicdistribution [67] (see Chapter 2) has been suggested as the basic decompositionfor parallel dense linear algebra libraries due to its scalability [38, 67], load balanceand communication [54] properties. Let us illustrate the implications of this ap-proach on the simple trace computation example. First, one would likely restrictthe trace computation to the leading submatrix of the initial distributed matrix8

to simplify somewhat the index computations. Second, the usual and simple tracecomputation algorithm clearly suggests viable data decomposition decisions for itse�cient parallel implementation. Therefore, one could for example require eithera square block cyclic data layout onto a rectangular process grid such that thenumbers of process rows and columns are relatively prime, or perhaps the useof a two-dimensional block Hankel wrapped storage scheme without any restric-tions on the process grid. A de�nition of the block Hankel wrapped distributionscheme can be found in [55] and references therein. For su�ciently small distribu-tion blocking factors, both of these distribution choices ensure that the diagonalblocks of the submatrix operand will be evenly distributed among all processes,and thus a perfect load balance. With these restrictions, one is guaranteed toproduce an optimal trace computation implementation. Obviously, the blockingfactor used by the distribution would a�ect the performance of such an implemen-tation, and the optimal value of this factor is also likely to be machine dependent.Nevertheless, such an optimal value exists for each possible target architecture.Another approach focused on
exible and general-purpose library routines.Determining an appropriate decomposition that maximizes program performanceis inherently di�cult due to the very large number of distribution and alignmentpossibilities. The above example is a good illustration of the distribution choicedilemma, since the block cyclic or the block Hankel wrapped storage schemesare indeed large families of distributions. As a matter of fact, the problem of9

determining an optimal data distribution for one- or two-dimensional arrays hasbeen proven to be NP-complete [73]. Similarly, the problem of �nding a setof alignments for the indices of multiple program arrays that minimizes datamovement among processes is also NP-complete [71]. A number of heuristics fordetermining suitable distributions and alignments [71] have been proposed in theliterature. In addition to these theoretical results, it is intuitively clear that aunique data distribution or alignment selection for an entire program may notbe enough to achieve the best possible performance. In other words, a particulardata decomposition that is well suited for one phase of a given algorithm maynot be as good, as far as performance is concerned, for the other phases. Theseresults have motivated this second approach where the user's decomposition isgenerally not changed but passed as an argument and a suboptimal algorithm isused. This approach is usually referred to as decomposition independent [41, 84].The suboptimality of a routine must be weighted against the possibly large costof redistributing the input data.Finally, the most potentially ambitious approach attempts to provide high-levellanguage support for data parallel programming. In the last few years, several dataparallel Fortran languages have been proposed, such as Fortran D [45] and ViennaFortran [88]. More recently, the High Performance Fortran (HPF) language [66]has been developed as a community e�ort to standardize data parallel Fortran pro-gramming for DMCCs. HPF includes many of the concepts originally proposed in10

Fortran D, Vienna Fortran, and other data parallel Fortran languages. HPF sup-ports an abstract model of parallel programming in which users annotate single-threaded program with data-alignment and distribution directives. The compileruses these directives to partition the program's computation and distribute thedata as the basis to derive a SPMD program to be executed on each PU of theparallel machine. Today, the �rst HPF compilers are slowly becoming available ona wide range of machines, and it is unclear yet if those compilers will ful�ll theirhighly di�cult goals in the near future. C-based data parallel extensions havealso been proposed, such as Data Parallel C [51] and pC++ [11]. The long termobjective here is to design a data parallel language to generate e�cient parallelcode from any serial code fragment.1.2 MotivationThere are multiple sources of redistribution in a data parallel program, even whenit is not explicitly invoked by the programmer or a requirement imposed by aparallel software library. For instance when the distribution or alignment of ac-tual parameters does not match the distribution of the dummy arguments in thesubprogram interface, an implicit redistribution or realignment phase must takeplace at the procedure boundary. Moreover, even if the actual parameters aredistributed accordingly to the requirements imposed by a subprogram interface,11

this subprogram faces a dilemma. It can either use the physical distribution char-acteristics of its parameters as a guideline to sequence the computation and com-munication phases. Or, it may choose to reorganize logically and physically thesephases for e�ciency reasons. Substantial performance gains may be achieved bychanging array data decompositions, but only if the overhead of such operationsremains relatively small. Therefore, the e�cient and scalable implementation ofthe explicit, implicit and algorithmic data redistribution mechanisms is importantto the overall performance of data parallel programs on DMCCs. Equally impor-tant is the ability to avoid a redistribution phase that would lead to a degradationin performance.Many issues need to be considered to design e�cient and scalable data redis-tribution operations. First, because redistribution is a communication dominanttask, the e�ciency of the selected communication patterns is essential. In ad-dition, the redistribution may have to occur within a larger context. This willbe the case for example if this operation is part of a larger task taking advan-tage of pipelined communication phases. It is then important to redistribute inthe same pipelined fashion whenever possible. Second, the total execution timeof the operation is rapidly proportional to the amount of data communicated.Consequently, fast local indexing, packing and sorting techniques will bene�t re-distribution performance. Third, the scalability of these redistribution operationsmust be quanti�ed in order to either evaluate their performance as a function of12

the amount of data and/or the number of processors or compare di�erent tech-niques. Finally, redistribution mechanisms should be as independent as possiblefrom a particular architecture to allow for their portability across a wide rangeof DMCCs. This last issue has been considerably simpli�ed by the recent devel-opment of the Message Passing Interface (MPI) [43] and its adoption by a largemajority of machine vendors.Most of the Fortran- and C-based data parallel languages incorporate explicitand implicit redistribution capabilities. The Kali language [75] was one of the �rstto do so. DINO [79] addresses the implicit redistribution of data at procedureboundaries. The Hypertasking compiler [8] for data parallel C programs, ViennaFortran [14] and Fortran D [50] additionally specify data redistribution primitives.For e�ciency purposes as well as simplicity of the compiler, these redistributionoperations are often implemented in a library of intrinsics [61].Explicit and implicit data redistribution operations are necessary but not quitesu�cient. These expensive operations change the distribution of an entire operandat once, where in a number of cases some of it can be delayed. In those cases, onlya more simple redistribution operation on a suboperand is required which can beoverlapped with other computational and/or communication phases. Such oper-ations are more e�cient in terms of space and time. They are called algorithmicredistribution methods because they in essence attempt to reorganize logically andphysically the computations and communications within a algorithmic context.13

To derive algorithmically redistributed operations, it is �rst necessary to an-alyze the reasons why the formulation of more general distributed operations isdi�cult for a given data decomposition. Such di�culties are intertwined with thegiven data layout, even though one can usually de�ne this underlying data-processmapping in a simple form. Indeed, this de�nition is by itself of little use unless itis accompanied by a list of the mapping's properties. For instance being able totell in which process's memory the matrix entry a44 resides is undoubtly a valu-able piece of information; it is, however, far more useful to be able to determine inwhich process's memories the diagonal blocks reside and how far those are fromeach other. Indeed, if one wants to access the diagonal entries of a matrix, onemust �rst know how to access a11, and second, how to access ai+1;i+1 from aii.The formulation of general distributed matrix operations must be derived fromthe properties that a given data layout may possess as opposed to the data layoutitself. These inherent properties should therefore be brought to the fore. Oneaspect of this dissertation is to exhibit these properties along with a formal proofas well as illustrate how they characterize a given data distribution scheme. Algo-rithmic redistribution methods are then suggested for the general two-dimensionalblock cyclic distribution.The two-dimensional block cyclic data decomposition scheme is a natural can-didate for such a study for multiple reasons. First, it provides a simple generalpurpose way of distributing a block-partitioned matrix on DMCCs. It encom-14

passes a large number of more speci�c data distributions such as the blocked orpurely scattered cases (see Chapter 2), and it has been incorporated into the HighPerformance Fortran language [66]. Second, some of this mapping's propertiescan be expressed in a simpler way if one restricts oneself to the square blockcyclic case (see Chapter 2). Some of these simpli�ed corollaries have already beenindirectly illustrated and applied in [22, 23, 25]. Laborious debugging sessions ofcode fragments that were in fact relying on these corollaries are at the origin ofthe development of this more formal approach. Finally, the way in which a matrixis distributed over a set of processes has a major impact on the load balance andcommunication characteristics of the concurrent algorithm, and hence largely de-termines its performance and scalability. There is considerable evidence that thesquare block cyclic mapping can lead to very e�cient implementations of morecomplex matrix operations such as the LU, Cholesky or QR factorizations [20, 38]or even the reductions to Hessenberg, tridiagonal and bidiagonal forms [19, 24].The encouraging performance results mentioned above were obtained for par-ticular process grid shapes and empirically chosen distribution parameters onspeci�c hardware platforms. It is natural to ask if restricting the supported datalayouts and providing basic operations with little
exibility are reasonable deci-sions, even at the early design stages of a general purpose dense linear algebrasoftware library for DMCCs. Indeed, as the development progresses, these restric-tions become more burdensome, eventually to the point where they prevent from15

the formulation of more complicated algorithms. Examples of such algorithms areout of core linear solvers, divide and conquer methods and algorithms involving alarge number of distributed matrices such as the generalized least squares solvers,or even direct sparse linear solvers.On the one hand, supporting the most general block cyclic decompositionswill not allow for any performance increase or decrease as far as the restrictedand optimal cases are concerned. On the other hand, allowing for more
exibleoperations suggests a more intensive use of algorithmic blocking features, whichsomewhat attenuate the communication overhead induced by the most generaldata layouts. Consequently, algorithmic redistribution methods logically balancethe communication and computation operations, and, therefore, allow for im-proved transportable performance. This dissertation quanti�es and models thesee�ects and discusses the possible tradeo�s between e�ciency and
exibility. Ex-perimental results are also reported to evaluate the performance model.1.3 Problem StatementBasic algorithmically redistributed matrix operations on distributed memory archi-tectures allow for the expression of e�cient and
exible general matrix operationsfor various block cyclic mappings. This dissertation �rst investigates distinct log-ical blocking techniques, as well as their impact on the scalability of these opera-16

tions, and second to what extend
exibility and e�ciency are antagonistic featuresfor the general family of two-dimensional block cyclic data distributions.This dissertation is distinguished as the earliest known research to propose aportable and scalable set of
exible algorithmically redistributed operations, as wellas a framework for expressing these complicated operations in a modular fashion.Their scalability is quanti�ed on distributed memory platforms for various blockcyclic mappings.1.4 Organization of This DissertationChapter 2 de�nes the two-dimensional block-cyclic data distribution. Elementaryresults of the theory of integers are systematically brought to the fore. They fun-damentally characterize the properties of the two-dimensional block cyclic datadistribution. In addition, these properties are the basis of e�cient algorithmsfor address generation, fast indexing techniques and consequently e�cient dataredistribution and manipulation. Some of these algorithms are described in de-tail along with the properties from which they are deduced. Related work is alsosummarized. Chapter 3 presents various
exible and general basic algorithmic re-distribution operations. Di�erent blocking techniques particularly well-suited forthe implementation of these basic dense linear algebra operations on DMCCs arepresented and discussed in detail. In addition to the easier case of general rect-17

angular matrix operands, speci�c general blocking techniques for triangular andsymmetric matrices are shown. A minimal amount of data is exchanged amongprocess memories during these redistribution operations. These techniques featurea variable logical blocking factor for e�ciency purposes and are independent of theunderlying machine architecture. The properties shown earlier ensure the porta-bility of these techniques among distributed memory platforms. The optimalityof these techniques with respect to minimizing the amount of data exchangedis shown in Chapter 4, along with a discussion of the importance of the vari-able logical blocking factor. Chapter 4 also presents a framework for quantifyingthe scalability of the algorithmic redistribution operations previously presented.This framework is also used to assess the theoretical performance impact of thelogical blocking factor. This parameter is shown to allow for high performancetuning and its theoretical relationship with some machine parameters is exhibited.Chapter 5 validates the previously established performance model by comparingits theoretical predictions with actual and experimental performance data. Chap-ter 6 concludes this dissertation by explaining how algorithmically redistributedoperations can be used in the context of even more complex linear algebra com-putations, such as matrix transposition, matrix-matrix multiplication, triangularsolve, classic matrix factorizations and reductions. This last chapter �nally sum-marizes the major contributions of this dissertation and suggests potential futureresearch directions. 18

Chapter 2Properties of The Block CyclicData Distribution2.1 IntroductionDue to the non-uniform memory access time of distributed memory concurrentcomputers, the performance of data parallel programs is highly sensitive to theadopted data decomposition scheme. The problem of determining an appropriatedata decomposition is to maximize system performance by balancing the compu-tational load among processors and by minimizing the local and remote memorytra�c. The data decomposition problem involves data distribution, which dealswith how data arrays should be distributed among processor memories, and dataalignment, which speci�es the collocation of data arrays. Since the data decom-19

position largely determines the performance and scalability of a concurrent algo-rithm, a great deal of research [21, 46, 48, 55] has aimed at studying di�erent datadecompositions [7, 12, 57]. As a result, the two-dimensional block cyclic distribu-tion [67] has been suggested as a possible general purpose basic decomposition forparallel dense linear algebra libraries [27, 54, 72] due to its scalability [38], loadbalance and communication [54] properties.The purpose of this chapter is to present and de�ne the two-dimensionalblock cyclic data distribution. The contributions of this chapter are two-fold.First, elementary results of the theory of integers are systematically brought tothe fore. They fundamentally characterize the properties of the two-dimensionalblock cyclic data distribution. Second, these properties are the basis of e�cientalgorithms for address generation and fast indexing techniques, leading to conse-quently e�cient data redistribution and manipulation. Some of these algorithmsare described in detail along with the properties from which they are deduced.The two-dimensional block cyclic data distribution or decomposition is for-mally de�ned. Its fundamental properties are then formally proved and presentedalong with direct applications. The next two chapters illustrate how these proper-ties can be applied to address and solve data alignment problems, i.e., to generateand implement more complicated algorithms for data redistribution and logicallyblocked operations. The correctness of these operations and the robustness oftheir implementation rely on these properties.20

2.2 De�nitionsDe�nition 2.2.1 The mapping of an algorithm's data over the processes of adistributed memory concurrent computer is called a data distribution. The block-cyclic data distribution is one of these mappings.In general there may be several processes executed by one processor, therefore,without loss of generality, the underlying concurrent computer is regarded as a setof processes, rather than physical processors. Consider a P �Q grid of processes,and let � denote the set of all the process coordinates (p; q) in this grid:� = f(p; q) 2 f0 : : : P � 1g � f0 : : : Q� 1gg:Figure 2.1 illustrates a 2 � 3 process grid and the elements of �.
0 1 2

0

1 (1,0) (1,2)

(0,0) (0,2)(0,1)

(1,1)Figure 2.1: A 2� 3 process grid21

Consider an Mb �Nb array of blocks. Each block is uniquely identi�ed by theinteger pair (ib; jb) of its row and column indexes. Let �b be the set constructedfrom all these pairs:�b = f(ib; jb) 2 f0 : : :Mb � 1g � f0 : : : Nb � 1gg= f(l P + p;m Q+ q) with ((p; q); (l;m)) 2 � ��gwith � = f(l;m) 2 f0 : : : bMb�1P cg � f0 : : : bNb�1Q cg.De�nition 2.2.2 The block cyclic distribution is a mapping of �b onto � asso-ciating to block coordinates the coordinates of the process into which it resides:8>>><>>>: �b �! �(ib; jb) = (l P + p;m Q+ q) 7�! (p; q): (2.2.1)An M �N matrix A partitioned into blocks of size r � s is an Mb �Nb arrayof blocks. The total number Mb (respectively Nb) of row blocks or blocks of rows(respectively column blocks) of A as well as their size are easy to determine:Mb = M � 1r + 1 = dMr e and Nb = N � 1s + 1 = dNs e with M;N � 1: (2.2.2)All the blocks are of size r � s with the exception of the ones of the last row andcolumn of blocks. If M mod r = 0, the last row blocks contain the last r ma-trix rows, and the last M mod r rows otherwise, where mod denotes the positive22

modulo operator of two positive integers. The last column blocks contain the lasts matrix columns if N mod s = 0, and the last N mod s columns otherwise. Anexample of a block-partitioned matrix is shown in Figure 2.2. Figure 2.3 illustratesthe mapping of this example onto a particular process grid.
6 7 12 13 18 19 24 25 30 31 36 37 401

1

4

5

8

9

16

17

20

21

22

12

13

A 00

A 10

A 20

A 30

A
50

A 40

A 01

A 11

A 21

A 31

A 02

A 12

A 22

A 32

A 42

A 03

A 13

A 23

A 33

A 43A 41

A 04

A 14

A 24

A 34

A 44

A 05

A 15

A 25

A 35

A 45

A
51

A
52

A
53

A
54

A
55

A 06

A 16

A 26

A 36

A 46

A
56Figure 2.2: A block-partitioned matrix, with M = 22, N = 40, r = 4, s = 6.De�nition 2.2.3 Let � be the set of all possible pairs (l;m) as de�ned above.Consider the adjoint mapping from �b onto � that associates to a global blockcoordinate pair its local coordinate pair:8>>><>>>: �b �! �(ib; jb) = (l P + p;m Q+ q) 7�! (l;m) (2.2.3)23

Remark. Mapping (2.2.3) transforms the coordinates of a matrix block intolocal values, i.e., the matrix block of coordinates (ib; jb) = (l P + p;m Q + q) isthe local block indexed by (l;m) into the process (p; q). This fact is illustrated inFigure 2.3, where Almibjb denotes a matrix block of global coordinates (ib; jb) andlocal coordinates (l;m). At this point, it is useful to re�ne the above De�nitions(2.2.1) and (2.2.3).
0

1

0 1 2

5

8

16

13

21

22

13 18 31 367 12 25 3061
1

4

9

12

17

20

19 24 37 40

00
A 00

A 10

20

A 20

40

A 01

03

A 11

23

A 21

43

A 12

26

A 02

06

A
46

22

A 00

10

A 10

30

A 20

50

A 01

13

A 11

33

A 21

53

A 02

16

A 12

36

A 22

56

A 00

01
A 01

04

A 10

21
A 11

24

A 21

44
A 20

41

A 00

11

A 10

31

A 20

51
A 21

54

A 11

34

A 01

14
A 00

12
A 01

15

A 11

35

A 21

55

A 10

32

A 20

52

A 00

02

A 10

22

A 20

42

A 01

05

A 11

25

A 21

45

Figure 2.3: The previous block-partitioned matrix mapped onto a 2� 3 process grid.De�nition 2.2.4 Consider �b, � and � as de�ned above. The block cyclic distri-bution is de�ned by the following two related mappings associating to the globalblock coordinates: 24

� the coordinates of the process in which this block resides8>>><>>>: �b �! �(ib; jb) = (l P + p;m Q+ q) 7�! (p; q) (2.2.4)� the corresponding local coordinates of this block8>>><>>>: �b �! �(ib; jb) = (l P + p;m Q+ q) 7�! (l;m): (2.2.5)Furthermore, this previous de�nition can be restated in terms of each matrixentry aij instead of the block Aibjb to which it belongs. This de�nition is the mostappropriate and will best serve our purpose:De�nition 2.2.5 Consider a P �Q grid of processes, where � denotes the set ofall process coordinates (p; q) in this grid:� = f(p; q) 2 f0 : : : P � 1g � f0 : : : Q� 1gg:Consider an M�N matrix partitioned into blocks of size r�s. Each matrix entryaij is uniquely identi�ed by the integer pair (i; j) of its row and column indexes.Let � be the set constructed from all these pairs:� = f(i; j) 2 f0 : : :M � 1g � f0 : : : N � 1gg= f((l P + p) r + x; (m Q+ q)s+ y); ((p; q); (l;m); (x; y)) 2 �� ���g25

with � = f(l;m) 2 f0 : : : b M�1rP cg � f0 : : : b N�1sQ cgg and� = f(x; y) 2 f0 : : : r � 1g � f0 : : : s� 1g:The block cyclic distribution is then de�ned by the three following mappingsassociating to a matrix entry index pair (i; j):� the coordinates (p; q) of the process into which the matrix entry resides8>>><>>>: � �! �(i; j) = ((l P + p) r + x; (m Q+ q) s+ y) 7�! (p; q) (2.2.6)� the coordinates (l;m) of the local block in which the matrix entry resides8>>><>>>: � �! �(i; j) = ((l P + p) r + x; (m Q+ q) s+ y) 7�! (l;m) (2.2.7)� the local row and column o�sets (x; y) within this local block (l;m)8>>><>>>: � �! �(i; j) = ((l P + p) r + x; (m Q+ q) s+ y) 7�! (x; y) (2.2.8)De�nition 2.2.6 The blocked decomposition is de�ned by De�nition 2.2.5with r = dMP e and s = dNQ e, i.e., � = f(0; 0)g.De�nition 2.2.7 The purely scattered or cyclic decomposition is de�nedby De�nition 2.2.5 with r = s = 1, i.e., � = f(0; 0)g.26

De�nition 2.2.8 The square block cyclic distribution is a special case ofthe general two-dimensional block cyclic distribution (2.2.5) with r = s.2.3 Block PropertiesIn this section, we state and prove some properties of the general block cyclic datadecomposition as de�ned in (2.2.5).2.3.1 Notation and Elementary TheoremsThe positive modulo of two positive integers a and b has been denoted above bymod. When b evenly divides a, i.e., a mod b = 0, we equivalently write b div a.The least common multiple and greatest common divisor of x and y are respec-tively denoted by lcm(x; y) and gcd(x; y). A few elementary theorems that willbe used in the next sections are stated below. These theorems are direct implica-tions of Euclid's division algorithm and their proof can be found in any elementaryinteger theory textbook.Theorem 2.3.1 8x; y 2 IN; x y = lcm(x; y) gcd(x; y):Theorem 2.3.2 8 a; b 2 ZZ; the set of all linear integral combinations a t+ b uwith t and u in ZZ is exactly the set of all integral multiples of gcd(a; b). In otherwords, for all t and u in ZZ, there exists k in ZZ such that a t+ b u = k gcd(a; b)and conversely. 27

De�nition 2.3.1 The least common multiple and greatest common divisor of P rand Qs are denoted by lcmb and gcdb respectively, i.e.,lcmb � lcm(P r;Q s) and gcdb � gcd(P r;Q s):With these notational conventions, it follows that P Q r s = lcmb gcdb.2.3.2 PropertiesIn order to achieve an even distribution of the load in a data parallel program, onehas to �rst distribute evenly the data. Equivalently one must know the smallestpiece of data that is evenly distributed. The size of the smallest r � s block-partitioned matrix evenly mapped onto a P � Q process grid according to theblock cyclic scheme is P r � Q s. This is trivially achieved by distributing oner�s block per process. This matrix is in general rectangular as opposed to square,and as such it is not a convenient partitioning unit for operations on triangular orsymmetric matrices. A more appropriate unit size is given by lcmb which is thesize of the smallest r � s block-partitioned square matrix similarly mapped ontothe same process grid. This square matrix is called an LCM block. Each processowns exactly lcmb=P � lcmb=Q entries of this LCM block. This concept has beenoriginally introduced in the restricted context of square block cyclic mappings in[22, 23, 25]. The purpose of this section is surely to formally exhibit properties of28

the block cyclic distribution. More importantly, this collection of properties aimsat determining an elegant and convenient data structure that encapsulates andreveals the essential features of the LCM block partitioning unit when used in thecontext of algorithmic redistributed operations.In preparation of the more general properties presented later in this chapter,it is useful to �rst characterize the properties of the individual blocks Aibjb with(ib; jb) in �b. More precisely, the blocks Aibjb such that ib = jb are of particularimportance in the development of the more general properties of interest.De�nition 2.3.2 A matrix block Aibjb with (ib; jb) = (l P +p;m Q+q) such thatib = jb with ((l;m); (p; q)) 2 �� � is called a D-block.De�nition 2.3.3 A process of coordinates (p; q) in �, such that there is a pair(l;m) in � verifying the equation: l P + p = m Q+ q is called a D-process.Remark. A D-block or a D-process does not necessarily contain diagonalentries of the matrix, e.g., the D-block A33 in Figure 2.2.Property 2.3.1 There are exactly lcm(P;Q) D-processes.Proof. Consider the D-blocks Aii and Ajj, with i 6= j and i; j � 0. Aii andAjj reside in the memory of the process of coordinates (p; q) if and only if8>>><>>>: (i� p) mod P = 0;(j � p) mod P = 0; and 8>>><>>>: (i� q) mod Q = 0;(j � q) mod Q = 0: (2.3.9)29

Since congruences for the same modulus may be added or subtracted, the previousconditions can be rewritten as(i� j) mod P = 0(i� j) mod Q = 0 9>>>=>>>;, (i� j) mod lcm(P;Q) = 0: (2.3.10)It follows that the set of pairs (Aii; Ajj) such that Aii and Ajj are D-blocks ownedby the same process is an equivalence relation having exactly lcm(P;Q) equiva-lence classes.Remark. A fundamental consequence of this proof is that the sequence of D-blocks or D-processes is periodic and the smallest period is lcm(P;Q). This provesthat the LCM block introduced above is indeed the smallest square partitioningunit. Second, all r� s blocks of relative coordinates say (r; s) with respect to theLCM block to which they belong to are residing in the same process of coordinates(r mod P; s mod Q). Finally, two of these blocks are adjacent if and only if theircorresponding LCM blocks are adjacent.Property 2.3.2 The set of the D-processes of coordinates (p; q) in � is given bythe following equation(p� q) mod gcd(P;Q) = 0; i:e:; gcd(P;Q) div (p � q): (2.3.11)30

