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An Overview of Checkpointing in Uniprocessor and DistributedSystems, Focusing on Implementation and PerformanceJames S. Plank�Department of Computer ScienceUniversity of TennesseeTechnical Report UT-CS-97-372July, 1997This technical report is a derivation of the paper \Program Diagnostics," by the same author, appearing in theEncyclopedia of Electrical and Electronics Engineering, John G. Webster, editor, published by John Wiley & Sons,Inc. Please see http://www.cs.utk.edu/~plank/plank/papers/Wiley.html for complete publishing informationconcerning this paper. AbstractCheckpointing is the act of saving the state of a running program so that it may be reconstructed laterin time. It is an important basic functionality in computing systems that paves the way for powerful toolsin many �elds of computer science. This article provides a comprehensive overview of checkpointing inuniprocessor and parallel processing systems, including de�nitions, uses of checkpointing, and implementationdetails. Also included in this overview is a brief discussion of checkpoint consistency, which is a major concernin parallel processing systems, and a thorough discussion of issues related to the performance of checkpointing.It is intended that the reader of this article should receive a thorough grounding in checkpointing, with enoughdetail to implement an e�cient checkpointer if so desired.Keywords: Checkpointing, rollback recovery, replay debugging, process migration, virtual time, mes-sage passing, parallel processing, checkpoint consistency, checkpointing algorithms, performance optimization,checkpointing library.IntroductionA checkpointer is a tool that performs checkpointing: it saves the state of a running program. Thisfacilitates the implementation of many tools, listed in Table 1. Unless otherwise speci�ed, we assume thatcheckpoints are saved on stable storage, such as magnetic disk. There are three levels where checkpointingcan be implemented. They di�er in the level of user/programmer involvement:�plank@cs.utk.edu. This material is based upon work supported by the National Science Foundation under Grant No.CCR-9409496, and by the ORAU Junior Faculty Enhancement Award.1



Field Functionality facilitated by checkpointingFault-tolerance rollback recoveryDebugging post-mortem and replay debuggingParallel processing process migration and job-swappingSoftware engineering elimination of boundary condition errorsSimulation virtual time
Table 1. Functionalities enabled by checkpointing1. OS checkpointing: Here, checkpointing is performed by the operating system. Typically, any pro-gram can be checkpointed by the operating system without any e�ort on the part of the programmeror user. For example, standard process pre-emption (i.e. making a process relinquish the CPU andputting it on the ready queue) can be viewed as a simple form of OS checkpointing.Most operating systems do not implement checkpointing beyond process scheduling. There are afew notable exceptions, such as Unicos [KK89], KeyKOS [Lan92] and fault-tolerant Mach [RS95],which implement rollback recovery, and Sprite [OCD+88], which is a distributed operating system thatincludes process migration as a primitive operation.2. User-level, transparent checkpointing: Here, checkpointing is performed by the program itself.Transparency is usually achieved by compiling the application program with a special checkpointinglibrary, although other methods are possible, such as rewriting executable �les [NW94].Since checkpointing is performed on top of, rather than in the operating system, the recoverability ofoperating system state is an important issue. For example, most operating systems assign process id'sin a manner that is unrecoverable. In other words, a recovering process cannot ask to be assigned acertain process id. Moreover, most operating systems do now allow user programs to checkpoint thestate of the �le system. These issues are often handled by restricting the program being checkpointed,so that it only relies on recoverable system state. For example, programs that use read-only, write-only,or sequentially-written read-write �les can be checkpointed by storing the names and seek pointers ofall open �les at the time of checkpointing [FA91]. Moreover, programs must assume that their processid's may change over time as the result of being checkpointed and restored. The restrictions do nota�ect the majority of applications that need checkpointing. For more discussion on the restrictionsimposed on user-level checkpointers, see papers by Litzkow [LL92] and Plank [Pla93, PBKL95].There have been many transparent, user-level checkpointers written for various computing platforms.Examples are listed in Table 2.3. User-level, non-transparent checkpointing: Here, programmers actively incorporate checkpoint-ing into their programs, often with the help of libraries and preprocessors. Non-transparent check-pointing obviously places a much larger burden on the programmer. This includes the burden ofcorrectness, a liability that the transparent checkpointers do not possess. The tradeo� is in perfor-mance and exibility. Programmers can specify the exact information that is needed for recovery,and thus checkpoint less information than transparent checkpointers. Moreover, with non-transparentcheckpointing, programmers can save the checkpoints in a machine-independent format, which allowsthe checkpoints to be restored on machines of di�erent architectures. This is impossible with currenttransparent checkpointers. Examples of non-transparent checkpointing systems are given in Table 3.In this article, the focus is on transparent user-level checkpointers, although most of the discussion appliesto the other checkpointers as well. 2



Name Functionality Computing platformLibckpt [PBKL95] Fault-tolerance UniprocessorsLibckp [HKW95] Fault-tolerance UniprocessorsCondor [TL95] Process migration UniprocessorsIgor [FB89] Debugging UniprocessorsManetho [EZ92] Fault-tolerance Message-passing distributed systemsMIST/MPVM [CCK+95] Fault-tolerance / migration Message-passing distributed systemsCoCheck [Ste96] Fault-tolerance / migration Message-passing distributed systems[CGS+96] Fault-tolerance Distributed shared-memory systemsIckp [PL94] Fault-tolerance Intel iPSC/860CLIP [CPL97] Fault-tolerance Intel Paragon
Table 2. Examples of transparent checkpointersUses of checkpointingCheckpointing provides the backbone for many tools, enumerated below. This list is not exhaustive. Formore uses of checkpointing, please see Reference [WHV+95].

