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1 IntroductionTiling is a widely used technique to increase the granularity of computations and the locality ofdata references. This technique applies to sets of fully permutable loops [22, 14, 10]. The basic ideais to group elemental computation points into tiles that will be viewed as computational units (weneed the loop nest to be permutable so that such a transformation is valid). The larger the tiles,the more e�cient the computations are performed using state-of-the-art processors with pipelinedarithmetic units and a multi-level memory hierarchy (this is illustrated by recasting numerical linearalgebra algorithms in terms of blocked Level 3 BLAS kernels [11, 8]). Also, another advantage oftiling is the decrease of the communication time (which is proportional to the surface of the tile)relatively to the computation time (which is proportional to the volume of the tile). The price topay for tiling may be an increased latency (if there are data dependences, say, we need to wait forthe �rst processor to complete the whole execution of the �rst tile before another processor canstart the execution of the second one, and so on), as well as some load-imbalance problems (thelarger the tile, the more di�cult to distribute computations equally among the processors).Tiling has been studied by several authors and in di�erent contexts [13, 19, 21, 18, 4, 20, 5,16, 1, 7, 15, 6, 12]1. Rather than providing a detailed motivation for tiling, we refer the reader tothe papers by Calland, Dongarra and Robert [6] and by H�ogsted, Carter and Ferrante [12], whichprovide a review of the existing literature. In a word, most of the work amounts to partitioningthe iteration space of a uniform loop nest into tiles whose shape and size are optimized accordingto some criteria (such as the communication-to-computation ratio). Once the tile shape and sizeare de�ned, there remains to distribute the tiles to physical processors and to compute the �nalscheduling.A natural way to allocate tiles to physical processors is to use a cyclic allocations of tiles toprocessors. More precisely, several authors [16, 12, 3] suggest to allocate columns of tiles to processorin a purely scattered fashion (in HPF words, this is a CYCLIC(1) distribution of tile columns toprocessors). The intuitive motivation is that a cyclic distribution of tiles is quite natural to load-balance computations. Once the distribution of tiles to processors is �xed, there are several possibleschedulings (any wavefront execution that goes along a left-to-right diagonal is valid). Specifying acolumn-wise execution may lead to the simplest code generation. When all processors have equalspeed, it turns out that a pure cyclic column-wise allocation provide the best solution among allpossible distributions of tiles to processors, which is a very strong result [6]. This result holds trueunder the assumption that the communication cost for a tile is not larger than its computationcost. Since the communication cost for a tile is proportional to its surface while the computationcosts is proportional to its volume2, this hypothesis will be satis�ed if the tile is large enough3.However, the recent development of heterogeneous computing platforms poses a new challenge,that of incorporating processor speed as a new parameter of the tiling problem. Intuitively, if theuser wants to use a heterogeneous network of computers where, say, some processors are twice asfast as some other processors, we may want to assign twice as many tiles to the faster processors.A cyclic distribution is not likely to lead to an e�cient implementation. Rather, we should usestrategies that aim at load-balancing the work while not introducing idle time. The design of suchstrategies is the goal of this paper: incorporating processor speed as a new parameter of the tilingproblem turns out to be a challenging problem.1This small list is far from being exhaustive.2E.g. for two-dimensional tiles, the communication cost grows linearly with the tile size while the computationcost grows quadratically.3Of course, we can imagine theoretical situations where the communication cost is so large that a sequentialexecution would lead to the best result. 2



