
Approximating the Pathwidth of Outerplanar Graphs�Rajeev Govindany, Michael A. Langstonyand Xudong YanzAbstractPathwidth is a well-known NP-Complete graph metric. Only very simple classesof graphs, such as trees, are known to permit practical pathwidth algorithms. Wepresent a technique to approximate the pathwidth of outerplanar graphs. Our al-gorithm works in linear time, is genuinely practical and produces solutions at mostthree times the optimum.Keywords: algorithms, pathwidth, outerplanar graphs, approximation, tree de-composition.1 IntroductionPathwidth was de�ned by Robertson and Seymour in their seminal series of papers on GraphMinors [6]. Since then, this metric has found application in many areas, ranging from circuitlayout to natural language processing [4, 5]. Determining pathwidth is NP-Complete. Thus, itis natural to search for fast approximation algorithms. No polynomial-time relative approxima-tion algorithm (one whose solution is within a multiplicative constant of the optimum) is knownfor the general problem. Moreover, no polynomial-time absolute approximation algorithm (onewhose solution is within an additive constant of the optimum) can exist unless P = NP [2].The main result of this paper is a practical relative approximation algorithm for the path-width problem on outerplanar graphs. Since outerplanar graphs have treewidth two or less,the methods in [1] can, in principle, be used to compute the pathwidth exactly in polynomialtime. This is not a realistic option, however, because of the high degree of the polynomial andits enormous multiplicative constant. In contrast, our algorithm approximates the pathwidthto within a factor of three of the optimum in practical linear time.�This research is supported in part by the O�ce of Naval Research under contract N00014{90{J{1855.yDepartment of Computer Science, University of Tennessee, TN 37996{1301zPrism Solutions Inc, 1000 Hamlin Court, Sunnyvale, CA 940891

2 Our Approach2.1 Tree and Path DecompositionsWe consider only connected graphs without loops or multiple edges.A tree decomposition of a graph G is a pair (T; Y), where T is a tree and Y = fYi j i 2 V (T)gis a collection of subsets of V (G) such that (i) for each edge e 2 E(G), some Yi contains bothend-points of e, and (ii) for all i; j; k 2 V (T), if j is on the path between i and k in T , Yi\Yk � Yj .The width of a tree decomposition (T; Y) is one less than the size of the largest set in Y . Thetreewidth of G (denoted tw(G)) is the smallest width of all its tree decompositions.A path decomposition of G is a sequence X1; : : : ; Xr of subsets of V (G) such that (i) foreach edge e 2 E(G), some Xi contains both end-points of e, and (ii) for 1 � i � j � k � r,Xi \Xk � Xj. The width of a path decomposition X1; : : : ; Xr is one less than the size of thelargest set Xi, 1 � i � r. The pathwidth of G (denoted pw(G)) is the smallest width of all itspath decompositions.2.2 A Conversion ProcedurePath decompositions can be derived from tree decompositions. We employ such a procedure,td2pd, and prove its correctness. It requires a routine to construct optimal path decomposi-tions of trees. For this, we use the linear-time method presented in [3]. Since the run-time oftd2pd is dominated by the time spent in this routine, td2pd runs in linear time as well.Procedure td2pdInput: A tree decomposition (T; Y) of a graph G.Output: A path decomposition of G.begin procedureX1; : : : ; Xr := an optimal path decomposition of T ;for 1 � i � r doPi := [j2Xi Yj;output P1; : : : ; Pr;end procedureTheorem 1 Let (T; Y) denote a width-t tree decomposition of a graph G. Then td2pd((T; Y))returns a path decomposition of G with width no more than (t + 1)(pw(T) + 1)� 1.2