Fault-tolerance (rollback recovery)The major use for checkpointing is fault-tolerance (Figure 1). This is typically called checkpointing withrollback recovery. At a periodic interval, the application stores checkpoints to disk. If a failure occursthat causes the application to be terminated prematurely, the application can restart from its most recentcheckpoint, losing at most an interval's worth of computation.As a fault-tolerant method, checkpointing is very powerful because it makes no assumptions about thetype of failures that may occur. As long as the checkpointed state is failure free, it can tolerate hardware,software, and even power failures.
MigrationProcess migration is another use of checkpointing. Instead of storing a checkpoint to disk, the checkpoint-ing processor sends its checkpoint to another processor, which begins its computation from this checkpointedstate. After sending the checkpoint, the initial processor terminates the application. Process migration isuseful for load balancing, in which a heavily loaded processor migrates its computation to a lightly loadedprocessor, thereby completing the computation more quickly.
Job swappingWith job swapping, a processor stores a checkpoint to disk and then terminates the application. Withjob-swapping, a user may execute a long-running, computation-intensive program in short time intervals inorder to share the computer with other users. A typical example is when a user executes an application onlyat night. In the morning, the application is checkpointed, and the computer is freed for other users. In thenext evening, the application is restarted from the checkpoint.3



Name Functionality Computing platformLibft [HKW95] Fault-tolerance Distributed systemsDome [BSS97] Fault-tolerance / load balancing Distributed systemsPUL [SSCC95] Fault-tolerance Distributed systemsCalypso [BDK95] Fault-tolerance / load balancing Distributed systemsCOSMOS [CA94] Fault-tolerance Distributed systems
Table 3. Examples of non-transparent checkpointers

Post-mortem and replay debuggingCheckpoints may be stored for purposes of debugging a program. For example, most debuggers have toolsfor examining checkpoints (called core �les), which are created when a program exits abnormally. Oftenthis examination allows the programmer to identify the o�ending bug, or at least to narrow the bug-�ndingsearch to a few suspicious subroutines.Replay debugging is a more powerful functionality. Here, an application takes periodic checkpoints, andto aid in debugging, the program may be rolled back and replayed to any previous state. Checkpointing andreplay may also be employed to track the state of variables and even complex data structures over time. Themain drawback with replay debugging is the overhead induced by checkpointing.
Elimination of boundary condition errorsA frequent number of programming errors in distributed systems occur when the system reaches a syn-chronization state that the programmer never envisioned. These states occur infrequently, and often as aresult of boundary conditions which do not repeat themselves often. In such situations, checkpointing androllback recovery can be employed to eliminate the e�ect of the bug [WHF93]. As in a fault-tolerant exe-cution, checkpoints are taken periodically, and if an error occurs due to one of these boundary conditions,the system is rolled back to the previous checkpoint. It is statistically unlikely that the same boundaryconditions will occur, and thus that the software will get into the same state that caused the bug. Thus, therollback recovery serves to eliminate the bug.
