
On Computing Graph Minor Obstruction Sets �Kevin CattellDepartment of Computer ScienceUniversity of VictoriaVictoria, B.C. V8W 3P6, Canadakcattell@csr.uvic.ca Michael J. DinneenDepartment of Computer ScienceUniversity of AucklandAuckland, New Zealandmjd@cs.auckland.ac.nzRodney G. DowneyDepartment of MathematicsVictoria UniversityP.O. Box 600Wellington, New Zealandrod.downey@vuw.ac.nz Michael R. FellowsDepartment of Computer ScienceUniversity of VictoriaVictoria, B.C. V8W 3P6 Canadamfellows@csr.uvic.caMichael A. LangstonDepartment of Computer ScienceUniversity of TennesseeKnoxville, Tennessee 37996-1301U.S.A.langston@cs.utk.edu
�Some of the results of this paper were presented at the 1989 IEEE Symposium on the Foundations ofComputer Science [FL89b]. 1



AbstractThe Graph Minor Theorem of Robertson and Seymour establishes nonconstructivelythat many natural graph properties are characterized by a �nite set of forbidden sub-structures, the obstructions for the property. We prove several general theorems regard-ing the computation of obstruction sets from other information about a family of graphs.The methods can be adapted to other partial orders on graphs, such as the immersionand topological orders. The algorithms are in some cases practical and have been imple-mented. Two new technical ideas are introduced. The �rst is a method of computing astopping signal for search spaces of increasing pathwidth. This allows obstruction setsto be computed without the necessity of a prior bound on maximum obstruction width.The second idea is that of a second order congruence for a graph property. This is anequivalence relation de�ned on �nite sets of graphs that generalizes the recognizabilitycongruence that is de�ned on single graphs. It is shown that the obstructions for agraph ideal can be e�ectively computed from an oracle for the canonical second-ordercongruence for the ideal and a membership oracle for the ideal. It is shown that theobstruction set for a union F = F1 [ F2 of minor ideals can be computed from theobstruction sets for F1 and F2 if there is at least one tree that does not belong to theintersection of F1 and F2. As a corollary, it is shown that the set of intertwines of anarbitrary graph and a tree are e�ectively computable.1 IntroductionThe celebrated Graph Minor Theorem (GMT) of Robertson and Seymour [RS83, RS85, RS94]proves the existence of �nite obstruction sets for arbitrary minor order ideals, of which thereare many natural examples. Planar graphs are famously an ideal for which the obstructionsare K3;3 and K5 (Kuratowski's Theorem). The proof of the GMT is not e�ective, in thesense that knowing only a decision procedure for a lower ideal F does not provide enoughinformation to be able to compute the obstruction set for F [FL89a]. For this reason theGraph Minor Theorem is commonly regarded as \nonconstructive" since usually we know atleast a decision algorithm for a natural ideal.The purpose of this paper is to explore the question:What combinations of information about an ideal F allow us to e�ectivelycompute the obstruction set for F?We are currently far from having a satisfactory account of this issue. Some of the openproblems that remain in this area are both elegant and apparently di�cult. Previous workcan be summarized as follows.(1) Fellows and Langston proved in [FL89a] that there is no algorithm that will, providedwith only a decision oracle for an ideal F , compute the set of obstructions O for F .(2) Fellows and Langston proved in [FL89b] that if we have access to the three pieces ofinformation: 2



(i) A decision algorithm for F .(ii) A bound B on the maximum treewidth (or pathwidth) of the F obstructions.(iii) A decision algorithm for a �nite index congruence that re�nes the canonical congruencefor F on t-boundaried graphs (for t = 1; : : : ; B).Then O can be computed. (The full argument is given here for the �rst time.)A curious aspect of this result is that given (i) and (iii) as oracles (which is the assumptionof the theorem), then it is impossible to calculate in advance when the procedure to calculateOwill terminate, although the proof guarantees that the procedure will eventually halt, havingcorrectly computed O. In other words, the stopping time of the algorithm is nonconstructive.The proof employs the GMT for �nitely edge-colored graphs to establish that the algorithmwill halt, and this is the source of the nonconstructivity concerning the stopping time.(3) Lagergren and Arnborg [LA91, Lag93] showed that if we are given (i), (ii) and (iii) asabove, and are additionally given:(iv) A computable function f(t) that bounds the index of the �nite congruences of (iii).Then it is possible to e�ectively compute in advance a stopping time for the above procedureand to remove the dependence of the termination argument on the GMT. This also meansthat given (i){(iv) we can e�ectively compute a bound on the size of the largest obstruction,and from this information could compute O by exhaustive search.(4) An important class of lower ideals for which we have the pieces of information (i), (iii)and (iv) are those that we know how to describe in Monadic Second Order (MSO) logic. Inother words, if we are given the information:(v) An MSO expression � that describes the graphs of the lower ideal F .Then from this we can e�ectively derive (i), (iii) and (iv). This result is mainly due toCourcelle [Co90].(5) Other work on the systematic computation of obstruction sets has appeared in [Pr93,APS90, CD94, CDF95, Kin94, KL91]. Some of these results support practical implementationsthat have led to some signi�cant mechanical or partly-mechanical proofs of new and nontrivialforbidden substructure theorems.There has been a considerable amount of overlapping work in this area which is sometimesconfusing to sort through. The above review is framed from the point of view that we willdevelop further here. In particular, we are concerned with identifying those combinations ofabstract information about a lower ideal F that either do or do not provide enough informationto allow us to compute the obstruction set O for F . It is important to be attentive to exactlyhow the information about F is presented. For example, in our Theorem 1 we prove the result(1) above that (i), (ii) and (iii) are enough to e�ectively compute O. In this theorem, (i) and(iii) are hypothesized to be available only via oracles, i.e., (iii) is not assumed to be concretelyavailable via a �nite state machine or dynamic programming algorithm.Part of our purpose in this paper is to articulate this area of research, which we believe to3