Proof Let X1; : : : ; Xr denote the optimal path decomposition of T constructed in td2pd,and let P1; : : : ; Pr denote the output of td2pd. Then, for 1 � i � r, jPij = j [j2Xi Yj j �(t + 1)(pw(T) + 1). Thus the width condition is satis�ed, and we only need to check thatP1; : : : ; Pr is a valid path decomposition of G.It is easy to see that P1; : : : ; Pr covers all edges in G. We prove by contradiction thatP1; : : : ; Pr has the intersection property. If the intersection property does not hold, then forsome 1 � i < j < k � r, there is a vertex v in Pi \ Pk that is not in Pj . Since v 2 Pi \ Pk,there must exist l 2 Xi and m 2 Xk, such that v belongs to Yl and Ym. Consider the subsetsV1 and V2 of V (T), where V1 = [p<jXp �Xj and V2 = [p>jXp �Xj. The intersection propertyof X1; : : : ; Xr implies that V1 and V2 are disjoint. Moreover, there is no edge in T connectingV1 and V2, because some Xq must contain both end-points of such an edge, contradicting thedisjointness of V1 and V2. Thus every path between V1 and V2 in T contains a vertex fromXj . In particular, the path between l and m must contain a vertex, say h, from Xj . By theintersection property of (T; Y), v 2 Yh. Since h 2 Xj , Yh � Pj and v 2 Pj , a contradiction.3 Path Decompositions of Outerplanar GraphsA graph is outerplanar if it has a planar embedding with all vertices lying on a single face.Outerplanar graphs have treewidth at most two. In this section, we develop an algorithm that,for an outerplanar graph G, constructs an optimal tree decomposition (T; Y) with pw(T) �pw(G). By Theorem 1, running td2pd on (T; Y) produces a path decomposition with widthat most 3� pw(G) + 2.We say that (T; Y) is simple if (T; Y) has width at most two, T is a subgraph of G, andv 2 Yv for all v 2 V (T). (Since our algorithms use vertex labels, we insist that the labels ofV (T) respect those of V (G).) Because pathwidth cannot be increased by taking a subgraph,if (T; Y) is simple, then pw(T) � pw(G). Our algorithm constructs (T; Y) by combining treedecompositions of G's subgraphs. Let (T 0; Y 0) and (T 00; Y 00) denote tree decompositions ofsubgraphs G0 and G00, respectively. Suppose that V (T 0) and V (T 00) are disjoint, and that thereare vertices u 2 V (T 0) and v 2 V (T 00), such that all the vertices in V (G0) \ V (G00) are in bothY 0u and Y 00v . Then we may obtain a tree decomposition of G0 [G00 by adding the edge uv. Thisdecomposition is simple if (T 0; Y 0) and (T 00; Y 00) are simple and if uv 2 E(G0) [E(G00).3

3.1 Biconnected GraphsWe concentrate initially on biconnected graphs (those without cut points).Lemma 1 Let G be biconnected, outerplanar and of order at least three. Let v denote a vertexin G. Then G contains a path P with at least two edges, and with endpoints w and x, suchthat the following conditions hold :� G� (P � fw; xg) is biconnected, outerplanar, and contains v,� w and x are adjacent in G (and hence, in G� (P � fw; xg)), and� every edge in G is either in P or in G� (P � fw; xg).Proof If G is a cycle, then the lemma is satis�ed by setting P to G�fuvg, where u is a vertexadjacent to v. Otherwise, �x an outerplanar layout of G. Let Ei denote the set of internaledges of G (those not on the external face). Orient the layout so that some edge e0 is rightmostand some edge e00 is leftmost in Ei. If v is to the left of e0, then setting P to the path consistingof all the external edges to the right of e0 satis�es the lemma. Otherwise, set P to the pathcontaining all the external edges to the left of e00.If a path P contains at least two edges and has endpoints w and x, then it has a width-twotree decomposition (T; Y) such that T = P � fw; xg and for i 2 V (T), Yi = fx; i; jg, where jis the neighbor of i on w's side (the sets Yi actually form a path decomposition of P). We call(T; Y) a w-extensible tree decomposition of P . Figure 1 shows a path and its w-extensible treedecomposition. The sets Yi are shown inside the ovals.
x 1 2 3 4 5 w

{x,1,2} {x,2,3} {x,3,4} {x,4,5} {x,5,w}Figure 1: A path and its w-extensible tree decomposition.Note that for every edge ij 2 E(P), either fi; jg � Yi or fi; jg � Yj . We use the notionof extensibility to derive bc-op-td, our algorithm to construct simple tree decompositions ofbiconnected outerplanar graphs. 4