Virtual timeMany simulation systems are modeled as a distributed set of objects which communicate by sending\event" messages. Objects process event messages, and communicate their output by sending more eventmessages. Unlike structured scienti�c programs, simulation systems have more non-deterministic message-sending patterns. At many points in time, an object may be faced with a dilemma { if there are no eventscoming in, then it should perform some computation. If there is an event on its way, then it should wait forthe event and perform some di�erent computation.One solution to this dilemma is to use checkpointing. The object checkpoints itself and performs somecomputation. If an event then comes in that should have been processed before performing that computa-tion, the object rolls back to the previous checkpoint, and processes the event instead. The \Time Warp"simulation system works in this manner, and has been shown to be quite e�cient for a variety of simulations[Jef85, Fuj90]. 4
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Figure 1. Checkpointing for fault-tolerance. Periodic checkpoints are saved on stable storage
to limit the amount of recomputation that must be performed upon recovery.Implementation detailsConceptually, taking a transparent checkpoint of a process on a typical uniprocessor is simple (see Figure2). When a program is executing, its state is composed of the values in memory, the CPU registers, and thestate of the operating system (including the �le system). Usually, the memory is divided into four parts:executable code, global variables, heap and stack. Of these, the global variables, heap and stack need tobe stored along with the registers in a checkpoint. Typically, the code is unchanged from the program'sexecutable �le, and thus may be restored from there in the event of a failure.If the checkpointer is implemented in the operating system, then enough information can be stored withthe checkpoint to restore the view that the program had to the operating system at the time of the checkpoint.If the checkpointer is implemented at user level, then it does not have the privileges to restore the operatingsystem, but instead can attempt to make the operating system appear as it was at the time of the checkpoint.For example, the seek pointers of all open �les may be stored with the checkpoint, and restored on recovery.Thus, even though the operating system's data structures for �les may be di�erent upon recovery, the viewthat the application has to the �les is the same.Part of the challenge in writing a transparent checkpointer is to be able to rebuild as much state that isexternal to the checkpointing process as possible. Besides operating systems internals and the �le system,other external states that can be reconstructed include the window system and the state of external servers.Most non-transparent checkpointers give the programmer primitives for storing and recovering data thatis in the globals, stack and heap. However, the programmer is responsible for restoring the executionstate of the program (for example the call stack) upon recovery. Although this places a greater burden5
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Figure 2. Checkpointing a typical uniprocessor transparently. The portion of the user’s address
space that may be modified by the program is saved on stable storage.on the programmer, it can e�ect functionalities such as restoring the checkpoint on a machine of di�eringarchitecture from the checkpointing machine. This is because machine-dependent details such as memorylayout and the de�nition of stack frames are not part of the checkpoint.Processors with multiple CPUs attached to the same memory can be checkpointed in the same manner,except the register sets from each CPU must be included in the checkpoint. Moreover, the CPUs must allbe frozen so that the register state of each CPU corresponds to the single checkpointed state of memory.Checkpointing systems with multiple CPUs and multiple memories are more complex, because either thereare no convenient ways to synchronize all the CPUs, or such synchronization is expensive. Moreover, in theabsence of synchronization, the checkpoint consistency problem arises. This problem is important enough towarrant an in-depth discussion.Checkpoint consistencySuppose a computing system is composed of n processors, each with their own memories, connected byan interconnection network. The only way that the processors can communicate is by sending and receivingmessages over the network. Such is the case with standard distributed systems, and with distributed memorymultiprocessors such as the Intel Paragon or IBM SP.The standard way of visualizing a distributed group of processors is to use horizontal lines that denote therelative progress of the processors over time as in Figure 3. A message between processors is denoted by anarrow from the point at which the sending processor sends the message to the point at which the receivingprocessor receives it. 6
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Figure 3. A sample distributed system with three cuts. Cuts C1 and C2 are consistent. Messagem4 makes cut C3 inconsistent.A cut is represented by a dotted line that crosses each process's time line exactly once. A message is saidto cross the cut line from left to right if its sending point is to the left of the cut line, and its receiving pointis to the right of the cut line. Crossing from right to left is de�ned in a similar manner. A consistent cut isa cut in which no messages cross the cut from right to left. Other cuts are called inconsistent.Figure 3 shows a distributed system with three processors, four messages, and three cuts. The �rst twocuts (C1 and C2) are consistent as no messages cross them from right to left. The last (C3) is inconsistentdue to message m4.In order for a checkpointing system to operate correctly, it must ensure that the system is always in aconsistent state, meaning that taken as a whole, the collection of states of all processors must compose aconsistent cut. If the system is not in a consistent state, then upon recovery, there will be at least oneprocessor whose state has been derived from the receipt of a message that has not been sent. There is noguarantee that the processor that is supposed to send such a message will ever actually send the message,due to non-determinism either in the program or in the processor's interaction with other processors. Thus,inconsistent states are to be avoided.During the normal operation of a distributed system, the processors are always in a consistent state,because messages cannot be sent backwards in time. However, when failures occur and processors need to berolled back, the checkpointing system must ensure that a processor rollback does not result in an inconsistentstate.For example, suppose each processor in Figure 3 has taken checkpoints at the points where C1, C2 andC3 crosses its time line. If processor P3 fails, it may be rolled back to its most recent checkpoint withouta�ecting the other processors, since the union of their states is a consistent cut. However, suppose processorP1 fails. If it is rolled back to its most recent checkpoint, then the resulting state is inconsistent because m3crosses the cut line from right to left. To �x this problem, processor P2 can be rolled back to its most recentcheckpoint, but then m4 renders the cut inconsistent. To roll the system back to its most recent consistentcut, P3 additionally must be rolled back to its checkpoint from C2.7
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Figure 4. The domino effect. A scenario like this one will force the program to restart from the
beginning in the event of a failure, rendering all checkpoints useless.This example illustrates a problem with independent checkpointing, where processors in a distributedsystem checkpoint themselves periodically without any coordination. The problem is that processors mayhave to store multiple checkpoints because di�ering failure scenarios may require multiple rollbacks. A well-known pathological case has been called the domino e�ect, because each attempt to roll a processor backto a previous checkpoint forces another processor to roll back even further. An example is in Figure 4,where a failure of either processor forces the system to restart from the beginning, because no combinationof checkpoints composes a consistent cut.In general, there are two approaches to checkpointing distributed systems: coordinated checkpointing,and checkpointing with message logging. An overview of each is presented below. For further study onconsistent checkpointing, including more detail on independent checkpointing, coordinated checkpointing,message logging and their interaction, please see the survey by Elnozahy, Johnson and Wang [EJW96].