Proof. The coordinates of a D-block verify l P + p = m Q+ q, i.e.,p � q = m Q� l P: (2.3.12)A necessary and su�cient condition for this linear Diophantine equation to havea solution in integers for l and m is that gcd(P;Q) divides p � q.By setting p (or q) in Equation (2.3.11) to a constant value, it follows thatthe distance between two consecutive D-processes in the same process row (orcolumn) is equal to gcd(P;Q). Moreover, the extended Euclid's algorithm [29]can be used to solve the linear Diophantine Equation (2.3.12). The solution pairsdepend on the local process information (p; q). First, a particular solution (l�;m�)of the equation gcd(P;Q) = m� Q� l� P (2.3.13)is found by computing gcd(P;Q). The set �pq of all solutions of the Equation(2.3.12) is given by:�pq = f(l;m) = (l� + t lcmp;m� + t lcmq); t 2 ZZg; (2.3.14)with lcmp = lcmb=(P r) and lcmq = lcmb=(Q s).Property 2.3.3 If Aii is a D-block residing in the process of coordinates (p; q),the next D-block Akk residing in this same process with k = i + lcm(P;Q) is31

locally separated from Aii by a �xed stride in the column and row directions,namely lcmp and lcmq respectively.Proof. This is a direct conclusion of the block cyclic decomposition De�nition(2.2.5) and the above de�nition of �pq.Property 2.3.4 The local coordinates of the �rst D-block residing in the processof coordinates (p; q) are determined by the smallest positive pair (~l; ~m) in �pq.This pair also provides an ordering of the D-processes.Proof. By de�nition of the block cyclic distribution and since the Mapping(2.2.3) is an increasing function of l and m, it is su�cient to prove this result byreasoning on the matrix blocks. The set g�pq of the D-block coordinates residingin a D-process is given byg�pq = f(l;m) 2 �pq; such that l;m � 0g � IN2: (2.3.15)g�pq is a discrete set that is bounded below; therefore, it has and contains itssmallest element (~l; ~m). Furthermore, the D-block (~l P+p; ~mQ+q), with ~l P+p =~m Q+ q is the �rst D-block residing in the process (p; q). This implies that thisparticular process is the (~lP + p+ 1)th D-process.Figure 2.4 shows a 4�6 process grid, the D-processes are highlighted as darkersquares. The upper left and lower right corners of the process grid are labeled32

by A and �A respectively. A simple graphical procedure to determine these D-processes is to draw a diagonal starting from A. This diagonal is represented by abold dashed line on the �gure. When the diagonal reaches an edge of the processgrid, it should be continued on the opposite edge of the grid. For example thediagonal starting from A �rst reaches an edge of the grid at B. The diagonalshould therefore be continued from the opposite edge of the grid precisely from
0

1

2

3

4

5

6

7

8

9

10

11

gcd(P,Q)

gcd(P,Q)

gcd(P,Q)

0 1

2

3

3

1

0

2 4 5

gcd(P,Q)

Process(2,4):

2−4 = mQ − lP

2+lP = 4+mQ = 10

i.e, process(2,4) is

P=4, Q=6; l=2, m=1

Ordering of the main
D−processes:

D−process.

the 11th main

A

AB

B

CC

D

D

Figure 2.4: A P �Q process grid with P = 4, Q = 6, lcm(P;Q) = 12, gcd(P;Q) = 2.�B and so on. Ultimately, the diagonal will reach �A since the grid is �nite. Onemay also picture the process grid folded onto a torus. In this case, A and �A labelthe same point on the surface of the torus. This is also true of all other conjugatepairs. Thus, �nding the D-processes can be achieved by drawing a \straight" line33

on a torus surface. The dashed lines represent two matrix diagonals of a squareblock-partitioned matrix mapped onto this grid. As noted above, the bold dashedline is a D-diagonal, i.e., in one-to-one correspondence with the D-blocks. Thecorresponding D-processes are represented by darker squares. The total numberof D-processes owning these D-blocks is lcm(4; 6) = 12. The distance betweentwo consecutive D-processes is equal to gcd(P;Q) = gcd(4; 6) = 2 as explicitlynoted in this �gure. In addition, this example also illustrates how to determinethe ordering of these D-processes by �nding the smallest positive solution of theEquation (2.3.12). This computation is of importance when one wants to computethe local number of D-blocks owned by a particular process. All of these resultswere given by the above properties.Figure 2.5 illustrates how to compute the local distance between D-blocks. Itrepresents a portion of a square block-partitioned matrix distributed over a 2� 3process grid. The dashed lines materialize three matrix diagonals D0, D1 andD2 of this square block-partitioned matrix. The bold dashed diagonal D0 is a D-diagonal, i.e., in one-to-one correspondence with the D-blocks. The blocks residingin the process of coordinates (p; q) are represented by darker squares. Note thatthe global coordinates of the blocks residing in this process (p; q) represented onthe �gure have the form ((l+u)P+p; (m+v)Q+q)with u = 0 : : : 3 and v = 0 : : : 2.The blocks of global coordinates (l P +p;mQ+q) and ((l+3)P+p; (m+2)Q+q)are labeled by B0 and B3 respectively. The �gure illustrates the fact that the two34

lP+p

(l+1)P+p

(l+2)P+p

(l+3)P+p

mQ+q

a=
1

P=2, Q=3: aQ − bP = gcd(P,Q) = 1 => a=1, b=1 and cQ − dP = −1 => c=1, d=2.

lcm(P,Q)=6

lcm(P,Q)=6

(m+1)Q+q (m+2)Q+q

lcmq=2

lcmp=3

D2

D1

D0

D0

D2

D1

B2

B1

c=1

b=1

d=
2

B0

B3Figure 2.5: A square block-partitioned matrix distributed over a 2� 3 process grid.35

consecutive D-blocks B0 and B3 are globally lcm(P;Q) = 6 blocks away from eachother in both row and column directions. This fact is indicated on the �gure bythe bold arrows. Locally within this process of coordinates (p; q) these same twoconsecutive D-blocks B0 and B3 are lcmp = 3 blocks in the column direction andlcmq = 2 blocks in the row direction distant from each other. Similarly, this factis indicated on the �gure by the bold dashed arrows. The two diagonals D1 andD2 illustrated in the �gure by simple dashed lines do not not match exactly theD-blocks. For these diagonals D1 and D2, this �gure shows the existence of otherblocks than the D-blocks that not only reside in the process of coordinates (p; q),but also own diagonal entries. These blocks are labeled by B1 and B2. They liebetween the two previous consecutive D-blocks B0 and B3. The block labeled B1(respectively B2) owns diagonals when the diagonal D1 (respectively D2) to beconsidered is below (respectively above) the D-diagonal D0. It is interesting tonotice that the local jumps between blocks owning diagonal entries, i.e., betweenthe blocks B0, B1 and B3 or the blocks B0, B2 and B3, are solutions of the linearDiophantine equations � gcd(P;Q) = l P � m Q depending on the position ofthe diagonal. In the �gure, the two solution pairs are denoted by (a; b) and (c; d).Simple arcs illustrate these local jumps. For example to go locally from B0 to B1,one has to go d = 2 blocks south, and c = 1 block east. Finally, to go locallyfrom B1 to B3, one has to go a = 1 block south, and b = 1 block east. Reversingthis procedure allows one to explicitly �nd the path from B0 to B3 via B2. All of36

these results were also given by the above properties.Assume that the only problem one is interested in is to locate the diagonalentries of a block-partitioned distributed matrix. Within this context, assume thatone is willing to restrict oneself to the purely scattered decomposition as de�nedin (2.2.7). With these assumptions, subject to a renumbering of the processes,a D-block is just a diagonal entry and conversely. Since the above propertiescompletely characterize the D-blocks and the D-processes, the problem of interestis solved. These assumptions have been made by some researchers [12, 13, 54] toimplement the LINPACK benchmark and related dense linear algebra kernels ondistributed vector computers. These are also speci�cations data parallel languagessuch as HPF are leaning towards.Assume now that one is willing to restrict oneself to the square (r = s) blockcyclic decomposition as de�ned in (2.2.8) and is only interested by the D-diagonalsmade of matrix entries aij such that ji � jj mod s = 0. In this case as well, thediagonals of the D-blocks are the D-diagonal entries and conversely. Similarly asabove, the problem of locating the diagonals is solved. The square block cyclicdata decomposition is a particular case of the distributions HPF supports stan-dardly [66]. This approach has also been chosen for the design of the dense routinesin the ScaLAPACK software library [16, 21, 22, 23, 25, 38]. The above propertiesassume that the diagonals aij of interest are such that s evenly divides ji � jj.When this is not the case, the properties can easily be adapted as indicated in Ta-37

ble 2.1. This table shows how the above properties are generalized to all possiblediagonals for the square block cyclic distribution.Table 2.1: Generalization of the block properties to the square block cyclic distributionr = s D-Diagonals Other Diagonalsji� jj mod r = 0 ji� jj mod r 6= 0Blocks owningdiagonals p� q = m Q� l P (p � q = m Q� l Pp � q � 1 = m Q� l PProcesses owningdiagonals gcd(P;Q) div (p� q) (gcd(P;Q) div (p� q)gcd(P;Q) div (p� q � 1)Number of suchprocesses lcm(P;Q) min(2; gcd(P;Q))� lcm(P;Q)In all of the other cases the previous properties are insu�cient to solve theproblem of locating diagonals. More powerful techniques presented in the nexttwo sections should be used instead.2.4 Solving Linear Diophantine EquationsThe algorithm to solve linear Diophantine equations is described in this section.It is historically attributed to the greek Diophantos (perhaps A.D. 250). Themethod is nevertheless presented below, as it is still the best known method tosolve completely these equations and also one way to establish properties of the38

block cyclic distribution. In order to locate the diagonals by solving directly alinear Diophantine equation, one �rst consider the following equation:m Q s� l P r = p r � q s+ x� y (2.4.16)for (l;m) 2 � and (x; y) 2 �. This equation is deduced from the block cyclicmapping de�ned in (2.2.5). To begin, one can instead solvem� Q s� l� P r = gcdb = gcd(P r;Q s): (2.4.17)The solution (l�;m�) of this equation can be found in O(log(max(P r;Q s)))time and space by using the extended Euclid's algorithm [29] for computing gcdb.Then, one computes gcd(r; s) and rewrites � as a disjoint union of intervals �h =[h gcd(r; s) : : : (h+1) gcd(r; s)) with h 2 ZZ. The expression x� y is rewritten as�+
 with � mod gcd(r; s) = 0 and 0 �
 < gcd(r; s). Because gcd(r; s) divides �,there exist � and � such that � r + � s = �. Thus, the Equation (2.4.16) can berewritten as m Q s� l P r = (p + �) r � (q + �) s+
 (2.4.18)This equation has a solution if and only if gcdb divides the right hand side. Inthis case, a solution pair (lh;mh) is obtained from the particular solution (l�;m�)previously computed. There is no guarantee that this solution pair will belong39

to the correct interval, so some scaling may be necessary. It is then easy torecover xh and yh. In addition, since the quadruplet solutions (lh;mh; xh; yh) maybe found in any order, sorting may also be necessary. The Equation (2.4.16) isthus completely solved, and one precisely knows in every process which blockowns diagonal entries and how to �nd those diagonals within each block. Eachquadruplet solution corresponds uniquely to a multiple of gcdb in � as illustratedin Figure 2.6. This one-to-one mapping implies that the quadruplet solutions are
0

2gcdb 4gcdb−2gcdb−4gcdb−6gcdb

1 − s r − 1Figure 2.6: The quadruplet solution intervals �hperiodic and will be successively found by the above method, so that one can stopas soon as a quadruplet solution has been found twice.The approach of solving a set of linear Diophantine equations to determineindex sets, process sets and so on is recommended by data parallel compiler de-signers as one way to proceed [15, 56, 64, 82]. Binary algorithms are available [65]to solve these equations. This method is thus very general and relatively inex-pensive in terms of time. Still, this approach is the most powerful and expensivemethod in terms of memory requirements. Dynamic storage facilities are neededfor the quadruplet solutions [63]. It can be adapted to accommodate variationsof the block cyclic distributions that are supported by the HPF language.40

2.5 LCM TablesDe�nition 2.5.1 The k-diagonal of a matrix is the set of entries aij such thati� j = k.Remark. With this de�nition the 0-diagonal is the \main" diagonal of amatrix. The �rst subdiagonal and superdiagonal are respectively the 1-diagonaland the �1-diagonal.De�nition 2.5.2 Given a k-diagonal, the k-LCM table (LCMT) is a two-dimensionalin�nite array of integers local to each process (p; q) de�ned recursively by8>>>>>>>><>>>>>>>>: LCMT p;q0;0 = q s� p r + k;8l 2 IN; LCMT p;ql;� = LCMT p;ql�1;� � P r;8m 2 IN; LCMT p;q�;m = LCMT p;q�;m�1 +Q s:An equivalent direct de�nition is8(l;m) 2 IN2 LCMT p;ql;m = m Q s� l P r + q s� p r + k:The equation for the 0-diagonal (2.4.16) is generalized to the k-diagonal byLCMT p;ql;m = x� y; (2.5.19)41

with (x; y) in �. Thus, blocks owning the k-diagonal entries are such that1� s � LCMT p;ql;m � r � 1: (2.5.20)In addition the value of LCMT p;ql;m speci�es where the diagonal starts within ablock owning diagonals as illustrated in Figure 2.7.
x

yy

x

pq(LCMT lm,0)

lm
pq)(0,−LCMT

LCMTlm
pq = −1 <= 0 LCMT lm

pq = 2 >= 0

s s

rr Figure 2.7: Meaning of di�erent values of LCMT p;ql;m with r = 6, s = 8Property 2.5.1 The local blocks in process (p; q) such that LCMT p;ql;m � 0 ownmatrix entries aij that are globally below the k-diagonal.Property 2.5.2 The local blocks in process (p; q) such that LCMT p;ql;m � 0 ownmatrix entries aij that are globally above the k-diagonal.Property 2.5.3 The local blocks in process (p; q) such that LCMT p;ql;m � �scorrespond globally to strictly lower blocks of the matrix.42

Property 2.5.4 The local blocks in process (p; q) such that LCMT p;ql;m � r cor-respond globally to strictly upper blocks of the matrix.Property 2.5.5 Within each process, if the r�s block of local coordinates (l;m)owns k-diagonal entries, the block of local coordinates (l + 1;m) (respectively(l;m + 1)) owns either k-diagonals or matrix entries that are strictly below (re-spectively above) the k-diagonal.Property 2.5.6 Within each process, if the r�s blocks of local coordinates (l;m)and (l + 1;m) (respectively (l;m + 1)) own k-diagonals, then the block of localcoordinates (l;m+1) (respectively (l+1;m)) owns matrix entries that are strictlyabove (respectively below) the k-diagonal.Proof. These last properties are direct implications of the LCM table de�-nition.Figure 2.8 shows an LCM block-partitioned matrix and the r � s blocks ofthis matrix that reside in the process of coordinates (p; q). Depending on theirrelative position to the k-diagonal, these blocks are identi�ed by a di�erent shadeof color. The arrangement of these blocks in process (p; q) is also represented anddenoted by the local array in process (p; q). This �gure illustrates the previousproperties and demonstrates that the essential piece of information necessary tolocate the diagonals locally in process (p; q) is contained in the diagonal LCMblocks. These diagonal LCM blocks separate the upper and lower parts of the43

matrix. Moreover, because of the periodicity of the distribution mapping men-tioned earlier in this chapter, only one diagonal LCM block is needed in orderto locate the k-diagonals in every process of the grid. This implies that only avery small fraction of the LCM table needs to be computed to solve the problemof interest. Furthermore, the size of the meaningful part of the LCM table canbe computed in O(plcmp2 + lcmq2) time. Thus, this information is very cheapto obtain and one can a�ord to recompute it when needed as opposed to whatwas done for the linear Diophantine equation method discussed in the previoussection.
Local array in process (p,q)

Upper

Lower

Diag

Upper

Lower

Diag

LCM block−partitioned matrixFigure 2.8: LCM template44

Figure 2.9 shows a 1-LCM block for a given set of distribution parametersP , r, Q and s. Figure 2.10 shows the associated 1-LCM tables correspondingto the 1-LCM block shown in Figure 2.9. Each of these tables is associated toa distinct process of coordinates (p; q). These coordinates are indicated in theupper left corner of each table. Examine for example the table corresponding to
111090 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

10

11

12

13Figure 2.9: The 1-LCM block obtained for P = 2, r = 2, Q = 2 and s = 3.process (0; 0). The value of the LCM table entry (0; 0) is 1. Since this value isgreater than �s = �3 and less than r = 2, it follows that this block (0; 0) ownsdiagonals. Moreover, locally within this block the diagonal starts in position45

0

1

4

5

8

9

−8 −2

2

(0,1) 3 4 5 9 10 11

12

13

10

−4

0 6

15

4

4

2

3

6

7

10

11

−2

−6

4

0

3 4 5 9 10(1,1)

2 8

11 15

2

−1

−5 1

5

876210(1,0)

2

3

6

7

10

11
−3−9

12

−1

1 7

3

−1−7

−3

(0,0)

0

1

4

5

8

9

0 1 2 6 7 8

13

12
−5−11

12

1

Figure 2.10: The 1-LCM tables obtained for P = 2, r = 2, Q = 2 and s = 3.46

(LCMT 0000 ; 0) = (1; 0). The periodicity in this table is shown by the block ofcoordinates (3; 2) which is such that LCMT 0000 = LCMT 0032 = 1. One can alsoverify that a block of local coordinates (l;m) in this table corresponds to a strictlylower (respectively upper) block in the original 1-LCM block (see Figure 2.9) ifand only if LCMT 00lm � �s (respectively LCMT 00lm � r). These same remarksapply to all of the other LCM tables shown in Figure 2.10.Property 2.5.7 The number of r � s blocks owning k-diagonal entries is givenby 8>>><>>>: lcmb (r + s� gcd(r; s)r s) if gcd(r; s) divides k;lcmb (r + sr s) otherwise:Proof. (sketch) First note that one can assume �s < k < r without loss ofgenerality by renumbering the processes with their relative process coordinates.Second, consider an array of r � s blocks of size lcm(r; s). If k divides gcd(r; s),there is exactly one r� s block such that its (r� 1; s� 1) entry belongs to the k-diagonal. Otherwise, such a block does not exist. Third, the column (respectivelyrow) edges of the blocks will be cut exactly lcm(r; s)=s (respectively lcm(r; s)=r)times by the k-diagonal. To see that lcmb=lcm(r; s) is indeed an integer, one mayobserve that this quantity can be rewritten as ((u Q) P r+ (t P) Q s)=gcdb withu and t in ZZ. Finally, there are exactly lcmb=lcm(r; s) such blocks in an LCMblock. 47

Property 2.5.8 If gcd(r; s) divides k, a su�cient condition for all P�Q processesto own k-diagonals is given by r + s � gcd(r; s) � gcdb. Otherwise, i.e., whengcd(r; s) does not divide k, a su�cient condition for all P � Q processes to ownk-diagonals is given by r + s � gcdb.Proof. Remark that gcd(r; s) divides gcdb. If gcd(r; s) divides k (note thatthis will always be the case if gcd(r; s) = 1), the number of multiples of gcd(r; s)in the interval Ip;q = (p r � (q � 1) s : : : (p + 1) r � q s) is r + sgcd(r; s) � 1. Thenumber of multiples of gcdb in the interval Ip;q is gcdbgcd(r; s) . Thus, the inequalityr + sgcd(r; s)�1 � gcdbgcd(r; s) is a su�cient condition for a multiple of gcdb to be in thisinterval Ip;q. Otherwise, i.e., when gcd(r; s) does not divide k, Equation 2.5.20can be rewritten asp r � (q + 1) s < m Q s� l P r + k < (p + 1) r � q s: (2.5.21)For any given process of coordinates (p; q), there must exist a t 2 ZZ such thatm Q s � l P r = t gcdb verifying Inequality 2.5.21. Moreover, the interval ofinterest Ip;q is of length r + s� 1. A su�cient condition for all processes to havek-diagonals is given by r+ s� 1 � gcdb. Since gcd(r; s) 6= 1 and gcd(r; s) dividesgcdb, this su�cient condition can be equivalently written as r + s � gcdb.Property 2.5.9 If gcd(r; s) divides k, a necessary condition for all P � Q pro-cesses to own k-diagonals is given by r + s � gcd(r; s) � gcdb. Otherwise, when48

gcd(r; s) does not divide k, a necessary condition for all P �Q processes to ownk-diagonals is given by r + s � gcdb.Proof. Suppose there exists a process (p; q) having two distinct blocks owningk-diagonals. Then, r+ s� gcd(r; s) � gcdb if gcd(r; s) divides k, and r+ s � gcdbotherwise. Indeed, there are two multiples of gcdb in some interval Ip;q = (p r �(q�1) s : : : (p+1) r�q s). Otherwise, each process owns at most one r�s block inwhich k-diagonals reside. Therefore, the number of blocks owning k-diagonals isequal to the number of processes owning these diagonals. The result then followsfrom Property 2.5.7.Corollary 2.5.1 A necessary and su�cient condition for every process to ownk-diagonal entries is given by r + s � gcd(r; s) � gcdb if gcd(r; s) divides k andr + s � gcdb otherwise.Proof. This result directly follows from the two preceding properties.Corollary 2.5.2 The number of processes owning k-diagonal entries is equal tothe maximumof P�Q and the number of blocks owning k-diagonals. This numberis given by8>>>><>>>>: max(P Q (r + s� gcd(r; s)gcdb); P Q) if gcd(r; s) divides k;max(P Q (r + sgcdb); P Q) otherwise:49

Proof. The result follows from the fact that lcmb=(r s) = (P Q)=gcdb andProperties 2.5.7, 2.5.8 and 2.5.9.These last properties generalize the results presented in Table 2.1. They aresummarized below in Table 2.2. The end of this section aims at determining theprobability that the quantities r+s or r+s�gcd(r; s) are greater or equal to gcdb,that is, the probability that every process owns k-diagonals entries. The resultTable 2.2: Properties of the k-diagonal for the block cyclic distributionBlocksowningk-diagonals �s < m Q s� l P r + q s� p r + k < rProcessesowningk-diagonals (9t 2 ZZ; such thatp r � (q + 1)s < t gcdb+ k < (p+ 1)r � q sNumberof suchprocesses 8>>><>>>: min(P Q (r + s)gcdb ; P Q) if k mod gcd(r; s) 6= 0;min(P Q (r + s� gcd(r; s))gcdb ; P Q) otherwise:obtained is particularly interesting because it quanti�es the complexity of generalredistribution operations as a function of the distribution parameters, namely theperimeter r + s of the r � s partitioning unit and the quantities gcd(r; s) andgcdb = gcd(P r;Q s). 50

Property 2.5.10 If P , r, Q and s are integers chosen at random, the probabilityP1 that gcdb = gcd(P r;Q s) = 1 isP1 = Yp prime(1 � (2 p � 1p2)2) � 0:21778 : : : :Proof. A precise formulation of this property as well as its proof should care-fully de�ne what is meant here by \chosen at random". This precision however,does complicate the following argumentation in a useless manner. More informa-tion on the random generation of integers for the purpose of a proof can be foundin [65]. For the sake of simplicity, only the essential arguments are presentedbelow. We �rst state and prove two useful lemmas.Lemma 2.5.1 Let p be a prime and � a positive integer. The probability qp�that p� divides the product P r where P and r are integers chosen at random isgiven by qp� = (�+ 1) p � �p�+1 :Proof. If p� divides the product P r, then either p� divides P , or, p��k dividesP and p��k+1 does not divide P and pk divides r for all values of k in [1 : : : �]. Itfollows thatq� = 1p� + �Xk=1 1p��k (1� 1p) 1pk = 1p� (1 + � � �p) = (�+ 1) p � �p�+1 :51

Lemma 2.5.2 Let d be an integer and d = Yi2Id p�ii its decomposition into primefactors. The probability qd that d divides the product P r where P and r areintegers chosen at random is given byqd = Yi2Id (�i + 1) pi � �ip�i+1i :Proof. This result directly follows from the application of Lemma 2.5.1 toeach of the prime factors of d.The probability that p prime divides P r and Qs is thus (2 p � 1p2)2 by appli-cation of Lemma 2.5.1. This probability is equal to the probability that p dividesgcdb = gcd(P r;Q s). However, the probability P1 is the probability that thereis not a prime dividing gcdb. Therefore, one considers the sequence of partialproducts Pn = Yfirst n primes p(1� (2 p � 1p2)2):The partial products Pn form a positive strictly decreasing quadratically conver-gent sequence. Therefore, P1 = limn!1Pn exists. An easy computation show thatan approximate value of P1 is 0:21778 : : :.Remark. With the help of a computer, it is possible to enumerate for a givenn all the 4-tuples (P; r;Q; s) lying in the �nite range 1 � P; r;Q; s � n such thatgcdb = 1. Figure 2.11 shows the obtained results for di�erent values of n � 500.52

First, note that 500 corresponds to a 250000 process grid, which is by far largerthan any existing DMCC. It is also remarkable that the �nite ratio is alwayslarger than P1 � 0:21778 : : :. Second, the \convergence" rate of the probability isincredibly rapid for small values of n. The value of this probability can thereforebe considered as almost exact or at worst a very accurate lower bound for allpossible values of the distribution parameters.
0 50 100 150 200 250 300 350 400 450 500

