Approximating the Pathwidth of Outerplanar Graphs”

Rajeev Govindan', Michael A. Langstonfand Xudong Yan?

Abstract

Pathwidth is a well-known A/P-Complete graph metric. Only very simple classes
of graphs, such as trees, are known to permit practical pathwidth algorithms. We
present a technique to approximate the pathwidth of outerplanar graphs. Our al-
gorithm works in linear time, is genuinely practical and produces solutions at most
three times the optimum.

Keywords: algorithms, pathwidth, outerplanar graphs, approximation, tree de-
composition.

1 Introduction

Pathwidth was defined by Robertson and Seymour in their seminal series of papers on Graph
Minors [6]. Since then, this metric has found application in many areas, ranging from circuit
layout to natural language processing [4, 5]. Determining pathwidth is NP-Complete. Thus, it
is natural to search for fast approximation algorithms. No polynomial-time relative approxima-
tion algorithm (one whose solution is within a multiplicative constant of the optimum) is known
for the general problem. Moreover, no polynomial-time absolute approximation algorithm (one
whose solution is within an additive constant of the optimum) can exist unless P = NP [2].
The main result of this paper is a practical relative approximation algorithm for the path-
width problem on outerplanar graphs. Since outerplanar graphs have treewidth two or less,
the methods in [1] can, in principle, be used to compute the pathwidth exactly in polynomial
time. This is not a realistic option, however, because of the high degree of the polynomial and
its enormous multiplicative constant. In contrast, our algorithm approximates the pathwidth

to within a factor of three of the optimum in practical linear time.

*This research is supported in part by the Office of Naval Research under contract N00014-90-J-1855.
"Department of Computer Science, University of Tennessee, TN 37996-1301
{Prism Solutions Inc, 1000 Hamlin Court, Sunnyvale, CA 94089

2 Our Approach

2.1 Tree and Path Decompositions

We consider only connected graphs without loops or multiple edges.

A tree decomposition of a graph G is a pair (T,Y), where T'isatreeand Y = {Y; | i € V(1) }
is a collection of subsets of V() such that (i) for each edge e € F(G), some Y; contains both
end-points of e, and (ii) for all 7, j, k € V(T'), if j is on the path between ¢ and k in 7', Y;NY;, C Y.
The width of a tree decomposition (7,Y) is one less than the size of the largest set in Y. The
treewidth of G (denoted tw((G)) is the smallest width of all its tree decompositions.

A path decomposition of G is a sequence Xy,..., X, of subsets of V() such that (i) for
each edge e € F/(G), some X; contains both end-points of e, and (ii) for 1 <i < j <k < r,
X; N Xy C X;. The width of a path decomposition Xy,..., X, is one less than the size of the
largest set X;, 1 < ¢ < r. The pathwidth of G (denoted pw((G)) is the smallest width of all its

path decompositions.

2.2 A Conversion Procedure

Path decompositions can be derived from tree decompositions. We employ such a procedure,
td2pd, and prove its correctness. It requires a routine to construct optimal path decomposi-
tions of trees. For this, we use the linear-time method presented in [3]. Since the run-time of

td2pd is dominated by the time spent in this routine, td2pd runs in linear time as well.

Procedure td2pd

Input: A tree decomposition (7,Y") of a graph G.
Output: A path decomposition of G.
begin procedure

X1q,..., X, := an optimal path decomposition of T’

for 1 <i<rdo

o= U Yy
JEX:

output Py, ..., P;

end procedure

Theorem 1 Let (7,Y) denote a width-¢ tree decomposition of a graph . Then td2pd((7,Y))
returns a path decomposition of G with width no more than (¢ 4+ 1)(pw(7T) + 1) — 1.

Proof Let Xi,...,X, denote the optimal path decomposition of T constructed in td2pd,
and let Py,..., P, denote the output of td2pd. Then, for 1 < ¢ < r, |P| = | U Y;| <
(t+ 1)(pw(T) 4+ 1). Thus the width condition is satisfied, and we only need to éﬁé(cik that
Py, ..., P is a valid path decomposition of G.