The rest of the paper is organized as follows. In Section 2 we formally state the problem of tilingfor heterogeneous computing platforms. All our hypotheses are listed and discussed, and we give atheoretical way to solve the problem by casting it in terms of a linear programming problem. Thecost of solving the linear problem turns out to be prohibitive in practice, so we restrict ourselves tocolumn-wise allocations. Fortunately, there exists asymptotically optimal column-wise allocations,as shown in Section 3, where several heuristics are introduced and proven. In Section 4 we provideMPI experiments on a network of workstations that demonstrate the practical usefulness of ourcolumn-wise heuristics. Finally, we state some conclusions in Section 5.2 Problem statementIn this section, we formally state the scheduling and allocation problem that we want to solve. We�rst provide a complete list of all our hypotheses, and we discuss each of them afterwards.2.1 Hypotheses(H1) The computation domain (or iteration space) is a two-dimensional rectangle4 of size N1�N2.Tiles are rectangular and their edges are parallel to the axes (see Figure 1). All tiles have thesame �xed size. Tiles are indexed as Ti;j , 0 � i < N1, 0 � j < N2.(H2) Dependences between tiles are summarized by the vector pair�� 10 � ;� 01 �� :In other words, the computation of a tile cannot be started before both its left and upperneighbor tiles have been executed. Given a tile Ti;j, we call both tiles Ti+1;j and Ti;j+1 itssuccessors, whenever the indices make sense.
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Figure 1: A tiled iteration space with horizontal and vertical dependences.4In fact, the dimension of the tiles may be greater than 2. Most of our heuristics use a column-wise allocation,which means that we partition a single dimension of the iteration space into chunks to be allocated to processors.The number of remaining dimensions is not important. 3



(H3) There are P available processors interconnected as a (virtual) ring5. Processors are numberedfrom 0 to P �1. Processors may have di�erent speeds: let tq the time needed by processor Pqto execute a tile, for 0 � q < P . While we assume the computing resources are heterogeneous,we assume the communication network is homogeneous: if two adjacent tiles T and T 0 arenot assigned to the same processor, we pay the same communication overhead Tcom, whateverthe processors which execute T and T 0.(H4) Tiles are assigned to processors using a scheduling � and an allocation function proc (bothto be determined). Tile T is allocated to processor proc(T ), and its execution begins attime-step �(T ). The constraints6 induced by the dependences are the following: for each tileT and each of its successors T 0, we have� �(T ) + tproc(T ) � �(T 0) if proc(T ) = proc(T 0)�(T ) + tproc(T ) + Tcom � �(T 0) otherwiseThe makespan MS(�;proc) of a schedule{allocation pair (�;proc) is the total execution timerequired to execute all tiles. If execution of the �rst tile T0;0 starts at time-step t = 0, the makespanis equal to the date at which the execution of the last tile is executed:MS(�;proc) = �(TN1;N2) + tproc(TN1;N2 ):A schedule{allocation pair is said to be optimal if its makespan is the smallest possible over all(valid) solutions. Let Topt denote the optimal execution time over all possible solutions.2.2 DiscussionWe survey our hypotheses and assess their motivations, as well as the limitations that they mayinduce:Rectangular iteration space and tiles We note that the tiled iteration space is the outcomeof previous program transformations, as explained in [13, 19, 21, 18, 4]. The �rst step intiling amounts to determining the best shape and size of the tiles, assuming an in�nite gridof virtual processors. Because this step will lead to tiles whose edges are parallel to extremaldependence vectors, we can perform a unimodular transformation and rewrite the originalloop nest along the edge axes. The resulting domain may not be a rectangular, but we canapproximate it using the smallest bounding box (however, this approximation may impactthe accuracy of our results).Dependence vectors We assume that dependences are summarized by the vector pair V =f(1; 0)t; (0; 1)tg. Note that these are dependences between tiles, not between elementarycomputations. So having right- and top-neighbor dependences is a very general situation ifthe tiles are large enough. Technically, since we deal with a set of fully permutable loops,all dependence vectors have nonnegative components only, so that V permits to generate allother dependence vectors by transitivity. Note that having a dependence vector (0; a)t witha � 2 between tiles, instead of having vector (0; 1)t, would mean unusually long dependencesin the original loop nest, while having (0; a)t in addition to (0; 1)t as a dependence vector5The actual underlying physical communication network is not important.6There are other constraints to express (e.g. any processor can execute at most one tile at each time-step). SeeSection 2.3 for a complete formalization. 4



