
Experimental Assessment of Workstation Failuresand Their Impact on Checkpointing SystemsJames S. PlankWael R. ElwasifDepartment of Computer ScienceUniversity of TennesseeKnoxville, TN 37996[plank,elwasif]@cs.utk.eduDecember 12, 1997Technical Report UT-CS-97-379University of TennesseeAvailable via ftp to cs.utk.edu in pub/plank/papers/CS-97-379.ps.ZOr on the web at http://www.cs.utk.edu/~plank/plank/papers/CS-97-379.htmlSubmitted for publication. See the web page for futher information.
1

Experimental Assessment of Workstation Failures and Their Impacton Checkpointing SystemsJames S. Plank� Wael R. ElwasifDecember 12, 1997University of Tennessee Technical Report UT-CS-97-379.Submitted for publication. For publication status of this work, please see:http://www.cs.utk.edu/~plank/plank/papers/CS-97-379.htmlAbstractIn the past twenty years, there has been a wealth of theoretical research on minimizing the expected runningtime of a program in the presence of failures by employing checkpointing and rollback recovery. In the sametime period, there has been little experimental research to corroborate these results. In this paper, we studythe results of three separate projects that monitor failure in workstation networks. Our goals are twofold. The�rst is to see how these results correlate with the theoretical results, and the second is to assess their impacton strategies for checkpointing long-running computations on workstations and networks of workstations. Asurprising result of our work is that although the base assumptions of the theoretical research do not hold,many of the results are still applicable.1 IntroductionThe price and performance of desktop workstations has made them a viable platform for scienti�c comput-ing. Combined with software platforms that allow workstations to cooperate using the paradigms of message-passing [SGDM93, Mes94], and shared memory [ACD+96], workstation networks have become powerful compu-tational resources, rivaling supercomputers in their utility for scienti�c programming.Traditionally, checkpointing and rollback recovery have been employed to provide fault-tolerance for long-running computations on all computing platforms (e.g. [LS92, PBKL95, HKW95, Ste96, EJZ92, CPL97]). Bystoring a checkpoint, a program limits the amount of re-execution necessary following a process or processorfailure. In turn, this improves the program's running time in the presence of failures.�plank@cs.utk.edu. This material is based upon work supported by the National Science Foundation under grants CCR-9409496,CDA-9529459 and CCR-9703390. 1

How often to checkpoint is a question of paramount practical importance. If one checkpoints too often, thenthe overhead of checkpointing may slow down the application program too much. However, if one checkpoints tooinfrequently, then the program may spend too much time re-executing code following failures. The problem ofdetermining how often to checkpoint is called the optimal checkpoint interval problem. Its goal is to allow users ofcheckpointing systems to determine the frequency of checkpointing (the \interval") that minimizes the expectedrunning time of the application in the presence of failures.Determining the optimal checkpoint interval is a �eld of research with a rich history. The �rst papers on thetopic appeared in the 1970's in the context of transaction processing systems [CR72, You74, GD78, Gel79]. Laterwork has concentrated on real-time systems [SLL87, GRW88], distributed systems [Vai95, WF96, KS97] and moregeneral frameworks for analysis [Bac81, Dud83, TB84, KSL84, LM88, Vai97]. All of these papers derive analyticalresults concerning the performance of checkpointing systems in the presence of failures.In relation to scienti�c computing on workstations and workstation networks, the above research has manyimplications. If the assumptions underlying the analytical results hold, then they may be used to:� Predict a program's expected running time in the presence of failures, with or without checkpointing.� Determine the optimal interval in which to checkpoint. This interval enables the program to minimize itsexpected running time in the presence of failures.� Compare the performance of checkpointing algorithms.In short, the results may be used to help make important decisions concerning the algorithms and runtimeparameters in a checkpointing system.All of the above papers require that the probability distribution of workstation failures is known. Typically,Poisson failure rates are assumed. In the papers where they are not assumed (e.g. [TB84, SLL87]), they are stillemployed to exemplify the usage of the resulting equations. If workstation failures do not follow a Poisson model,the applicability of these results for scienti�c computing on workstations is brought into question.There has been very little research that addresses the underlying assumptions of these results. In [CS84], themanifestation of software errors was shown not to follow Poisson processes. More signi�cantly, in [LMG95], Longet al performed a study monitoring the availability of machines on the Internet. In this study, they determinethat the probability of machine failures following a Poisson model is extremely small. They do not attempt tocharacterize the failure model as following any standard probability distribution function.Thus, there is a contradiction between the theoretical results and experimental observations. The purposeof this paper is to address this contradiction and assess its practical implications on the users of checkpointingsystems. We do this by analyzing machine availability data on three di�erent networks of workstations , includingLong's. We simulate the performance of programs with and without checkpointing on these networks, and comparethe simulated results to the theoretical projections. 2