10
−1

10
0

n

ra
tio

Figure 2.11: Ratio of tuples (P; r; Q; s)in[1::n]4 such that gcd(P r;Q s) = 1.Finally, an analogous result known as Dirichlet's theorem [34] states that theprobability that gcd(u; v) = 1 for u and v integers chosen at random exists and is6�2 . This result does not directly apply to the above property since in this lattercase one is interested in the number of divisors of a product of integers. The prooftechniques are however very similar. 53

Property 2.5.11 Let d be an integer and d = Yi2Id p�ii its decomposition intoprime factors. If P , r, Q and s are integers chosen at random, the probability Pdthat gcdb = gcd(P r;Q s) = d isPd = q2d Yp prime(1� q2pd)where qd (respectively qpd) is the probability that d (respectively p d with p prime)divides P r. Furthermore, we haveqd = Yi2Id (�i + 1)pi � �ip�i+1i and qpd = 8>>>><>>>>: (�i + 2)pi � (�i + 1)((�i + 1)pi � �i)pi qd if 9i 2 Idjp = pi;2 p � 1p qd if p does not divide d:Proof. The probability Pd is the product of the probability qd that d dividesgcdb and the probability that there is no prime factor p such the product p d dividesgcdb. The probability qd is obtained by a direct application of Lemma 2.5.2.The probability that the product p d divides gcdb is more delicate to computesince it depends on whether p is a prime factor of d or not. The result howeverdirectly follows from Lemmas 2.5.1 and 2.5.2. The existence and convergence ofthe product follows from the fact that jqpdj � jqdj.The above properties do not lead in a straightforward manner to the desiredprobability that all processes will own k-diagonal entries. However, these proper-ties illustrate the fact that this probability, if it exists, is likely to converge at a54

high rate. Once again, it is possible to rely on a computer to enumerate all 4-tuplesin a �nite and practical range such that the quantities r+s�gcd(r; s) or r+s aregreater or equal to gcdb. The results are presented in Figure 2.12. It is important
gcd(Pmb,Qnb) <= mb+nb−gcd(mb,nb)
gcd(Pmb,Qnb) <= mb+nb

0 50 100 150 200 250 300 350 400 450 500
0.85

0.9

0.95

1

n

ra
tio

Figure 2.12: Ratios of tuples (P; r; Q; s)in[1::n]4 such that r + s � gcd(r; s) or r + s isgreater or equal to gcd(P r;Q s).to notice that in practice, i.e., for a �nite range of values (1 � P; r;Q; s � n),there is almost no di�erence between the �nite ratios of all 4-tuples verifyingthese inequalities over n4. This �gure does not prove the existence of the limitand therefore of the probability. However, if it exists, its value is likely to bevery close to 1. In other words, if one picks random and realistic distributionparameters, it is very likely that all processes in the grid will own k-diagonals.55

2.6 RationaleFirst, Figure 2.12 not surprisingly shows that the ratios of distribution parameterssuch that k-diagonals are evenly distributed tends towards one. More interestingis the fact that this function increases very rapidly (r(10) � :88, r(20) � :90,r(50) � :93). Therefore, it is very likely that all processes in the grid will ownk-diagonals. The Corollaries (2.5.1) and (2.5.2) say that the distribution of thek-diagonals essentially depends on the perimeter of the r � s partitioning unit asopposed to its shape. This says that restricting the data decomposition to a squareblock cyclic mapping does not a�ect in any way the problem of locating the k-diagonals, and consequently the complexity of redistribution operations. Finally,assume that the complexity of redistribution operations in terms of the number ofmessages exchanged for the same volume of data to be communicated grows withthe number of processes owning k-diagonals. The next two chapters will con�rmthe validity of this assumption. In this case, it follows that small blocking factorsare favorable for interconnection networks featuring a large startup time or latency,but high bandwidth. Conversely, small startup time and lower bandwidth aremore well-suited for medium and large blocking factors, as far as the performanceof redistribution operations is concerned. Consequently transportable e�ciencyfor redistribution operations requires the support of the parameterized family ofblock cyclic mappings. 56

The de�nitions of an LCM table given in this chapter can easily be generalizedto a block cyclic distribution with a partial �rst block. In other words, the �rstblock of rows (respectively columns) is of size ir (respectively is) instead of r(respectively s). This more general de�nition, as well as a number of examplesof LCM tables, have been added to Appendix A of this document. An alternatede�nition of an LCM table entry would be the global number of columns up tothe blocks of local coordinates (�;m) minus the global number of rows up to theblocks of local coordinates (l; �). This constructive de�nition is more general thanthe one used in this dissertation. It encompasses the entire family of Cartesianmappings [9].The algorithmic redistributed operations described later in this dissertationcan be expressed in terms of locating diagonals of a distributed matrix. Thenext chapters also illustrate the fundamental role played by LCM tables and theproperties presented above in the formulation of these operations. Moreover, theimplications of these properties are analyzed in greater detail as these operationsare speci�ed in this document. Still, the correctness of these operations and therobustness and reliability of their implementation depend entirely on the materialpresented in this chapter.
57

Chapter 3Algorithmic Redistribution3.1 IntroductionIn a serial computational environment, transportable e�ciency is the essentialmotivation for developing blocking strategies and block-partitioned algorithms[3, 5, 33, 60]. The linear algebra package (LAPACK) [5] is the archetype of such ademarche. The LAPACK software is constructed as much as possible out of calls tothe BLAS (Basic Linear Algebra Subprograms). These kernels con�ne the impactof the machine architecture di�erences within a small number of routines. Thee�ciency and portability of the LAPACK software are then achieved by combiningnative and e�cient BLAS implementations with portable high-level components.The BLAS are subdivided in three levels, each of which o�ering increased scopefor exploiting parallelism. This classi�cation criterion happens to also correspond58

to three di�erent kinds of basic linear algebra operations:� Level 1 BLAS [68]: for vector operations, such as y �x+ y,� Level 2 BLAS [36]: for matrix-vector operations, such as y �Ax+ �y,� Level 3 BLAS [35]: for matrix-matrix operations, such as C �AB + �C.Here, A, B, and C are matrices, x and y are vectors, and � and � are scalars.The performance potential of the three levels of BLAS is strongly related to theratio of
oating point operations to memory references, and the reuse of datawhen it is stored in the higher levels of the memory hierarchy. Consequently, theLevel 1 BLAS cannot achieve high e�ciency on most modern supercomputers.The Level 2 BLAS can achieve near-peak performance on many vector processors.On RISC microprocessors, however, their performance is limited by the memoryaccess bandwidth bottleneck. The greatest scope for exploiting the highest levelsof the memory hierarchy as well as other forms of parallelism is o�ered by theLevel 3 BLAS [5].The previous reasoning applies to distributed memory computational envi-ronments in two ways. First, in order to achieve overall high performance, it isnecessary to express the bulk of the computation local to each process in terms ofLevel 3 BLAS operations. Second, developing a set of BLAS for DMCCs shouldlead to a straightforward port of the LAPACK software. This is the path followedby the ScaLAPACK research project [16, 39] as well as others [1, 13, 26, 41].59

Such a design sounds simple and reasonable, even if little is said on the adequateblocking strategies for a distributed memory hierarchy. One answer is given bythe physical blocking approach, where the distribution blocking factors are usedas computational blocking units, hence inducing alignment restrictions on theoperands. Most of the parallel algorithms proposed in the literature are physi-cally blocked [25, 26, 74, 83]. High performance is achievable on a wide range ofDMCCs, but usually depends on the distribution blocking factors. The alignmentrestrictions simplify the expression and implementation of these algorithms, butalso limit their application scope in a way that does not satisfy general purposelibrary requirements. High performance can be maintained across platforms byparameterizing the user's data distribution or across library function calls by usinggeneral redistribution packages [78].The purpose of this chapter is to propose alternatives to the physical block-ing strategy. The originality of the algorithms presented here is their systematicderivation from the properties of the underlying mapping. These blocking strate-gies are expressed within a single framework using LCM tables. The resultingblocked operations are appropriate for library software. They indeed feature po-tential for high performance without any speci�c alignment restrictions on theiroperands. This says that the antagonism between e�ciency and
exibility is not aproperty of the block cyclic mapping, but merely a characteristic of the algorithmsthat have been so far proposed to deal with a distributed memory hierarchy.60

3.2 TerminologyThis section de�nes some basic objects and terms that are heavily used in therest of this chapter. An e�ort has been made to maintain consistency with thenotations used in (2.2.5). The objects de�ned here are common and sometimesvery intuitive. Hence, their de�nition may seem a little obscure. It correspondshowever to the usual data structure used for their storage in a computer.De�nition 3.2.1 An M � N matrix A is a two-dimensional array of elementsindexed by their relative row and column coordinatesA = faij with (i; j) 2 �A = f0 : : :M � 1g � f0 : : : N � 1gg:�A is called a virtual matrix (VM) or the index set associated with the matrix A.De�nition 3.2.2 AnM�N (block cyclic) distributed matrix (DM) A is a P �Qmatrix of matrices: 8>>><>>>: A = fApq with (p; q) 2 �gApq = fapqij with (i; j) 2 �Apqgwith �Apq = f(l r + x;ms + y) such that (l;m; x; y) 2 � � �g. The set �A =f�Apq with (p; q) 2 �g is called a distributed virtual matrix (DVM) or the indexset associated with the distributed matrix A.61

Remark. When �A is empty, A is denoted by ; and called the null (dis-tributed) matrix. In a computer, the null matrix is represented by a valid addressin memory pointing to no data.De�nition 3.2.3 An M � N 1-dimensional column distributed matrix A is adistributed matrix such that there exists q0 in f0 : : : Q� 1g and8>>><>>>: 8p 2 f0 : : : P � 1g; 8q 2 f0 : : : Q� 1g n fq0g; �Apq = ; and�Apq0 = f(l r + x;ms+ y) j (l;m; x; y) 2 f0 : : : b M�1rP cg � f0 : : : N�1s g ��g:De�nition 3.2.4 An M � N 1-dimensional row distributed matrix A is a dis-tributed matrix such that there exists p0 in f0 : : : P � 1g and8>>><>>>: 8q 2 f0 : : : Q� 1g; 8p 2 f0 : : : P � 1g n fp0g; �Apq = ; and�Ap0q = f(l r + x;ms+ y) j (l;m; x; y) 2 f0 : : : M�1r g � f0 : : : b N�1sQ cg ��g:De�nition 3.2.5 An M � N local matrix A is a distributed matrix such thatthere exists (p0; q0) 2 � and8>>><>>>: 8(p; q) 2 � n f(p0; q0)g; �Apq = ; and�Ap0q0 = f(l r + x;ms+ y) j (l;m; x; y) 2 f0 : : : M�1r g � f0 : : : N�1s g ��g:There is another type of distributed matrix that occurs in a large number ofdistributed dense linear algebra computations. These are the replicated variants of62

the last three de�nitions. It is useful to incorporate these distributed matrices inour general re
ection because they frequently contain intermediate results neededto avoid unnecessary communication phases.De�nition 3.2.6 An M�N 1-dimensional column replicated distributed matrixA is a distributed matrix such that there exists q0 in f0 : : : Q� 1g and8>>>>>>>><>>>>>>>>: 8p 2 f0 : : : P � 1g; 8q 2 f0 : : : Q� 1g n fq0g;Apq = Apq0 = fapq0ij with (i; j) 2 �Apq0g and�Apq0 = f(l r + x;ms+ y) j (l;m; x; y) 2 f0 : : : b M�1rP cg � f0 : : : N�1s g ��g:De�nition 3.2.7 An M �N 1-dimensional row replicated distributed matrix Ais a distributed matrix such that there exists p0 in f0 : : : P � 1g and8>>>>>>>><>>>>>>>>: 8q 2 f0 : : : Q� 1g; 8p 2 f0 : : : P � 1g n fp0g;Apq = Ap0q = fap0qij with (i; j) 2 �Ap0qg and�Ap0q = f(l r + x;ms+ y) j (l;m; x; y) 2 f0 : : : M�1r g � f0 : : : b N�1sQ cg ��g:De�nition 3.2.8 An M � N local column replicated matrix A is a distributedmatrix such that there exists (p0; q0) 2 � and8p 2 f0 : : : P � 1g; 8q 2 f0 : : : Q� 1g n fq0g; �Apq = ; and Apq0 = Ap0q0:63

De�nition 3.2.9 AnM�N local row replicated matrixA is a distributed matrixsuch that there exists (p0; q0) 2 � and8q 2 f0 : : : Q� 1g; 8p 2 f0 : : : P � 1g n fp0g; �Apq = ; and Ap0q = Ap0q0:De�nition 3.2.10 An M �N local replicated matrix A is a distributed matrixsuch that there exists (p0; q0) 2 � and8p 2 f0 : : : P � 1g n fp0g; 8q 2 f0 : : : Q� 1g n fq0g Apq = Ap0q0:Finally, the notion of equality and equivalence of two distributed matrices withrespect to the block cyclic distribution can be de�ned as follows:De�nition 3.2.11 Two M�N distributed matricesA and B are said to be equalwith respect to their distribution if and only if �A = �B.De�nition 3.2.12 Two M�N distributed matricesA and B are said equivalent,noted �A � �B, with respect to their distribution if and only if there are twointegers u and t such that8(p; q) 2 �;�Apq = �Bvw with v = (p+ u) mod P and w = (q + t) mod Q:Property 3.2.1 If �A = �B, then �A � �B.64

3.3 One-Dimensional RedistributionThe operations described in this section involve only M �N one-dimensional dis-tributed matrices as de�ned in (3.2.3) and (3.2.4). Let X and Y be such matrices.Let PX and rX (respectively QY and sY) be the distribution parameters associ-ated with X (respectively Y). In order to redistribute X into Y , one considersthe DVM induced by X and Y and speci�ed by the distribution parameters PX ,QY , rX and sY . The Figure 3.1 shows the block-partitioned operands X and Y
X

Y

M

M

N

N

s

r

Figure 3.1: Global view of one-dimensional redistributionas well as the induced DVM. For a given row of X, the corresponding diagonalentry of this DVM determines the corresponding column of Y . A block of rows ofX that could be packed together is represented in the �gure by a gray rectangle.65

The corresponding diagonal block of the DVM and the corresponding columns ofY are colored with the same shade of gray. Figure 3.1 illustrates the importanceof locating the diagonals in the context of one-dimensional redistribution. Theprocess grid PX �QY is called a virtual process grid. Without loss of generality,one can assume that X (respectively Y) resides in column (respectively row) 0
N

N

Y

X

r

s

Figure 3.2: Local view in process (pX ; qY) of one-dimensional redistributionof this virtual process grid. If a process of coordinates (pX ; qY) owns diagonalentries of the associated M �M virtual matrix, then some data residing in theprocess (pX ; 0) should be sent to the process of coordinates (0; qY). Figure 3.2shows the local viewpoint of one-dimensional distribution in the virtual processof coordinates (pX ; qY). The blocks of the DVM owning diagonals are represented66

by darker rectangles in which the diagonals are symbolized by a white segment.Moreover, the rows of X marked in gray can be packed in a single message andsent to process (0; qY). The knowledge of the source process coordinates allowsthe receiving process to determine a priori the size of the message to be receivedas well as its packed form and the location of each message entry. Consequently,unless X and Y are equivalent in the sense of (3.2.12), the number of messagesto be exchanged is equal to the number pd of processes owning diagonals of theDVM. The average size of each message is thus M N=pd. This approach usingLCM tables allows the handling of the shift and transpose operations in the sameframework. Indeed, when X and Y are distributed along the same axis of theactual process grid, the operation shifts X into Y along this axis. Otherwise Xis physically transposed into Y . The implementation of such an operation shouldtake advantage of such a savings opportunity. In addition, since it is possibleto detect via a simple test on the distribution parameters distribution equiva-lence, this scheme can be easily made optimal for the simpler cases. Note that theoperands X and Y could be distributed on distinct process grids without a�ectingthe packing strategy induced by the LCM tables. Moreover, if one uses the LCMtable de�nition to handle a �rst partial block, this scheme naturally accommodatesnon-aligned operands. Finally, it is straightforward to handle replicated operandsby taking replication into account when computing the LCM table entries. Thenext chapter will discuss the possible communication patterns associated with the67

one-dimensional redistribution as well as their complexity. Pseudo algorithms willthen be presented.3.3.1 Non-Unit StrideThe computation of the LCM table can be easily adapted if one wants to accessthe entries of a M�1 one-dimensional distributed matrix separated by a non unitstride s. The block cyclic distribution De�nition (2.2.5) gives(l PX + p) rX + x = k s with k 2 IN; i:e:; p rX � k s� l PX rX < p rX :Therefore, the processes p having entries of this scattered one-dimensional matrixare such that p rX � m gcd(s; PX rX) < (p+ 1) rX : (3.3.1)This problem is then a particular instance of locating the diagonals of a DVMdistributed over a PX � 1 process grid and partitioned into rX � s blocks. Theconstruction of the LCM tables is su�cient if one only wants to access the data.However, it may be necessary to redistribute this scattered operand in order toperform some computation with it. This redistribution phase is facilitated bynoticing that the column index of the LCM table uniquely identi�es the globalindex of the entries of the scattered operand.This scheme can be extended to two-dimensional distributed matrices. This68

corresponds to a stride di�erent from the leading dimension in a serial Fortranenvironment. The implementation is, however, slightly tricky because of the mul-tiple addressing space of the target machines. Indeed, the local leading dimensionof the array storing the local pieces of a distributed matrix plays a role when twoconsecutive scattered entries belong to two di�erent columns of this array. In thiscase, the local stride or o�set within a block given by the LCM table may need tobe augmented by some local value that depends on the e�ective number of rowsstored in this local array and the leading dimension of this Fortran array.3.4 Blocking StrategiesThis section presents di�erent kinds of blocking strategies for distributed memoryhierarchies. Each of them exploits speci�c and sometimes antagonistic featuresof di�erent operation contexts. They can all be formulated in terms of \LCM-operations", i.e., operations relying on LCM tables for their expression and im-plementation. Most of the blocking strategies presented below are known andtheir use has mainly been illustrated in speci�c applications. The originality ofthis section is mainly the presentation of these distinct techniques within a sin-gle framework, making them suitable for their integration into a software library.For some of these strategies little is known in terms of their impact on e�ciencyand/or ease of modular implementation. To our knowledge, no practical experi-69

ments have been so far reported in the literature. This dissertation is the earliestknown document to present the results of such experiments. The same exampleoperation called a rank-K update is used to illustrate the di�erences between allblocking strategies presented below. This operation produces an M � N matrixC by adding to itself the product of an M �K matrix A and a K �N matrix BC C +AB:3.4.1 Static BlockingThe static blocking strategy deals only with purely local computational phases.It is assumed that the operation has reached a stage where the operands havealready been redistributed if necessary by other techniques. Only local remainingcomputations need to be performed. It may, however, be the case that a localoutput operand has to be redistributed subsequently. Within this context, therank-K update operation is easy to describe. The matrix A has been replicatedin every process column and the matrix B replicated in every process row. Theupdate is performed by a single call to the matrix multiply subprogram. In thisparticular case, the simplicity of the operation is due to the fact that the local andglobal point of view are identical as illustrated in Figure 3.3. This �gure showsthe LCM block-partitioned matrices A, B and C. The blocks residing in theprocess of coordinates (p; q) are indicated by gray rectangles. The arrangement of70

these blocks in process (p; q) is also represented and denoted by the local arraysin process (p; q).
Local arrays in process (p,q)

K

K

M

N

A

B

B

A C

C

LCM block−partitioned matricesFigure 3.3: Static general rank-K updateThe static blocking strategy becomes more interesting when the operationinvolves a triangular or symmetric matrix C, for which only the upper or lowertriangle should be referenced. When C is symmetric, M is equal to N and B isAT . As before, it is assumed that A and AT have already been replicated acrossprocess columns and rows respectively. The distributed matrix C is partitionedinto diagonal and strictly upper or lower LCM blocks as shown in Figure 3.4. This�gure shows the LCM block-partitioned matrices A and C and the r � s, r �K71

and K � s blocks of these matrices that reside in the process of coordinates (p; q).The arrangement of these blocks in process (p; q) is also represented and denotedby the local arrays in process (p; q). Depending on their relative position to the
Local arrays in process (p,q)

K

K

N

A

A C

C

N

TA

TA

LCM block−partitioned matricesFigure 3.4: Static symmetric rank-K updatediagonal, the r � s blocks of C are identi�ed by a di�erent shade of color. It isusually easy to deal with the strict upper or lower part using the BLAS matrix-matrix multiply. The diagonal LCM block requires however particular attention.Two options are possible. First, one copies the part to be referenced into a bu�erpadding the rest of this bu�er with zeros. It is then possible to issue one singlecall to the adequate BLAS kernel to deal with this block as well. More
oating72

point operations than needed are obviously performed and some workspace isrequired. The amount of workspace available triggers how much of the LCMblock can be handled in a single BLAS operation. It may also be necessary tocopy back the meaningful part of this bu�er when the triangular or symmetricdistributed matrix is an output parameter. This strategy is exactly what is donein the current version of the ScaLAPACK software library [16, 25]. There is littleevidence, however, demonstrating the superiority of this strategy over the secondoption. The latter avoids the unnecessary
oating point operations as well as thedata copy, and thus does not require any workspace to store these diagonal LCMblocks. To do so, each r� s block owning diagonals of such a diagonal LCM blockis treated separately. The other blocks strictly below or above the diagonals aregrouped together for the computations. Still, it is likely that more BLAS callswill be issued on smaller matrix operands. In both options described above, itis necessary to locate the r � s blocks owning the diagonals of C. This can beachieved by using the LCM tables described in the previous chapter.The static blocking strategy, even in its simplest form, imposes strong restric-tions on the alignment and distribution of the operands. This is, neverthelessthe last opportunity for a large operation to rearrange the computations. Thissuggests the development of two sets of building blocks. The �rst one containsappropriate operations for dealing with trapezoidal- symmetric and triangular ma-trix blocks. It is referred to as the trapezoidal BLAS. The second set is comprised73

of operations speci�cally designed to manipulate the diagonal LCM blocks. It isreferred to as the LCM BLAS. Both of these sets of building blocks are BLASextensions.The upper trapezoidal symmetric rank-K update operation is illustrated inFigure 3.5. From this �gure, it is fairly easy to generalize the derivation of other
1A

A 2

A 2
T A T

3

C23

C13C12

C22Figure 3.5: Trapezoidal symmetric rank-K update (C22 = CT22)basic trapezoidal operations. The trapezoidal symmetric rank-K update shownin Figure 3.5 can be solely expressed in terms of BLAS operations.8>>>>>>>><>>>>>>>>: [C12C13] [C12C13] + A1 [AT2AT3] (matrix�multiply)C22 C22 + A2AT2 (symmetric rank�K update)C23 C23 + A2AT3 (matrix�multiply)The Levels 2 and 3 BLAS dealing with symmetric and triangular matrices can beextended to the trapezoidal cases. Native implementations of the latter can takeadvantage of better data reuse than what is suggested in the above pseudo code.74

Or, a mitigated improvement could be achieved by using low overhead BLASkernels.In order to handle diagonal LCM blocks, one needs to inspect the LCM table forthe blocks owning the diagonals by using the Properties (2.5.20), (2.5.1), (2.5.2),(2.5.3) and (2.5.4). These blocks are trapezoidal blocks. At this point, it isremarkable that the size of an LCM block is irrelevant and can be replaced by anylogical blocking factor NBlog. It is now possible to express a statically blockedsymmetric rank-K update in terms of these basic LCM operations. The pseudocode for the upper case is presented below.8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:
for i = 1; N; NBlogib = min(N � i+ 1; NBlog);C(i : i+ ib� 1; i : i+ ib� 1) C(i : i+ ib� 1; i : i+ ib� 1) +A(i : i+ ib� 1; :)A(i : i+ ib� 1; :)T ;C(i : i+ ib� 1; i+ ib : N) C(i : i+ ib� 1; i+ ib : N) +A(i : i+ ib� 1; :)A(i+ ib : N; :)T ;end forThis pseudo-code suggests a global index interface for the LCM BLAS similar tothe one described in [18] for a set of parallel BLAS. Finally, it is possible to reuseexisting serial GEMM-based implementations of the Levels 2 and 3 BLAS [33, 60].75