be an appealing blend of combinatorics and recursion theory. There are clear models of bothpositive and negative results in this area, with much that remains unresolved. For example,in view of (4), it is natural to ask whether (v) alone is su�cient information about F to allowus to compute O. Ideally, we should be able to settle this one way or the other, either byproving a positive result along the lines of (2) | perhaps using the new techniques introducedin this paper | or by proving a negative result along the lines of (1).One of the main ingredients of the positive result (2) is a collection of �nite-index con-gruences. There are several notions of congruence in the literature of this area that in manysituations are essentially equivalent or e�ectively interchangeable. The basic notion that weuse is provided by the following de�nitions.De�nition. A t-boundaried graph G = (V;E;B; f) is an ordinary graph G = (V;E) togetherwith:(1) a distinguished subset of the vertex set B � V of cardinality t, the boundary of G, and(2) a bijection f : B ! f1; : : : ; tg.In some situations, we will forget the boundary. (For example, if G is a boundariedgraph and F is a family of ordinary graphs, we may write G 2 F , meaning by this that Gbelongs to F when the boundary of G is ignored.) A fundamental operation (denoted �)on t-boundaried graphs is that of gluing them together along their boundaries by identifyinglike-labeled vertices.De�nition. If G = (V;E;B; f) and G0 = (V 0; E0; B0; f 0) are t-boundaried graphs, then G�G0denotes the t-boundaried graph obtained from the disjoint union of the graphs G = (V;E) andG0 = (V 0; E 0) by identifying each vertex u 2 B with the vertex v 2 B0 for which f(u) = f 0(v).In the sequel, we will consider both large and small universes of t-boundaried graphs.Many of the main issues concern the large universe, which is easier to think about.De�nition. The large universe U tlarge is the set of all t-boundaried graphs.De�nition. If F is a family of graphs then the large canonical congruence for F is de�nedfor t-boundaried graphs X;Y 2 U tlarge by X �F Y if and only if8Z 2 U tlarge : (X � Z 2 F)() (Y � Z 2 F)The following de�nition is from Abrahamson and Fellows [AF93].De�nition. A graph family F is fully cutset regular if for every t, the large canonical con-gruence on U tlarge has �nite index.Courcelle and Lagergren proved in [CL94] that this notion is equivalent to that of recog-nizable graph families introduced in [Co90]. This must be regarded as an extremely prettyidea, as it captures an essential feature of the complexity of the \information ow" across abounded-size cutset necessary for determining membership in a graph family. We will refer tothe large canonical congruence for a graph familyF as the canonical recognizability congruencefor F .It follows from the Graph Minor Theorem and Courcelle's Theorem on MSO graph prop-erties [Co90] that every minor order lower ideal is recognizable. It is interesting that only a fewnatural graph families are presently known not to be recognizable [AF93, BFW92, FHW93].4



The positive results of [FL89b] (our Theorem A) apply to many (if not most) natural lowerideals. \Normally" we have the information (i) about F . Note that since we are concernedhere with the issue of whether O can be recursively computed, any algorithm that correctlydecides membership in F will serve for (i), i.e., the e�ciency of the algorithm is not an issue.It is also the case that \usually" we can �nd (iii) constructively. The exceptions includethe ideals associated with the problems Knotless Embedding and Planar DiameterImprovement described in [DF94].By far the most problematic aspect of Theorem A is the bound (ii) on the maximumobstruction treewidth or pathwidth. For example, although a congruence for torus embeddingis relatively easy to produce, a bound on the maximum obstruction width is much moredi�cult, although a (very large) bound is now known. Tight bounds seem to be beyondcurrent proof techniques in most situations. Thus it is natural to ask whether the information(ii) is really needed for obstruction set computations.The basic computational machinery that we develop here shows how we can improve onthe ideas of Theorem A and e�ectively compute O without having to know a prior boundon the maximum obstruction width. In this approach we use a second order congruencefor a graph family | a �nite-index equivalence relation de�ned on �nite sets of boundariedgraphs. Instead of having to prove a prior bound on obstruction width, it is necessary thatthis second-order congruence have an \eventual termination" property. Since terminationcan be established computationally, we believe this may be a signi�cant breakthrough forimplementations of obstruction set theorem-provers.The Basic ApproachIn [FL89b] (our Theorem A) the computation procedure uses (i) and (ii) to compute, forsuccessive width bounds t, the set Ot of obstructions for F that have width (pathwidth ortreewidth, either of these can be used) at most t. The main argument shows that for each�xed t this is a �nite procedure. The role of hypothesis (iii) is simply to supply a bound onthe maximum width t that needs to be considered.Here we extend this procedure by computing Ot for successively larger t, and tackle thequestion: \Is O = Ot ?" (i.e., Can we stop now?) computationally. We consider two di�erentreasons for which the answer to the question \Can we stop now?" might be, \No":(1) A small counterexample (to O = Ot) is an element of O � Ot of width less than someknown recursive function f(t).(2) A large counterexample is one whose width is more than f(t).Our computational strategy is based on the fact that large counterexamples can be easierto detect. For a particular recursive f(t), we can determine whether there is a small coun-terexample to O = Ot by simply computing Ot0 for t0 = t+ 1; :::; f(t), and checking that nonew obstructions are found in these widths. To determine whether there is a large counterex-ample we compute an alarm function � : N ! f0; 1g. We interpret � = 1 as a signal that wecannot stop at width t because there is (or may be) a counterexample. What we would like tohave is an alarm function that simply determines whether there is a counterexample of widthmore than f(t). But even this might not be possible, and so we relax our requirements. Thehypothesis we employ instead of (iii) is that we can compute an alarm function � that is:5