between tiles is simply redundant. In practical situations, we might have an additional diag-onal dependence vector (1; 1)t between tiles, but the diagonal communication may be routedhorizontally and then vertically, or the other way round, and even may be combined with anyof the other two messages (due to vectors (0; 1)t and (1; 0)t).Computation-communication overlap Note that in our model, communications can be over-lapped with the computations of other (independent) tiles. Assuming communication-compu-tation overlap seems a reasonable hypothesis for current machines which have communicationcoprocessors and allow for asynchronous communications (posting instructions ahead, or us-ing active messages). We can think of independent computations going along a thread whilecommunication is initiated and performed by another thread [17]. A very interesting approachhas been proposed by Andonov and Rajopadhye [3]: they introduce the tile period Pt as thetime elapsed between corresponding instructions of two successive tiles that are mapped tothe same processor, while they de�ne the tile latency Lt to be the time between correspondinginstructions of two successive tiles that are mapped to di�erent processors. The power of thisapproach is that the expressions for Lt and Pt can be modi�ed to take into account severalarchitectural models. A very detailed architectural model is presented in [3], and several othermodels are explored in [2]. With our notations, Pt = ti and Lt = ti + Tcom for processor Pi.Finally, we brie
y mention another possibility for introducing heterogeneity into the tilingmodel. We chose to have all tiles of same size, and to allocate more tiles to the faster processors.Another possibility would have been to evenly distribute tiles to processors, but to let their sizevary according to the speed of the processor they are allocated to. However, this strategy wouldseverely complicate code generation. Also, allocating several neighboring �xed-size tiles to the sameprocessor will have similar e�ects as allocating variable-size tiles, so our approach will cause no lossof generality.2.3 ILP formulationWe can describe the tiled iteration space as a task graph G = (V;E), where vertices represent thetiles and edges represent dependences between tiles. Computing an optimal schedule{allocationpair is a well-known task graph scheduling problem, which is NP-complete in the general case [9].If we want to solve the problem as stated (hypotheses (H1) to (H4)), we can use an integerlinear programming formulation. There are several constraints to be satis�ed by any valid schedule{allocation pair. In the following, Tmax denotes an upper bound on the total execution time. Forexample, Tmax can be the execution time when all the tiles are given to the fastest processor:Tmax = N1 �N2 �min0�i<P ti.We now translate these constraints into equations. In the following, let i 2 f1; : : : ; N1g denotea row number, j 2 f1; : : : ; N2g a column number, q 2 f0; : : : ; P � 1g a processor number, andt 2 f0; : : : ; Tmaxg a time-step.� Each tile must be executed once. Let Bi;j;q;t be an integer variable indicating whether theexecution of tile Ti;j began at time-step t on processor q: if this is the case, then Bi;j;q;t = 1 ,and Bi;j;q;t = 0 otherwise. Each tile must be executed once, and thus starts at one and onlytimes-step: once. Therefore, the constraints are:8i; j; q; t; Bi;j;q;t � 0 and 8i; j; P�1Xq=0 TmaxXt=0 Bi;j;q;t = 1:5