3.4.2 Cyclic OrderingThe cyclic ordering strategy is distinguished by the fact that the computationsare cyclically distributed as opposed to the data. The block cyclic data distri-bution allocates the data in a cyclic fashion. The computation then proceeds inconsecutive order just like a conventional serial algorithm. For example, the usualLU factorization algorithm [49] handles �rst the �rst column of the matrix, thenthe second and so on. The dual of this framework can be described as follows.First, the data is allocated or distributed in consecutive order, i.e., according tothe blocked distribution de�ned in (2.2.6). Second, the computation proceeds incyclic fashion. This approach is called cyclic ordering. It has been used through-out the CMSSL library [81]. It is shown in [72] that block cyclic order eliminationcan be used e�ectively on distributed memory architectures to achieve load bal-ance as an alternative to block cyclic data allocation. The Connection Machinesystem compilers were designed to use consecutive data allocation as a default, orblocked data distribution as de�ned in (2.2.6). Thus, the designers of the CMSSLlibrary chose to use cyclic order elimination to achieve good load balance. Assuggested at the beginning of this section cyclically ordered algorithms proceeddi�erently than the equivalent serial algorithms. It has been therefore necessaryto develop these cyclic elimination algorithms, without being able to reuse muchof the existing software. Nevertheless, this approach has been proven to lead to76

e�cient and scalable parallel algorithms [72].The rank-K update operation [74] can easily be expressed within such a frame-work. The matrices A, B and C are assumed to be allocated in consecutive orderover the process grid, that is blocked distributed. The pseudo code is presentedbelow. 8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:
for kk = 1; K; NBlogkb = min(K � kk + 1; NBlog);Broadcast A(:; kk : kk + kb� 1) within process rows;Broadcast B(kk : kk + kb� 1; :) within process columns;C C +A(:; kk : kk + kb� 1) �B(kk : kk + kb� 1; :);end forThis algorithm is extremely e�cient for three reasons. First, the logical block-ing factor NBlog can be empirically chosen to be optimal for a given hardwareplatform. Second, it is possible to pipeline the communication phases in both di-mensions of the process grid. Finally, a given process broadcasts all of its columnsof A or rows of B before its east or south neighbor broadcasts. The communi-cations can then be \perfectly" pipelined, that is, at all stages of the pipelinesome computation is performed. In theory, communications can be completelyoverlapped with computations. When a process broadcasts its last piece, someattention is required to maintain the communication pipelines, but that is a mi-77

nor and solvable detail. For more complicated operations such as a triangularsolve or the LU factorization with partial pivoting, it is necessary to permutethe cyclically ordered output into its original consecutive order. This somewhatcomplicates the hierarchical design of building blocks. However, the restrictionson the data layout simpli�es the speci�cation of these permutation operations.Misaligned data can occur, but redistributing from one speci�c data decomposi-tion into itself can be achieved by simple and e�cient algorithms. Finally, thecost of designing new algorithms based on cyclic elimination should be weightedagainst the gains in terms of simplicity and e�ciency for the compilers, operatingand run-time systems. This approach seems to be one of the most reasonable andviable software designs if one wants to develop the entire software collection thata given hardware platform needs to be operational.3.4.3 Physical BlockingThe physical blocking strategy uses the distribution blocking factors as a unit forthe computational blocks. In other words, the computations are partitioned ac-cordingly to the data distribution. The blocks used to decompose the matrixare the same as those used to partition the computation. No attempts are madeto either gather rows or columns residing in distinct processes, or scatter rowsor columns residing in a single process row or column. It is assumed that thedistribution parameters have been determined a priori presumably by the user.78

Optimally, the latter should take into account the implications of physical block-ing. This strategy is used in most of the parallel algorithms presented in theliterature [2, 7, 9, 10, 26, 27, 39, 47, 48, 52, 57, 69, 70, 85].The rank-K update operation shown in Figure 3.6 is based on a physicalblocking strategy and is relatively easy to express. Just as for the static blockingstrategy, strong alignment and distribution assumptions are made on the matrixoperands. The pseudo code is almost the same as the one given above for cyclicordering. The only modi�cation to be made is to replace the logical blockingfactor NBlog by the physical blocking factor used to decompose the columns of
31C

C11 C12 C13

C21 C22 C23

C32 C33

C41 C42 C43

N

K

K

M

B31

B11

B21

B32

B

B

12

22

B33

B

B

13

23

A43A41 A42

A33A31 A32

A23A21 A22

A13A11 A12

Figure 3.6: Physically blocked rank-K update79

A and the rows of B. Similarly as in the cyclic ordering algorithm, it is possibleto take advantage of communication pipelines in both directions of the processgrid. However the cyclic data allocation imposes that the source process of thebroadcasts changes at each iteration in a cyclic fashion. That is, a given processbroadcasts all of its columns of A or rows of B in multiple pieces of size propor-tional to the value of the physical blocking factor. The smaller this value is, thelarger the number of messages and the lower the possible data reuse during thefollowing computational phase. In other words, the performance degrades as thevalue of the physical blocking factor is decreased. If the value of this factor is verylarge, the communication computation overlap decreases causing a performancedegradation. Moreover, the stages of the communication pipelines are longer, andthe pipeline startup cost is larger than for cyclic ordering. This is because theprocesses issuing the broadcasts are the south and east neighbors of the processesthat have issued the previous broadcasts. These source processes change at everyiteration of the loop. High performance and e�ciency can still be achieved for awide range of di�erent values of the blocking factors. This has been reported in[2, 38, 74, 83].The use of physical blocking in conjunction with static blocking can lead to acomprehensive and scalable dense linear algebra software library. Existing serialsoftware such as LAPACK [5] can be reused. The ScaLAPACK software libraryis the result of this reasoning. As suggested above, if one limits oneself to static80

and physical blocking, strong alignment restrictions must be met by the matrixoperands. It is argued that these restrictions are reasonable because, �rst, generalredistribution software is available. Second, the user is ultimately responsiblefor choosing the initial data layout. Finally, the majority of practical cases arecovered by this approach.3.4.4 Aggregation and DisaggregationThe aggregation or algorithmic blocking strategy operates on a panel of rows orcolumns that are globally contiguous. The local components of this panel beforeaggregation are also contiguous. The size of this panel is a logical blocking unitfactor that depends on the target machine characteristics. If this logical value isequal to the physical distribution blocking factors, then algorithmic and physi-cal blocking are the same. Otherwise, a few rows or columns which are globallycontiguous and residing in distinct processes, are aggregated into a single pro-cess row or column and this panel becomes the matrix operand. This strategyis required for e�ciency if the physical blocking factor is so small that Level 3BLAS performance cannot be achieved locally on each process. Obviously, theaggregation phase induces some communication overhead. However, this mustbe weighted against the local computational gain. The problem is then to deter-mine a logical blocking factor NBlog that keeps this overhead as low as possibleand simultaneously optimizes the time spent in local computation. The feasibil-81

ity and performance characteristics of this approach have been illustrated for thenumerical resolution of a general linear system of equations and the symmetriceigenproblem in [12, 13, 53] for the purely scattered distribution as de�ned in(2.2.7). Similarly, it is sometimes bene�cial to disaggregate a panel into multiplepanels in order to overlap communication and computation phases. When appli-cable, this last strategy also presents the advantage of requiring a smaller amountof workspace. The pseudo code of the rank-K update operation using aggregationfollows.8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
for kk = 1; K; NBlogkb = min(K � kk + 1; NBlog);Aggregate A(:; kk : kk + kb� 1) in one process column;Broadcast A(:; kk : kk + kb� 1) within process rows;Aggregate B(kk : kk + kb� 1; :) in one process row;Broadcast B(kk : kk + kb� 1; :) within process columns;C C +A(:; kk : kk + kb� 1) �B(kk : kk + kb� 1; :);end forThe aggregation and disaggregation techniques are attempts to address the caseswhere the physical blocking strategy is not very e�cient, i.e., for very small orlarge distribution blocking factors. In both techniques, the consecutive order ofmatrix columns or rows is preserved. It is therefore possible to use both techniques82

for algorithms that feature dependent steps such as a triangular solve or the LUfactorization with partial pivoting. The disaggregation technique however can onlybe applied e�ciently for operations that do not feature any dependence betweensteps, such as a matrix-multiply. The disaggregated data remains consecutivelyordered. Therefore, it cannot improve signi�cantly the load imbalance caused byconsecutive allocation and consecutive elimination [59].3.4.5 LCM BlockingThe LCM blocking strategy operates on a panel of rows or columns that are locallycontiguous. The size of this panel is also a logical blocking unit factor that dependson the target machine characteristics. However, one packs rows or columns thatmay not be locally contiguous according to an external criterion, typically thedistribution parameter of another operand.Consider the rank-K update operation illustrated in Figure 3.7. The LCMblocking strategy proceeds as follows. One is interested in �nding the columnsof A residing in a particular process column q and the rows of B residing in aparticular process row p that could be multiplied together in order to updatethe matrix C. In Figure 3.7, these columns of A and rows of B are indicatedin gray. To accomplish this, one can consider the virtual matrix, denoted V Min the �gure, de�ned by the column distribution parameters of A and the rowdistribution parameters ofB. Locating the 0-diagonals of this VM in the process of83

coordinates (p; q) exactly solves the problem as illustrated in the �gure. This canbe realized by using LCM tables as shown in Chapter 2. As opposed to the physicalblocking strategy, this technique does not assume the distribution equivalence ofthe columns of A and rows of B as suggested in Figure 3.7. Moreover, the packingof these columns of A and rows of B is a local data copy operation, i.e., withoutcommunication overhead. For a given q, one just needs to go over all process rowsand thus treat all of the columns of A residing in this process column q. Thisalgorithm presents multiple advantages over the physically blocked version. First,
A

B

C

VM

M

NK

K

Figure 3.7: Global view of the LCM blocked rank-K updateas mentioned above, it does not assume an equivalent distribution of the columnsof A and rows of B. Second, the communication overhead of the physically blockedvariants has been partially replaced by a local data copy into a bu�er that was84

needed anyway. The communication pipeline stages in the row direction have beenshortened. The cost of this pipeline startup has also been reduced considerablyby having the process column emitting the broadcasts remaining �xed as longas possible. Finally, one has the opportunity to overlap communications andcomputations in the process column direction as well. Indeed, the packing of therows of B in the process row (p + 1) can be performed in advance, so that thiscommunication pipeline is cheaper. This operation can also be logically blockedby limiting the number of columns of A in process column q and correspondingrows of B in the process row p that will be locally packed and broadcast.This approach presents the advantage that the cost of aggregation phase isput on the processor as opposed to the interconnection network. However, itcannot be used for algorithms where each step depends on the previous one.Typically, LCM blocking is well-suited for multiplying two matrices, where eachcontribution to resulting matrix entries can be added in any order. To a certainextent solving a triangular system can take advantage of such a blocking strategy.The algorithm proceeds in an ordered sequence of steps that depend on eachother. It is, however, possible to block this algorithm and and express it in termsof triangular solves and matrix multiplies [33, 60]. The LCM blocking strategyis a typical algorithmic redistribution operation since it rearranges logically andphysically the communication and computation phases for increased e�ciency and
exibility. 85

3.4.6 Aggregated LCM Blocking or Hybrid SchemesThe aggregated LCM blocking strategy is an hybrid scheme that combines theaggregation and LCM blocking strategies. In the aggregation scheme describedearlier, the blocks to be aggregated were globally contiguous. It is, however,possible to use the same strategy for the local blocks obtained via LCM blocking.Furthermore, disaggregated LCM blocking is also possible as noted above.3.5 Two-Dimensional RedistributionThe operations described in this section involve M � N two-dimensional dis-tributed matrices as de�ned in (3.2.2). They generalize the one-dimensional re-distribution technique presented earlier. Let A and B be such matrices. Let(PA; rA; QA; sA) (respectively (PB; rB; QB; sB)) be the distribution parametersassociated with A (respectively B). In order to redistribute A into B, one con-siders the DVM induced by the columns of A and rows of B, as well as the oneinduced by the rows of A and columns of B. Figure 3.8 shows the block-partitionedoperands A and B as well as the induced DVMs VM1 and VM2. For a givenrow of A, the corresponding diagonal entry of the distributed virtual matrix VM2determines the corresponding columns of B. A block of rows of A that could bepacked together is represented in the �gure by a gray rectangle. The correspond-ing diagonal block of the distributed virtual matrix V M2 and the corresponding86

columns of B are colored with the same gray. The same reasoning is applied tothe columns of A and rows B using the distributed virtual matrix VM1. Thegray intersections in A determines the entries that could be packed together inone message. Figure 3.8 illustrates the importance of locating the diagonals inthe context of two-dimensional redistribution. As opposed to the one-dimensional
A

B

M

N

N

M

VM2

VM1

Figure 3.8: Global view of two-dimensional redistributioncase, there are two virtual process grids de�ned by PA, QB and QA, PB. If aprocess of coordinates (pA; qB) owns diagonal entries of the associated M �Mvirtual matrix VM2, and if a process of coordinates (pB; qA) owns diagonal en-tries of the associated N �N virtual matrix V M1, then this says that some data87

residing in process (pA; qA) should be sent to the process of coordinates (pB; qB).The blocks of the DVMs VM1 and VM2 owning diagonals are represented bydarker rectangles in which the diagonals are symbolized by a white segment. Theknowledge of the source process coordinates allows the receiving process to cal-culate a priori the size of the message to be received as well as its packed formand the location of each message entry. Consequently, unless A and B are equiv-alent in the sense of (3.2.12), the number of messages to be exchanged is equalto the product of the number of processes owning diagonals in the DVMs VM1and V M2. This approach using LCM tables allows one to express the copy andtranspose operations in a single framework. The implementation of such opera-tions should take advantage of such a savings opportunity. In addition, since itis possible to detect via a simple test on the distribution parameters distributionequivalence, this scheme can easily be made optimal for the simpler cases. Notethat the operands A and B could be distributed on distinct process grids with-out a�ecting the packing strategy induced by the LCM tables. Moreover, if oneuses the LCM table de�nition handling a partial �rst block, this scheme naturallysupports non-aligned operands. Finally, it is straightforward to handle replicatedoperands by taking it into account when computing the LCM table entries. Thenext chapter will discuss the possible communication patterns and their complex-ity associated with the two-dimensional redistribution just described as well astheir complexity. Pseudo algorithms will also be presented.88

3.6 ConclusionsThis chapter summarized di�erent blocking strategies for block cyclicmappings. Italso introduced original LCM techniques extending the physical blocking scheme.These LCM techniques allow for greater
exibility. They are also equivalent tothe usual techniques for the restricted cases. The presentation of these generaltechniques stressed their systematic derivation from the properties of the under-lying mapping. The importance of the LCM tables introduced in Chapter 2 hasbeen discussed and shown to provide an acceptable and convenient frameworkto present algorithmic redistribution operations. The latter form the elementarybuilding blocks to express more complex parallel operations such as a complete,e�cient and
exible set of parallel linear algebra operations. Four categories ofoperations naturally emerge from the previous discussion:� Statically blocked computational operations,� Aggregation kernels,� LCM blocking tools,� One and two-dimensional redistribution.These basic buildings blocks are well delimited. They can all be expressed withina single framework using LCM tables. Such a partitioning is suitable for softwarelibrary design. 89

Chapter 4Performance Analysis4.1 IntroductionThis chapter presents a framework for quantifying the scalability of the algorithmicvariants of the matrix-matrix multiplication presented in the previous chapter.This framework is used to assess the theoretical performance impact of the logicalblocking factor NBlog. It is shown that under certain restrictions algorithmicblocking allows for high performance tuning. In addition, the relationship ofNBlog with other machine and distribution parameters is addressed.A theoretical model of a distributed memory computer is presented early inthis chapter. It is an abstraction of physical models, and provides a convenientframework for developing and analyzing parallel distributed dense linear algebraalgorithms without worrying about the implementation details or physical con-90

straints. The model can be applied to obtain theoretical performance bounds onDMCCs or to estimate the execution time before or after the algorithm has beenimplemented. This abstract model is used in the context of scalability and pro-grammability analysis. The machine model described and used in this chapter isa very crude approximation of reality. Its purpose is not to precisely re
ect allthe phenomena that occur during a general computation, but merely to identifythe dominant costs relevant to dense linear algebra computations. The target ar-chitectures used for the experiments, as well as the machine parameters measuredduring the experiments, are presented after the machine model. They justify thereasonable approximations one can make when using the machine model. Theapplication of the model to each of the blocking strategies presented in Chap-ter 3 allows for a characterization, evaluation and comparison of these blockingtechniques. It is shown in this chapter that none of these strategies is clearlysuperior to its challengers. Instead, they are complementary. Independent of thedistribution parameters or alignment of the matrix operands for the operation ofinterest, it is theoretically possible to use the machine resources at their best andachieve asymptotically comparable e�ciency. As will be explained in the nextchapter, however, the previous statement needs to be slightly re�ned in practiceto accommodate physical memory size constraints as well as other factors.91

4.2 The Machine ModelThe DMCCs introduced in Chapter 1 consist of processors that are connectedusing a message passing interconnection network. Each processor has its ownmemory called the local memory, which is accessible only to that processor. Asthe time to access a remote memory is longer than the time to access a local one,such computers are often referred to as Non-Uniform Memory Access (NUMA)machines. Strictly speaking, a NUMA architecture di�ers from a message passingarchitecture in the sense that it provides hardware support for direct access toother processor's memories, whereas in a message passing architecture, remoteaccess must be explicitly emulated via message passing [67].The interconnection network of our machine model is static, meaning that itconsists of point-to-point communication links among processors. This type ofnetwork is also referred to as a direct network as opposed to dynamic networks.The latter are constructed from switches and communication links. These links areconnected to one another dynamically by the switching elements to establish at runtime the paths between processors' memories. Furthermore, the interconnectionnetwork of the machine model considered here is a static two-dimensional P �Qrectangular mesh with wraparound connections as illustrated in Figure 4.1. Inaddition, it is assumed that all processors can be treated equally in terms of localperformance and the communication rate between two processors is independent92

from the processors considered. Each processor in the two-dimensional mesh hasfour communication ports. However, the model assumes that a processor can sendor receive data on only one of its ports at a time. This assumption is also referredto as the one-port communication model [67].
P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

MFigure 4.1: A 3� 4 processor mesh with wraparound connectionsThe time spent to communicate a message between two processors is calledthe communication time Tc. In our machine model, Tc is approximated by a linearfunction of the number L of items communicated. Tc is the sum of the time toprepare the message for transmission � and the time � L taken by the message oflength L to traverse the network to its destination, i.e.,Tc = �+ � L:93

This approximation of the communication time supposes that any two processorsare equidistant from a communication point of view (cut-through or wormholerouting). For most current DMCCs, this approximation is reasonable. Finally,the model assumes that the communication links are bidirectional, that is, thetime for two processors to send each other a message of length L is also Tc. Aprocessor can send and/or receive a message on only one of its communicationlinks at a time. In particular, a processor can send a message while receivinganother message on the same or di�erent link at the same time.Since this dissertation is only concerned with a single regular local operation,namely the matrix-matrix multiplication, the time taken to perform one
oatingpoint operation is assumed to be a constant
 in our model. This very crudeapproximation summarizes in a single number all the steps performed by theprocessor to achieve such a computation. Obviously, such a model neglects all thephenomena occurring in the processor components, such as cache misses, pipelinestartups, memory load or store,
oating point arithmetic and so on, that mayin
uence the value of
 as a function of the problem size for example. Similarly,the model does not make any assumption on the amount of physical memory pernode.This machine model is a very crude approximation that is designed speci�callyto illustrate the cost of the dominant factors to our particular case. More realisticmodels are described for example in [67] and the references therein.94

4.3 Estimation of the Machine ParametersTwo DMCCs, namely the Intel XP/S Paragon and the IBM Scalable POWER-parallel System, have been used in the experiments that have been performed forthis dissertation. Both of these DMCCs di�er in many aspects from the machinemodel. These di�erences are stressed to illustrate the crudeness of this model.The relevant performance characteristics of both computers are highlighted andcommented. In addition to the information supplied by the manufacturers ofthese computers, the machine parameters have been measured as part of the ex-periments. The obtained results are presented below. It is convenient to presentthese technical features in order to assess the relative importance of each param-eter.As mentioned earlier, the rank-K update operation has been selected to illus-trate the di�erences between all blocking strategies presented in Chapter 3. Thisoperation globally produces an M �N matrix C by adding to itself the productof an M �K matrix A and a K �N matrix BC C +AB:The number of
oating point operations required to perform this rank-K updateoperation is assumed to be equal to 2M N K. It is important to notice that inthis particular case, the global distributed operation is also the local operation95

performed by all processes. Locally in any given process, M (respectively N) isthen the local number of rows (respectively columns) of the distributed matrixC contained in this process. Locally, K can be considered equal to NBlog as isalmost always the case.In our experimental implementation, the local rank-K operation is performedby calling the appropriate subprogram of the vendor-supplied BLAS. The com-munication operations are implemented by explicit calls to the Basic Linear Alge-bra Communications Subprograms (BLACS). The BLACS [37, 40] are a messagepassing library speci�cally designed for distributed linear algebra communicationoperations. The computational model consists of a one or two-dimensional gridof processes, where each process stores matrices and vectors. The BLACS includesynchronous send/receive routines to send a matrix or submatrix from one pro-cess to another, to broadcast submatrices, or to compute global reductions (sums,maxima and minima). There are also routines to establish, change, or query theprocess grid. The BLACS provide an adequate interface level for linear algebracommunication operations.4.3.1 The Intel XP/S ParagonThe processing units of the Intel XP/S Paragon are nodes, based on the Intel'si860 XP RISC processors. Each processor is capable of a peak performance of75 M
ops. Multiprocessor (MP) nodes have three i860 XP processors - two to96

execute application code and a third for use as either a message coprocessor or asan application processor. General-purpose (GP) nodes are also available. Thosenodes have two XP application processors - one dedicated to applications andthe other to message-passing [31]. Figure 4.2 shows the GP node performance ofthe vendor supplied matrix-matrix multiply library routine for distinct values ofM = N and K. In practice, the performance of such an operation was observed tobe at most 45 M
ops for those GP nodes. The machine used for our experiments
0

5
10

15
20

25
30

0

100

200

300

400

500
0

10

20

30

40

KM = N

M
flo

p
s

Figure 4.2: Performance of the rank-K update on one processor of the Intel Paragonwas primarily comprised of GP nodes having 16 MB of physical memory. Figure4.2 shows that local performance is very sensitive to small values of K = NBlog.However, when the local value of K = NBlog is large enough, the local perfor-mance of the rank-K update is almost constant. Figure 4.3 shows the performance97

degradation that occurs when the matrix operands do not �t in core, i.e., whenthe operating system begins swapping. This �gure illustrates that the use of vir-tual memory may cause a large performance decrease. In other words, from thelocal computational point of view, very large values of K = NBlog should also beavoided.
0

10

20

30

40

50

0
200

400
600

800
1000

0

10

20

30

40

50

K M = N

M
flo

p
s

Figure 4.3: Performance of the rank-K update on one processor of the Intel ParagonOn the Intel XP/S, the actual transmission of messages is performed by anindependent routing system of Mesh Router Components (MRCs), one for eachnode, arranged in a two-dimensional mesh. These �xed- function devices routemessages between any two nodes in the system at hardware speeds of up to175 MB/s. Hardware latency - the time to set up the transfer of the �rst byteof a message - is so low (40 ns per MRC traversed) that the physical location of98

nodes becomes unimportant for performance [31].During our experiments, the performance of the BLACS communication prim-itives implemented on top of the native Intel XP/S message passing library wasmeasured. For the message sizes relevant to our application, we found that thevalues of � and � that best approximate in the least-square sense the communi-cation time Tc = � + � L are given by � � 60:0 �s and ��1 � 70:0 MB/s. Theoverhead induced by the BLACS primitives on this system compared to the nativeIntel message passing library is negligible as shown earlier in [87].4.3.2 The IBM Scalable POWERparallel SystemThe IBM Scalable POWERparallel System, or SP, consists of nodes (processorswith associated memory and disk) connected by ethernet and a high-performanceswitch. The processors are POWER2 architecture RS/6000 processors, which aresuperscalar pipelined chips capable of executing four
oating point operations percycle. The clock speed of this processor is 66.7 MHz, giving a peak performanceper processor of 266 MFLOPS. There are two types of nodes, known as thin nodesand wide nodes. Thin nodes have a 64 KB data cache. Wide nodes have 256 KBdata cache [4, 30, 80]. This data cache size di�erence results in slower performanceon thin nodes for computationally intensive applications. The machine used forour experiments consisted of thin nodes exclusively having 128 MB of physicalmemory [4, 30, 80]. Figure 4.4 shows the thin node performance of the vendor99

supplied rank-K update library routine for distinct values of M = N and K.In practice, the performance of such an operation was observed to be at most200 M
ops for those thin nodes. Figure 4.4 also shows that the local performanceof the rank-K operation is sensitive to small values of K = NBlog. However,when the local value of K = NBlog is large enough, the local performance isalmost constant.
0

20
40

60
80

100

0

200

400

600

800

1000
0

50

100

150

200

KM = N

M
flo

p
s

Figure 4.4: Performance of the rank-K update on one processor of the IBM SP2The interconnection network of the IBM SP is a two-level crossbar switch.The TB2 switch adapter, which is the interface between the node and the switch,features a Direct Memory Access (DMA) engine. For message passing librariesoptimized for the switch, the typical bandwidth is 35 MB/s with a latency ofapproximately 50 �s [4, 30, 80]. 100