Coordinated checkpointingWith coordinated checkpointing, all processors cooperate to store a set of checkpoints that compose aconsistent cut. Moreover, any messages that cross the cut (from left to right) must be logged in stablestorage. In the event of a failure, all processors roll back to the most recent checkpoint, and the messagesare resent from the log.There are many advantages to coordinated checkpointing. First, since all errors force processors to rollback to the most recent checkpoint, only one checkpoint needs to be stored by each processor. There aretimes when a processor may hold two checkpoints, for example when it is �nished checkpointing but otherprocessors are not. However, once all processors have committed their checkpoints, all other checkpoints maybe deleted. This is a great advantage over other checkpointing techniques. Second, recovery from a failureis simple. All processors must roll back. Many other checkpointing techniques require complex algorithmsto determine the recovery state. Finally, any number of failures may be tolerated.A simple technique for creating coordinated checkpoints is to use a two-phased commit protocol. Thistechnique is sometimes called sync-and-stop. A master processor starts checkpointing by broadcasting acheckpoint-begin message to all other processors. Upon receiving this message, each processor haltscomputation, and determines whether all messages that it has sent have been received. This can be done withspecial system calls or with acknowledgments. When a processor has determined that it has no outstandingmessages in the network, it sends a checkpoint-ready message back to the master. Upon receivingcheckpoint-ready messages from all processors, the master broadcasts a commit-checkpoint message,which instructs all processors to commit their checkpoints to disk. When a processor has committed itscheckpoint, it sends a checkpoint-committed message back to the master and resumes computation.When the master receives these messages from all processors, the checkpoint is �nished, and it noti�es theprocessors that they may delete previous checkpoints.8
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Figure 5. Overhead of sync-and-stop vs. Chandy-Lamport on the Intel iPSC/860. Although sync-
and-stop is more primitive and freezes all the processors, its does not degrade performance
significantly in most applications.The sync-and-stop technique guarantees a consistent cut because it ensures that there are no messages inthe system at the time of checkpointing. Therefore no messages can cross the cut, either from left to rightor right to left. Like coordinated checkpointing, the sync-and-stop technique is useful for its simplicity. Itis straightforward to implement, and requires no message logging or resending. Its major drawback is itssynchronous nature, requiring all processors to freeze before checkpointing begins.A less synchronous coordinated checkpointing technique is the well-known Chandy-Lamport algorithm[CL85]. In this algorithm, each processor has a distinct set of neighbor processors. To communicate toa non-neighbor, a processor must send a message to a neighbor, which forwards the message onward. Inthe Chandy-Lamport algorithm, a master processor starts the algorithm by broadcasting a marker messageto all its neighbors, and then committing its checkpoint. All other processors begin the algorithm uponreceipt of a marker message. They too broadcast a marker message to all their neighbors, and then commita checkpoint. For each neighbor, a processor logs messages received from that neighbor from the time theprocessor starts checkpointing until the the time a marker message is received from the neighbor. Whenmarkers have been received from all neighbors, no more messages have to be logged.Like the sync-and-stop technique, the Chandy-Lamport algorithm ensures that checkpoints compose aconsistent cut. Moreover, all messages that cross the cut are logged by the receiving processor. Uponfailure, all processors roll back to their checkpoints and replay messages from their logs. Note that in a fullyconnected network with n processors, a total of 2n(n� 1) marker messages are sent per checkpoint.The Chandy-Lamport algorithm is more decentralized than the sync-and-stop algorithm, and appearsto be preferable. However, in many distributed computing environments, the cost of writing checkpointsto stable storage is often much larger than that of coordinated message passing so that the consistencyalgorithm is immaterial. For example, a user-level, transparent checkpointer called ickp was written forthe Intel iPSC/860, a hypercube-based multicomputer. Ickp implements both coordinated checkpointingtechniques, and has been tested on many long-running scienti�c programs. Figure 5 shows the overhead ofcheckpointing four of these programs on 32 processors. Checkpoints are stored on the iPSC/860's special�le system consisting of four disks connected to I/O processors. The overheads shown are averaged percheckpoint. In this and all other graphs, the percentages above the rightmost bars depict the percentagereduction in overhead versus the leftmost bars.In this environment, the dominant cost of checkpointing is committing the checkpoints to disk, and as9



Figure 5 shows, the coordinated checkpointing algorithm is largely immaterial. Full results of these tests arereported in [PL94] and similar results have been reported in [EZ94]. There are applications and computingenvironments where the Chandy-Lamport and other, more complex coordinated checkpointing techniquesexhibit signi�cantly better performance than the sync-and-stop technique [Pla93]. The reader is directedto the survey paper by Elnozahy, Johnson and Wang [EJW96] for further exploration into coordinatedcheckpointing.