� Execution place and date. Using Bi;j;q;t we can compute the date Di;j at which tile (i; j)starts execution. We can also check which processor q processes tile (i; j). The 0=1 result isstored in Pi;j;q:8i; j; Di;j = P�1Xp=0 TmaxXt=0 t�Bi;j;q;t and 8i; j; q; Pi;j;q = TmaxXt=0 Bi;j;q;t:� Communications. There must be a communication delay between the end of execution oftile (i � 1; j) (resp. (i; j � 1)) and the beginning of execution of tile (i; j) if and only thetwo tiles are not executed by the same processor, i.e. if and only if there exists q such thatPi;j;q 6= Pi�1;j;q (resp. Pi;j;q 6= Pi;j�1;q). The boolean result is stored in vi;j (resp. hi;j)):8i � 2; j; q; vi;j � Pi;j;q � Pi�1;j;q; vi;j � Pi�1;j;q � Pi;j;q8i; j � 2; q; hi;j � Pi;j;q � Pi;j�1;q; vi;j � Pi;j�1;q � Pi;j;qRemark that if a communication delay is needed between the execution of tile (i � 1; j) andthat of tile (i; j), then vi;j will impose one. If none is needed, vi;j may still be equal to 1, aslong as this does not increase the total execution time.� Precedence constraints. The execution of tile (i� 1; j) (resp. (i; j � 1)) must be �nished,and the data transfered, before the beginning of execution of tile (i; j):8i � 2; j; Di;j � Di�1;j + vi;jTcom + P�1Xq=0 Pi�1;j;qtq8i; j � 2; Di;j � Di;j�1 + hi;jTcom + P�1Xq=0 Pi;j�1;qtq� A processor executes (at most) one tile at the time. Therefore processor q can startexecuting at most one tile in any interval of time tq (as tq is the time to execute a tile byprocessor q): 8q; tq � 1 � t � Tmax; tXt0=t�tq+1 N1Xi=1 N2Xj=1Bi;j;q;t0 � 1Now that we have expressed all our constraints in a linear way , we can write the whole linearprogramming system. We only need to add the objective function: the minimization of the time-step at which the execution of the last tile TN1;N2 is terminated. The �nal linear program ispresented in Figure 2. As an optimal rational solution of this problem is not always an integersolution, this program must be solved as an integer linear program.The main drawback of the linear programming approach is its huge cost. The program shownFigure 2 contains more than PN1N2Tmax variables and inequalities. The cost of solving such aproblem would be prohibitive for any practical application.Furthermore, even if we could solve the linear problem, we might not be pleased with thesolution! We would prefer \regular" allocations of tiles to processors, such as column-wise orrow-wise allocations. The good news is that such allocations can lead to asymptotically optimalsolutions, as shown in the next section. 6
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min�DN1;N2 +Pq PN1;N2;qtq�Ptt0=t�tq+1Pi;j Bi;j;q;t0 � 1 0 � q � P � 1; tq � 1 � t � TmaxDi;j � Di�1;j + vi;jTcom +Pq Pi�1;j;qtq 2 � i � N1; 1 � j � N2Di;j � Di;j�1 + hi;jTcom +Pq Pi;j�1;qtq 1 � i � N1; 2 � j � N2vi;j � Pi;j;q � Pi�1;j;q 2 � i � N1; 1 � j � N2; 0 � q � P � 1vi;j � Pi�1;j;q � Pi;j;q 2 � i � N1; 1 � j � N2; 0 � q � P � 1hi;j � Pi;j;q � Pi;j�1;q 1 � i � N1; 2 � j � N2; 0 � q � P � 1hi;j � Pi;j�1;q � Pi;j;q 1 � i � N1; 2 � j � N2; 0 � q � P � 1Pi;j;q =PtBi;j;q;t 1 � i � N1; 1 � j � N2; 0 � q � P � 1Di;j =PqPt tBi;j;q;t 1 � i � N1; 1 � j � N2PqPtBi;j;q;t = 1 1 � i � N1; 1 � j � N2Bi;j;q;t � 0 1 � i � N1; 1 � j � N2; 0 � q � P � 1; 0 � t � TmaxFigure 2: Integer linear program which optimally solves the schedule{allocation problem.3 Column-wise allocationBefore introducing asymptotically optimal column-wise (or row-wise) allocations, we build a smallexample to show that column-wise allocations (or equivalently row-wise allocations) are not optimal.3.1 Column-wise allocations are not optimalConsider a tiled iteration space with N2 = 2 columns, and suppose we have P = 2 processors suchthat t1 = 5 � t0: the �rst processor is �ve times faster than the second one. Suppose for the sakeof simplicity that Tcom = 0. If we use a column-wise allocation:� either we allocate both columns to processor 0, and the makespan is MS = 2N1t0� or we allocate one column to each processor, and the makespan is greater than N1t1 (a lowerbound time for the slow processor to process its column)So the best solution is to have the fast processor execute all tiles. But if N1 is large enough, we cando better by allocating a small fraction of the �rst column (the last tiles) to the slow processor thatwill process them while the �rst processor is active executing the �rst tiles of the second column.For instance if N1 = 6n and if we allocate the last n tiles of the �rst column to the slow processor(see Figure 3), the execution times becomes MS = 11nt0 = 116 N1t0, which is better than the bestcolumn-wise allocation7.This small example shows that our target problem is intrinsically more complex than the in-stance with same-speed processors: as shown in [6], a column-wise allocation would be optimal forour two-column iteration space with two processors of equal speed.3.2 Heuristic allocation by block of columnsThroughout the rest of the paper we make the following additional hypothesis:7This is not the best possible allocation. Still, it is superior to any column-wise allocation.7
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2. The tiles inside each block are computed in a row-wise order: if, say, 3 consecutive columnsare assigned to a processor, it will execute the three tiles in the �rst row, then the three tilesin the second row, and so on. Note that (given 1.) this strategy is the best to minimize thelatency (for another processor to start next block as soon as possible).The following Lemma shows than dependence constraints do not slow down the execution oftwo consecutive blocks (of adequate size) by two di�erent-speed processors:Lemma 2 Let P1 and P2 be two processors which execute a tile in time t1 and t2 respectively.Assume that P1 was allocated a block B1 of c1 contiguous columns, and that P2 was allocated theblock B2 consisting of the following c2 columns. Let c1 and c2 satisfy the equality: c1t1 = c2t2.Assume that P1, starting at time-step s1, is able to process B1 without having to wait for anytile to be computed by some other processor. Then P2 will be able to process B2 without having towait for any tile computed by P1, if it starts at time s2 � c1t1 + Tcom.Proof P1 (resp. P2) executes its block row by row. The execution time of a row is c1t1 (resp.c2t2). By hypothesis, it takes the same amount of time for P1 to compute a row of B1 as for P2 tocompute a row of B2.As P1 is able to process B1 without having to wait for any tile to be computed by some otherprocessor, it �nishes to compute the i-th row of B1 at time s1 + ic1t1.P2 cannot start processing the �rst tile of the i-th row of B2 before P1 has computed the lasttile of the i-th row of B1 and sent that data to P2, i.e at time-step s1 + ic1t1 + Tcom.Since P2 starts processing the �rst row of B2 at time s2, where s2 � s1 + c1t1 + Tcom, itis not delayed by P1. Later on, P2 will process the �rst tile of the i-th row of B2 at times2 + (i � 1)c2t2 = s2 + (i � 1)c1t1 � s1 + c1t1 + Tcom + (i � 1)c1t1 = s1 + ic1t1 + Tcom, henceP2 will no be delayed by P1.We are ready to introduce our heuristic:HeuristicLet P0; : : : ; PP�1 be P processors which respectively execute a tile in time t0; : : : ; tP�1. We allocatecolumn blocks to processors by chunks of C = L � PP�1i=0 1ti , where L = lcm(t0; t1; : : : ; tP�1)columns: as for the �rst chunk, we assign the block B0 of the �rst L=t0 columns to P0, the block B1of the next L=t1 columns to P1, and so on until Pp�1 receives the last L=tp columns of the chunk.We repeat the same scheme with the second chunk (columns C +1 to 2C) �rst, and so on until allcolumns are allocated (note that the last chunk may be incomplete). As already said, processorswill execute blocks one after the other, row-by-row within each block.Lemma 3 The di�erence between the execution time of the heuristic allocation by columns and theoptimal execution time is bounded as:T � Topt � (P � 1)Tcom + (N1 +N2 � 1)lcm(t0; t1; : : : ; tP�1)Proof Let L = lcm(t0; t1; : : : ; tP�1). Lemma 2 ensures that, if processor Pi starts working attime-step si = i(L+Tcom), it will not be delayed by other processors. By de�nition, each processorexecutes one block in time LN1. The maximal number of blocks allocated to a processor is:n = & N2L�PP�1i=0 1ti ' :9