(a) reliable: if there is a counterexample of width more than f(t) then �(f(t)) = 1, and(b) eventually quiescent: there is constant t0 depending only on F such that 8t � t0, �(t) = 0.These weaker requirements allow for one-sided errors in answering the \t-stopping question"(with errors on the side of continuing the search), while insuring that only �nitely many stagesof such \false alarms" will be possible. This method is codi�ed in Theorem B.TheoremC provides a second general computational engine based on an alarm provided bya terminating second-order congruence (explained in the next section). This is in some sensea specialization of Theorem B. The naturality of the notion of a terminating second-ordercongruence is established by our Theorem D: If we have access to an oracle for the canonicalsecond-order recognizability congruence for an ideal F and an oracle for membership in F ,then we can compute the obstruction set for F .We describe a natural second order congruence for the problem of computing the obstruc-tion set for a union of ideals for which the obstructions are known, and show that this is aterminating congruence if at least one of the constituent ideals excludes a tree. As a corollary,we show that it is possible to e�ectively compute the topological intertwines of an arbitrarygraph and a tree.The main signi�cance of Theorems B and C is in the new general techniques for obstructionset computation that we introduce. In particular, the notion of a width stopping signal seemsto be of importance not only in the study of recursive aspects of the GMT, but also forpractical implementations of obstruction set theorem provers.This area of algorithmic graph theory has reached a depth where it is no longer possible fora paper to be entirely self-contained. We assume that the reader is familiar with the resultsof [Co90] and [AF93] and the basics of the theory of graph minors and well-quasiordering[RS85, NW63, FL88].The plan of the paper is as follows. In the next section we deal with most of the prelimi-naries. In x3 we prove Theorem A. In x4 we prove Theorems B and C. In x5 we prove that thecanonical second-order recognizability congruence terminates, Theorem D. In x6 we addressthe problem of computing the obstructions for unions and intertwines. In the �nal section wesummarize and discuss some open problems.2 PreliminariesAll of our discussion concerns �nite simple graphs. A graph H is a minor of a graph G ifa graph isomorphic to H can be obtained from G by a sequence of operations chosen from(i) delete a vertex, (ii) delete an edge, (iii) contract an edge, removing any multiple edges orloops that form. We write G �m H to denote the minor order.The topological order is de�ned G �top H if and only if G contains a subgraph H 0 that isisomorphic to a subdivision of H, where a subdivision of a graph H is any graph that can beobtained from H by replacing edges by vertex disjoint paths. The topological order can beequivalently de�ned by using the de�nition of the minor order, only restricting operation (iii)to edges where at least one vertex has degree 2.6



We may use the notation � for simplicity where it is clear which order is under discussion.An ideal J in a partial order (U ;�) is a subset of U such that if X 2 J and X � Y thenY 2 J . The obstruction set for J is the set of minimal elements of U � J .If � and � are equivalence relations on a set U , we say that � re�nes � if8x; y 2 U : x � y =) x � yWe say that � has �nite index on U if there are a �nite number of equivalence classes.The equivalence class of x with respect to � is denoted [x]�, or perhaps just [x] where theequivalence relation is clear.De�nition. A tree-decomposition of a graph G = (V;E) is a tree T together with a collectionof subsets Tx of V indexed by the vertices x of T that satis�es:1. (Covering) For every edge uv of G there is some x such that fu; vg � Tx.2. (Interpolation) If y is a vertex on the unique path in T from x to z then Tx \ Tz � Ty.The width of a tree decomposition is the maximum of jTxj � 1 taken over the vertices x of thetree T of the decomposition. A graph G has treewidth at most k if there is a tree decompositionof G of width at most k. Path-decompositions and pathwidth are de�ned by restricting thetree T to be simply a path. The pathwidth of a graph G will be denoted pw(G).There are several universes of boundaried graphs that we work with in this theory. Thelarge universe has been de�ned in x1.De�nition. The small treewidth universe U ttree is the set of all t-boundaried graphs having atree-decomposition of width t� 1 for which the set of boundary vertices is the set of verticesindexed by the root of the tree. The small pathwidth universe U tpath is the set of all t-boundariedgraphs having a path-decomposition of width t � 1 for which the set of boundary vertices isthe last set of the decomposition.We will write U tsmall if it is a matter of indi�erence whether we mean U ttree or U tpath.The following easy lemma is left to the reader.Lemma 2.1 If A and B are t-boundaried graphs in U tsmall then A�B has width less than orequal to t.We extend the minor and topological orders to t-boundaried graphs by requiring thatthe boundary be held �xed in the operations de�ning the orders, and use the notation �mand �top to denote the boundaried orders (the context will make clear whether the graphshave boundaries or not). If A 2 U tlarge, int(A) denotes the subgraph of A induced by thenon-boundary vertices of A.De�nition. The small canonical congruence for F is de�ned for t-boundaried graphs X;Y 2U tsmall by X �F Y if and only if8Z 2 U tsmall : (X � Z 2 F)() (Y � Z 2 F)(Note that there are two avors, one for pathwidth and one for treewidth.)Note that both �F and �F are de�ned on U tsmall. Trivially, �F re�nes �F on the smalluniverse, but the two equivalence relations might not coincide. Courcelle and Lagergren have7



shown that on U ttree the large canonical congruence has �nite index if and only if the smallcanonical congruence has �nite index [CL94].We will make essential use of yet another kind of �niteness property that is exhibitedby graph ideals. To put this notion in a familiar context, suppose that L � �� is a formallanguage. Then the canonical (Myhill-Nerode) congruence for L is de�ned: x �L y if andonly if 8z 2 �� : [(xz 2 L)() (yz 2 L)]. A test set for L is a set of words T � �� such thatif we de�ne x �T y if and only if 8t 2 T : [(xt 2 L) () (yt 2 L)] then we get x �T y if andonly if x �L y. A language is regular if and only if it has a �nite test set.Now suppose F is an arbitrary family of graphs. A t-concrete test set for F is a setT t � U tlarge such that 8X;Y 2 U tlarge we have X �F Y if and only if8T 2 T t : [(X � T 2 F)() (Y � T 2 F)]Note that each concrete test graph T is used to de�ne a predicate.A t-abstract test set for F is a set of predicates P t such that the equivalence relationde�ned on U tlarge by: X � Y if and only if: 8P 2 P t P (X) $ P (Y )is a re�nement of the canonical second-order congruence.De�nition. The canonical second order congruence for an ideal F (for convenience alsodenoted �F) is de�ned on �nite sets of t-boundaried graphs in U tlarge by: if S1; S2 � U tlarge thenS1 �F S2 if and only if8Z 2 U tlarge : (9X1 2 S1 : X1 � Z =2 F)() (9X2 2 S2 : X2 � Z =2 F)De�nition. A (non-canonical) second-order congruence for F is an equivalence relation �de�ned on �nite subsets of U tlarge for which S1 � S2 implies S1 �F S2.Let A 2 U tlarge. We will use the notation S(A) to denote all the t-boundaried graphsproperly below A in the boundaried minor order.De�nition. A second-order congruence � for an ideal F is called terminating if it satis�es thecondition: 9t0 such that 8t � t0, if A 2 U tpath such that: (1) pw(A) � t0, and (2) jint(A)j � t0,then fAg � S(A).In the x5 we will show that the canonical second-order congruence for a lower ideal F isterminating.3 The Basic Computational EngineIn this section we prove the basic positive result on obstruction set computation for a �xedbound on the width of the search space. The proof was sketched in the extended abstract[FL89b].Theorem A. Suppose that F is an ideal in the minor order of �nite graphs and that we havethe following three pieces of information about F :8