It is easy to see that Pi,..., P. covers all edges in G. We prove by contradiction that
Py, ..., P has the intersection property. If the intersection property does not hold, then for
some 1 < ¢ < j < k < r, thereis a vertex v in F; N P, that is not in P;. Since v € F; N Py,
there must exist [€ X; and m € X, such that v belongs to Y; and Y,,,. Consider the subsets

Vi and V; of V(T'), where V; = U X, — X;and Vy = U X, — X;. The intersection property

<y p>J
of Xy,..., X, implies that V; and V; are disjoint. Moreover, there is no edge in T’ connecting

Vi and V3, because some X, must contain both end-points of such an edge, contradicting the
disjointness of V; and V5. Thus every path between Vi and V5 in T contains a vertex from
X;. In particular, the path between [and m must contain a vertex, say h, from X;. By the

intersection property of (T,Y), v € Yj. Since h € X;, Y, C Pj and v € P;, a contradiction. ll

3 Path Decompositions of Outerplanar Graphs

A graph is outerplanar if it has a planar embedding with all vertices lying on a single face.
Outerplanar graphs have treewidth at most two. In this section, we develop an algorithm that,
for an outerplanar graph G, constructs an optimal tree decomposition (7,Y) with pw(T) <
pw(G). By Theorem 1, running td2pd on (7,Y) produces a path decomposition with width
at most 3 X pw(G) + 2.

We say that (7,Y) is simple if (T,Y) has width at most two, 7" is a subgraph of G, and
veY, forall v e V(I). (Since our algorithms use vertex labels, we insist that the labels of
V(T') respect those of V(G).) Because pathwidth cannot be increased by taking a subgraph,
if (7,Y) is simple, then pw(T) < pw(G). Our algorithm constructs (17,Y) by combining tree
decompositions of G’s subgraphs. Let (T7,Y”) and (T”,Y"”) denote tree decompositions of
subgraphs G’ and G, respectively. Suppose that V(7”) and V(T") are disjoint, and that there
are vertices u € V(1) and v € V(T"), such that all the vertices in V(G') N V(G”) are in both
Y and Y. Then we may obtain a tree decomposition of G’ UG" by adding the edge uv. This

U

decomposition is simple if (T7,Y’) and (T”,Y") are simple and if uwv € F(G') U E(G").

3.1 Biconnected Graphs

We concentrate initially on biconnected graphs (those without cut points).

Lemma 1 Let (G be biconnected, outerplanar and of order at least three. Let v denote a vertex
in G. Then G contains a path P with at least two edges, and with endpoints w and =z, such
that the following conditions hold :

e G — (P —{w,za}) is biconnected, outerplanar, and contains v,
e w and z are adjacent in G (and hence, in G — (P — {w, z})), and
e every edge in G is either in P orin G — (P — {w, z}).

Proof If G is a cycle, then the lemma is satisfied by setting P to G — {uv}, where u is a vertex
adjacent to v. Otherwise, fix an outerplanar layout of . Let F; denote the set of internal
edges of G (those not on the external face). Orient the layout so that some edge ¢’ is rightmost
and some edge €” is leftmost in F;. If v is to the left of €/, then setting P to the path consisting
of all the external edges to the right of ¢’ satisfies the lemma. Otherwise, set P to the path

containing all the external edges to the left of ¢”. Wl

If a path P contains at least two edges and has endpoints w and z, then it has a width-two
tree decomposition (7,Y) such that T = P — {w, 2} and for ¢ € V(T), Y; = {«,i,j}, where j
is the neighbor of ¢ on w’s side (the sets Y; actually form a path decomposition of P). We call
(T,Y) a w-extensible tree decomposition of P. Figure 1 shows a path and its w-extensible tree

decomposition. The sets Y; are shown inside the ovals.

12223 (Ax 34— {x A8 —{x5ub

Figure 1: A path and its w-extensible tree decomposition.

Note that for every edge ij € I/(P), either {¢,7} C Y; or {¢,7} C Y,;. We use the notion
of extensibility to derive bec-op-td, our algorithm to construct simple tree decompositions of

biconnected outerplanar graphs.

Procedure bc-op-td

Input: A biconnected outerplanar graph G of order two or more, and a vertex v in G
Output: A simple tree decomposition (T,Y) of G, with T spanning G — {v}.
begin procedure
if |[V(G)] =2
then begin
u := the vertex adjacent to v;
T:={u} and Y :={Y,}, where Y, := {u,v};
end
else begin
P := a path, between some two vertices w and x, that satisfies Lemma 1;
(T",Y") := be-op-td(G — (P —{w, z}),v);
if {w,2}CY,]
then begin
e := the edge incident on w in P;
(T",Y") := the w-extensible tree decomposition of P;
end
else begin
e := the edge incident on z in P;
(T",Y") := the z-extensible tree decomposition of P;
end
T:=T'UT"U{e} and YV =Y/ UY"
end
output (7,Y);
end procedure

At this point, we may as well assume that v is chosen at random. A specific choice of v is

necessary when (' is a biconnected component of a larger graph (see Section 3.3).