Message loggingMessage logging algorithms assume that the programs executing on each processor are piecewise deter-ministic. This means that given an initial state and a ordered collection of incoming messages, the programalways behaves the same way. With piecewise determinism, as long as a processor logs all the messages thatit has received since a checkpoint along with the order in which these messages have been received, thenit can reconstruct any state following the checkpoint. Message logging algorithms make use of this fact toallow processors to checkpoint independently. As long as messages and message order are logged, a failingprocessor may be restored to any state up to the time of failure.Message logging algorithms fall into two classes: pessimistic and optimistic. With pessimistic logging,messages are logged, either to stable storage or to a backup processor, before the receiving processor processesthe message. This makes recovery simple and fast, only a�ecting the recovering processor. Care must betaken so that the processor and the logging site both receive messages in the same order.Optimistic message logging attempts to reduce the failure-free overhead of message logging by pushingmore complexity into recovery. For example, instead of logging actual messages, the receipt order may belogged, and the sending processor may either store the message in its log, or use a checkpoint of its ownto regenerate the message. Optimistic message logging is often complex, necessitating each message to bepiggybacked with dependency information. However, it usually shows better performance than pessimisticmessage logging, and for applications where processors should not roll back past output operations (forexample, if a bank-teller program has directed one of its devices to output money, it is undesirable to havethat program roll back and output the money again), optimistic message logging is the best method forfault-tolerance. As with coordinated checkpointing, the survey paper in Reference [EJW96] provides a goodstarting point for further exploration into message logging.The performance of checkpointingObviously, correctness is the single most important aspect of a checkpointer. However, the second mostimportant aspect is performance. There are many metrics by which performance can be measured, includingcheckpoint overhead, checkpoint latency, recovery time and storage space. Of these, the most important isoverhead, de�ned to be the time added to the running time of the application as a result of checkpointing.It is desirable to have the overhead of checkpointing be as low as possible. Informally, if the overhead istoo high, a user would rather risk failure than endure the performance penalties of checkpointing. Formally,if the failure rate of the computing system is known, then it is possible to compute the ideal intervalof checkpointing for fault tolerance, given the overhead of checkpointing. Using simple assumptions, thisinterval is proportional to the square root of the overhead [You74]. More complicated assumptions andanalyses can be used to hone this calculation (see [Jal94]), but the fact remains that lowering the overheadof checkpointing improves the fault-tolerant behavior of the application.In situations other than fault-tolerance, the overhead of checkpointing is also important. For example, indebugging applications, reducing the overhead allows the granularity of checkpointing to be minimized, thus10
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Figure 6. Overhead of checkpoint buffering on the Intel iPSC/860. Buffering can greatly improve
the overhead of checkpointing by allowing the application to continue while the checkpoint is
written to disk.improving both the bug-free and tracing performance of the program. In simulation systems, reducing theoverhead of checkpointing allows the system to be more aggressive in attempting to squeeze more parallelismout of the application.There are many methods that can be used to improve upon the simple checkpointing implementing de-scribed above. These methods revolve around two simple concepts: latency hiding, and checkpoint sizereduction. Opportunities for latency hiding arise because often the most time consuming portions of check-pointing, for example writing a checkpoint to disk, do not require use of the CPU. Thus, the CPU can beused to execute the application program concurrently with the writing of the checkpoint to disk.Checkpoint size reduction revolves around that concept that smaller checkpoints take less time to store.Therefore if checkpoints can be made smaller, then storing them to disk or to another processor shouldinduce less overhead. In the text that follows, several checkpointing optimizations are detailed, along withsome examples of the performance improvements that are possible.