Procedure bc-op-tdInput: A biconnected outerplanar graph G of order two or more, and a vertex v in G.Output: A simple tree decomposition (T; Y) of G, with T spanning G� fvg.begin procedureif jV (G)j = 2then beginu := the vertex adjacent to v;T := fug and Y := fYug, where Yu := fu; vg;endelse beginP := a path, between some two vertices w and x, that satis�es Lemma 1;(T 0; Y 0) := bc-op-td(G� (P � fw; xg); v);if fw; xg � Y 0wthen begine := the edge incident on w in P ;(T 00; Y 00) := the w-extensible tree decomposition of P ;endelse begine := the edge incident on x in P ;(T 00; Y 00) := the x-extensible tree decomposition of P ;endT := T 0 [T 00 [feg and Y := Y 0 [Y 00;endoutput (T; Y);end procedureAt this point, we may as well assume that v is chosen at random. A speci�c choice of v isnecessary when G is a biconnected component of a larger graph (see Section 3.3).Lemma 2 Let G be biconnected and outerplanar, and let v denote a vertex in G. Let (T; Y)denote the result of the call to bc-op-td(G; v). Then (T; Y) is a simple tree decomposition ofG, and T is a spanning tree of G� fvg.Proof We prove, using induction on jE(G)j, a somewhat stronger result. We show that (T; Y)is simple, that T spans G�fvg, and that for each edge ij in G, either i 2 V (T) with fi; jg � Yior j 2 V (T) with fi; jg � Yj . The lemma holds for the basis case, in which G contains just oneedge. If jE(G)j> 1, let P , with endpoints w and x, denote a path that satis�es Lemma 1. LetG0 denote G � (P � fw; xg). Thus v is in G0. By the induction hypothesis, bc-op-td(G0; v)returns a simple tree decomposition (T 0; Y 0), with T 0 spanning G0�fvg, and with fw; xg � Y 0wor fw; xg � Y 0x. Assume, without loss of generality, that fw; xg � Y 0w. Let (T 00; Y 00) denotethe w-extensible tree decomposition of P . Then T 00 = P � fw; xg and fw; xg � Y 00a , where ais w's neighbor in P . T is formed by adding an edge between vertex w in T 0 and vertex a in5

T 00. The only vertices common to G0 and P are w and x, which are contained in both Y 0w andY 00a . Therefore (T; Y) is a valid tree decomposition of G. (T; Y) is simple because (T 0; Y 0) and(T 00; Y 00) are simple, with the edge wa existing in G. T 0 spans G�fvg because T 0 spans G0�fvgand T 00 spans P � fw; xg. To complete the induction, observe that for each edge ij 2 E(G),fi; jg � Yi or fi; jg � Yj , because either fi; jg = fw; ag � Y 00a or fi; jg is contained in one ofY 0i , Y 0j , Y 00i and Y 00j .3.2 E�ciencyWe store the input graph in doubly-linked adjacency list format. This is space-e�cient, becauseouterplanar graphs have a linear number of edges (if tw(G) � 2, then jE(G)j < 2jV (G)j). Wealso employ a few additional links. To facilitate the removal of an edge ab, links are maintainedbetween the copy of b in a's adjacency list and the copy of a in b's adjacency list. The only stepsin bc-op-td that take more than constant time are (i) �nding a path P that satis�es Lemma1, (ii) deleting the edges and internal vertices of P from the input graph, and (iii) constructingan extensible tree decomposition of P . Of these, steps (ii) and (iii) take at most linear timeover all calls to bc-op-td. Thus the question of e�ciency reduces to the implementation ofstep (i). One fast method is described below.Some preprocessing is required. We �rst construct an outerplanar layout of G. We scanthe layout in a clockwise direction, starting at v, and number vertices in the order in whichthey are encountered. Then we rearrange the adjacency list of each vertex, a, so that neighborsnumbered lower than a occur before neighbors numbered higher than a. Each of these taskstakes only linear time.Once preprocessing is completed, paths to play the role of P are found during a secondclockwise scan. It follows from Lemma 1 that, until G is reduced to a cycle, a pair of verticesmay be the endpoints of P if and only if they are adjacent by an internal edge and all verticeswith numbers between them have degree two. Vertices of degree three or more are maintainedon a stack. As a new vertex is scanned, we check whether it is adjacent by an internal edge tothe vertex on top of the stack. If it is, then we have found P 's endpoints. If not, we push thenew vertex on the stack and continue the scan.It turns out that no vertex will be pushed on the stack as long as an internal edge makesit adjacent it to a lower-numbered vertex. This, in turn, implies that G is reduced to a cycle6

before the scan returns to v. Thus the scan terminates after a linear number of steps, andwe only need argue that each step can be accomplished in constant time. Let k denote thevertex being scanned, and j the vertex on top of the stack. We need to check whether j andk are adjacent by an internal edge. Since G is outerplanar, and since j cannot be adjacent toa lower-numbered vertex by an internal edge, either j is adjacent by an internal edge only tok, or k is adjacent by an internal edge to no lower-numbered vertex other than j. In the �rstcase, j has degree at most three. In the second, j can only be one of the �rst two elements ink's adjacency list. Therefore, we need to scan at most �ve elements in the adjacency lists of jand k. Thus step (i) requires only linear time, and so does bc-op-td.3.3 Tackling Non-Biconnected GraphsWe now generalize our algorithm to handle all outerplanar graphs.Procedure op-tdInput: An outerplanar graph G of order two or more, and sets B and C of itsbiconnected components and cut points.Output: A simple tree decomposition (T; Y) of G, with T spanning G.begin procedureif G is biconnectedthen beginu; v := any two adjacent vertices in G;(T 0; Y 0) := bc-op-td(G; v);T := T 0 [fvg [fuvg and Y := Y 0 [fYvg, where Yv = fvg;endelse beginBi := an element of B that contains exactly one vertex v from C;if v is not a cut point in G� (Bi � fvg) then C := C � fvg;(T 0; Y 0) := bc-op-td(Bi; v);(T 00; Y 00) := op-td(G� (Bi � fvg); B � fBig; C);u := an arbitrary neighbor of v in Bi;T := T 0 [T 00 [fuvg, and Y := Y 0 [Y 00;endoutput (T; Y);end procedureLemma 3 Let G be outerplanar. Let (T; Y) denote the result of the call to op-td(G). Then(T; Y) is a simple spanning tree decomposition of G.Proof The proof proceeds by induction on the number of biconnected components of G. Thebasis case, when G is biconnected, follows from Lemma 2 and the modi�cations made to (T; Y)7