(1) An algorithm to decide membership in F (of any time complexity).(2) A bound B on the maximum treewidth of the obstructions for for F .(3) For t = 1; :::; B + 1 a decision algorithm for a �nite index right congruence � on t-boundaried graphs that re�nes the small canonical congruence for F .Then we can e�ectively compute the obstruction set O for F .Proof. The algorithm is outlined as follows. For t = 1; :::; B + 1 we generate in a systematicway the t-boundaried graphs of U ttree until a certain stop signal is detected. At this point,for a given t, we will have generated a �nite set of graphs Gt. Of particular interest amongthese are the graphsMt � Gt that are minimal with respect to a certain partial order � ont-boundaried graphs. We will prove that O is a subset ofM = B+1[t=1Mtconsidering the graphs ofM with the boundaries forgotten.There are three things to be clari�ed:(1) how the graphs of the small universe are generated,(2) the search ordering �, and(3) the nature of the stop signal for width t.(1) The order of generation of U ttree.Suppose X is a t-boundaried graph, X 2 U ttree. By the size of X we refer to the numberof nodes in a smallest possible indexing tree for a tree decomposition of X. For a given t, wegenerate the t-boundaried graphs of U ttree in order of increasing size. By the jth generationwe refer to all of those graphs of size j in this process.(2) The search ordering �.To de�ne �, we �rst extend the minor ordering of ordinary graphs to t-boundaried graphsin the natural way by holding the boundary �xed. In other words, the boundaried minor orderis de�ned by the same local operations as the minor order, except that we are not allowedto delete boundary vertices or to contract edges between two boundary vertices. This can beeasily shown to be a wqo on U tlarge by using the Graph Minor Theorem for edge-colored graphs.Let �m denote the minor order on ordinary graphs and let �@m denote the boundaried minororder.For X;Y 2 U ttree de�ne X � Y if and only if X �@m Y and X � Y . This is a wqo sincethere are only �nitely many equivalence classes of � on U ttree.(3) The Stop Signal.The graphs of U ttree are generated by size, one generation at a time (where the jth gener-ation consists of all those of size j). We say that there is nothing new at time j if none of thet-boundaried graphs of the jth generation are minimal with respect to the search order �.A stop signal is detected at time 2j if there is nothing new at time i for i = j; :::; 2j � 1.We have now completely described the algorithm. For t = 1; :::; B + 1 we generate thet-boundaried graphs in the manner described until a stop signal is detected. We form the setM and output the list of elements of M (with boundaries forgotten) that are obstructions9



for F . Note that having a decision algorithm for F is su�cient to determine if any particulargraph H is an obstruction, just by checking that H =2 F while each minor of H is in F . Thissame procedure and the decision algorithm for � allow us to compute whether it is time tostop.The correctness of the algorithm is established by the following claims.Claim 1. For each value of t a stop signal is eventually detected.This follows immediately from the fact that � is a wqo on U ttree and therefore there areonly a �nite number of minimal elements.Claim 2. Suppose that for a given t a stop signal is detected at time 2j. Then no obstructionfor F that can be parsed with the t-boundaried set of operators has size greater than 2j.If T is rooted tree, then by a rooted subtree T 0 of T we mean a subtree that is generatedby some vertex r of T (the root of T 0), together with all of the vertices descended from r in T .For t-boundaried graphs X and Y , we say that X is a pre�x of Y if, in a parse tree T for Y ,X is parsed by a rooted subtree T 0 of T . To denote that X is a pre�x of Y we write X � Y .Now suppose that T is a parse tree of minimum size for a counterexample H to Claim2. Since all of the operators in the standard set are either binary or unary, there must be apre�x H 0 of H of size at least j. Since there is nothing new during the times when H 0 wouldhave been generated, Claim 2 follows from:Claim 3. A pre�x of a graph that is minimal with respect to � must also be minimal.If X is a pre�x of Y and X is not minimal then X �@m X 0 with X 6= X 0 and X � X 0.Since � is a right congruence Y � Y 0 where Y 0 is obtained from Y by substituting a parse treefor X 0 for the subtree that parses X in a parse tree for Y . Since X 0 is a proper boundariedminor of X, Y 0 is a proper boundaried minor of Y . This implies that Y is not minimal withrespect to �.Claim 4. If X 2 O then for some t � B + 1, X 2 Mt.Since the treewidth of X is at most B, X 2 U ttree for some t � B +1. It remains to arguethat X is � minimal. But this is obvious, since any proper minor is in F and since � re�nesthe canonical F -congruence. 2A pathwidth version of Theorem A can be proved in essentially the same way.Jens Lagergren has shown that the use of the GMT in proving that the algorithm of The-orem A terminates can be replaced by an explicit calculation of a \stopping time" computablefrom the index of the congruence � [Lag93].Perhaps surprisingly, Theorem A can be implemented and a number of previously un-known obstruction sets have been mechanically computed [CD94, CDF95]. The \Holy Grail"of such e�orts would be a computation of the obstruction set for torus embedding, whichprobably contains about 2,000 graphs.Theorem A can also be adapted to other partial orders, including those such as thetopological order, that are not a wqo. It can be shown in this case that the (adapted)algorithm will correctly terminate if and only if the ideal F has a �nite obstruction set |thus providing a potentially interesting way to mechanically prove the existence of a �nite10