Lemma 2 Let GG be biconnected and outerplanar, and let v denote a vertex in G. Let (T,Y)
denote the result of the call to be-op-td (G, v). Then (7,Y) is a simple tree decomposition of
G/, and T is a spanning tree of G — {v}.

Proof We prove, using induction on |F/(G)|, a somewhat stronger result. We show that (7,Y)
is simple, that 7" spans GG — {v}, and that for each edge ij in G, either ¢ € V(1) with {7,7} C Y}
or j € V(T') with {¢, 7} CY;. The lemma holds for the basis case, in which G contains just one
edge. If |F(G)| > 1, let P, with endpoints w and z, denote a path that satisfies Lemma 1. Let
G’ denote G — (P — {w,2}). Thus v is in G’. By the induction hypothesis, be-op-td(G’, v)
returns a simple tree decomposition (77,Y”), with 7" spanning G’ — {v}, and with {w,z} C Y,
or {w,z} C Y. Assume, without loss of generality, that {w,2} C Y, . Let (T”,Y") denote
the w-extensible tree decomposition of P. Then T” = P — {w, 2} and {w,z} C Y, where

is w’s neighbor in P. T is formed by adding an edge between vertex w in 7’ and vertex a in

T". The only vertices common to G’ and P are w and 2, which are contained in both Y,/ and
Y. Therefore (T,Y) is a valid tree decomposition of G. (T,Y) is simple because (77,Y’) and
(T",Y") are simple, with the edge wa existing in G. T" spans G —{v} because T’ spans G' — {v}
and T" spans P — {w,z}. To complete the induction, observe that for each edge ij € F(G),
{i,7} C Y; or {i,j} C Yj, because either {7,j} = {w,a} C Y, or {i,j} is contained in one of
Y/, Y/, Y/ and Y. B

3.2 Efficiency

We store the input graph in doubly-linked adjacency list format. This is space-efficient, because
outerplanar graphs have a linear number of edges (if tw(G) < 2, then |E(G)| < 2|V(G)|). We
also employ a few additional links. To facilitate the removal of an edge ab, links are maintained
between the copy of b in a’s adjacency list and the copy of ¢ in b’s adjacency list. The only steps
in bc-op-td that take more than constant time are (i) finding a path P that satisfies Lemma
1, (ii) deleting the edges and internal vertices of P from the input graph, and (iii) constructing
an extensible tree decomposition of P. Of these, steps (ii) and (iii) take at most linear time
over all calls to bec-op-td. Thus the question of efficiency reduces to the implementation of
step (i). One fast method is described below.

Some preprocessing is required. We first construct an outerplanar layout of G. We scan
the layout in a clockwise direction, starting at v, and number vertices in the order in which
they are encountered. Then we rearrange the adjacency list of each vertex, a, so that neighbors
numbered lower than a occur before neighbors numbered higher than a. Each of these tasks
takes only linear time.

Once preprocessing is completed, paths to play the role of P are found during a second
clockwise scan. It follows from Lemma 1 that, until G is reduced to a cycle, a pair of vertices
may be the endpoints of P if and only if they are adjacent by an internal edge and all vertices
with numbers between them have degree two. Vertices of degree three or more are maintained
on a stack. As a new vertex is scanned, we check whether it is adjacent by an internal edge to
the vertex on top of the stack. If it is, then we have found P’s endpoints. If not, we push the
new vertex on the stack and continue the scan.

It turns out that no vertex will be pushed on the stack as long as an internal edge makes

it adjacent it to a lower-numbered vertex. This, in turn, implies that G is reduced to a cycle

before the scan returns to v. Thus the scan terminates after a linear number of steps, and
we only need argue that each step can be accomplished in constant time. Let £ denote the
vertex being scanned, and j the vertex on top of the stack. We need to check whether j and
k are adjacent by an internal edge. Since (G is outerplanar, and since j cannot be adjacent to
a lower-numbered vertex by an internal edge, either j is adjacent by an internal edge only to
k, or k is adjacent by an internal edge to no lower-numbered vertex other than j. In the first
case, j has degree at most three. In the second, j can only be one of the first two elements in
k’s adjacency list. Therefore, we need to scan at most five elements in the adjacency lists of j

and k. Thus step (i) requires only linear time, and so does be-op-td.