Checkpoint bufferingThe simplest method to reduce the overhead of checkpointing is checkpoint bu�ering. This is a simpleapplication of standard bu�ering to checkpointing systems, and is a latency hiding optimization. When aprocessor checkpoints, instead of freezing the application for the duration of the checkpoint, the applicationis only frozen while a copy of the checkpoint is created in main memory. Once the copy is completed, theapplication may resume while the copy is stored on whichever external device (disk or network) is desired.Storing the checkpoint makes use of the DMA (direct memory access) primitives of most computers, andthus involves CPU intervention only at the beginning and the end. When the checkpoint is committed, thebu�er may be discarded. If there is not enough physical memory to hold a complete checkpoint in memory,then as much of the checkpoint as possible is bu�ered to physical memory, and the rest must be stored whilethe application is frozen.With checkpoint bu�ering, the time to store a checkpoint is increased, since a copy of the checkpoint mustbe made. However, the overhead can be decreased dramatically. For example, in Figure 6, the overhead ofthe same four programs on the iPSC/860 [PL94] is plotted with and without checkpoint bu�ering. Whenbu�ering is enabled, a bu�er of one megabyte per node is employed. In the cases where the entire checkpoint�ts into the bu�er, the overhead is reduced dramatically. In the other cases, the improvement is not quite11
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Figure 7. Overhead of copy-on-write buffering on a network of Sun 3/60 workstations. Copy-
on-write buffering improves performance in a manner similar to checkpoint buffering, but with
less demands on physical memory.so dramatic, but is improvement nonetheless.

Copy-on-write bufferingA major ine�ciency with checkpoint bu�ering is that if a region of memory does not change betweenthe time it is copied to the bu�er and the time the bu�er is checkpointed, then the copying was not reallynecessary. This source of overhead is eliminated by copy-on-write bu�ering. Copy-on-write makes use ofprimitives for paged virtual memory. Speci�cally, on most computer systems, memory is partitioned into�xed sized pages, usually a power of two between 512 and 8192 bytes. Each page may have its protectionset to be read-write, read-only or no-access. If a write operation is attempted on a memory location in aread-only page, or any memory operation is attempted on a location in a no-access page, then an accessviolation occurs, generating a hardware interrupt. With copy-on-write, it is assumed that the application isallowed to set the protection of its pages in memory, and that it may process the interrupts that result fromaccess violations.With copy-on-write bu�ering, the protection of all pages in memory is set to read-only at checkpoint time.Then the application is resumed, and a separate thread of control starts storing pages to the checkpoint.After a page is stored, its protection is reset to read-write. If the application generates an access violation,then the o�ending page is copied to a bu�er, and the protection is set to read-write so that the applicationmay continue. When the checkpointing thread goes to checkpoint such a page, it uses the copy from thebu�er, and deallocates that page from the bu�er when it has been stored in the checkpoint.Copy-on-write bu�ering is the most consistently successful general-purpose optimization to reduce theoverhead of checkpointing. Figure 7 shows the results of transparent OS checkpointing of distributed pro-grams on a network of 16 diskless Sun 3/60 workstations [EJZ92]. These graphs show that the improvementsavailable using copy-on-write can be quite dramatic. The degree of improvement is dependent on the mem-ory access pattern of the program. Programs that cause many access violations show less improvement thanthose that cause few access violations.User-level checkpointers often do not have access to the proper virtual memory primitives to implementcopy-on-write checkpointing. In such cases, an alternative is to use the process cloning primitives providedby many operating systems. For example, in Unix systems the system call fork() performs this function. In12
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Figure 8. Overhead of forked checkpointing on a Sun Sparc-2 workstation. Forked checkpoint-
ing takes advantage of the Unix fork() system call, which is implemented using copy-on-write
in the operating system.most operating systems, process cloning is implemented using copy-on-write. Thus a user-level checkpointermay simply clone the application process and have the clone checkpoint itself while the original processcontinues the application. This is sometimes called \forked" checkpointing and is a very simple and portableimplementation of copy-on-write checkpointing, yielding similar performance improvements.For example, Figure 8 shows the checkpoint overhead of a user-level checkpointer running on a Sun Sparc-2 workstation [PBKL95]. Although the improvements are not as great as the copy-on-write examples inFigure 7, they are still quite dramatic.