The total execution time, T , is equal to the date the last processor terminates execution. T can bebounded as follows9: T � sP1 + n� LN1:On the other hand, Topt is bounded below by Lemma 1. We derive:T � Topt � (P � 1)(L + Tcom) + LN1 & N2L�PP�1i=0 1ti ' � N1 �N2PP�1i=0 1ti :Since dxe � x+ 1 for any rational number x, we obtain the desired formula.Proposition 1 Our heuristic is asymptotically optimal: letting T be its makespan, and Topt be theoptimal execution time, we have limN2!+1 TTopt = 1:The main two advantages of our heuristic are: (i) its regularity, which leads to an easy imple-mentation; (ii) its guarantee: it is theoretically proven to be close to the optimal. However, we willneed to adapt it somehow to deal with practical cases, because the number C = L �PP�1i=0 1ti ofcolumns in a chunk may be too large.4 Practical heuristicsIn the previous section, we have described a heuristic which allocates blocks of columns to processorsin a cyclic fashion. The size of the blocks is related to the relative speed of the processors. However,the execution time variables ti are not known accurately in practice, and a straight application ofour heuristic would lead to di�culties, as shown next in Section 4.1. We explain how to modifythe heuristic (computing di�erent block sizes) in Section 4.2.4.1 On processor speedTo expose the potential di�culties we describe the heterogeneous network of workstations that weuse for running some MPI experiments. We chose eight SUN workstations belonging to the CSdepartment of UT, and we ran a program to compute their relative speed. The program runs thesame piece of computation that will be used later in the tiling program. Results are reported inTable 1.Name nala bluegrass dancer donner vixen rudolph zazu simbaDescription Ultra 2 SS 20 SS 5 SS 5 SS 5 SS 10 SS1 4/60 SS1 4/60Execution time ti 11 26 33 33 38 40 528 530Table 1: Measured computation times showing relative processor speeds.If we want to use our heuristic, we have to allocate chunks of size C = LP7i=0 1ti columns,where L = lcm(t0; t1; : : : ; t7) = 34; 560; 240. We compute that C = 8; 469; 789 columns, which9Processor PP�1 is not necessarily the last one, because the last chunk may be incomplete.10