During our experiments, the performance of the BLACS communication prim-itives implemented on top of the native IBM message passing library (MPL) wasmeasured. For the message sizes relevant to our application, we found that the val-ues of � and � that best approximate in the least-square sense the communicationtime Tc = � + � L are given by � � 400:0 �s and ��1 � 28:0 MB/s. Comparingthe BLACS performance versus the native IBM message passing library requiresa more detailed explanation and can be found in [87].4.4 Performance AnalysisIn this section the machine model de�ned above is applied in turn to each block-ing strategy presented in Chapter 3. The three matrix operands A, B and C areconsidered to be square of order M = N = K. The distributed matrix A (respec-tively B and C) is partitioned into rA � sA (respectively rB � sB and rC � sC)blocks. All three matrices are distributed onto the same P � Q process grid.When the distributions of the rows of the matrix operands A and C are equal inthe sense of De�nition 3.2.11, and the distributions of the columns of the matrixoperands B and C are equal, and the distributions of the columns of the matrixoperand A and the rows of the matrix operand B are equal, we say that the ma-trix operands are \aligned" for the rank-K update operation. In this case, we saythat the operation is aligned, meaning that the operation is performed on aligned101

data. Otherwise the operation is said to be \non-aligned". The major di�erencebetween the aligned and non-aligned rank-K operations is the fact that the matrixoperands A and B must be redistributed before the aligned operation can takeplace. Two strategies are possible. Either both A and B are redistributed at onceand the physical blocking variant is then used to �nish the computations. Thisstrategy is called RED thereafter. Or, the redistribution of A and B is interleavedwith partial rank-K updates. In this case, a panel of at most NBlog columns ofA and at most NBlog rows of B are formed using either the physical blockingstrategy (PHY), (dis)aggregation (AGG) or the LCM blocking strategy (LCM).These panels are then shifted if needed using the algorithm described in Section3.3 and a rank-NBlog update is performed. Since the blocking strategy uniquelyidenti�es the interleaving policy, we use these three identi�ers PHY, AGG andLCM to refer to the corresponding algorithms. In summary, four algorithms areconsidered, denoted by PHY, AGG, LCM and RED. Depending on the initialdistribution of the operands considered, the operation may or may not be aligned.When the operation is not aligned, the matrix operands A and B are redis-tributed. The communication volume associated to a given operation is the totallength of all messages performed by that operation. The additional communi-cation volume associated with the non-aligned rank-K update is therefore equalto 2N2. When the operation is aligned and the panels of A and B have beenconstructed, it is necessary to replicate the panel of columns of A in all pro-102

cess columns, and the panel of rows of B in all process rows as shown in Figure3.6. The volume of communication associated with this operation is given byN2 (Q=P + P=Q). When the process grid is square, this volume of communica-tion becomes 2N2. Consequently, the non-aligned operation roughly doubles thecommunication volume, whereas the amount of computation remains the same.The number of
oating point operations that have to be performed to updateone entry of the matrix operand C is equal to 2N + 1. The load imbalance ofthe rank-K update can then be bounded above by the di�erence of the largestnumber of entries of C owned by each process and the smallest number of entriesof C owned by each process. This number is given byrC sC (ddMrC eP edd NsC eQ e � bdMrC eP cbd NsC eQ c)It follows that the load imbalance for this operation is in general proportionalto the product of rC by sC. This suggests that very large distribution blockingfactors of C are likely to induce a large load imbalance of the computations.The following sections estimate the execution time of the di�erent redistri-bution and blocking variants on our machine model as a function of the localcomputational speed (
), the communication time parameters (� and �), and�nally the total number of processes p = P �Q.An important performance metric is parallel e�ciency. Parallel e�ciency,103

E(n; p), for a problem of size n on p processors is de�ned in the usual way [46] asE(n; p) = 1p Tseq(n)T (n; p) (4.4.1)where T (n; p) is the runtime of the parallel algorithm, and Tseq(n) is the runtimeof the best sequential algorithm. An implementation is said to be scalable if thee�ciency is an increasing function of n=p, the problem size per processor (in thecase of dense matrix computations, n = N2, the number of words in the input).We will also measure the performance of our algorithm in M
ops/s (or G
ops/s).This is appropriate for large dense linear algebra computations since
oating pointdominates communication. For a scalable algorithmwith n=p held �xed, we expectthe performance to be proportional to p.4.4.1 Physical BlockingIn this section, the performance analysis of the physical blocking strategy foraligned operands is presented. A similar analysis can also be found in [2, 83]. Thereason for reproducing it hereafter is that it considerably simpli�es the presen-tation of the performance analysis for the aggregation and LCM blocking strate-gies. For the sake of simplicity, the underlying process grid is assumed to be app � pp square mesh of p processes. In addition, the partitioning unit of thematrix operands is considered to be a square of size NBdis �NBdis(r = s). The104

matrix operands are also considered to be N�N square matrices. These assump-tions only simpli�es the expression of the performance analysis without modifyingits consequences. One could easily derive a more detailed analysis if needed. Allof our experiments were performed in double precision arithmetic. On both of ourtesting platforms, a double precision real is 8 bytes long. Thus, the bandwidthof the machine model is more conveniently expressed in double precision real persecond. In the following, �d denotes 8�.The key-factor of this performance analysis is to model the cost of a sequenceof b broadcasts of messages of length n among pp processes. The cost of thesequence of b minimum spanning tree broadcasts is given byb log2(pp) (� + n�d):During the last step of a minimum spanning tree broadcast, each of the pp pro-cesses is sending or receiving a message of length n. There is thus no opportu-nity to pipeline the messages and overlap the communications. Moreover, thesource process of each broadcast does not in
uence the total cost of the broad-cast sequence since as mentioned above the minimum spanning tree algorithmsynchronizes all processes involved in the operation.A more cost e�ective algorithm to perform such a broadcast sequence is touse \ring" broadcasts. In this case, however, the source process of each broadcast105

has an impact on the overall estimated execution time. If the source process ofeach broadcast remains the same, the estimated execution time of this operationis given by (� + n�d) (pp� 1) + (b� 1) (� + n�d):The �rst term of this expression is referred to as the startup time of the com-munication pipeline. For su�ciently large values of b, the startup time becomesnegligible. The execution time of such an operation can then be approximatedby the second term of the above expression. It follows that the sequence of bring broadcasts is more e�cient than the sequence of b minimum spanning treebroadcasts.When the source process of each ring broadcast is the process following thesource process of the previous broadcast, the cost of the sequence of b ring broad-casts becomes (�+ n�d) (pp � 1) + (b� 1) 2 (� + n�d):More generally, if the source process of each ring broadcast is the kth process onthe ring following the source process of the previous broadcast, the cost of thesequence of b ring broadcasts is given by(� + n�d) (pp� 1) + (b� 1) (k + 1) (� + n�d): (4.4.2)106

In the physical blocking strategy, the source process of the broadcast sequenceis incremented at each step. In addition, the physical distribution blocking factorNBdis = sA = rB is used to partition the communication and computation.Therefore the execution time of this operation on the machine model is given byTPHY (N; p) = 2 (� + NBdisNpp �d) (pp � 1)+4 (NNBdis � 1) (� + NBdisNpp �d) + 2 N3
p� 2N3
p (1 + 2
 (p�NBdis N2 + pp �dN)) when NNBdis � pp:The parallel e�ciency of the physical blocking variant is then given byEPHY (N; p) = (1 + 2
 (p�NBdisN2 + pp �dN))�1 when NNBdis �pp:The physical blocking algorithm is thus scalable in the sense that if the memoryuse per process (pN2) is maintained constant, this algorithm maintains e�ciency.The last equality shows that the physical block size NBdis can be used to lowerthe importance of the latency �.4.4.2 AggregationIn this section, the performance analysis of the aggregation blocking strategy foraligned operands is presented. This technique essentially performs a sequenceof accumulations followed by a ring broadcast. For the sake of simplicity, it is107

assumed that k blocks of the same size are aggregated. In practice, the blocks areonly approximately of the same size. It is clear that k is bounded above by pp. Inaddition, the logical blocking factor NBlog is used to partition the communicationand computation. It follows from Equation 4.4.2 that the estimated executiontime on our machine model for the aggregation strategy is given byTAGG(N; p) � 2N3
p (1 + k
 (p�NBlogN2 + pp �dN)) when NNBlog � pp:This result generalizes the result obtained above for the physical blocking strategy.The parallel e�ciency of the aggregation variant is thus given byEAGG(N; p) = (1 + k
 (p�NBlogN2 + pp �dN))�1 when NNBlog � pp:Consequently, the aggregation algorithm is also scalable. The value of k is aconstant that only depends on the ratio between the logical NBlog and physicalNBdis blocking factors. These formula show the communication overhead inducedby the aggregation strategy in terms of the number of messages as well as thecommunication volume. When the physical blocking factor is larger than thelogical blocking factor, the physical blocks are split into smaller logical blocks.Therefore, the estimated execution time of the disaggregation variant is boundedabove by the result obtained for the aggregation strategy.108

4.4.3 LCM BlockingIn the LCM blocking strategy, one looks at the diagonals of the virtual distributedmatrix induced by the columns of A and rows of B residing in all process columnand row pairs. It is assumed in this section that each process in the grid owns anumber of diagonals that is proportional to NBlog. With these assumptions, theestimated execution time of the LCM blocking strategy is given byTLCM (N; p) = 2N3
p (1 + 32
 (p�NBlog N2 + pp �dN)) when NNBlog �pp:The parallel e�ciency is thusELCM (N; p) = (1 + 32
 (p�NBlog N2 + pp �dN))�1 when NNBlog � pp:Our machine model assumes that the local data copy operation is free. In reality,such an assumption is reasonable. The cost associated to the local data copyperformed by the LCM blocking variant is negligible when compared to the com-munication time. It follows from the two preceding formula that the LCM blockingvariant is also scalable for aligned matrix operands. This variant is slightly moree�cient than the physical and aggregation strategies.109

4.4.4 One Dimensional RedistributionWhen the matrix operands A and B are not aligned with the matrix C, it is nec-essary to redistribute the matrices A and B. In the physical blocking, aggregationand LCM blocking strategies, the matrix operands A and B are redistributed bypanels of global size N � NBdis or N � NBlog. In the redistribution of a singlepanel, pp (pp�1) messages are exchanged. In our case, this redistribution phaseis immediately followed by a broadcast. Thus, we choose to perform this opera-tion on two process columns or rows in order to limit the link contention. Themessage scheduling policy used in our one-dimensional redistribution operationis the \caterpillar" algorithm, where the messages are exchanged by pairs [78].Other scheduling policies exist [67, 86]. These methods, however, do not featurea contention-free message scheduling policy as well as an optimal communicationvolume. Due to the simplicity of our machine model, it is not possible to cor-rectly model the link contention of this redistribution operations. Therefore, theestimated execution time given below for this operation should be regarded asan approximation. In the context of the panel redistribution, pp processes areinvolved. Each of them owns N nbpp data items, where nb is either NBdis for thephysical blocking strategy, or NBlog for the aggregation or the LCM variants.Each process sends and receives pp � 1 � pp messages of length N nbp . Theestimated execution time for the one-dimensional redistribution of a single panel110

is then given by T1d�panel(N; p) � pp (�+ N nbp �d):In the physical blocking, aggregation and LCM blocking strategies, Nnb pan-els per matrix operands are redistributed. Since each process row and columnoperates at best independently from each other, the total redistribution time isapproximately given by:T1d�all(N; p) � N pp �nb + N2 �dpp :This estimated execution time illustrates that the one-dimensional algorithm fea-tures an optimal volume of communication per panel. However, the number ofmessages exchanged can be much larger than the minimal number (p).4.4.5 Two Dimensional RedistributionThe last redistribution strategy considered in this dissertation involves the com-plete redistribution of the matrix operands A and B beforehand. This operationhas been implemented in the ScaLAPACK library [78]. This two-dimensional re-distribution software was used for our experiments. The algorithm implementedfeatures a minimal communication volume. The message scheduling policy is the\caterpillar" algorithm. This scheme is not contention free. Therefore, the esti-mated execution time given below should be regarded as a lower bound. In the111

context of the two-dimensional redistribution, all p processes are involved. Each ofthem owns N2p data items. Each process sends and receives p�1 � p messages oflength N2p2 . The estimated execution time for the two-dimensional redistributionof an entire distributed matrix operand is thus given byT2d�all(N; p) � p� + N2 �dp :This estimated execution time illustrates that this two-dimensional algorithm fea-tures an optimal volume of communication per matrix operand. The number ofmessages exchanged during the operation is also minimal.4.5 ConclusionsTable 4.1 summarizes the estimated parallel e�ciency for each variant studied inthis chapter. For aligned experiments, these e�ciencies show that all variants arescalable in the sense given above, i.e., e�ciency is maintained if the memory-useper process is kept constant. The LCM blocking variant features a slightly highere�ciency than the physical blocking strategy. This theoretical analysis also ex-plains why one expects to observe better performance for the physical strategythan the aggregation variant. For non-aligned experiments, all variants are scal-able only if one neglects the latency factor. The complete redistribution (RED) isshown to be more e�cient, because it is optimal in terms of communication vol-112

ume for a matrix operand. The higher number of messages exchanged by the LCMstrategy is, however, likely to make the di�erence on platforms featuring a highlatency (�). Due to the crudeness of the machine model used for the performanceanalysis of these algorithms, these theoretical predictions must be confronted toTable 4.1: Estimated parallel e�ciencies for various blocking variantsAligned experiments Non-aligned experimentsPHY (1 + 2
 (p �NBdisN2 + pp �dN))�1 (1 + 1
 ((pp+ 2) p �NBdisN2 + 3pp �dN))�1AGG (1 + k
 (p �NBlogN2 + pp �dN))�1 (1 + 1
 ((k+pp) p �NBlogN2 + (k + 1)pp �dN))�1k � dNBlogNBdis e k � dNBlogNBdis eLCM (1+ 32
 (p �NBlogN2 + pp �dN))�1 (1 + 1
 ((3=2 +pp) p �NBlogN2 + 5pp�d2N))�1RED (1 + 1
 ((2 + pNBdisN) p �NBdisN2 + (2pp+ 1) �dN))�1practical experiments. One also expects these theoretical results to di�er from thereality in larger proportions for the non-aligned experiments due to the neglectionof the link contention by the machine model. It is worth noticing that for smallgrid sizes and all variants, the estimated e�ciency of the aligned experiments is113

approximately equal to the e�ciency of the non-aligned experiments. Similarly,the time complexity obtained above for the one- and two-dimensional redistri-bution does not take into account the fact that small physical blocking factorssimplify considerably these operations as shown in Chapter 2. Furthermore, theaggregation and LCM blocking strategies should be regarded as complementaryvariants as explained in Chapter 3. Indeed, for some algorithms, it is not possibleto reorder the operations as it is done by the LCM blocking strategy.The estimated execution time can be used to predict the actual execution timeof an implementation of these algorithms. Another use of these results is to com-pute the repartition of the total estimated execution time between communicationand computation. Figures 4.5 and 4.6 illustrate this use of the estimation for the
Latency

Bandwidth

Communication

Computation

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

matrix order

tim
e

di
st

rib
ut

io
n

Figure 4.5: Time repartition of the aligned LCM blocking variant (LCM) on a 4 � 8IBM SP 114

LCM blocking strategy applied to an aligned experiment and the complete redis-tribution (RED) applied to a non-aligned experiment. Both �gures indicate thatthe model developed in this chapter is optimistic. Indeed, for even small-sizedmatrices, the time spent communicating is rapidly less than 50 % of the totalexecution time. This says that the model predicts very high performance for thealigned and non-aligned experiments. These �gures also show the relative impor-
Latency

Bandwidth

Communication

Computation

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

matrix order

tim
e

di
st

rib
ut

io
n

Figure 4.6: Time repartition of the non-aligned complete redistribution (RED) varianton a 4� 8 IBM SPtance of the performance of the interconnection network within the context ofdata redistribution. The relative performance impact of the communication per-formance is larger for the non-aligned experiment. It also slowly decreases withthe problem size. 115

Chapter 5Experimental Results5.1 IntroductionIn order to assess the performance of algorithmically redistributed operations,many experiments have been performed. Each of them is aimed at illustratingthe e�ciency of these operations. This chapter presents and discusses the resultsobtained. All experiments were performed in double precision arithmetic, and thematrix operands were randomly generated. The vendor-supplied BLAS librarywas used on the Intel XP/S Paragon and the IBM SP. The current native version1.0 of the BLACS [17] was used on both systems. The experimental programswere compiled and executed unchanged on both platforms. A testing program wasdeveloped for debugging purposes as well as ensuring the validity of the results.This program was adapted from the more general testing software accompanying116

the PBLAS library [18]. The software passed statistically a large number of tests,that is, for a �nite collection of random valid input arguments. Similarly, a timingprogram was developed and used to obtain the results presented below. Most ofthe experiments were performed twice or more. Only the best performance isreported.The experimental results are presented and classi�ed into two categories. First,the matrix operands A, B and C have been distributed such that the rows of thematrix operand A (respectively the columns of the matrix operand B) and therows (respectively columns) of the matrix operand C were residing in the sameprocess row (respectively column). These experiments are referred to as alignedexperiments thereafter. The second category of experiments considers matrixoperands that are not aligned, so that a complete redistribution of the matrixoperands A and B has to occur. These experiments are referred to as non-alignedexperiments. A single value of the logical value blocking factor NBlog has beena priori determined for each platform and used for all the experiments. Finally,for each category of experiments, di�erent values of the physical block sizes havebeen timed.Most of the experiments performed on the Intel XP/S Paragon have been per-formed twice on a dedicated machine. Only the best performance is reported. Allexperiments performed on the IBM SP were performed using a batch queueingsystem. The machine was never set up in a single user mode. However, pre-117

vious relevant timing results obtained on another dedicated system indicate nomeaningful di�erences with the results obtained by this batch queueing system.For the sake of clarity, only limited results have been used for the plots pre-sented in this chapter. Appendix B contains the tables of complete results. Thepurpose of this chapter is to illustrate the general behavior of algorithmicallyredistributed operations as opposed to presenting a collection of particular per-formance numbers. One can still precisely identify the relationship between aperformance plot and the corresponding experiments. However, the presentationstyle aims at facilitating the comparison of the di�erent blocking strategies for aset of illustrative and particular cases. For example, for a given blocking variant,one is interested in the performance variations as a function of the block sizesused for the distribution matrix operands. Ideally, one would like to minimizethis dependence so that the performance of such an operation on a given machinecon�guration becomes a function of only the problem size.5.2 Determining a \Good" Block SizeA \good" block size or blocking factor is one that maximizes the performance ofa block algorithm. According to the results presented in Figures 4.2 and 4.4, thelocal performance is not very sensitive to the size of the matrix operands as soonas their sizes remain large enough. This allows one to determine a lower bound on118

the physical and/or logical block sizes under which the local performance wouldbe the main factor for overall slow performance. Figures 4.2 and 4.4 indicate thatthe value of this lower bound is approximately 10 for the Intel XP/S Paragon and20 for the IBM SP. A good value of the distribution block size can be empiricallydetermined by trying a few candidates for a given problem size and a given gridsize. Table 5.1 shows the performance in M
ops obtained for matrices of order500 on a 2 � 2 process grid of the Intel XP/S Paragon, and matrices of order1000 on a 2� 4 process grid of the IBM SP for di�erent values of the distributionblocking factor NBdis. One should avoid selecting overly larges values for theseTable 5.1: Performance in M
ops for distinct distribution block sizes2� 2 Intel XP/S Paragon 2� 4 IBM SPNBdis M = N = K = 500 NBdis M = N = K = 10008 163.59 20 950.3912 164.41 40 1063.9914 168.85 60 1073.5916 164.48 70 1103.1218 169.12 80 1079.90\good" block sizes in order to avoid load imbalance as well as limit the amount ofworkspace required by the parallel subprograms. Finally, a few simple experimentsusing the physical blocking variant allow one to determine somewhat arbitrarilyan approximate value of this \good" blocking factor. Table 5.1 shows some partialresults for a range of NBdis values that were used in determining a \good" blockingfactor for the Intel XP/S Paragon and the IBM SP. On the Intel XP/S Paragon,119

we found that a reasonable value for this blocking factor is 14. On the IBM SP,the value of 70 has been selected for the rest of our experiments. As mentionedabove, the results presented in Table 5.1 illustrate on a particular case that theoverall performance of this operation is not very sensitive to a range of valuesfor the blocking factor. Moreover, an optimal value maximizing performance forall problem sizes does not exist. This value depends on the problem size, thetarget machine as well as the process grid considered. Therefore, one could havechosen other values within this acceptable range without greatly a�ecting theperformance of the parallel operation. In all of the performance results presentedhereafter, the value of the logical blocking factor has been chosen to be equal tothe \good" values indicated above.Good values of the physical or logical blocking factors are machine and algo-rithm dependent. From a software portability point of view, one can store thesevalues in a table. At run-time, these values will be retrieved from this table. Thisis the option that has been selected by the LAPACK [5] designers. It is how-ever conceivable to determine such values at run-time by performing a few quickexperiments. On a distributed memory concurrent computer, such a method isparticularly attractive because the overhead of such trials is in general negligible.However, the main problem with this approach is that all processes should agreeon the value of the logical blocking factor to be used. Thus, on heterogeneous orunequally loaded homogeneous platforms, this requires a synchronization phase120

that lowers the advantages of this run-time approach. Consequently, the mostappealing solution is to empirically determine those good blocking values beforethe installation of the software. One would then encode them in a static tableand �nish installing the software. Recompilation of the software is required whensome hardware component of the system is changed; however, it is possible todetermine slightly better blocking factors.5.3 Speci�cation of the ExperimentsIn this section the experiments are precisely speci�ed. Each experiment has beengiven an encoded name of the formXX T#. XX identi�es on which target machinethe experiment has been run, either XP for the Intel XP/S Paragon or SP for theIBM SP. T speci�es the type of the operation and can be either A or N. If T isA, the operation is aligned as de�ned in Section 4.4. If T is N, the operation isnot aligned. # is a number or a string distinguishing each experiment. For eachexperiment, the physical distribution parameters of the matrix operands A, B andC are speci�ed, followed by an explanation of the purpose of the experiment. Table5.2 contains the speci�cations of all of the experiments that have been performed.In all of the experiments, the matrix operands were square of order N . The valuesof N used for all experiments are 100, 250, 500, 1000, 1500, 2000 and 3000. Dueto memory size constraints, it was not always possible to perform the experiments121

Table 5.2: Speci�cation of the experimentsAligned ExperimentsExperiment # XP A0, SP A0Distribution rA = sA = rB = sB = rC = sC = NBlogComments Pure overhead of algorithmic blocking.Experiment # XP A1, SP A1Distribution rA = sA = rB = sB = rC = sC = 1Comments Impact of distribution blocking factors � NBlog.Experiment # XP A10Distribution rA = sA = rB = sB = rC = sC = 10Experiment # SP A20Distribution rA = sA = rB = sB = rC = sC = 20Comments Impact of distribution blocking factors � NBlog.Experiment # XP A40Distribution rA = sA = rB = sB = rC = sC = 40Comments Impact of distribution blocking factors � NBlog.Experiment # XP A100Distribution rA = sA = rB = sB = rC = sC = 100Experiment # SP A200Distribution rA = sA = rB = sB = rC = sC = 200Comments Impact of distribution blocking factors � NBlog.Non-aligned ExperimentsExperiment # XP NA, SP NADistribution rA = rC = 40; sB = sC = 40; sA = 5; rB = 7Comments Columns of A are not aligned with rows of B.Experiment # XP N1, SP N1Distribution rA = sA = rB = sB = rC = sC = 1Comments Impact of very small distribution blocking factors.Experiment # XP NN, SP NNDistribution rA = 3; sA = 5; rB = 7; sB = 2; rC = sC = 40Comments Non-aligned operation, small distribution blocking factors.122

for all of these values. All of the experiments have been performed on �ve distinctprocess grids, namely 1� 2, 2� 2, 2� 4, 4� 4 and 4� 8. As suggested in Section4.4, the four blocking and redistribution strategies (PHY, AGG, LCM and RED)have been tried for almost all experiments. Unless otherwise speci�ed, the valueof the logical blocking factor NBlog has been chosen to be 14 on the Intel XP/SParagon, and 70 on the IBM SP.Experiments XP A0 and SP A0 use the value of NBlog as the physical distri-bution blocking factor for all of the matrix operands. These experiments aim atverifying that the algorithmically redistributed variants do not a�ect the refer-ence performance obtained by the physical blocking strategy. Figures 5.1 and 5.2show the performance of the physical blocking (PHY), aggregation (AGG) and
PHY (XP_A0)

AGG (XP_A0)

LCM (XP_A0)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

problem size

M
flo

ps

4x4

4x8

Figure 5.1: Performance in M
ops of algorithmic blocking variants for a \good" physicaldata layout case and various process grids on the Intel XP/S Paragon123

the LCM blocking (LCM) strategies using the value of NBlog as the logical anddistribution blocking factors for the three matrix operands. According to the con-clusions of the previous chapter, the performance of the three variants is almostidentical on each platform with a slight advantage to the LCM blocking variant.
PHY (SP_A0)

AGG (SP_A0)

LCM (SP_A0)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

4x4

4x8

Figure 5.2: Performance in M
ops of algorithmic blocking variants for a \good" physicaldata layout case and various process grids on the IBM SPIn the rest of this chapter, the performance curves shown in Figures 5.1 and 5.2are considered as a reference. The combined maximum of these curves has beenreplicated on all of the other plots presented. This maximal curve is thereafteralways represented as a bold solid line. Ideally, one would like to observe nodi�erence between the performance obtained for this \good" physical layout andthe performance achieved by distributions induced by other physical blockingfactors. 124

5.4 Aligned ExperimentsIn this section, the performance results obtained for the aligned experiments arepresented for each blocking variant separately.5.4.1 Physical BlockingFigures 5.3 and 5.4 show the performance results obtained by the physical blockingstrategy on aligned data. The physical blocking variant uses the distributionblocking factors as the computational unit. When the distribution parameters
XP_A1