basis for particular ideals in non-wqos.4 Computational Engines That Stop on WidthIn this section, we extend the basic ideas of Theorem A in a couple of di�erent ways.Let Ot denote the F obstructions of pathwidth at most t.De�nition. An alarm for a lower ideal F is a pair of computable functions:(1) f� : N ! N , and(2) � : N ! f0; 1g, satisfying:(a) (reliability) �(t) = 1 if there is an obstruction H 2 O �Ot of pathwidth more than f�(t)(b) (eventual quiescence) 9t0 such that 8t � t0, �(t) = 0.Theorem B. Suppose the following are known for a minor order lower ideal F :(1) A decision algorithm for membership in F .(2) A decision algorithm for a �nite-index congruence for F . (The congruence can be eitherlarge or small.)(3) Algorithms for computing � and f� for an alarm for F .Then the obstruction set O for F can be computed.Proof. For any �xed t, Ot can be computed using subroutines (1) and (2) by the methods ofTheorem A adapted to pathwidth computations.De�ne the t-Stop Signal to be that:Oi = Ot for i = t; ::::; f�(t)and �(t) = 0This forms the basis of the procedure that establishes the theorem.Obstruction Set Computation(1) t 0(2) Repeat until a t-Stop Signal is detected:t t+ 1Compute Ot and �(t).Check for Stop Signals based on everything computed so far.(3) Output O = Ot.To see that this works correctly, it su�ces to argue: (1) if O 6= Ot then there will be not-Stop Signal, and (2) eventually there will be a Stop Signal. If O 6= Ot then we considertwo cases: (i) There is an obstruction H 2 O � Ot with pw(H) � f�(t). In this case, the�rst condition for a t-Stop Signal will fail. (ii) There is an obstruction H 2 O � Ot withpw(H) > f�(t). In this case, the reliability of the alarm implies that �(t) = 1 and so thesecond condition for a t-Stop Signal fails.If t1 is the maximum pathwidth of an F obstruction, then for all t � t1, we have O =Ot = Ot1. Thus the �rst condition for a t-Stop Signal will be satis�ed for all t � t1. Let11



t2 = maxft0; t1g. The eventual quiescence of the alarm insures that the second condition fora t2-Stop Signal will be met. 2We next prove an obstruction set computation algorithm that employs a terminatingsecond-order congruence as the alarm.Let Bh denote the complete binary tree of height h. Thus B1 consists of a root and twochildren. Bh has 2h�1 vertices, each vertex that is not a leaf has two children and each leaf isat distance h from the root. Let h(t) be the least value of h such that Bh(t) has pathwidth morethan t, and let f(t) be the number of vertices of Bh(t). It can be shown that f(t) = O(22t). Wewill use the notation f�1(y) to denote the largest positive integer x such that f(x) � y. Thefollowing structural lemma is crucial to the approach. The proof has appeared in [CDF96].Lemma 4.1 (Wide Factor Lemma) Let H be an arbitrary undirected graph, and let t bea positive integer. One of the following two statements must hold:(a) The pathwidth of H is at most f(t)� 1.(b) H can be factored: H = A � B, where A;B are boundaried graphs with boundary sizef(t), the pathwidth of A is greater than t, and A 2 Uf(t)path.Furthermore, if f(t+ 1) > t0 > f(t), then one of the following must hold:(c) The pathwidth of H is at most t0 � 1.(d) H = A�B, A 2 U t0path, B 2 U t0large, and pw (A) > t. 2Proof Sketch. We suppose that we have a set of 2h(t) � 1 tokens corresponding to thevertices of Bh(t). By a procedure for pebbling the graph with these tokens, we can either:(1) completely pebble the graph, in which case the sets of vertices occupied by pebbles attimes t = 0; 1; 2; ::: yields a path-decomposition of width at most 2h(t)� 2, or (2) we get stuck(by running out of pebbles). In this case, at the stuck point, all of the pebbles are on thegraph, and are linked in such a way that they provide a proof that the graph contains Bh(t)topologically. We remark that the proof of this Lemma (which we use here only structurally)is signi�cant for providing the �rst simple linear-time algorithm for obtaining an approximatepath-decomposition of a graph. 2We remark that the Wide Factor Lemma appears to be a bit \thin" in the sense that a\best possible" lower bound on the pathwidth of the t-factor should probably be closer to t=4than log t. No analog for treewidth is currently known.The Wide Factor Lemma is part of our method of recursively detecting large counterex-amples to the hypothesis: O = Ot. The form proved above is the most natural, in some sense,since it is allied with an e�cient approximate path decomposition algorithm. The factor Athat it produces has the weakness, however, that all of the vertices of A may be boundaryvertices. We next prove a form that is probably better suited to establishing terminationproperties of second-order congruences. We give this variation a similar name.Lemma 4.2 (Fat Factor Lemma) There is a (known) recursive function f(t) = O(22t) suchthat if H is an arbitrary undirected graph then one of the following three statements musthold:(1) The pathwidth of H is at most f(t)� 1.(2) H can be factored: H = A�B, where A and B are f(t)-boundaried graphs, the pathwidth12