3.3 Tackling Non-Biconnected Graphs
We now generalize our algorithm to handle all outerplanar graphs.

Procedure op-td

Input: An outerplanar graph G of order two or more, and sets B and C' of its
biconnected components and cut points.
Output: A simple tree decomposition (7,Y) of G, with T' spanning G.
begin procedure
if G is biconnected
then begin
u,v := any two adjacent vertices in G
(T",Y") := be-op-td(G, v);
T: =T U{v}U{uv} and Y =Y U{Y,}, where Y, = {v};
end
else begin
B; := an element of B that contains exactly one vertex v from C
if v is not a cut point in G — (B; — {v}) then C' := C — {v};
(T",Y") := be-op-td(B;, v);
(17,") = op-td(G — (B: — {v}), B — {B:}, C);
u := an arbitrary neighbor of v in B;;
T:=T'UT"U{uv}, and YV =Y ' UY",;
end
output (7,Y);
end procedure

Lemma 3 Let (& be outerplanar. Let (7,Y) denote the result of the call to op-td(G). Then

(T,Y) is a simple spanning tree decomposition of .

Proof The proof proceeds by induction on the number of biconnected components of . The

basis case, when (' is biconnected, follows from Lemma 2 and the modifications made to (7', Y)

after the call to be-op-td(G,v). So let By, v, (T",Y"), (T, Y") and u be as defined in op-td.
Let G denote G — (B; — {v}). From the proof of Lemma 2, we know that (7",Y”) is simple,
that it spans B; — {v}, and that {u,v} C Y, (there is no Y]). By the induction hypothesis,
(T",Y") is a simple spanning tree decomposition of G. Thus, by construction, (T,Y) is a simple

spanning tree decomposition of G. il

3.4 Main Result

Biconnected components and cut points can be found using a depth-first search. Procedure op-
td builds an optimal tree-decomposition using bc-op-td. This tree decomposition is converted
into a path decomposition using td2pd. Recalling Theorem 1, and noting that each of the

aforementioned steps requires only linear time, we achieve the following result.

Theorem 2 If (7 is outerplanar, a path decomposition of G with width at most 3 x pw(G) + 2

can be constructed in linear time.

4 Concluding Remarks

We have implemented our algorithm in the C' programming language. Tests on a SPARC
ULTRA indicate that the implementation is fast in practice, taking, for instance, less than
two seconds to compute the path decomposition of a graph with ten thousand vertices. It is
difficult to gauge the quality of the solutions produced, because there is no practical way to
obtain optimal path decompositions for comparison. As a compromise, we tested the program
on pseudo-random outerplanar graphs of known pathwidth. These tests indicate that the
approximate decompositions tend to have much smaller width than the worst case guarantee.

Our work has exploited the fact that if the width of a tree decomposition (7,Y) of G
is bounded, and if pw(T') is within some constant multiple of pw (), then we can construct a
path decomposition of G whose width is at most a constant times pw((). Series-parallel graphs
also have treewidth at most two. Optimal tree decompositions for them can be constructed
quickly. We believe that, for these graphs, it is possible to ensure pw(T") < 2pw(G), yielding a
factor-of-six relative approximation algorithm.

On a more general note, we conjecture that any graph G has an optimal tree decomposition

(T,Y) such that pw(T) < pw(G). If true, a constructive proof of this would provide a relative

approximation algorithm for any class of graphs whose bounded-width tree decompositions can
be found efficiently. Currently, this class includes all graphs of treewidth four or less and, for
any fixed k, k-chordal graphs, k-outerplanar graphs and graphs with disk dimension k, to name

just a few.

References

[1] H. L. Bodlaender and T. Kloks, “Efficient and Constructive Algorithms for the Pathwidth
and Treewidth of Graphs,” Journal of Algorithms 25 (1996), 358-402.

[2] N. Deo, M. S. Krishnamoorthy and M. A. Langston, “Exact and Approximate Solutions
for the Gate Matrix Layout Problem,” IFEF Transactions on Computer-Aided Design 6
(1987), 79-84.

[3] J. A. Ellis, I. H. Sudborough and J. S. Turner, “The Vertex Separation and Search
Number of a Graph,” Information and Computation 113, August 1994, 50-79.

[4] M. R. Fellows and M. A. Langston, “On Well-Partial-Order Theory and Its Application
to Combinatorial Problems of VLSI Design,” STAM Journal on Discrete Mathematics
5:1 (1992), 117-126.

[6] A. Kornai and Z. Tuza, “Narrowness, pathwidth, and their application in natural lan-

guage processing,” Discrete Applied Mathematics 36 (1992), 87-92.

[6] N. Robertson and P. D. Seymour, “Graph Minors II. Algorithmic Aspects of Treewidth,”
Journal of Algorithms 7 (1986), 309-322.

[7] X. Yan, “A Relative Approximation Algorithm for Computing Pathwidth,” Master’s
Thesis, Department of Computer Science, Washington State University, Pullman, WA
99164 (1989).