XP_A10

XP_A40

XP_A100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.3: Performance of aligned physical blocking on a 4� 4 Intel XP/S Paragonare very small, one expects a large performance degradation because of the localperformance of the rank-K update for small values of K as shown in Figures 4.2and 4.4. Similarly, very large distribution block sizes increase the computation125

load imbalance as explained in Section 4.4. Figures 5.3 and 5.4 illustrate these twophenomena. The load imbalance is characterized by highly irregular performanceresults. For example in Figure 5.4, for N = 1500, each process has almost the sameamount of data. However, for N = 2000, the matrix operands are made of 10�10blocks of size 200. Since 10 is not divisible by 4 or 8, the most loaded processeshave locally a 600� 400 matrix on which to operate. The matrices residing in the
SP_A1

SP_A20

SP_A200

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.4: Performance of aligned physical blocking on a 4� 8 IBM SPleast loaded processes are however of size 400 � 200. Therefore, some processeshave three times as much work to perform than others. The ragged curves shownin Figures 5.3 and 5.4 are typical of load imbalance. When the distribution blocksize is very small, the performance is dramatically degraded. This is the di�erencethat one should expect when using Level 1 or 2 BLAS based algorithms as opposed126

to Level 3 BLAS based algorithms.5.4.2 Aggregation - DisaggregationFigures 5.5 and 5.6 show the performance results obtained for the aggregationstrategy on aligned data. These �gures show that the aggregation variant de-creases by a large amount the dependence of the performance from the physicaldistribution parameters, and thus smooths the performance results of the rank-K update towards the result of reference. The (dis)aggregation strategy builds
XP_A1

XP_A10

XP_A40

XP_A100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.5: Performance of aligned aggregation on a 4� 4 Intel XP/S Paragonpanels of NBlog globally continuous columns of A and rows of B. When the distri-bution parameters are very small, one expects a large performance improvementcompared to the physical blocking strategy. This aspect is particularly evidentfor both target platforms as shown in Figures 5.5 and 5.6. The aggregation phase127

induces some communication overhead that somewhat limits the potential of thisstrategy. This phenomenon is not particularly well illustrated on the Intel XP/SParagon due to the high speed of the interconnection network compared to thelocal computational performance. However, on the IBM SP, even if the per-
SP_A1

SP_A20

SP_A200

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.6: Performance of aligned aggregation on a 4� 8 IBM SPformance of Experiment SP A1 has been considerably improved, it remains muchlower than the reference performance because of the less favorable communication-computation performance ratio of this machine.5.4.3 LCM BlockingFigures 5.7 and 5.8 show the performance results obtained for the LCM blockingstrategy on aligned data. These �gures show that the LCM blocking variant pro-duces the same e�ect as the aggregation strategy. It desensitizes the performance128

results from a poor choice of the blocking factor. The LCM results are howeverbetter than the ones shown above for the aggregation variant. In particular, theperformance results observed for Experiments XP A1 and SP A1 have been con-siderably improved. On the Intel XP/S Paragon, the performance obtained forvery small physical blocking factors is now superior to the performance observed
XP_A1

XP_A10

XP_A40

XP_A100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.7: Performance of aligned LCM blocking on a 4� 4 Intel XP/S Paragonfor physical blocking factors slightly larger than NBlog (XP A40). On the IBMSP, there is virtually no performance di�erence between Experiments SP A1 andSP A20. The impact of the less favorable communication-computation perfor-mance ratio of this particular machine is somewhat hidden by the algorithmicblocking strategy. This relatively low ratio is however, the reason for the per-formance di�erence between the reference case and the Experiments SP A1 and129

SP A20. The LCM blocking strategy builds panels of NBlog rows and columnswith less communication overhead because it essentially determines and regroupsthe columns of A and rows of B that belong to a given process column and pro-cess row pair. This phase is communication free. On both platforms, the results
SP_A1

SP_A20

SP_A200

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.8: Performance of aligned LCM blocking on a 4� 8 IBM SPare spectacular. They show that for aligned data and uniform data distributions,the performance di�erence due to various distribution blocking factors is no morethan a few percentage points from the reference as de�ned in Section 5.3.5.4.4 Complete RedistributionFigures 5.9 and 5.10 show the performance results when the matrix operands Aand B are aligned but redistributed for e�ciency reasons. Even if these plots showthe performance obtained for the same experiments as the last three sections, one130

could argue that complete redistribution (RED) should only be used for the ex-treme cases. A major feature of redistributing the entire matrix operands A andB at once is the large memory cost required by this operation. This increasesthe chances of the possible use of virtual memory by a large factor. Figure 5.9illustrates the dramatic performance consequences of using virtual memory on
XP_A1

XP_A10

XP_A40

XP_A100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.9: Performance of aligned redistribution on a 4� 4 Intel XP/S Paragonthe Intel XP/S Paragon. On this particular machine the complete redistributionbeforehand leads to lower performance than the one obtained by the LCM block-ing variant. In other words, the cost of redistributing when needed beforehandis larger than the cost induced by the algorithmically redistributed LCM strat-egy. In both variants the amount of computation is performed at the same speed.On the IBM SP, the complete redistribution beforehand leads to slightly higher131

performance than the LCM blocking strategy. The lower total number of redistri-bution messages of the complete redistribution strategy takes better advantage ofthe low communication-computation performance ratio of this machine. It is clear
SP_A1

SP_A20

SP_A200

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.10: Performance of aligned redistribution on a 4� 8 IBM SPthat the IBM SP may need to use virtual memory for su�ciently large problemsizes. However, the nodes of the machine we used for our experiments had eachat least 128 MB of physical memory. It was not feasible to estimate the impactof the use of virtual memory in a reasonable amount of time.
132

5.5 Non-Aligned ExperimentsExperiments XP AN and SP AN present the distinctive feature that only thecolumns of the matrix operand A are not aligned with the rows of the matrixoperand B. Figures 5.11 and 5.12 show the performance results obtained forthese experiments. In this particular case, it is not necessary to redistributethe operands A and B, but merely to perform a succession of rank-K updateoperations as in the aligned case. Thus, one expects to draw the same conclusions
PHY (XP_NA)

AGG (XP_NA)

LCM (XP_NA)

RED (XP_NA)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.11: Performance in M
ops of algorithmic blocking variants for ExperimentXP NA on a 4� 4 Intel XP/S Paragonas the ones obtained in the previous section. These are the reasons justifying thepresentation of these non-aligned experimental results separately. On the IntelXP/S Paragon, the performance results obtained by the four variants are similar133

with a slight advantage for the LCM blocking strategy (LCM). Just as it hasbeen observed above, the complete redistribution beforehand (RED) allows forhigh performance as well, even if the physical memory constraints prevent fromthe collection of decent results for the largest problems. On the IBM SP, the
PHY (SP_NA)

AGG (SP_NA)

LCM (SP_NA)

RED (SP_NA)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

problem size

M
flo

ps

Figure 5.12: Performance in M
ops of algorithmic blocking variants for ExperimentXP NA on a 2� 4 IBM SPperformance of the physical blocking strategy is considerably limited by the localperformance of the rank-K update for small values of K. There is very littledi�erence between the three variants AGG, LCM and RED.5.5.1 Physical BlockingFigures 5.13 and 5.14 present the performance results obtained for the physicalblocking strategy (PHY). These results are mainly presented for completeness134

since this technique cannot achieve performance close to the reference for the se-lected non-aligned experiments. Indeed, Experiments XP N1 and SP N1 featurevery small distribution blocking factors. Consequently, the local computationalperformance is low as shown in Figures 4.2 and 4.4. Experiments XP NN andSP NN feature also, in a slightly di�erent sense however, too small physical dis-tribution blocking factors. At each step of the physical blocking strategy, no
XP_N1
XP_NN

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.13: Performance of non-aligned physical blocking on a 4�4 Intel XP/S Paragonattempts are made to regroup columns of A (respectively rows of B) that are notin the same block or the same process column (respectively process row). Conse-quently, the local rank-K update operation is performed on at best the minimumof sA and rB columns of A and rows of B. This also increases the number ofpanel redistributions since in this case the values of sA and rB are smaller than135

the value of NBlog in both target machines. The consequences of these remarksare clearly illustrated on both �gures. The performance results obtained for thephysical blocking strategy are considerably lower than the ones used for reference.
SP_N1
SP_NN

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.14: Performance of non-aligned physical blocking on a 4� 8 IBM SP5.5.2 Aggregation - DisaggregationFigures 5.15 and 5.16 illustrate the performance achieved by the aggregation vari-ant on non-aligned data. The performance results of the rank-K update aresmoothed towards the reference results. As shown, this technique is much moree�cient than the physical blocking variant. On the Intel XP/S Paragon, due tothe high performance of the interconnection network, there is very little di�er-ence with the results obtained on aligned data. As one may expect, this small136

di�erence is the largest for small and medium problem sizes. In Figure 5.15 aswell as almost all of the �gures presented thereafter, the performance obtainedfor Experiments XP N1 and SP N1 is higher than that measured for ExperimentsXP NN and SP NN. Indeed, the redistribution phase for matrix operands dis-tributed with very small physical block sizes is simpler and cheaper. For largeproblem size, the performance loss is estimated to be approximately to 15%. On
XP_N1
XP_NN

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.15: Performance of non-aligned aggregation on a 4� 4 Intel XP/S Paragonthe IBM SP, the relative low performance of the interconnection network com-pared to the computational speed of the nodes prevents the aggregation strategyfrom obtaining much more than half of the reference performance. Still, smallphysical distribution blocking factors perform slightly better than more generaldistribution parameters. The gradual slope of the performance curve obtained for137

Experiments SP N1 and SP NN is typical of lower communication performance.For example, most of the performance curves shown for the Intel XP/S Paragonfeature a steep increase for small and medium size problems.
SP_N1
SP_NN

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.16: Performance of non-aligned aggregation on a 4� 8 IBM SP5.5.3 LCM BlockingFigures 5.17 and 5.18 show the performance results obtained by the LCM blockingvariant for the non-aligned Experiments XP N1, XP NN, SP N1 and SP NN.Assuming that one can always �nd at least NBlog columns of A and rows of Bin every process column and row pair, one expects to observe slightly superiorperformance results than the ones presented in the last section. This is exactlywhat is shown in Figure 5.17 for the Intel XP/S Paragon. The performanceobtained for non-aligned data on this machine is impressive. When combining this138

�gure with the one presented earlier for aligned experiments, one can concludethat it is possible to achieve the highest (within 15 %) performance for alignedand non-aligned data independent from the physical distribution parameters andat a very low cost of physical memory.
XP_N1
XP_NN

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.17: Performance of non-aligned LCM blocking on a 4� 4 Intel XP/S ParagonFigure 5.18 presents the performance results for the non-aligned experimentsobtained on the IBM SP. The performance di�erence with the reference is muchlarger on this machine. Moreover, the performance obtained for ExperimentSP NN is much lower than that observed for Experiment SP N1. This is sur-prising, especially when one considers the fact that so far the algorithmic block-ing strategies have always smoothed the performance di�erence ascribed to thephysical data layout. This argument has to be weighted, however, against the139

simpler redistribution operations performed in Experiment SP N1. When oneconsiders the di�erences in the experimentation methodologies used for the IntelXP/S Paragon and the IBM SP, there is in fact only one di�erence that comesto mind. The selected value of the logical blocking factor NBlog is much smaller(14) on the Intel XP/S Paragon than on the IBM SP (70). The distributionparameters for Experiment SP NN give lcm(P � rB; Q� sA) = lcm(40; 28) = 280.
SP_N1
SP_NN

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.18: Performance of non-aligned LCM blocking on a 4� 8 IBM SPThe corresponding LCM block is thus of order 280. For matrices of order 2000,there are approximately 7 diagonal LCM blocks. Each LCM block has 280 di-agonals distributed over 32 processes, i.e., there are approximately, and almostexactly in this case, 63 = (280=32 � 9) � 7 diagonals per process. The LCMblocking strategy uses these virtual diagonals to pack columns of A and rows of B140

by considering a process column and process row pair. These packed panels arethen shifted along one dimension of the process grid. The algorithm performs thus32 shift operations for each matrix operands. In Experiment SP N1, however, 8out of 32 processes own 250 diagonals each. In this case 32 shift operations arealso performed for each matrix operands, but each of them consists of 12 = 4 + 8point-to-point communications instead of 4 � 4 + 8 � 8 smaller messages. Theperformance di�erence observed for Experiments SP N1 and SP NN is due tothese redistribution di�erences. On the Intel XP/S Paragon, this phenomenon ishidden by the the high performance of the interconnection network. Moreover,the small value of the logical blocking factor (14) on this platform also contributeto attenuate this e�ect. Indeed, in a given process column - process row pair, it ismuch easier to �nd 14 columns of A and rows of B rather than 70. These remarksjustify the introduction in Chapter 3 of the hybrid blocking strategy (HYB) com-bining the advantages of the LCM variant and aggregation, i.e., minimizing theamount of communication while maintaining the computational granularity.5.5.4 Complete RedistributionFigures 5.19 and 5.20 show the performance results obtained for the non-alignedExperiments XP N1, XP NN, SP N1 and SP NN when the matrix operands Aand B are redistributed at once. The physical blocking variant of the rank-Kupdate operation is then performed to complete the computations. As it has141

been previously observed, the redistribution phase requires a large amount ofworkspace. Consequently, the use of virtual memory is inevitable for the largestmatrix operands producing a non-negligible performance degradation. This phe-nomenon has been easier to observe on the Intel XP/S Paragon since the processorsof the machine used for our experiments had 16 MB of physical memory fromwhich
XP_N1
XP_NN

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.19: Performance of non-aligned redistribution on a 4� 4 Intel XP/S Paragonapproximately 8 MB are usable by the user's program. The overall performanceobtained by this technique is slightly better (a few percentage points) than theLCM blocking strategy. The precise performance numbers for these experimentsare presented in Appendix B. On the IBM SP, the advantage of redistributingbeforehand is greater and is shown in Figure 5.20. When applicable, this strategyappears to be the most e�cient. The machine used for our experiments consisted142

of nodes having 128 MB or 256 MB of physical memory. Consequently, observingthe e�ects of virtual memory on the IBM SP has not been attempted. Figure5.20 also shows the performance results of the hybrid (HYB) strategy describedabove. The performance numbers have been reported in Appendix B. The hybridtechnique provides better performance than the simpler LCM blocking variant as
HYB (SP_N1)

HYB (SP_NN)

RED (SP_N1)

RED (SP_NN)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.20: Performance of non-aligned hybrid (HYB) versus redistribution (RED)techniques on a 4� 8 IBM SPillustrated by the Figures 5.20 and 5.18. This strategy delays the computationalphase until enough (NBlog) columns of the matrix operand A and rows of thematrix operand B have been algorithmically blocked. The communication over-head of this hybrid scheme is larger than the one induced by the LCM strategy.It allows, however, the achievement in certain cases of a much higher local perfor-mance rate. Obviously, the performance achieved by this hybrid scheme is always143

greater or equal to the one obtained by the LCM blocking variant.5.6 ConclusionsA large number of experimental results were presented in this chapter. For ourexperiments, two platforms have been chosen with highly di�erent communication-computation ratios. On one hand, the Intel XP/S Paragon allows for very e�cientcommunications and relatively slow computations. On the other hand, the IBMSP features highly e�cient processors for computational intensive applicationsand a comparatively slower interconnection network. This study restricted thescope of possible operations to a single one, namely the rank-K update operation.This operation is mathematically equivalent to a �nite sequence of smaller rank-Kupdates. For the sake of the clarity of the presentation the experiments have beenprecisely speci�ed and organized into two main categories. First, the \aligned"experiments feature simple and cheap redistribution phases due to restrictions onthe data layout of the matrix operands. Second, the \non-aligned" experimentsillustrate more general cases in terms of
exibility. Finally, four di�erent blockingand redistribution strategies were studied. To perform the complete redistribu-tion (RED) of a two-dimensional block cyclically distributed matrix into anothermatrix of the same kind, we used the appropriate component of the ScaLAPACKsoftware library [78]. The rest of the software used in these experiments has been144

developed for this dissertation.The results presented in this chapter clearly show that for the aligned experi-ments on both platforms, it is legitimate to use algorithmic redistribution variants.By doing so, one can obtain high performance and e�ciency independent from thedistribution parameters. Furthermore, the performance numbers obtained by theaggregation and LCM blocking techniques show a slight superiority for the latter.However, both techniques are complementary in the sense that it is not alwayspossible to use the LCM blocking strategy as mentioned in Section 3.4.4. In orderto address the problems induced by badly balanced computations, it is alwayspossible to redistribute the matrix operand C, even if this somewhat contradictsthe \owner's compute" rule. Another possibly more e�ective solution is to educatethe users just like as has been done for the use of shared memory systems.For non-aligned experiments, the results presented in this chapter not sur-prisingly illustrate the increasing importance of the communication-computationperformance ratio. On the Intel XP/S Paragon, this ratio is quite high. In such acon�guration, one can a�ord to redistribute the data \on the
y" without noticingmuch di�erence with the reference performance achieved in the aligned cases. Inour context, redistributing the entire operands beforehand does not allow for anysigni�cant performance improvement on this platform. Interestingly, this strat-egy pointed out its own paradox. Indeed, in terms of performance, the largerthe operands, the more bene�ts one should obtain from a complete redistribu-145

tion. However, the amount of memory necessary to perform such an operationgrows with the number of items redistributed, and thus inhibiting operation onthe largest operands. This argumentation was at the beginning of our demarchefor developing algorithmically redistributed operations that require an amount ofmemory proportional to the square root of the number of data items to be redis-tributed. Figure 5.21 shows the performance obtained by the LCM and hybrid
HYB (XP_N1)

HYB (XP_NN)

LCM (XP_N1)

LCM (XP_NN)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.21: Performance of non-aligned hybrid (HYB) versus LCM blocking techniqueson a 4� 4 Intel XP/S Paragonblocking variants for the non-aligned experiments on the Intel XP/S Paragon.This �gure shows that almost no performance di�erence exists between these twovariants on this platform, as opposed to the results shown in Figures 5.18 and 5.20for the IBM SP. On this latter platform, the communication-computation perfor-mance ratio is less favorable to algorithmically redistributed operations. Con-146

sequently, it is in general bene�cial to redistribute beforehand. This argumentis particularly pertinent for small and medium sized matrices for two reasons.First, such redistribution operations require little workspace. Second, for largeoperands, the computational cost will dominate no matter which strategy is usedto redistribute the operands.

147

Chapter 6Conclusions Il faut, autant qu'on peut, obliger tout le monde :On a souvent besoin d'un plus petit que soi.De cette v�erit�e deux fables feront foi,Tant la chose en preuves abonde.Entre les pattes d'un LionUn Rat sortit de terre assez �a l'�etourdie ...Jean de La Fontaine (1621-1695)Performing a �nite sequence of rank-k updates is the basic underlying operation ofmost modern dense linear algebra algorithms. Computing the numerical solutionof linear systems and solving least squares matrix inequalities are traditionallyperformed on a computer in two steps. First, the linear operator is factorized intoa product of two or more matrices featuring suitable properties for the resolution148

of the problem. Second, the solution of the problem is obtained by solving sim-pler matrix equalities typically involving triangular and/or orthogonal matrices[5, 49]. This same framework forms the basis of modern algorithms solving al-gebraic eigenvalue problems. The matrix representing the linear operator is �rstreduced to a condensed form. The numerical solution is then obtained by applyingan iterative method to this condensed form [5, 49]. Block-partitioned algorithmshave been developed for most of the matrix factorizations and reductions. Thesealgorithms have been implemented in the LAPACK software library [5] for sharedmemory systems. The bulk of computation in these algorithms is performed on thematrix representation of the linear operator. When such a matrix is distributedonto a process grid according to the block cyclic scheme, the operands of theelementary rank-k updates feature natural alignment characteristics. A parallelimplementation of these algorithms can take advantage of such distribution prop-erties. Parallel basic linear algebra operations such as the matrix-matrix multiplyor the triangular solve operations can also be expressed recursively as a successionof themselves and rank-k updates [33, 60]. The algorithms proposed in the liter-ature thus far focus on the naturally aligned cases used in the factorization andreduction operations. This restricted interest prevents one from providing thenecessary
exibility that a parallel software library requires to be truly usable.In addition, restricted operations considerably handicap the ease-of-use of such alibrary since one often needs to reformulate general operations to match obscure149

alignment restrictions that are di�cult to document and to explain.This dissertation demonstrates that it is possible to alleviate natural alignmentrestrictions for a low (sometimes negligible) performance cost for basic operationsand various block cyclic distributions. Moreover, the techniques used for thispurpose considerably reduce and often completely remove the complicated de-pendence between the performance of parallel basic linear algebra operations andthe physical distribution parameters. We believe that the preceding statement isthe major contribution of this dissertation. Indeed, it says that the algorithmspresented in this document allow one to produce a general purpose and
exibleparallel software library of basic linear algebra subprograms. These algorithmshave been shown in this document to achieve high performance independentlyfrom the actual block cyclic distribution parameters. E�ciency and
exibility arenot antagonistic objectives for basic dense linear algebra operations. This resultis presented in greater detail in the following sections.6.1 Application Domain of Algorithmic OperationsThe performance results presented in Chapter 5 show that when the matrixoperands are aligned, the algorithmically redistributed operations based on ag-gregation (AGG) and the LCM blocking (LCM) strategy are competitive in termsof performance with the complete redistribution variant (RED). This conclusion150

must be re�ned when the matrix operands must be redistributed before the alignedoperation can take place. Figure 6.1 summarizes the application domain of algo-rithmically redistributed operations for the non-aligned cases. First, when thenumber of processors p is small, the redistribution operations are considerablysimpli�ed because the total number of messages to be exchanged during such anoperation is proportional to p2. Therefore, in these cases, the algorithmically re-
Number of processors1

 Physical
distribution
 blocking
 factors

Load
imbalance

AGG / LCM

RED

Higher communication
computation ratioFigure 6.1: Application domain of algorithmically redistributed operationsdistributed operations are highly e�cient. Their performance is very similar tothe performance obtained by the corresponding aligned cases. Similarly, if onerestricts oneself to very small values of the physical distribution parameters for allof the matrix operands, the redistribution operations are considerably simpli�edfor the same reason as above. In all of the other cases, there is a tradeo� that151

depends on the communication-computation performance ratio of the target com-puter. This tradeo� is symbolized in Figure 6.1 by the curved border of the greyarea. This border divides the plane quarter into two distincts areas. The upperright area is denoted by RED, and the other area is colored in grey and denotedby AGG/LCM. Suppose �rst that the distribution parameters, i.e., number ofprocessors and physical blocking factors, are such that they identify a point inthe grey area. In this case, algorithmically redistributed operations based on ag-gregation and the LCM blocking strategy are highly competitive. These methodsare likely to deliver performance within 15 % of the performance achieved for thebest aligned case. Second, if the distribution parameters identify a point in thewhite area denoted by RED, then complete redistribution of the matrix operandsbeforehand is more e�cient than algorithmically redistributed operations. Theposition of the border separating both regions depends on the communication-computation performance ratio of the target computer. If this ratio increases, thecurved border is shifted in the direction indicated by the arrows on the �gure. Theperformance results presented in Chapter 5 show that the machine parameters canbe such that this border is never encountered. For example, on the Intel XP/SParagon, we never found a problem speci�cation such that complete redistribu-tion (RED) overperforms algorithmically redistributed operations such as AGGor LCM. On a machine featuring a less favorable ratio such as the IBM SP, it hasbeen observed that non-aligned data redistribution beforehand (RED) allows for152

better performance as soon as the process grid and the physical blocking factorsare su�ciently large.6.2 Recommendations for a Software libraryThe results shown in this dissertation have a direct impact on the eventual pro-duction of a set of
exible parallel basic algebra subprograms. Indeed, we haveshown that for a variety of distribution and machine parameters one can a�ord toredistribute the matrix operands \on the
y" without a signi�cant performancedegradation. However, for certain distributed memory concurrent computers fea-turing slow communication performance compared to their computational power,it is necessary to preserve the possibility of redistributing the data beforehand. Ithas been observed that such a redistribution phase has such a high memory costthat it is impractical for the largest problems �tting in the main physical mem-ory. Such observations indicate that it is worthwhile to provide algorithmicallyredistributed operations that feature the
exibility that a library user may expect.This allows for fast prototyping and debugging of parallel algorithms. Moreover,the performance of such algorithmically redistributed operations is always higheror comparable to what currently exists. The user should be warned that slightlyhigher performance may be achieved on certain platforms by redistributing thedata beforehand when it is feasible. 153