of A is greater than t, A has at least t internal vertices, and A 2 Uf(t)path.(3) H topologically contains the complete graph on t vertices.Proof. We make use of a theorem of Mader [Mad72] that constructively identi�es a functiong(t) = O(2t) such that any graph with minimum degree g(t) contains topologically the com-plete graph on t vertices. We use the same proof technique as for the Wide Factor Lemma,except that we preface the pebbling procedure of that proof with an attempt at the followingpebbling moves that require at most t � g(t) + 1 additional pebbles:Repeat t times:If there is a vertex v of H of degree at most g(t) (possibly pebbled) then:Pebble N [v].Remove the pebble from v.If we are unable to complete this preface, then H has a subgraph of minimum degree g(t),and therefore H topologically contains the complete graph Kt. If we complete the preface,then the argument for the Wide Factor Lemma shows that one of the other two alternativesmust hold. 2Theorem C. Suppose the following are known for a minor order lower ideal F :(1) A decision algorithm for membership in F .(2) A decision algorithm for a terminating second-order congruence � for F .Then the obstruction set O for F can be computed by an algorithm that uses (1) and (2) assubroutines.Proof. We may assume that F is nontrivial (i.e., has at least one obstruction) because thiscan be easily determined using the subroutine for (2) with t = 2. (Note that the algorithm (2)allows us to decide a large (�rst-order) congruence for F for elements of U tlarge by consideringsingleton sets, and that this congruence necessarily re�nes the canonical �rst-order congruencefor F .) Let Ot denote the F obstructions of pathwidth at most t. Let Mt denote theminimal elements of U tpath in the partial order that is the intersection of the large (�rst-order)congruence available from (2) and the boundaried minor order. Since the congruence has �niteindex,Mt is �nite by the GMT. For any �xed t, the sets Ot andMt can be computed usingsubroutines (1) and (2) by the methods of Theorem A adapted to pathwidth computations.Let m(t) denote the maximum order of an obstruction of pathwidth at most t. Let f bethe function in the Fat Factor Lemma. Let t0 > f(m(t)). We say that the t-Stop Signal iswitnessed at t0 if: (1) Oi = Ot for i = t; ::::; t0, and(2) 8A 2 Mt0 with pw(A) > f�1(t0) � m(t) and jint(A)j > f�1(t0) � m(t) : fAg � S(A).A t-Stop Signal occurs if there is a t0 > t as above at which it is witnessed.Obstruction Set Computation(1) t 0(2) Repeat until a t-Stop Signal occurs:t t+ 1 13



Compute Ot and M t.Check for Stop Signals based on everything computed so far.(3) Output O = Ot.We argue that if O 6= Ot then there will be no t-Stop Signal. Let H 2 O � Ot, andsuppose that the t-Stop Signal is witnessed at t0. If pw(H) � t0 then clearly there will be noStop Signal. So suppose pw(H) > t0 where t0 > f(m(t)). By Lemma 4.2, one of two casesmust hold:Case 1: There is a factorization H = A�B where A 2 U t0path, B 2 U t0large, pw(A) > m(t) andjint(A)j > m(t). Since A is a factor of an obstruction, we have that for every A0 properlybelow A in the boundaried minor order, A0 � B 2 F and therefore A 6�F A0. Consequentlyfor each such A0 we have A 6� A0 and thus A 2 Mt0. We also have that fAg 6�F S(A) andtherefore fAg 6� S(A), a contradiction.Case 2: A topologically contains the complete graph on m(t) vertices. But in this caseA topologically contains any obstruction in Ot, which contradicts that it is a factor of anobstruction in O �Ot.If O = Ot (this must eventually hold, since O is �nite), then a t-Stop Signal will bewitnessed at t0 = maxff(t0); f(m(t))g, where t0 is the termination constant. 2Some Remarks on ImplementationsA proof that an obstruction set can be computed that uses Theorem C (or Theorem B)leaves us in an interesting situation. For a concrete example, suppose we believe (and arecorrect) that all of the obstructions have been found for t = 4. We know by Theorem B that ifwe are wrong, either we will �nd a new obstruction at t0 = 5, or a factor of a large obstructionwill cause the second part of the t = 4 Stop Signal not to occur at t0 = 5. However, thereis no converse implication for the second part of the Stop Signal; it may fail at t0 = 5 evenif O = O4. All that we are guaranteed is that there exists a t0 at which the t = 4 StopSignal will be witnessed. Whether in practice much \waiting" is required for a particularobstruction set computation is an interesting question (which of course will depend on theparticular congruence employed).Furthermore, suppose that the procedure of Theorem C is applied using a second-ordercongruence for F that is not known to be terminating. If a t-Stop Signal is observed at at somet0 then the proof of the theorem shows that O = Ot. For implementations, this is likely tobe a valuable su�cient condition for obstruction set identi�cation. We conjecture that many\natural" second-order congruences terminate rapidly, while our ability to prove terminationappears to be much weaker. A natural second-order congruence for the union of ideals isdescribed in x6.The implementation of an obstruction set computation engine at the University of Victoriaand Los Alamos National Laboratories (described in [CD94, CDF95]) is based, for a �xedpathwidth bound t, on the exploration of a tree whose root is the empty t-boundaried graph,and whose nodes correspond to the elements of Mt, the minimal elements with respect to aknown (�rst-order) congruence � for F . An element ofMt is characterized by the property:8A0 2 S(A) : A 6� A0. In the proof of Theorem C we use the stronger property satis�ed bya factor A of an obstruction relative to a second-order congruence � for F : A 6� S(A). This14



can provide the basis for an improved search strategy that explores only the subtree generatedby that subset of Mt that satis�es this more stringent minimality criterion. Based on somecomputational experiments with the implementation package described in [CD94, CDF95], itappears that (for a �xed width) the search trees that result from this approach can be verymuch smaller than the search trees based on �rst-order congruences.5 The Canonical Second-Order CongruenceIn this section, we show that Theorem C is natural, by establishing that the canonical second-order congruence for an ideal necessarily terminates.Lemma 5.1 Let G = (V;E) be an ordinary graph. If pw(G) = w then any subdivision of Ghas pathwidth at most w + 2.Proof. Let H = be a subdivision of G. Thus for each edge uv of G we have a (possiblyempty) set of vertices of H that subdivide uv. Let Suv denote this set of vertices and supposethat the vertices of Suv are indexed in the order in which they occur between between u andv, starting from either end (this is not important)Suv = fs[u; v; i] : 1 � i � muvgLet (P1; :::; Pm) be a path decomposition for G of width w. Thus each set of vertices Pi hasat most w � 1 members. For each edge uv of G choose a set Piuv of the decomposition suchthat fu; vg � Piuv . We may assume that the choices are all distinct, just by assuming thatany set of the decomposition of G is repeated su�ciently many times. We can obtain a pathdecomposition of H of the width required by replacing each set Piuv in the decomposition ofG by the sequence of sets:(Piuv ; Piuv [ fs[u; v; 1]g; Piuv [ fs[u; v; 1]; s[u; v;2]g; Piuv [ fs[u; v; 2]; s[u; v; 3]g; � � �Piuv [ fs[u; v;muv � 1]; s[u; v;muv]g; Piuv [ fs[u; v;muv]g; Piuv)That this satis�es the de�nition of a path decomposition for H is easily checked. 2De�nition. A t-boundaried graph A 2 U tlarge is a minimal topological factor of an ordinarygraph H with respect to a �xed t-boundaried graph B 2 U tlarge if:(1) A�B �top H, and(2) For every A0 properly below A in the boundaried topological order, A�B is not above Hin the topological order.Lemma 5.2 Suppose A;B and B are t-boundaried graphs with A a minimal topological factorof H with respect to B and B a minimal topological factor of H with respect to A. ThenA�B is a subdivision of H where the only subdivisions are boundary vertices. 2De�nition. Given an ordinary graph H, de�ne partst(H) to be the set of all t-boundariedgraphs A 2 U tlarge for which there is a t-boundaried graph B 2 U tlarge such that A is a minimaltopological factor of H with respect to B.Lemma 5.3 partst(H) is computable from H.15