Memory exclusionMemory exclusion is a size reduction technique. There are two circumstances where a variable may beexcluded from a checkpoint: when the variable is dead, and when it is read-only.A dead variable is one whose current value will not be used by the program. Either the program is donewith that variable, and it will not be accessed again, or it will be overwritten before it is read. Dead variablesdo not need to be stored in checkpoint �les, nor do they need to be restored in the event of a failure. Thus, acheckpointer may improve its performance by identifying dead variables at checkpoint time, and not storingthem as part of a checkpoint.A read-only variable is one whose value has not changed since the previous checkpoint (or since thebeginning of the program). If previous checkpoints are not deleted, read-only variables do not need to beincluded in checkpoint �les, since they may be restored from the previous checkpoints. Thus, a checkpointermay improve its performance by identifying read-only variables since the previous checkpoint, and not storingthem as part of the next checkpoint.As will be shown, memory exclusion has the potential to reduce the overhead of checkpointing. Thechallenge for the checkpointing system is to identify opportunities for memory exclusion transparently ande�ciently. In the sections that follow, several techniques for memory exclusion are outlined, and examplesof the improvements in performance that they exhibit are shown.13
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Figure 9. Overhead of incremental checkpointing on a Sun Sparc-2 workstation. When an appli-
cation modifies a fraction of its address space between checkpoints, incremental checkpointing
can improve checkpointing performance.Incremental checkpointingIncremental checkpointing is a technique for automating read-only memory exclusion using virtual memoryprimitives [FB89]. With incremental checkpointing, following a checkpoint, all pages in memory are set tobe read-only. When the program attempts to write a read-only page, an access violation occurs, and thecheckpointer processes the resulting interrupt by storing the identity of the o�ending page in a list, andresetting its protection to read-write. When it is time to take the next checkpoint, only pages that havecaused access violations (those stored in the list) are checkpointed. The other pages have not been modi�edsince the previous checkpoint, and are therefore composed solely of read-only variables.Incremental checkpointing improves performance if the savings achieved by checkpointing fewer pages aregreater than the penalty for setting the page protections and processing access violations. Unless almost allof memory is altered between checkpoints, this is usually the case. For example, Figure 9 shows the resultsof incremental checkpointing on a transparent user-level checkpointer on a Sparc-2 workstation. Resultsof incremental checkpointing, and of combining incremental and forked checkpointing are presented. Theaverage size of incremental checkpoints is reported as well.In all the applications of Figure 9 except one, incremental checkpointing greatly reduces the checkpointsize and overhead. In the cellular automaton program, each page in memory is updated between checkpoints,causing incremental checkpointing to increase the overhead because of the processing of access violations.As Figure 9 shows, incremental checkpointing can be combined with forked (or copy-on-write) checkpointingto reduce overhead even further.Programmer-directed memory exclusionA simple, yet e�ective way to exclude memory is to allow the programmer to direct the checkpointer. Thelibckpt checkpointer [PBKL95] implements a subroutine called exclude bytes() that allows the program-mer to exclude variables explicitly from checkpoints because they are read-only or dead. To cancel the e�ectsof exclude bytes(), a second subroutine called include bytes() is also supported. At checkpoint time,the checkpointer uses the programmer information to exclude memory from the checkpoint.Programmer-directed memory exclusion can be combined with synchronous checkpointing to improve per-14
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Figure 10. Overhead of checkpointing with programmer-directed memory exclusion on a Sun
Sparc-2 workstation. With a few hints from the programmer, memory exclusion can improve
the performance of checkpointing significantly.formance even further. With synchronous checkpointing, the programmer may insert checkpoint here()procedure calls which force the checkpointer to checkpoint at speci�c code locations. Synchronous check-pointing can be advantageous because there may be certain code locations where the amount of dead variablesis maximized. For example, in the cellular automaton simulation program, there are code locations wherealmost half of memory is dead. With synchronous checkpointing, the programmer can force checkpointingto occur at these code locations, thereby halving the overhead of checkpointing.Figure 10 shows three example applications where synchronous checkpointing combined with programmer-directed memory exclusion results in reduced checkpointing overhead on a Sparc-2 workstation. In two ofthe three examples, these are improvements that cannot be achieved by incremental checkpointing becausethey exploit dead variable exclusion. Although not shown in Figure 10, forked/copy-on-write checkpointingmay be combined with programmer-directed memory exclusion to lower overhead even further. For moreinformation about programmer directed memory exclusion, please see Reference [PBKL95].One concern with programmer directed memory exclusion is that the programmer may err in identifyingdead and read-only variables. For example, a \live" variable may be excluded, or a variable that haschanged since the previous checkpoint may be marked as read-only. In such cases, the resulting checkpointsare incorrect, and are useless for recovery. One way to combat this problem is to use compiler assistancein identifying variables to exclude. While the compiler cannot identify all dead and read-only variables, itcan use data ow analysis to identify many such variables. The details are beyond the scope of this article{ the reader is directed to Reference [PBK95] for further details. Compiler assistance can also be useful forplacing synchronous checkpointing calls in advantageous places [LF90].