In order to address the high memory cost induced by redistributing beforehand,one may think about two distinct approaches. First, instead of redistributing theentire operands at once, it is possible to redistribute say only half of them intwo steps. At each step the same workspace can be reused and only part ofthe computation performed. This approach is viable, even if it is problematicfrom a software point of view to precisely estimate at run-time the amount ofusable memory on each process. Second, it is also possible to redistribute theoperands in place. A non trivial algorithm as well as its memory cost could notbe found in the literature. However, even if one assumes the availability of such analgorithm, the later remains impractical from a software point of view. Indeed, thesize of the local arrays capable of storing the original and redistributed operandshighly depends on the distribution parameters of the redistributed operand. Theseparameters may only be known at run time. Both of these preceding approachesmay be attractive for a particular application, but their practical realization seemsdi�cult in a modular software library fashion.A message-passing program is naturally complex. The experimental programswritten for this dissertation are by no means exceptions to this rule. These pro-grams are complicated to write, debug and maintain. These facts have beenconsidered when these experimental programs were designed. First, wheneverpossible, a \global interface" has been selected as used by the ScaLAPACK li-brary and explained in [18]. If such an interface imposes some redundant index154

computations, it allows for the reuse of sequential data and control structuresthat are easier to write and debug. Second, the properties shown in Chapter 2were used to verify and assert the correctness of the experimental programs. Forexample, a subprogram computing the number of diagonals owned by a particularprocess is not a trivial programming exercise. Such a task requires a good un-derstanding of the data distribution properties. It is, however, easy to check thevalidity of the result. Sequential unit testing programs were thus developed foralmost all of the subprograms computing indexes and local quantities. Writing aparallel program is often considered as an implementation detail when comparedwith the design of the algorithms. The complexity of a program is after all asubjective matter, as opposed to the complexity of an algorithm. There is un-doubtedly some truth in such a statement, even if it is overlooking the softwareengineering aspects of distributed memory programming.6.3 Contributions of this DissertationA number of properties of the block cyclic distribution were formally exhibitedin Chapter 2. These properties form the theoretical basis of a characterizationof the block cyclic distribution. They have been used to develop and ensure thecorrectness of algorithmically redistributed operations, as well as the robustnessand reliability of their experimental implementation. This collection of properties155

naturally suggests an elegant and convenient data structure that encapsulates andreveals the essential features of the LCM block partitioning unit when used in thecontext of algorithmic redistributed operations. The LCM table de�nition wasthus derived and shown to be a convenient framework for expressing algorithmi-cally redistributed operations. It was noted that this approach can be generalizedto the family of Cartesian mappings. The relationship between the distributionparameters and the complexity of the general one- and two-dimensional redistri-bution operations was determined and presented in Corollary 2.5.1. The intuitiveresult that the complexity of these operations increases with the perimeter of ther�s partitioning unit was proved for a �nite range of possible and realistic valuesof the distribution parameters.Most of the parallel algorithms proposed in the literature rely on the physicalblocking strategy to e�ciently use a distributed memory hierarchy. Within therestricted context of the rank-k update operation, algorithmically redistributedoperations were thus introduced and presented as alternatives to the physicalblocking strategy. The originality of the algorithms presented in Chapter 3 istheir systematic derivation from the properties of the underlying mapping. Theseblocking strategies were expressed within a single framework using LCM tables.It was noted that the modular design of the resulting operations was appropriatefor library software. Indeed, algorithmically redistributed operations feature a po-tential for high performance without the alignment restrictions of the physically156

blocked algorithms. De�ning and studying algorithmically redistributed opera-tions attempts to show that the antagonism between e�ciency and
exibility isnot a property of the block cyclic mapping, but merely a characteristic of thealgorithms that have been so far proposed to deal with a distributed memoryhierarchy.The scalability of the algorithmically redistributed operations proposed inChapter 3 is studied in Chapter 4. The performance analysis of these opera-tions is presented for a simpli�ed theoretical machine model. It is shown forthis machine model that these operations are scalable, i.e., the parallel e�ciencyde�ned by Equation 4.4.1 is maintained if the memory use per process is kept con-stant. Experimental performance results are presented in Chapter 5. The experi-ments are conducted on two platforms featuring highly di�erent communication-computation performance ratios. It is observed that when the matrix operandsverify certain data alignment properties, algorithmically redistributed operationsare competitive, in the sense that high performance can be achieved independentlyfrom the distribution parameters of the matrix operands. When these alignmentrestrictions are not met, the performance achieved by algorithmically redistributedoperations is sensitive to the communication-computation performance ratio of thetarget architecture. For a distributed memory concurrent computer such as theIntel XP/S Paragon featuring a high communication-computation performanceratio, performance comparable to the one obtained in the aligned cases is ob-157

served. When the communication-computation performance ratio is lower as it isthe case for the IBM SP, redistributing the data beforehand is in general moree�cient than algorithmic redistribution.6.4 Further Research DirectionsThere is undoubtly a need for a formal characterization of data decompositions.The properties of such mappings as well as their derivation suggest natural parallelalgorithms. They also identify critical features of which one can take advantage.For example, periodicity is an essential property since it is the source of e�cientblocking techniques. Ease-of-use and
exibility are also factors to be considered.These criteria may seem subjective and di�cult to estimate; it is, however, usuallythe case that one can identify and characterize the di�erences of speci�c casesfrom the general de�nition. In other words, it is interesting to show that the LUfactorization scales and performs well when the data is distributed according toa given mapping. It is, however, more interesting to show what the properties ofthe data decomposition should be able to produce an e�cient implementation ofthe LU factorization.The one- and two-dimensional redistribution algorithms presented and usedin this dissertation feature an optimal volume of communication. The schedulingpolicies, however, are not contention free. Developing and/or characterizing such158

policies for static and dynamic networks is a research area on its own. Referenceson the subject can be found in [32, 67]. More recent research work on this topiccan be found in [78, 86]. These problems are complex and di�cult to address.The experimental results presented in the literature are usually machine depen-dent. They are often based on empirical trials or heuristics. A comprehensiveand detailed comparative summary of the known scheduling policies could not befound in the literature. Data redistribution can lead to a signi�cant performanceimprovement. An inadequate scheduling policy can however ruin the performanceof the redistribution operation and suggest an incorrect interpretation of experi-mental results.

159

Bibliography

160

Bibliography[1] M. Aboelaze, N. Chrisochoides, and E. Houstis. The Parallelization of Level 2and 3 BLAS Operations on Distributed Memory Machines. Technical ReportCSD-TR-91-007, Purdue University, West Lafayette, IN, 1991.[2] R. Agarwal, F. Gustavson, and M. Zubair. A High Performance MatrixMultiplication Algorithm on a Distributed-Memory Parallel Computer, UsingOverlapped Communication. IBM Journal of Research and Development,38(6):673{681, 1994.[3] R. Agarwal, F. Gustavson, and M. Zubair. Improving Performance of LinearAlgebra Algorithms for Dense Matrices Using Algorithmic Prefetching. IBMJournal of Research and Development, 38(3):265{275, 1994.[4] T. Agerwala, J. Martin, J. Mirza, D. Sadler, D. Dias, and M. Snir. SP2System Architecture. IBM Systems Journal, 34(2):153{184, 1995.[5] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du161

Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, andD. Sorensen. LAPACK Users' Guide, Second Edition. SIAM, Philadelphia,PA, 1995.[6] I. Angus, G. Fox, J. Kim, and D. Walker. Solving Problems on ConcurrentProcessors: Software for Concurrent Processors, volume 2. Prentice Hall,Englewood Cli�s, N.J, 1990.[7] C. Ashcraft. The Distributed Solution of Linear Systems Using the Torus-wrap Data mapping. Technical Report ECA-TR-147, Boeing Computer Ser-vices, Seattle, WA, 1990.[8] M. Baber. Hypertasking Support for Dynamically Redistributable and Re-sizeable Arrays on the iPSC. In Proceedings of the Sixth Distributed MemoryComputing Conference, pages 59{66, 1991.[9] R. Bisseling and J. van der Vorst. Parallel LU Decomposition on a TransputerNetwork. In G. van Zee and J. van der Vorst, editors, Lecture Notes inComputer Sciences, volume 384, pages 61{77. Springer-Verlag, 1989.[10] R. Bisseling and J. van der Vorst. Parallel Triangular System Solving ona mesh network of Transputers. SIAM Journal on Scienti�c and StatisticalComputing, 12:787{799, 1991. 162

[11] F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony, andB. Mohr. Implementing a Parallel C++ Runtime System for Scalable ParallelSystems. In Proceedings of Supercomputing'93, pages 588{597, 1993.[12] R. Brent. The LINPACK Benchmark on the AP 1000. In Frontiers, 1992,pages 128{135, McLean, VA, 1992.[13] R. Brent and P. Strazdins. Implementation of BLAS Level 3 and LINPACKBenchmark on the AP1000. Fujitsu Scienti�c and Technical Journal, 5(1):61{70, 1993.[14] B. Chapman, P. Mehrotra, H. Moritsch, and H. Zima. Dynamic Data Re-distribution in Vienna Fortran. In Proceedings of Supercomputing'93, pages284{293, 1993.[15] S. Chatterjee, J. Gilbert, F. Long, R. Schreiber, and S. Tseng. GeneratingLocal Adresses and Communication Sets for Data Parallel Programs. Journalof Parallel and Distributed Computing, 26:72{84, 1995.[16] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK: A Portable Lin-ear Algebra Library for Distributed Memory Computers - Design Issues andPerformance. Computer Physics Communications, 97:1{15, 1996. (also LA-PACK Working Note #95). 163

[17] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,K. Stanley, D. Walker, and R. C. Whaley. Installation Guide for ScaLAPACK.Technical Report UT CS-95-280, LAPACK Working Note #93, University ofTennessee, 1995.[18] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Wha-ley. A Proposal for a Set of Parallel Basic Linear Algebra Subprograms. InJ. Dongarra, K. Masden, and J. Wa�sniewski, editors, Applied Parallel Com-puting, pages 107{114. Springer Verlag, 1995. (also LAPACK Working Note#100).[19] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Whaley.The Design and Implementation of the Reduction Routines in ScaLAPACK.In J. J. Dongarra, L. Grandinetti, G. R. Joubert, and J. Kowalik, editors,High Performance Computing: Technology, Methods and Applications, Ad-vances in Parallel Computing, 10, pages 177{202. Elsevier, Amsterdam, TheNetherlands, 1995.[20] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Whaley.The Design and Implementation of the ScaLAPACK LU, QR, and CholeskyFactorization Routines. Scienti�c Programming, 5:173{184, 1996. (also LA-PACK Working Note #80). 164

[21] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A ScalableLinear Algebra Library for Distributed Memory Concurrent Computers. InProceedings of Fourth Symposium on the Frontiers of Massively Parallel Com-putation (McLean, Virginia), pages 120{127. IEEE Computer Society Press,Los Alamitos, California, 1992. (also LAPACK Working Note #55).[22] J. Choi, J. Dongarra, and D. Walker. Parallel Matrix Transpose Algorithmson Distributed Memory Concurrent Computers. In Proceedings of FourthSymposium on the Frontiers of Massively Parallel Computation (McLean,Virginia), pages 245{252. IEEE Computer Society Press, Los Alamitos, Cal-ifornia, 1993. (also LAPACK Working Note #65).[23] J. Choi, J. Dongarra, and D. Walker. PUMMA: Parallel Universal MatrixMultiplication Algorithms on Distributed Memory Concurrent Computers.Concurrency: Practice and Experience, 6(7):543{570, 1994. (also LAPACKWorking Note #57).[24] J. Choi, J. Dongarra, and D. Walker. The Design of a Parallel, Dense LinearAlgebra Software Library: Reduction to Hessenberg, Tridiagonal and Bidig-onal Form. Numerical Algorithms, 10:379{399, 1995.[25] J. Choi, J. Dongarra, and D. Walker. PB-BLAS: A Set of Parallel BlockBasic Linear Algebra Subroutines. Concurrency: Practice and Experience,8(7):517{535, 1996. 165

[26] A. Chtchelkanova, J. Gunnels, G. Morrow, J. Overfelt, and R. van de Geijn.Parallel Implementation of BLAS: General Techniques for Level 3 BLAS.Technical Report TR95-49, Department of Computer Sciences, UT-Austin,1995. Submitted to Concurrency: Practice and Experience.[27] E. Chu and A. George. QR Factorization of a Dense Matrix on a Hyper-cube Multiprocessor. SIAM Journal on Scienti�c and Statistical Computing,11:990{1028, 1990.[28] Mathemetical Committee on Physical and Engineering Sciences, editors.Grand Challenges: High Performance Computing and Communications.NSF/CISE, 1800 G Street NW, Washington, DC, 20550, 1991.[29] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. TheMIT press, Cambridge, MA, 1990.[30] IBM Corporation. IBM RS6000. (http://www.rs6000.ibm.com/), 1996.[31] Intel Corporation. Intel Supercomputer Technical Publications Home Page.(http://www.ssd.intel.com/pubs.html), 1995.[32] M. Cosnard, Y. Robert, P. Quinton, and M. Tchuente, editors. ParallelAlgorithms and Architectures. North-Holland, 1986.166

[33] M. Dayde, I. Du�, and A. Petitet. A Parallel Block Implementation of Level3 BLAS for MIMD Vector Processors. ACM Transactions on MathematicalSoftware, 20(2):178{193, 1994.[34] G. Lejeune Dirichlet. Abhandlungen K�oniglich Preuss. Akad. Wiss., 1849.[35] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A Set of Level 3 BasicLinear Algebra Subprograms. ACM Transactions on Mathematical Software,16(1):1{17, 1990.[36] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. Algorithm 656: Anextended Set of Basic Linear Algebra Subprograms: Model Implementationand Test Programs. ACM Transactions on Mathematical Software, 14(1):18{32, 1988.[37] J. Dongarra and R. van de Geijn. Two dimensional Basic Linear AlgebraCommunication Subprograms. Technical Report UT CS-91-138, LAPACKWorking Note #37, University of Tennessee, 1991.[38] J. Dongarra, R. van de Geijn, and D. Walker. Scalability Issues in the Designof a Library for Dense Linear Algebra. Journal of Parallel and DistributedComputing, 22(3):523{537, 1994. (also LAPACK Working Note #43).[39] J. Dongarra and D. Walker. Software Libraries for Linear Algebra Com-putations on High Performance Computers. SIAM Review, 37(2):151{180,167

1995.[40] J. Dongarra and R. C. Whaley. A User's Guide to the BLACS v1.0. TechnicalReport UT CS-95-281, LAPACKWorking Note #94, University of Tennessee,1995. (http://www.netlib.org/blacs/).[41] R. Falgout, A. Skjellum, S. Smith, and C. Still. The Multicomputer ToolboxApproach to Concurrent BLAS and LACS. In Proceedings of the ScalableHigh Performance Computing Conference SHPCC-92. IEEE Computer Soci-ety Press, 1992.[42] M. Flynn. Some Computer Organizations and Their E�ectiveness. IEEETransactions on Computers, 21(9):948{960, 1972.[43] Message Passing Interface Forum. MPI: A Message Passing Interface Stan-dard. International Journal of Supercomputer Applications and High Perfor-mance Computing, 8(3{4), 1994.[44] Message Passing Interface Forum. MPI-2: Extensions to the Message-PassingInterface (Draft). (http://www.mcs.anl.gov/mpi), 1996.[45] G. Fox, S. Hiranandani, K. Kennedy, C. Koebel, U. Kremer, C. Tseng, andM. Wu. Fortran D Language Speci�cation. Technical Report TR90-141, RiceUniversity, Department of Computer Science, 1990.168

[46] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. SolvingProblems on Concurrent Processors, volume 1. Prentice Hall, EnglewoodCli�s, N.J, 1988.[47] G. Fox, S. Otto, and A. Hey. Matrix Algorithms on a Hypercube I: MatrixMultiplication. Parallel Computing, 3:17{31, 1987.[48] G. Geist and C. Romine. LU Factorization Algorithms on Distributed Mem-ory Multiprocessor Architectures. SIAM Journal on Scienti�c and StatisticalComputing, 9:639{649, 1988.[49] G. Golub and C. van Loan. Matrix Computations. Johns-Hopkins, Baltimore,second edition, 1989.[50] M. Hall, S. Hiranandani, K. Kennedy, and C. Tseng. Interprocedural Compi-lation of Fortran D for MIMDMachines. In Proceedings of Supercomputing'92,pages 522{534, 1992.[51] P. Hatcher and M. Quinn. Data-Parallel Programming On MIMD Computers.The MIT Press, Cambridge, Massachusetts, 1991.[52] M. Heath and C. Romine. Parallel Solution Triangular Systems on Dis-tributed Memory Multiprocessors. SIAM Journal on Scienti�c and StatisticalComputing, 9:558{588, 1988. 169

[53] B. Hendrickson, E. Jessup, and C. Smith. A Parallel Eigensolver for DenseSymmetric Matrices. Personal communication, 1996.[54] B. Hendrickson and D. Womble. The Torus{wrap Mapping for Dense MatrixCalculations on Massively Parallel Computers. SIAM Journal on Scienti�cand Statistical Computing, 15(5):1201{1226, September 1994.[55] G. Henry and R. van de Geijn. Parallelizing the QR Algorithm for the Unsym-metric Algebraic Eigenvalue problem: Myths and Reality. Technical ReportUT CS-94-244, LAPACK Working Note #79, University of Tennessee, 1994.[56] S. Hiranandani, K. Kennedy, J. Mellor-Crummey, and A. Sethi. Compila-tion Techniques for Block-Cyclic Distributions. Technical Report CRPC-TR95521-S, Center for Research on Parallel Computation, 1995.[57] S. Huss-Lederman, E. Jacobson, A. Tsao, and G. Zhang. Matrix Multiplica-tion on the Intel Touchstone DELTA. Concurrency: Practice and Experience,6(7):571{594, 1994.[58] K. Hwang. Advanced Computer Architecture: Parallelism, Scalability, Pro-grammability. McGraw-Hill, 1993.[59] S. L. Johnsson. Communication E�cient Basic Linear Algebra Computationson Hypercube Architectures. Journal of Parallel and Distributed Computing,2:133{172, 1987. 170

[60] B. K�agstr�om, P. Ling, and C. van Loan. GEMM-Based Level 3 BLAS: High-Performance Model Implementations and Performance Evaluation Bench-mark. Technical Report UMINF 95-18, Department of Computing Science,Ume�a University, 1995. Submitted to ACM TOMS.[61] E. Kalns. Scalable Data Redistribution Services for Distributed-Memory Ma-chines. PhD thesis, Michigan State University, 1995.[62] W. Kaufmann and L. Smarr. Supercomputing and the Transformation ofScience. Scienti�c American Library, 1993.[63] K. Kennedy, N. Nedeljkovi�c, and A. Sethi. E�cient Address Generation ForBlock-Cyclic Distributions. Technical Report CRPC-TR94485-S, Center forResearch on Parallel Computation, 1994.[64] K. Kennedy, N. Nedeljkovi�c, and A. Sethi. A Linear-Time Algorithm forComputing the Memory Access Sequence in Data Parallel Programs. In Pro-ceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practiceof Parallel Programming, Santa Barbara, CA, 1995.[65] D. Knuth. The Art of Computer Programming. Addison-Wesley, secondedition, 1973. Volume 1. Fundamental algorithms. Volume 2. Semi-numericalalgorithms. Volume 3. Sorting and searching.171

[66] C. Koebel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel. The HighPerformance Fortran Handbook. The MIT Press, Cambridge, Massachusetts,1994.[67] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to ParallelComputing. The Benjamin/Cummings Publishing Company, Inc., RedwoodCity, CA, 1994.[68] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Sub-programs for Fortran Usage. ACM Transactions on Mathematical Software,5(3):308{323, 1979.[69] G. Li and T. Coleman. A Parallel Triangular Solver for a Distributed-Memory Multiprocessor. SIAM Journal on Scienti�c and Statistical Com-puting, 9(3):485{502, 1988.[70] G. Li and T. Coleman. A New Method for Solving Triangular Systems onDistributed-Memory Message-Passing Multiprocessor. SIAM Journal on Sci-enti�c and Statistical Computing, 10(2):382{396, 1989.[71] J. Li and M. Chen. The Data Alignment Phase in Compiling Programs forDistributed-Memory Machines. Journal of Parallel and Distributed Comput-ing, 13:213{221, 1991. 172

[72] W. Lichtenstein and S. L. Johnsson. Block-Cyclic Dense Linear Algebra.SIAM Journal on Scienti�c and Statistical Computing, 14(6):1259{1288,1993.[73] M. Mace. Memory Storage Patterns in Parallel Processing, 1987.[74] K. Mathur and S. L. Johnsson. Multiplication of Matrices of Arbitrary Shapeson a Data Parallel Computer. Parallel Computing, 20:919{951, 1994.[75] P. Mehrotra and J. Rosendale. Programming Distributed Memory Architec-tures Using Kali. The MIT Press, Cambridge, Massachusetts, 1991.[76] O�ce of Science and Technology Policy, editors. A Research and DevelopmentStrategy for High Performance Computing. Executive O�ce of the President,1987.[77] O�ce of Science and Technology Policy, editors. The Federal High Perfor-mance Computing Program. Executive O�ce of the President, 1989.[78] L. Prylli and B. Tourancheau. E�cient Block-Cyclic Data Redistribution.Technical Report 2766, INRIA, Rhône-Alpes, 1996.[79] M. Rosing, R. Schnabel, and R. Weaver. The DINO Parallel Programminglanguage. Journal of Parallel and Distributed Computing, 13:30{42, 1991.173

[80] C. Stunkel, D. Shea, B. Abali, M. Atkins, C. Bender, D. Grice, P. Hochshild,D. Joseph, B. Nathanson, R. Swetz, R. Stucke, M. Tsao, and P. Varker. TheSP2 High-Performance Switch. IBM Systems Journal, 34(2):185{204, 1995.[81] Thinking Machines Corporation. CMSSL for Fortran, 1990.[82] A. Thirumalai and J. Ramanujam. Fast Address Sequence Generation forData Parallel Programs Using Integer Lattices. In P. Sadayappan and al.,editors, Languages and Compilers for Parallel Computing, Lecture Notes inComputer Science. Springer Verlag, 1996.[83] R. van de Geijn and J. Watts. SUMMA: Scalable Universal Matrix Multipli-cation Algorithm. Technical Report UT CS-95-286, LAPACK Working Note#96, University of Tennessee, 1995.[84] E. van de Velde. Data Redistribution and Concurrency. Parallel Computing,16:125{138, 1990.[85] E. van de Velde. Experiments with Multicomputer LU-Decomposition. Con-currency: Practice and Experience, 2:1{26, 1990.[86] D. Walker and S. Otto. Redistribution of Block-Cyclic Data DistributionsUsing MPI. Concurrency: Practice and Experience, 8(9):707{728, 1996.174

[87] R. C. Whaley. Basic Linear Algebra Communication Subprograms: Analysisand ImplementationAcross Multiple Parallel Architectures. Technical ReportUT CS-94-234, LAPACK Working Note #73, University of Tennessee, 1994.[88] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. ViennaFortran: A Language Speci�cation (Version 1.1), 1991.