Proof. Let H(t) denote the graph obtained from H by subdividing each edge t times, orequivalently, replacing each edge with a path having t internal vertices. Let P (H) denote theset of t-boundaried graphs obtained from H(t) by the following procedure:(1) In all possible ways: specify a boundary set V 0 of size t.(2) In all possible ways: partition the edge components of H � V 0 into two sets and thusobtain two factors A and B of H(t).(3) For each such factorization A�B = H(t) compute the minimal factors of H with respectto B that are below A in the boundaried topological order.(4) Let P (H) be the union of the sets computed in Step (3).Clearly P (H) � partst(H) by de�nition. To prove the inclusion in the other direction,suppose A is a minimal topological factor of H with respect to B, where A;B 2 U tlarge. LetB0 be a minimal topological factor of H with respect to A. From the de�nition, A is also aminimal topological factor of H with respect to B 0. By Lemma 5.3, A � B0 is a subdivisionof H in which the only subdividing vertices are boundary vertices. The lemma follows. 2The next lemma follows easily from the de�nitions.Lemma 5.4 Let X and Y be t-boundaried graphs. Then X � Y �top H if and only if thereare X 0; Y 0 2 partst(H) for which: X �top X 0, Y �top Y 0, X � Y 0 �top H, X 0� Y �top H, andX 0 � Y 0 �top H. 2Theorem D. The canonical second-order congruence �F for a lower ideal F terminates.Proof. By the GMT, F has a �nite set of obstructions in the minor order, and therefore alsoa �nite set of obstructions O = fH1; :::;Hsg in the topological order. Let m be the maximumpathwidth of the Hi. Take t0 = m+3. Suppose A 2 U tsmall for t � t0, and suppose pw(A) � t0.If fAg 6�F S(A) then there is a t-boundaried graph B 2 U tlarge such that A� B =2 F but forevery A0 2 S(A) we have A0 � B 2 F . Thus A�B �top Hi for some i, 1 � i � m. Supposethat B is a minimal element in the t-boundaried topological order on U tlarge for which this isso. By Lemma 5.4, it must be the case that A 2 partst(Hi). By Lemma 5.2, A � B is asubdivision of Hi. By Lemma 5.1, we have pw(A � B) � m + 2. But this contradicts thatpw(A) � m+ 3. 2Note that the property of termination for a second-order congruence is a �niteness prop-erty, and thus is amenable to powerful tools such as the GMT. The GMT is used implicitlyin the above proof of termination.6 A Second-Order Congruence for the Union ProblemA consequence of Theorem A is that the obstructions for a union F = F1 [F2 of lower idealsis computable fromO1 and O2 ifO1 and O2 each contain a planar graph, since in this case it ispossible to e�ectively calculate a bound on the maximum treewidth of an F -obstruction, andsince knowledge of O1 and O2 allow us to compute a re�nement of the canonical recognizabilitycongruence for F (see Lemma 6.1 below). Alternatively, using the results of Lagergren andArnborg [LA91], we have enough information to compute a bound on the maximum numberof vertices in an F -obstruction, and can then compute O by exhaustive search. If we are only16



interested in planar graphs, then such a bound on the maximum size of an obstruction canalso be computed by the di�erent method of Gupta and Impagliazzo [GI91] which may givea better bound.In this section, we show how to use Theorem C to compute the obstruction set for a unionF = F1 [F2 of ideals with known obstruction sets O1 and O2, in the case where one of thesecontains a tree.Clearly, knowing O1 and O2 allows us to decide membership in F , and thus we have the�rst ingredient for applying Theorem C. We next describe a decision algorithm for a secondorder congruence for F based on a set of abstract tests.For each positive integer t, the set of predicates (abstract tests) is indexed and de�ned asfollows, where X is the t-boundaried graph to which the predicate is applied:Index: (B1; B2) where B1 2 partst(H1), B2 2 partst(H2), H1 2 O1 and H2 2 O2.Question: Is there a choice of i 2 f1; 2g such that X �Bi 2 F ?We say that X fails the test � = (B1; B2) if the answer to the question is \no".De�nition. If T = fT tg is a collection of sets of tests on t-boundaried graphs, we de�ne thesecond-order congruence induced by T by S1 � S2 if and only if8� 2 T t : (9A1 2 S1 : A1 fails � )() (9A2 2 S2 : A2 fails � )Note that if the sets of tests are �nite, then the induced congruence has �nite index onsubsets of U tlarge.Lemma 6.1 The second-order congruence � induced by the set of tests described above is are�nement of the canonical second-order congruence for F = F1 [ F2.Proof. Suppose S1 and S2 are sets of t-boundaried graphs with S1 6�F S2. Then (w.l.o.g.)9Z 2 U tlarge and 9X 2 S1 with X � Z =2 F but 8Y 2 S2, Y � Z 2 F .So we have X � Z =2 F1 and X � Z =2 F2. Let Z �top Z1 where Z1 is minimal in theboundaried topological order, such that X � Z1 =2 F1 and similarly, suppose X � Z2 =2 F2where Z �top Z2 and Z2 is minimal. Then for some H1 2 O1 and for some H2 2 O2, we haveZi 2 partst(Hi) for i = 1; 2. So � = (Z1; Z2) is a test failed by X.For all Y 2 S2, either Y � Z 2 F1 or Y � Z 2 F2, and therefore, either Y � Z1 2 F1 orY � Z2 2 F2, so Y passes � . Thus S1 6� S2. 2We conjecture that the above congruence always terminates, but for now we have onlythe following weaker result.Theorem E. Suppose that F is a union of ideals in the minor orderF = F1 [ F2where the obstruction sets O1 and O2 for F1 and F2 are known and suppose that O1 containsat least one tree T . Then the obstruction set O for F can be e�ectively computed.Proof. Let O0i be the set of topological obstructions for Fi, i = 1; 2. These are easilycomputed from the sets Oi. Choose t0 to be larger than the maximum number of vertices ofany graph in O1[O2, and large enough so that any graph of pathwidth greater than or equal17