would require a very large problem size indeed ! Needless to say, such a large chunk is not feasiblein practice. Also, our measurements for the processor speeds are inaccurate10, and a slight changemay dramatically impact the value of C. So, we have to devise another method to compute thesizes of the blocks allocated to each processor. This is done in Section 4.2. Next, we show somesimulation results to discuss the practical validity of our modi�ed heuristics in Section 4.3.4.2 Modi�ed heuristicOur goal is to choose the \best" block sizes allocated to each processor while bounding the totalsize of a chunk. We �rst de�ne the cost of a block allocation, and then describe an algorithm tocompute the best possible allocation, given an upper bound for the chunk.4.2.1 Cost functionAs before, we consider heuristics which allocate tiles to processors by blocks of columns, repeatingeach chunk in a cyclic fashion. Consider a heuristic de�ned by C = (c0; : : : ; cP�1), where ci is thenumber of columns in each block allocated to processor Pi:De�nition 1 The cost of a block size allocation C is the maximum of the computation times (citi)of each block divided by total the number of columns computed in each chunk:cost(C) = max0�i�P�1 citiP0�i�P�1 ciConsidering the steady state of the computation, all processors work in parallel inside theirblock, so that the computation time of a whole chunk is the maximum of the computation timesof the processors. And during this time, s =P0�i�P�1 ci columns are computed. So, the averagetime to compute a single column is given by our cost function. When the number of columns ismuch larger than the size of the chunk, the total computation time can well be approximated byC �N2, the product of the average time to compute a column by the total number of columns.4.2.2 Optimal block size allocationsAs said before, our cost function correctly models the reality when the number of columns in eachchunk is much smaller than the total number of columns of the domain. We now describe analgorithm that returns the best (with respect to the cost function) block size allocation given abound s on the number of columns in each chunk.We build a function that, given a best allocation with a chunk size equal to n� 1, computes abest allocation with a chunks size equal to n. Once we have this function, we start with an initialchunk size n = 0, compute a best allocation for each increasing value of n up to n = s, and selectthe best allocation encountered so far.First we characterize the best allocations for a given chunk size s:Lemma 4 Let C = (c0; : : : ; cP�1) be an allocation, and let s =P0�i�P�1 ci be the chunk size. Letm = max1�i�p citi denote the maximum computation time inside a chunk. If C veri�es8i; 0 � i � P � 1; tici � m � ti(ci + 1); (1)then it is optimal for the chunk size s.10The 8 workstations were not dedicated to our experiments. Even though we were running these experimentsduring the night, some other users' processes might have been running. Also, we have averaged the results, so theerror margin roughly lies between 5% and 10%. 11