after the call to bc-op-td(G; v). So let Bi; v; (T 0; Y 0); (T 00; Y 00) and u be as de�ned in op-td.Let Ĝ denote G � (Bi � fvg). From the proof of Lemma 2, we know that (T 0; Y 0) is simple,that it spans Bi � fvg, and that fu; vg � Y 0u (there is no Y 0v). By the induction hypothesis,(T 00; Y 00) is a simple spanning tree decomposition of Ĝ. Thus, by construction, (T; Y) is a simplespanning tree decomposition of G.3.4 Main ResultBiconnected components and cut points can be found using a depth-�rst search. Procedure op-td builds an optimal tree-decomposition using bc-op-td. This tree decomposition is convertedinto a path decomposition using td2pd. Recalling Theorem 1, and noting that each of theaforementioned steps requires only linear time, we achieve the following result.Theorem 2 If G is outerplanar, a path decomposition of G with width at most 3� pw(G)+ 2can be constructed in linear time.4 Concluding RemarksWe have implemented our algorithm in the C programming language. Tests on a SPARCULTRA indicate that the implementation is fast in practice, taking, for instance, less thantwo seconds to compute the path decomposition of a graph with ten thousand vertices. It isdi�cult to gauge the quality of the solutions produced, because there is no practical way toobtain optimal path decompositions for comparison. As a compromise, we tested the programon pseudo-random outerplanar graphs of known pathwidth. These tests indicate that theapproximate decompositions tend to have much smaller width than the worst case guarantee.Our work has exploited the fact that if the width of a tree decomposition (T; Y) of Gis bounded, and if pw(T) is within some constant multiple of pw(G), then we can construct apath decomposition of G whose width is at most a constant times pw(G). Series-parallel graphsalso have treewidth at most two. Optimal tree decompositions for them can be constructedquickly. We believe that, for these graphs, it is possible to ensure pw(T) � 2pw(G), yielding afactor-of-six relative approximation algorithm.On a more general note, we conjecture that any graph G has an optimal tree decomposition(T; Y) such that pw(T) � pw(G). If true, a constructive proof of this would provide a relative8

approximation algorithm for any class of graphs whose bounded-width tree decompositions canbe found e�ciently. Currently, this class includes all graphs of treewidth four or less and, forany �xed k, k-chordal graphs, k-outerplanar graphs and graphs with disk dimension k, to namejust a few.References[1] H. L. Bodlaender and T. Kloks, \E�cient and Constructive Algorithms for the Pathwidthand Treewidth of Graphs," Journal of Algorithms 25 (1996), 358{402.[2] N. Deo, M. S. Krishnamoorthy and M. A. Langston, \Exact and Approximate Solutionsfor the Gate Matrix Layout Problem," IEEE Transactions on Computer-Aided Design 6(1987), 79{84.[3] J. A. Ellis, I. H. Sudborough and J. S. Turner, \The Vertex Separation and SearchNumber of a Graph," Information and Computation 113, August 1994, 50{79.[4] M. R. Fellows and M. A. Langston, \On Well-Partial-Order Theory and Its Applicationto Combinatorial Problems of VLSI Design," SIAM Journal on Discrete Mathematics5:1 (1992), 117{126.[5] A. Kornai and Z. Tuza, \Narrowness, pathwidth, and their application in natural lan-guage processing," Discrete Applied Mathematics 36 (1992), 87{92.[6] N. Robertson and P. D. Seymour, \Graph Minors II. Algorithmic Aspects of Treewidth,"Journal of Algorithms 7 (1986), 309{322.[7] X. Yan, \A Relative Approximation Algorithm for Computing Pathwidth," Master'sThesis, Department of Computer Science, Washington State University, Pullman, WA99164 (1989).
9