Checkpoint compressionA �nal optimization technique is checkpoint compression, which falls into the category of size reduction.A straightforward way to compress checkpoints is to use a standard compression algorithm such as LZW[Wel84]. Compression only lowers the overhead of checkpointing if the extra processing time that it takesto perform the compression is smaller than the savings that result from writing a smaller �le to disk.15
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Figure 11. Overhead of checkpointing with compression on the Intel iPSC/860. In order for
compression to improve checkpointing performance, the CPU overhead of compressing the
checkpoints must be lesser than the savings gained by writing smaller checkpoint files. On
the iPSC/860, the stable storage bottleneck combined with the fact the processors compress
in parallel allowed compression to be beneficial.Analytically, this is whenever: SC + (1� f)SD < SC ;where S is the size of the checkpoint,C is the compression speed, f is the compression factor de�ned as (uncompressed size�compressed size)=(uncompressed size)and D is the speed of disk writes. Factoring out S and solving for f , we see that compression is bene�cialwhenever f > DC :For most uniprocessor systems, compression cannot improve the performance of checkpointing becauseD=C > 1. For example, in experiments on a Sun 3/50, Li and Fuchs reported values of C = 0:034 Mb/s andD = 0:100 Mb/s [LF90]. Thus, no amount of compression can improve the performance of checkpointing.On systems where multiple processors contend for disk storage, the value of C increases relative to D tothe point where compression can be bene�cial. For example, on a 32-processor iPSC/860, values of C = 11:0Mb/s and D = 2:16 Mb/s were reported, meaning that compression is bene�cial whenever f > 0:193.Figure 11 shows the overhead of checkpointing on the iPSC/860 when compression is employed, comparedto when it is not employed. In three of the four applications, the compression factor is high enough to lowerthe overhead of checkpointing, and indeed this is the case. In the fast Fourier transform, the entire memoryspace consists of essentially random oating point numbers, which are notoriously hard to compress. Fulldetail on these experiments are in Reference [PL94].16



Other performance considerationsThere are other metrics for checkpointing performance, such as checkpoint latency, recovery time, andspace overhead. Checkpoint latency is de�ned to be the time it takes to commit a checkpoint from start to�nish. Note that with no optimizations, checkpoint latency is equal to overhead, but when optimizationssuch as copy-on-write are employed, latency can be far greater than overhead. It has been shown that infault-tolerant systems, checkpoint latency is minimal in importance compared to overhead. In other words,the performance of the system is a�ected far more by improvements in overhead than by improvements inlatency [Vai95].In job-swapping applications, checkpoint latency is the most important metric. Since the application isterminated after the checkpoint is committed, there is no point in lowering failure-free overhead. For similarreasons, latency is more important than overhead for process migration as well.In playback debugging applications, all checkpoints must be retained because any arbitrary previousstate of the program may be desired. Thus, space overhead becomes a valid concern along with checkpointoverhead. Some checkpointing techniques based on executable rewriting have been developed that exhibitrelatively high overheads (factor of two) so that checkpoint size can be minimized [NW94]. Improving thisfurther is an open area of research.ConclusionCheckpointing is an extremely important functionality in computer science. While there has been muchresearch on checkpointing combined with many experimental implementations, popular operating systemsstill do not provide support for checkpointing. This has led to a proliferation of user-level checkpointingpackages and application speci�c checkpointing implementations. This article has discussed the basic issuesin checkpointing, including details on implementation, checkpoint consistency and performance. The authoris hopes that future operating systems and applications will be designed with checkpointing as a centralfeature, so that users may bene�t from its many functionalities.References[BDK95] A. Baratloo, P. Dasgupta, and Z. M. Kedem. Calypso: A novel software system for fault-tolerant parallel processing on distributed platforms. In 4th IEEE International Symposium onHigh Performance Distributed Computing, August 1995.[BSS97] A. Beguelin, E. Seligman, and P. Stephan. Application level fault tolerance in heterogeneousnetworks of workstations. Journal of Parallel and Distributed Computing, to appear, 1997.[CA94] D. Cummings and L. Alkalaj. Checkpoint/rollback in a distributed system using coarse-graineddataow. In 24th International Symposium on Fault-Tolerant Computing, pages 424{433, Austin,TX, June 1994.[CCK+95] J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J. Walpole. MPVM: A migrationtransparent version of PVM. Computing Systems, 8(2):171{216, Spring 1995.[CGS+96] M. Costa, P. Guedes, M. Sequeira, N. Neves, and M. Castro. Lightweight logging for lazy releaseconsistent distributed shared memory. In 2nd Symposium on Operating Systems Design andImplementation, October 1996. 17
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