Proof Take an allocation verifying the above condition 1. Suppose that it is not optimal: thenthere exists a better allocation C0 = (c00; : : : ; c0P�1) with P0�i�P�1 c0i = s, such thatm0 = max0�i�P�1 c0iti < m:By de�nition of m, there exists i0 such that m = ci0ti0 . We can then successively deriveci0ti0 = m > m0 � c0i0 ti0ci0 > c0i09i1; ci1 < c0i1 �because X0�i�P�1 ci = s = X0�i�P�1 c0i�ci1 + 1 � c0i1ti1(ci1 + 1) � ti1c0i1m � m0 (by de�nition of m and m0)which is a contradiction with the non optimality of the original allocation.We now just have to build allocations satisfying to condition (1). This is done by the followingalgorithm:� For the chunk size s = 0, take the optimal allocation (0; 0; : : : ; 0).� To derive an allocation C0 verifying equation (1) with chunk size s from an allocation Cverifying (1) with chunk size s� 1, add 1 to a well chosen cj, one that veri�estj(cj + 1) = min0�i�P�1 ti(ci + 1): (2)In other words, let c0i = ci for 0 � i � P � 1; i 6= j, and c0j = cj + 1.Lemma 5 This algorithm is correct.Proof We have to prove that allocation C0 given by the algorithm veri�es equation (1).As allocation C veri�es equation (1) we have tici � m � tj(cj + 1). By de�nition of j fromequation (2), we havem0 = max0�i�P�1 tic0i = max�tj(cj + 1); max1�i�q;i 6=j tici� = tjc0j:We then have tjc0j � m0 � tj(c0j + 1) and8i 6= j; 1 � i � q;tic0i =tici � m�m0 �tjc0j = min0�i�P�1 ti(ci + 1) � ti(ci + 1) = ti(c0i + 1);so the resulting allocation does verify equation (1).To summarize, we have built an algorithm to compute \good" block sizes for the heuristicallocation by blocks of columns. One selects an upper bound on the pattern size and our algorithmreturns the best block sizes, according to our cost function, with respect to this bound.The complexity of this algorithm is O(Ps) where P is the number of processors and s, theupper bound on the pattern size. Indeed, the algorithm consists of s steps where one computes aminimum over the processors. This low complexity allows us to perform the computation of thebest allocation at runtime. 12



A small example. To understand how the algorithm works, we work out a small example withP = 3, t0 = 3, t1 = 5 and t2 = 8. In Table 2, we report the best allocations found by thealgorithm up to s = 7. The entry \Selected j" denotes the value of j that is chosen to build thenext allocation. Note that the cost of the allocations is not a decreasing function of s. If we allowchunks of size not greater than 7, the best solution is obtained the chunk (3; 2; 1) of size 6.Chunk size c0 c1 c2 Cost Selected j0 0 0 0 01 1 0 0 3 12 1 1 0 2.5 03 2 1 0 2 24 2 1 1 2 05 3 1 1 1.8 16 3 2 1 1.67 07 4 2 1 1.71Table 2: Running the algorithm with 3 processors: t0 = 3, t1 = 5 and t2 = 8.Finally, we point out that our modi�ed heuristic \converges" to the original asymptoticallyoptimal heuristic. For a chunk of size C = L�PP�1i=0 1ti , where L = lcm(t0; t1; : : : ; tP�1) columns,we obtain the optimal cost costopt = LC = 0@ X0�i�P�1 1ti1A�1which is the inverse of the harmonic mean of the execution times divided by the number of proces-sors.4.3 MPI experimentsWe report several experiments using the network of workstations presented in Section 4.1. Aftersome comments on the experiments, we will study cyclic and block-cyclic allocations, and then ourmodi�ed heuristics.4.3.1 General remarksWe study di�erent columns allocations on the heterogeneous network of workstations presented inSection 4.1. Our simulation program has been written in C using the MPI library for communica-tion. It is not an actual tiling program, but it simulates its behavior: we have not inserted the coderequired to deal with the boundaries of the computation domain. The domain has 100 rows and anumber of columns varying from 200 to 1000 by steps of 100. An array of doubles is communicatedfor each communication, its size is the square root of the tile area.The actual communication network is an Ethernet network. It can be considered as a bus, not asa point-to-point connection ring, hence our model for communication is not fully correct. However,this has little impact on the results, which do correspond well to the theoretical previsions.As already pointed out, the workstations we use are multiple users' workstations. Though oursimulations have been made at times when they were not supposed to be used by anybody else,13