175

Appendix

176

Appendix ALCM TablesA.1 LCM Table with First Partial BlockIn order to take into account a �rst partial block of size (ir; is) into the datadistribution parameters, the LCM table de�nition (2.5.2) needs to be modify asgiven below. For the sake of simplicity, the C conditional operator notation isused. The complementary information provided here may seem slightly morecomplicated than what is presented in the chapter 2. However, the di�erencesdepend only on the process coordinates and therefore do not impact signi�cantlythe computation of the LCM table in each process.
177

De�nition A.1.1 Given a k-diagonal, the k-LCM table (LCMT) is a two-dimensionalin�nite array of integers local to each process (p; q) de�ned recursively by8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>: LCMT p;q0;0 = (q > 0 ? is + (q � 1)s : 0)� (p > 0 ? ir + (p � 1)r : 0) + k;LCMT p;q1;� = LCMT p;q0;� � P r � (p > 0 ? 0 : ir � r);LCMT p;ql;� = LCMT p;ql�1;� � P r; for l � 2;LCMT p;q�;1 = LCMT p;q�;0 +Q s+ (q > 0 ? 0 : is� s);LCMT p;q�;m = LCMT p;q�;m�1 +Q s for m � 2:Finally, the bounds (2.5.20) against which an LCM table entry are comparedwith in order to recognize a block that own k-diagonals depend on the processcoordinates (p; q) and need to be modi�ed as shown in table A.1.Table A.1: The LCMT bounds characterizing block owning k-diagonalsp = 0 and q = 0: 1� is � LCMT p;q0;0 � ir � 1;1� s � LCMT p;q0;m � ir � 1; for m > 0;1� is � LCMT p;ql;0 � r � 1; for l > 0;1� s � LCMT p;ql;m � r � 1; for l;m > 0:p = 0 and q > 0: 1� s � LCMT p;q0;� � ir � 1;1� s � LCMT p;ql;� � r � 1 for l > 0:p > 0 and q = 0: 1� is � LCMT p;q�;0 � r � 1;1� s � LCMT p;ql;m � r � 1; for m > 0:p > 0 and q > 0: 1� s � LCMT p;ql;m � r � 1:178

A.2 Examples of LCM tablesThe example shown in �gures A.1 and A.2 presents a distribution example wheresome processes have two blocks locally adjacent that own k-diagonals. For in-stance, the blocks of coordinates (0; 0) and (1; 0) in the process (0; 0) own exactlyone entry of the k-diagonal.
111090 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

10

11

12

13Figure A.1: The 1-LCM block obtained for P = 2, r = 2, Q = 3 and s = 4.179

−7

1

(0,0)

0

1

4

5

8

9

0 1 2

13

12
−11

123

−3

0

1

4

5

8

9

(0,1)

12

13

5

−7

4 5 6 7 16

1

−3

0

1

4

5

8

9

12

13

1

−3

(0,2) 8 9 10 11 20

5

9

0 1 2 123(1,0)

2

3

6

7

10

11

14

−1

−5

−9

2

3

6

7

10

11

14

−1

−5

2

3

6

7

10

11

14

(1,1) 4 5 6 7 8 9 10 11 2016

3

(1,2)

7

−1

3Figure A.2: The 1-LCM tables obtained for P = 2, r = 2, Q = 3 and s = 4.
180

The example shown in �gures A.3 and A.4 presents a distribution example witha �rst partial block. The value of LCMT 2;00;0 = �3 is compared to 1 � is = �2instead of 1 � s = �3. Therefore this block does not contain k-diagonals as onecan easily check by looking at the �gures.
111090 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

10

11

12

13

12 13 14 15 16 17 18 19 20 21 22

14

15

16

17

18

19

20

21

22

23Figure A.3: The 1-LCM block obtained for P = 3, ir = 2, r = 2, Q = 2, is = 3 ands = 4. 181

1

(0,0)

0

1

0 1 2 9 10

−5

−11

−17

6

7

12

13

18

19

7 8

8 16

2

−4

−10 −2

4

10

15 16 17 18

0 1 2 9 107 8 15 16(1,0)

2

3

8

9

14

15

20

21

−1

−7

−13

−19

6

0

−6

−12

14

8

2

−4

17 18

0 1 2 9 107 8 15 16(2,0)

4

5

10

11

16

17

22

23

12

6

0

−6

4

−2

−8

−14−21

−15

−9

−3

17 18

0

1

6

7

12

13

18

19

3 4 5 6 11 12 13 14(0,1)

4 12 20

−2 6 14

−8 0 8

2−6−14

22212019

3 4 5 6 11 12 13 14 19 20 21 22(1,1)

2 10 18

−4 4 12

−10 −2 6

0−8−16

2

3

8

9

14

15

20

21

3 4 5 6 11 12 13 14

4

8

2−6

22212019

−2

(2,1)

4

5

10

11

16

17

22

23

0

−12

−18

−4

−10

16

10Figure A.4: The 1-LCM tables obtained for P = 2, ir = 2, r = 2, Q = 2, is = 3 ands = 4. 182

Appendix BPerformance ResultsThe Tables B.1 and B.2 presents most of the performance results obtained for thisdissertation. These results have been used to draw all the plots shown in Chapter5. The results are for both of the selected target machines, namely the Intel XP/SParagon (see Section 4.3.1) and IBM SP (see Section 4.3.2), separately. Moreover,for each machine, the results are presented for the experiments speci�ed in Table5.2. All these experiments have been performed in double precision arithmetic.The matrix operands have been randomly generated. Finally, the three matrixoperands were square of order N (See Section 5.3 for more details).
183

Table B.1: Performance results obtained on the Intel XP/S ParagonExperiment # XP A0 NGrid Variant 100 250 500 1000 1500 2000 30001� 2 PHY 56.4 79.3 85.8 - - - -AGG 56.1 78.9 85.8 - - - -LCM 55.7 78.8 85.7 - - - -2� 2 PHY 89.0 150.7 168.6 175.9 - - -AGG 89.6 149.6 168.8 175.9 - - -LCM 90.3 147.7 168.3 176.0 - - -2� 4 PHY 124.9 241.9 309.7 337.6 348.6 - -AGG 121.7 239.7 308.5 337.5 348.5 - -LCM 129.5 239.3 312.1 339.8 350.4 - -4� 4 PHY 169.8 376.9 578.4 662.0 685.3 697.2 -AGG 168.7 375.2 573.8 661.0 684.8 696.8 -LCM 174.7 391.8 588.6 670.1 691.7 702.2 -4� 8 PHY 211.7 526.1 917.5 1232.2 1266.9 1346.2 1393.4AGG 191.8 506.9 907.3 1224.7 1266.5 1345.4 1393.3LCM 176.5 540.7 934.6 1244.7 1281.0 1357.9 1401.9Experiment # XP A11� 2 PHY 27.8 37.6 41.8 - - - -AGG 54.1 76.9 84.6 - - - -LCM 54.8 75.6 81.9 - - - -RED 40.6 70.1 80.3 - - - -2� 2 PHY 36.3 64.3 78.2 85.2 - - -AGG 74.9 125.7 154.7 168.2 - - -LCM 84.9 137.0 159.6 169.3 - - -RED 44.4 92.6 128.6 21.3 - - -2� 4 PHY 35.2 99.3 139.5 163.7 171.3 - -AGG 71.5 178.5 259.7 307.2 328.6 - -LCM 102.2 226.6 300.7 327.2 341.8 - -RED 52.4 150.4 230.9 286.7 27.3 - -4� 4 PHY 29.4 132.3 230.4 300.6 323.7 336.6 -AGG 74.5 229.9 378.7 526.2 576.6 614.3 -LCM 121.7 384.2 545.8 640.4 657.4 678.6 -RED 63.4 234.9 411.4 558.7 605.3 63.1 -4� 8 PHY 24.5 150.8 352.0 534.4 608.5 645.9 681.9AGG 66.6 249.1 491.2 854.5 1006.2 1113.4 1229.4LCM 148.1 512.9 906.1 1201.6 1252.6 1309.7 1368.1RED 59.3 312.1 677.8 1022.8 1140.0 1223.1 43.2184

Experiment # XP A10 NGrid Variant 100 250 500 1000 1500 2000 30001� 2 PHY 62.1 77.0 85.3 - - - -AGG 56.6 75.6 85.5 - - - -LCM 58.4 76.4 85.2 - - - -RED 46.7 68.1 80.6 - - - -2� 2 PHY 102.5 141.7 170.8 176.8 - - -AGG 80.3 129.4 163.1 174.3 - - -LCM 87.3 141.1 166.3 175.9 - - -RED 62.9 114.6 155.8 12.9 - - -2� 4 PHY 122.8 233.6 304.0 339.3 348.7 - -AGG 110.2 212.2 288.7 332.0 343.3 - -LCM 116.8 234.3 300.3 339.9 348.1 - -RED 75.8 194.9 277.4 322.8 13.5 - -4� 4 PHY 148.1 381.0 544.8 672.3 679.2 701.0 -AGG 132.7 337.3 506.4 641.0 665.6 693.2 -LCM 128.9 394.0 554.7 668.1 683.1 705.6 -RED 76.0 305.9 494.4 634.5 655.4 45.5 -4� 8 PHY 143.7 553.6 900.2 1205.2 1290.4 1351.3 1389.7AGG 114.5 470.6 832.5 1139.1 1252.7 1327.5 1366.7LCM 147.6 549.8 916.0 1202.4 1300.1 1362.8 1394.4RED 73.3 389.2 795.7 1139.3 1246.4 1316.7 93.1Experiment # XP A401� 2 PHY 59.2 81.2 84.3 - - - -AGG 53.1 76.7 83.0 - - - -LCM 53.0 76.9 83.0 - - - -RED 41.9 68.8 76.4 - - - -2� 2 PHY 91.2 150.7 164.2 166.6 - - -AGG 75.7 138.3 157.9 164.0 - - -LCM 80.2 142.1 159.7 164.7 - - -RED 47.8 110.2 147.6 13.4 - - -2� 4 PHY 113.2 224.6 295.0 303.8 334.2 - -AGG 97.9 202.7 277.0 296.6 329.5 - -LCM 96.9 205.4 280.9 298.0 330.8 - -RED 56.6 147.5 258.3 284.6 18.7 - -4� 4 PHY 144.6 335.9 533.0 572.0 630.6 660.2 -AGG 119.7 299.4 495.1 552.0 620.7 654.2 -LCM 120.9 305.8 503.8 556.6 624.2 656.9 -RED 65.0 245.5 459.8 532.6 606.9 40.2 -4� 8 PHY 132.6 525.9 835.2 968.9 1203.2 1197.8 1318.8AGG 114.4 474.8 769.7 920.5 1182.1 1183.2 1312.5LCM 106.6 462.8 770.9 927.3 1190.3 1189.4 1317.6RED 59.6 344.7 678.2 889.6 1139.7 1151.0 48.7185

Experiment # XP A100 NGrid Variant 100 250 500 1000 1500 2000 30001� 2 PHY 38.5 71.4 73.5 - - - -AGG 34.9 67.5 72.4 - - - -LCM 34.8 67.5 72.4 - - - -RED 27.3 60.8 62.2 - - - -2� 2 PHY 37.4 116.2 124.2 178.5 - - -AGG 33.8 108.5 120.4 176.6 - - -LCM 33.7 109.3 120.8 176.8 - - -RED 27.6 96.3 113.4 20.0 - - -2� 4 PHY 37.4 162.0 183.5 290.9 216.9 - -AGG 34.0 151.1 175.5 287.8 301.7 - -LCM 33.8 150.9 175.5 288.0 310.8 - -RED 27.0 132.6 165.5 270.8 25.1 - -4� 4 PHY 37.5 228.4 271.9 489.0 617.9 707.8 -AGG 33.9 214.5 259.5 480.3 616.4 707.2 -LCM 33.5 214.9 259.5 481.0 617.7 708.5 -RED 26.9 179.2 245.1 459.6 592.9 77.1 -4� 8 PHY 37.4 220.9 490.4 713.8 1188.2 1155.8 696.1AGG 33.9 214.3 468.8 699.7 1180.0 1153.5 1109.0LCM 33.6 213.0 465.3 698.1 1181.1 1154.9 1247.7RED 25.2 167.0 429.3 667.8 1130.9 1116.6 90.6Experiment # XP NA1� 2 PHY 44.0 67.6 74.9 - - - -AGG 50.0 74.8 82.0 - - - -LCM 50.2 75.7 81.7 - - - -RED 38.5 68.6 74.9 - - - -2� 2 PHY 59.5 119.0 140.5 150.3 - - -AGG 67.2 127.7 150.7 160.6 - - -LCM 73.8 137.0 157.0 163.4 - - -RED 47.9 121.5 147.0 21.0 - - -2� 4 PHY 53.8 165.1 240.7 269.2 300.0 - -AGG 77.3 177.3 254.4 284.8 320.3 - -LCM 68.6 195.3 274.5 294.9 327.7 - -RED 66.0 176.0 257.8 284.9 24.1 - -4� 4 PHY 78.9 231.9 413.9 490.5 561.3 595.7 -AGG 94.0 254.0 441.9 522.1 599.2 638.5 -LCM 86.0 272.1 479.7 548.2 617.2 650.2 -RED 71.7 249.1 452.4 529.3 602.3 51.0 -4� 8 PHY 79.9 328.2 604.1 809.4 1040.6 1063.7 1182.5AGG 89.5 380.4 669.1 857.1 1119.4 1141.3 1275.6LCM 64.3 381.5 712.3 911.0 1173.1 1172.9 1302.2RED 59.3 283.5 628.6 882.4 1133.2 1140.8 75.5186

Experiment # XP N1 NGrid Variant 100 250 500 1000 1500 2000 30001� 2 PHY 19.7 33.7 40.3 - - - -AGG 41.2 71.0 81.6 - - - -LCM 45.4 69.3 79.0 - - - -RED 44.7 69.0 43.5 - - - -2� 2 PHY 19.5 57.8 75.7 84.6 - - -AGG 57.4 116.3 148.6 164.7 - - -LCM 70.0 124.9 152.8 165.6 - - -RED 43.2 97.9 133.9 11.2 - - -2� 4 PHY 25.6 87.9 131.8 160.6 169.9 - -AGG 70.0 161.7 245.5 297.8 321.5 - -LCM 84.5 191.3 274.7 312.6 331.2 - -RED 51.8 150.5 227.7 282.7 19.3 - -4� 4 PHY 25.3 114.1 217.2 289.7 317.5 331.2 -AGG 72.3 214.8 366.2 526.7 579.3 616.2 -LCM 102.5 295.2 473.0 596.8 626.5 655.0 -HYB 87.2 289.0 463.5 594.6 626.9 656.0 -RED 61.1 227.5 399.7 544.9 588.5 40.2 -4� 8 PHY 17.7 109.8 284.8 470.0 562.6 610.0 658.3AGG 61.7 235.0 476.7 797.1 945.2 1062.6 1187.2LCM 91.4 332.5 652.7 1004.1 1112.1 1195.6 1285.1RED 60.4 315.4 690.9 1035.2 1150.4 1232.0 54.9Experiment # XP NN1� 2 PHY 24.8 53.9 67.4 - - - -AGG 39.9 67.0 77.9 - - - -LCM 39.1 66.7 77.0 - - - -RED 41.2 68.4 78.1 - - - -2� 2 PHY 28.5 78.5 113.3 135.4 - - -AGG 43.5 101.2 131.3 148.8 - - -LCM 46.6 105.2 136.1 151.5 - - -RED 54.4 119.9 145.2 23.1 - - -2� 4 PHY 23.9 94.1 173.9 230.6 270.7 - -AGG 46.4 132.2 211.8 257.1 300.0 - -LCM 54.3 136.4 228.8 272.1 310.5 - -RED 64.5 175.4 258.5 282.7 28.8 - -4� 4 PHY 28.6 113.2 255.1 401.4 489.4 534.3 -AGG 55.3 178.2 351.1 468.6 555.5 594.3 -LCM 41.7 170.1 362.6 496.1 570.8 600.2 -HYB 58.7 193.6 383.8 499.1 574.5 603.7 -RED 66.5 243.6 454.0 530.0 604.0 61.3 -4� 8 PHY 26.3 110.7 283.8 557.7 763.8 870.8 1033.0AGG 46.9 210.8 456.8 723.3 946.2 1022.4 1166.3LCM 24.7 179.2 427.0 765.4 959.8 1053.3 1203.2RED 42.9 302.2 644.5 885.3 1126.6 1131.2 104.8187

Table B.2: Performance results obtained on the IBM SPExperiment # SP A0 NGrid Variant 100 250 500 1000 1500 2000 30001� 2 PHY 146.9 274.2 321.1 379.8 - - -AGG 154.0 276.1 321.8 375.8 - - -LCM 154.3 275.2 323.7 376.0 - - -2� 2 PHY 171.3 419.2 526.6 711.9 744.2 - -AGG 172.2 390.8 525.5 705.3 725.3 - -LCM 174.8 384.4 529.1 690.0 729.0 - -2� 4 PHY 150.0 498.6 772.9 1103.1 1252.4 1368.9 -AGG 162.9 504.6 750.7 1082.7 1249.0 1363.5 -LCM 166.1 465.6 800.2 1125.3 1241.3 1379.6 -4� 4 PHY 154.0 500.2 1092.9 1706.6 2091.5 2349.1 2683.9AGG 149.7 659.4 1158.7 1710.4 1942.6 2316.2 2691.2LCM 131.0 594.6 1234.8 1795.5 1990.0 2415.0 2653.14� 8 PHY 106.8 406.2 1544.7 2454.2 3192.2 3876.2 4482.4AGG 115.4 570.6 1541.9 2443.3 3086.1 3826.9 4374.5LCM 111.0 525.3 1382.2 2696.3 3396.8 3921.3 4506.9Experiment # SP A11� 2 PHY 56.6 42.9 48.0 50.1 - - -AGG 147.9 253.0 324.4 363.0 - - -LCM 155.5 269.2 328.6 352.4 - - -RED 91.1 198.1 261.8 331.2 - - -2� 2 PHY 59.4 67.5 88.8 95.6 100.0 - -AGG 153.7 348.3 513.7 597.8 653.2 - -LCM 138.8 320.0 527.9 646.9 643.3 - -RED 94.5 177.1 386.7 534.5 606.7 - -2� 4 PHY 56.7 136.2 150.6 178.9 184.9 187.4 -AGG 123.2 325.8 599.9 893.5 1046.1 1155.5 -LCM 147.8 352.5 668.5 1040.3 1180.6 1256.3 -RED 106.5 170.1 488.2 854.1 997.1 1132.4 -4� 4 PHY 56.7 167.4 223.5 312.4 347.6 351.1 372.1AGG 131.1 399.3 780.6 1020.9 1585.2 1811.7 2107.0LCM 174.2 436.9 831.8 1553.4 2044.0 2334.7 2286.9RED 120.0 396.7 753.3 1363.0 1528.5 2042.4 2387.94� 8 PHY 40.5 150.6 306.4 473.2 570.1 582.7 660.9AGG 102.1 311.7 622.6 1250.4 1796.4 2261.6 2865.5LCM 190.0 569.7 930.5 2032.7 2564.2 3323.4 4229.4RED 103.5 462.9 1147.0 1923.1 2794.9 3325.6 4081.0188

Experiment # SP A20 NGrid Variant 100 250 500 1000 1500 2000 30001� 2 PHY 145.4 237.2 290.6 311.7 - - -AGG 134.2 258.4 326.3 372.7 - - -LCM 155.0 279.1 337.6 375.5 - - -RED 94.6 201.9 282.6 343.3 - - -2� 2 PHY 189.5 374.6 480.6 595.6 591.7 - -AGG 160.6 352.9 512.7 683.2 709.5 - -LCM 140.6 340.2 518.7 699.9 710.1 - -RED 118.8 298.4 438.2 612.2 653.4 - -2� 4 PHY 173.7 469.2 727.1 986.1 1044.2 1108.1 -AGG 130.7 227.4 648.9 940.6 1130.7 1230.8 -LCM 144.6 391.4 721.9 1061.6 1253.8 1347.6 -RED 108.9 350.6 604.4 969.9 1132.7 1248.4 -4� 4 PHY 189.6 634.1 971.9 1544.0 1800.8 2020.5 2161.3AGG 125.7 423.1 828.9 1313.1 1783.6 2030.7 2314.4LCM 155.8 495.7 927.9 1481.6 2029.1 2446.6 2400.0RED 105.8 460.5 951.2 1538.1 1906.2 2200.3 2471.44� 8 PHY 177.3 704.9 1233.5 2317.5 2765.0 3250.3 3674.7AGG 122.3 468.6 929.1 1905.7 2623.8 3144.8 3902.8LCM 190.7 537.7 1066.5 2115.1 2574.1 3306.3 4238.8RED 48.8 349.6 1050.4 2293.1 2981.7 3515.2 4302.7Experiment # SP A2001� 2 PHY 117.6 202.8 308.2 329.6 - - -AGG 116.7 197.0 285.7 324.8 - - -LCM 114.2 203.4 303.6 323.5 - - -RED 70.0 155.8 251.3 296.5 - - -2� 2 PHY 108.8 168.0 476.7 527.8 689.2 - -AGG 99.9 212.3 441.6 510.2 660.1 - -LCM 99.4 204.6 415.8 501.6 666.6 - -RED 67.2 133.8 374.1 451.2 603.7 - -2� 4 PHY 107.6 231.9 599.0 752.0 1216.0 1221.0 -AGG 98.7 201.0 597.9 728.9 1205.4 1214.1 -LCM 98.9 203.0 536.3 678.4 1095.0 1134.1 -RED 65.6 146.0 459.8 651.3 1042.1 1097.8 -4� 4 PHY 35.9 233.1 729.1 1093.8 2151.3 1896.9 2494.3AGG 101.0 191.8 718.7 1018.2 2137.6 1891.7 2420.7LCM 84.4 182.0 593.7 900.0 1762.6 1713.0 2303.5RED 29.2 158.8 583.4 932.8 1767.0 1689.2 2250.14� 8 PHY 77.0 233.4 665.2 1550.6 3364.8 2618.2 4431.6AGG 89.6 172.7 697.3 1710.7 3515.6 2677.8 4473.4LCM 82.3 182.9 576.9 1380.4 2399.7 2038.3 3545.6RED 46.7 159.6 575.5 1369.5 2770.6 2335.7 3846.4189

Experiment # SP NA NGrid Variant 100 250 500 1000 1500 2000 30001� 2 PHY 82.3 103.0 124.3 117.3 - - -AGG 128.6 249.4 322.4 356.5 - - -LCM 160.0 280.8 342.8 363.4 - - -RED 91.3 199.1 285.5 335.0 - - -2� 2 PHY 89.6 136.2 219.3 222.4 235.2 - -AGG 136.5 313.7 509.0 613.6 699.1 - -LCM 123.8 257.4 421.9 574.7 677.4 - -RED 113.4 167.6 448.9 576.8 661.0 - -2� 4 PHY 102.4 165.3 350.7 387.0 427.4 434.7 -AGG 113.9 304.3 597.6 823.6 1038.3 1182.7 -LCM 125.2 303.5 524.3 826.9 1047.3 1191.1 -RED 97.8 324.8 601.1 909.1 1117.6 1205.7 -4� 4 PHY 102.9 324.2 536.9 687.2 757.0 798.0 850.6AGG 104.1 344.8 733.2 1162.4 1600.6 1890.1 2207.1LCM 128.5 266.1 624.4 891.9 1545.6 1392.2 1637.4RED 98.0 422.1 891.0 1471.5 1865.2 2063.0 2489.34� 8 PHY 97.7 306.6 775.6 1053.6 1274.3 1341.7 1501.9AGG 78.4 218.4 597.9 1210.4 1763.8 2228.6 2895.5LCM 89.3 469.8 856.9 1398.7 1986.1 2107.3 3131.0RED 80.5 478.9 1179.1 1989.1 2998.1 3422.6 4195.6Experiment # SP N11� 2 PHY 28.5 38.5 46.1 49.1 - - -AGG 95.4 190.2 267.9 334.5 - - -LCM 89.1 190.2 256.8 252.5 - - -RED 71.5 175.7 250.9 317.8 - - -2� 2 PHY 31.3 53.2 77.8 92.1 96.8 - -AGG 107.0 232.6 423.3 541.3 588.8 - -LCM 95.5 245.4 414.8 569.3 589.3 - -RED 75.6 210.9 360.9 517.1 595.3 - -2� 4 PHY 27.1 76.6 126.5 166.4 175.8 188.8 -AGG 104.1 267.7 483.7 764.2 933.5 1056.6 -LCM 93.9 246.3 492.5 677.0 734.5 756.1 -RED 81.5 289.3 519.0 867.3 1024.2 1162.2 -4� 4 PHY 16.7 99.4 172.4 268.6 317.2 330.7 351.5AGG 91.0 342.4 580.5 1091.0 1380.8 1640.7 1950.9LCM 90.8 230.7 562.8 1163.2 1571.2 1849.0 1973.4RED 101.3 292.5 778.3 1367.5 1741.0 2034.0 2349.34� 8 PHY 11.1 64.0 176.3 334.3 421.9 612.9 684.5AGG 87.6 233.6 556.4 1149.1 1644.9 2051.3 2659.6LCM 82.6 252.7 520.7 1155.1 1751.2 2270.4 2892.0HYB 62.9 222.5 527.4 1305.4 1870.0 2532.8 3138.3RED 41.6 420.3 1202.2 2053.8 2887.3 3435.7 4171.9190

Experiment # SP NN NGrid Variant 100 250 500 1000 1500 2000 30001� 2 PHY 39.6 83.9 104.6 108.4 - - -AGG 84.4 183.7 256.8 320.0 - - -LCM 72.1 128.9 164.7 184.2 - - -RED 66.7 179.6 252.8 321.0 - - -2� 2 PHY 45.2 116.4 183.1 217.5 217.1 - -AGG 93.3 227.1 369.4 505.3 598.7 - -LCM 80.0 175.2 323.4 480.9 579.3 - -RED 27.7 180.4 404.5 545.0 621.5 - -2� 4 PHY 38.9 122.3 239.3 348.3 379.1 419.0 -AGG 85.7 234.4 438.0 693.5 885.4 1004.8 -LCM 70.5 206.3 367.2 647.9 838.1 982.7 -RED 24.5 155.8 599.1 868.7 1090.3 1168.4 -4� 4 PHY 38.5 147.4 319.5 525.2 644.9 750.8 776.2AGG 86.1 281.5 552.9 949.4 1308.8 1532.8 1912.9LCM 54.6 185.7 331.7 515.9 987.2 1009.1 1388.0RED 29.1 220.4 785.0 1352.4 1804.7 2068.4 2418.24� 8 PHY 22.4 71.5 276.5 592.7 812.0 927.2 1206.4AGG 62.2 227.2 486.4 1024.1 1452.7 1850.6 2456.2LCM 31.0 174.4 329.8 652.0 889.5 1045.1 1960.5HYB 61.4 205.5 421.3 1159.1 1722.7 2274.2 2932.7RED 23.1 176.9 752.2 1994.9 2823.5 3378.4 4034.7
191

VitaAntoine Petitet was born in Neuilly sur Seine, France on April 22, 1966. Hereceived his high school education from the Coll�ege Saint Louis de Gonzague inParis, France. He graduated in 1984. From 1984 until 1987 he attended theclasses pr�eparatoires at the Lyc�ee Janson de Sailly in Paris, France. In June 1987he entered the Ecole Nationale Sup�erieure d'Electrotechnique, d'Electronique,d'Informatique et d'Hydraulique de Toulouse (ENSEEIHT), Toulouse, France. In1990 he received the Engineer of Computer Science degree from the ENSEEIHTand the Diplôme d'Etudes Approfondies in Parallel Architectures and AppliedMathematics (1990) from the Universit�e Paul Sabatier, Toulouse, France. In Jan-uary 1993 he entered the PhD program in Computer Science at the University ofTennessee, Knoxville.From November 1990 until March 1992 he did his military service working forthe French Nuclear Commission (Commisariat �a l'Energie Atomique) as Adviserof the Counselor for nuclear questions at the French PermanentMission in Vienna,Austria. Working experience had also included several visiting positions in Com-puter Science laboratories. In 1989-1990 he was a trainee at the European Centerfor Research and Advanced Education in Scienti�c Computing (CERFACS) inToulouse, France. In 1992 he worked as an engineer at the Etablissement Tech-nique Central de l'Armement (ETCA) in Paris, France. During the summer of1994 he visited the IBM T.J. Watson Research Center, Yorktown Heights, New-192

York. During the summer of 1995 he visited the Danish Computing Centre forResearch and Education (UNI�C) and the Institute for Mathematical Modelingof the Technical University of Denmark (IMM).In 1995 Antoine Petitet was awarded a citation for extraordinary professionalpromise by the Chancellor of the University of Tennessee, Knoxville. He wasawarded the Doctor of Philosophy degree in Computer Science from the Universityof Tennessee in December of 1996.

193