to t0 contains topologically a complete binary tree T1 of su�cient size so that any forest T 01obtained from T1 by contracting or deleting a single edge still has the obstruction tree T as aminor.Now suppose t � t0 and A 2 U tpath such that:(1) pw(A) � t0, and(2) jint(A)j � t0and suppose that A fails the test � = (B1; B2). Thus A�B1 =2 F1 and A�B2 =2 F2. ChooseH 2 O02 so that A�B2 �top H, and �x attention on:� A subgraph S1 of A that is a subdivision of T1.� A subgraph S2 of A�B2 that is a subdivision of H.The vertices of S2 are of two di�erent kinds: (i) those that correspond to vertices of H,and (ii) those that correspond to subdivisions of edges of H. Let u 2 int(A) be a vertex inthe interior of A that is not of the kind (i). If u has degree 0, then A0 = A � u fails � andwe are done. Otherwise, there is an edge uv in A. Let A0 be obtained from A by contractinguv. We have A0 �m T , so A0�B1 =2 F1, and we have A0�B2 �top H, so A0 �B2 =2 F2. ThusA0 2 S(A) fails � , which shows that � terminates. 2As intertwine of two graphs G and H is a graph that contains both G and H topologically,and that is minimal for this in the topological ordering. As a corollary of Theorem E, wehave the following concerning the computation of the (necessarily �nite, by the GMT) set ofintertwines of two graphs.Corollary. The set of intertwines of an arbitrary graph G and a tree T can be e�ectivelycomputed.Proof. Let O1 be the set of graphs that are minimal in the minor order (equivalently, thetopological order) on the universe U of graphs of maximum degree, among those graphs thathave G as a minor. Let O2 similarly be the set of graphs that are minimal in the minor order(equivalently, the topological order) on U , among those graphs (i.e., trees) that have T as aminor. These sets can be computed by considering all possible ways of splitting vertices ofdegree greater than 3.The procedures of Theorems A, B and C can be restricted to recursive subsets of theset of all graphs (in the manner of Consequence 2 of [FL88]). Using Theorem C restrictedin this way to U , compute the U -intertwines of each pair of graphs (H1;H2) with H1 2 O1and H2 2 O2, and let O denote the union of all of these sets of U -intertwines. It is easy toshow that if H is an intertwine of G and T , then H is a minor of some H 0 2 O. The setof intertwines of G and T can therefore be computed by searching exhaustively among theminors of the graphs in O. 27 Summary and Open ProblemsTo what extent can the Graph Minor Theorem be made e�ective? It seems to us that muchfurther progress on this general question should be possible, in part because powerful results(such as the GMT itself), can be brought to bear on such questions. It is sometimes assumed18



that anything having to do with well-quasiordering is hopelessly impractical, but the successfulimplementation of obstruction set theorem-provers belie this and must be regarded as a notabledevelopment, given the important role of forbidden substructure theorems in graph theory.The main contribution of this paper has been to establish methods for computing obstruc-tion sets that do not require a prior bound on maximum obstruction width. The notion ofa second-order congruence is also of practical signi�cance for implementations of obstructionset theorem-provers. The following three basic questions stand out for attention.(1) Is it possible to compute the obstruction set for a minor ideal F from an oracle for Fmembership and an oracle for the canonical recognizability congruence for F ?(2) Is it possible to compute the obstruction set for a minor ideal F from a MSO descriptionof F ?(3) Is it possible to compute the obstructions for a union of ideals F = F1 [ F2 from theobstruction sets for F1 and F2 ?By standard arguments, it is not hard to show that an answer of \yes" to question (i)implies \yes" to question (i + 1) for i = 1; 2. Our limited positive result on (3) could beextended to the case where one of the ideals excludes a planar graph if there is a positiveresolution of the following question.(4) Is there a treewidth analog of the Fat Factor Lemma?Acknowledgement. We thank Bruno Courcelle and Jan Arne Telle for stimulating conver-sations and suggestions in connection with this work.References[AF93] K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth and well-quasiordering. In Graph Structure Theory, Contemporary Mathematics vol. 147, pp. 539{564. American Mathematical Society, 1993.[APS90] S. Arnborg, A. Proskurowski and D. Seese. Monadic second-order logic: tree au-tomata and forbidden minors. Technical Report, University of Oregon, Dept. of Computerand Information Sciences UO-CIS-TR-90/23, 1990.[BFW92] H. P. Bodlaender, M. R. Fellows and T. J. Warnow. Two strikes against perfectphylogeny. Proc. 19th International Colloquium on Automata, Languages and Program-ming (ICALP '92), Springer Verlag, Lecture Notes in Computer Science vol. 623 (1992),273{283.[CD94] K. Cattell and M. J. Dinneen. A characterization of graphs with vertex cover up to�ve. Proceedings ORDAL'94, Springer Verlag, Lecture Notes in Computer Science vol.831 (1994), 86{99. 19
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