their load may vary. The timings reported in the �gures are the average of several measures fromwhich aberrant data have been suppressed.In Figures 4 and 6, we show for reference the sequential time as measured on the fastest machine,namely \nala".4.3.2 Cyclic allocationsWe have experimented with cyclic allocations on the 6 fastest machines, on the 7 fastest machines,and on all the 8 machines. Because cyclic allocation is optimal when all processors have the samespeed, this will be a reference for other simulations. We have also tested a block cyclic allocationwith block-size equal to 10, in order to see if the reduced amount of communication helps. Figure 4presents the results11 for these 6 allocations. (3 purely cyclic allocations using 6, 7 and 8 machines,and 3 block-cyclic allocations).
sequentialcyclic(10,8)cyclic(10,7)cyclic(10,6)cyclic(1,8)cyclic(1,7)cyclic(1,6)
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10008006004002000

9008007006005004003002001000Remark cyclic(b,m) corresponds to a block cyclic allocation with block size b, using the mfastest machines of Table 1.Figure 4: Experimenting with cyclic and block-cyclic allocations.We comment the results of Figure 4 as follows:� With the same number of machines, a block size of 10 is better than a block size of 1 (purecyclic).� With the same block size, adding a single slow machine is disastrous, but adding a secondone gives slightly worse performances than using the fastest 6 machines.11Some results are not available for 200 columns because the chunk size is too large.14



� Overall, only the block cyclic allocation with block size 10 and using the 6 fastest machinesgives some speedup over the sequential execution.We conclude that cyclic allocations are not e�cient when the computing speeds of the availablemachines are very di�erent. For the sake of completeness, we show in Figure 5 the execution timesobtained for the same domain (100 rows and 1000 columns) and the 6 fastest machines, for blockcyclic allocations with di�erent block sizes. We see that the block-size as a small impact on theperformances.

block sizes in columns
seconds

6050403020100

120100806040200Figure 5: Cyclic allocations with di�erent block sizes.4.3.3 Using our modi�ed heuristicLet us now consider our heuristics. In Table 3, we show the block sizes computed by the algorithmdescribed in Section 4.2) for di�erent upper bounds of the chunk size. The best allocation computedwith bound u is denoted as Cu.nala bluegrass dancer donner vixen rudolph zazu simba cost chunkC25 7 3 2 2 2 2 0 0 4.44 18C50 15 6 5 5 4 4 0 0 4.23 39C100 33 14 11 11 9 9 0 0 4.18 87C150 52 22 17 17 15 14 1 1 4.12 139Table 3: Block sizes for di�erent pattern size bounds.The time needed to compute these allocations is completely negligible with respect to thecomputation times (a few milliseconds versus several seconds).Figure 6 presents the results for these allocations. Here are some comments:� Any of the allocation computed by our heuristic is superior to the best block-cyclic allocation.� The more precise the allocation, the better the results.15



sequentialC150C100C50C25

columns
seconds

10008006004002000

100806040200 Figure 6: Experimenting with our modi�ed heuristics.� For 1000 columns and allocation C150, we obtain a speedup of 2:2 (and 2:1 for allocation C50),which is very satisfying (see below).The optimal cost for our workstation network is costopt = LC = 34;560;2408;469;789 = 4:08. Note that thecost of cost(C150) = 4:12 is very close to the optimal cost. The peak theoretical speedup is equalto mini ticostopt = 2:7. For 1000 columns, we obtain a speedup equal to 2:2 for C150. This is satisfyingconsidering that we have here only 7 chunks, so that side e�ects still play an important role. Notealso that the peak theoretical speedup has been computed by neglecting all the dependencies in thecomputation, and all the communications overhead. So getting a two-fold speedup with 8 machinesof very di�erent speeds is not a bad result at all !5 ConclusionIn this paper, we have extended tiling techniques to deal with heterogeneous computing platforms.Such platforms are likely to play a very important role in the near future. We have introduced anasymptotically optimal column-wise allocation of tiles to processors. We have modi�ed this heuristicto allocate column chunks of reasonable size, and we have reported successful experiments on anetwork of workstations. The practical signi�cance of the modi�ed heuristics should be emphasized:processor speeds may be inaccurately known, but allocating small but well-balanced chunks turnsout to be quite successful.Heterogeneous platforms are ubiquitous in computer science departments and companies. Thedevelopment of our new tiling techniques allows for the e�cient use of older computational resourcesin addition to newer available systems. 16
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