A surprising result of this paper is that although the failure model of all three networks is decidedly notgoverned by Poisson processes, to a �rst approximation many of the theoretical results still hold. Thus, in theabsence of more data than the MTTF of a machine, one may determine a checkpoint interval that is not optimal,but reasonably close.2 OutlineThe outline of this paper is as follows. In Section 3, we state signi�cant results from research on the optimalcheckpoint interval. If failures follow a Poisson distribution, then the results cited in this section are extremelyuseful for determining runtime parameters for checkpointing, and for comparing checkpointing algorithms.In Section 4, we describe the three sets of data that we use in this study. Each set contains longitudinal failureinformation for a collection of workstations over period of six months or greater. In each data set, we can statewith high con�dence that failures do not follow a Poisson distribution.In the remainder of the paper, we use the data from Section 4 to run simulations of checkpointing systems.With these simulations, we may determine the performance of checkpointing with any given parameters (e.g.checkpoint interval, overhead, etc). We use the simulations to assess how well the equations from Section 3predict actual checkpointing performance. We conclude with recommendations on selecting parameters andalgorithms for checkpointing that minimize the expected running time of long-running computations.3 Results from Research on the Optimal Checkpoint IntervalIn the literature cited in Section 1, there are many useful equations concerning the performance of checkpointingsystems. We divide them into four categories:1. Predicting the performance of a program without checkpointing. Without checkpointing, one runsa program and hopes that it completes before the machine on which it is running fails. If the machine doesfail, then the program must be started anew when the machine becomes functional.2. Predicting the performance of a program with checkpointing. With checkpointing, the programperiodically stores checkpoints of its execution state. If the machine fails, then the program recovers to thestate of the last stored checkpoint.3. Predicting the optimal checkpoint interval. This is the frequency of checkpointing that minimizes theprogram's expected running time in the presence of failures.4. Predicting the failure rate of parallel systems. Equations in the above three categories have all beenderived for uniprocessor systems. In certain cases, one can treat a parallel checkpointing system like a3

uniprocessor system with a slightly di�erent failure model. In order to use the equations in above threecategories, the failure rate of the parallel system must be predicted from the uniprocessor failure rate. Thisprediction is the subject of this category.In the equations that follow, we employ the following nomenclature (mostly borrowed from Vaidya [Vai97]):C { Average checkpoint overhead. Checkpoint overhead is the amount of time added to the application ina failure-free run as the result of checkpointing. C represents the average overhead per checkpoint.L { Checkpoint latency. Latency is de�ned to be the time between when a checkpoint is initiated, andwhen it may be used to recover from a failure. If the application is halted while checkpointing, then thelatency typically equals the overhead. However, certain optimizations such as forked checkpointing decreaseoverhead drastically while slightly increasing latency (for a discussion of this, please see [Vai97]).R { Recovery time. This is the time that it takes the system to restore itself to a checkpointed state once it hasbecome functional. Note that R does not take into account the down time of a system or the re-executiontime of the application. It is simply a measure of how long it takes the system to restore itself from acheckpoint. Typically, R and L have similar values.D { Down time. This is the average time following a failure before the system becomes functional.F { Failure-free running time. This is the running time of the application with no checkpointing on a machinethat does not fail.I, T { Checkpoint interval. When an application is checkpointing periodically, the frequency of checkpointingis governed by the checkpoint interval. Unfortunately, there are two ways to specify the checkpoint interval.The �rst, I, is the is the duration between the start of one checkpoint and the start of the next checkpoint.The second, T , is de�ned to be I � C. If latency is equal to overhead, then T is the time between the endof one checkpoint and the beginning of the next checkpoint.Some checkpointing systems (e.g. [PL94, PBKL95]) require the user to specify I, while others (e.g. [WHV+95])require the user to specify T . When optimizations such as forked checkpointing are used, and L� C, I isthe more natural speci�cation. However, all theoretical research on the optimal checkpoint interval assumesthat T is speci�ed.The di�erence between specifying I and T has subtle implications on performance. If I is speci�ed, then theinterval between the beginning of the program and the start of the �rst checkpoint is I. If T is speci�ed, thenit is T . Similarly, if I is speci�ed, then the interval between recovery from a checkpoint and the beginningof the next checkpoint is I. If T is speci�ed, then it is T . Thus, if one checkpointing system requires theuser to specify I, and another requires the user to specify T , then even if all other parameters (e.g. C, L,R, etc) are the same, and even if I = T + C, performance of the two systems may di�er. If I � C, this4

di�erence should be very slight, but if I is close to C and the failure rate is high, the di�erence may besigni�cant.In all checkpointing systems, I must be greater than L. Otherwise, one checkpoint will not complete beforethe next one begins.EI , ET { Expected running time. EI/ET is the expected running time of the application with checkpointingin the presence of failures. The checkpoint interval is either I, or T , depending on which interval speci�cationmethod the checkpointing system requires.EF { Expected running time with no checkpointing. If the checkpoint interval is F (by either speci�cationmethod), then the program will never checkpoint. If a failure occurs, then the application must restart fromthe beginning. Therefore EF is the expected running time presence of failures when there is no checkpointing.Iopt, Topt { Optimal checkpoint interval. Iopt is the value of I that minimizes EI . Topt is the value of Tthat minimizes ET . If I � C, then Iopt � Topt +C.� { Failure rate. This is the average number of failures per unit time. If the mean time before failure of asystem is MTTF, then � = 1=MTTF.If � is a random variable following a Poisson distribution (i.e. � is governed by a Poisson process), then thefollowing results hold.3.1 Predicting the performance of a program without checkpointingThe equation for predicting EF was �rst speci�ed by Duda [Dud83]:EF = �e�F � 1�� (1)In this equation, it is assumed that the down time is zero. To include non-zero down times, this equation mustbe multiplied by e�D: EF = e�D �e�F � 1�� (2)This assumes that 1=D is also governed by a Poisson process.3.2 Predicting the performance of a program with checkpointingTo calculate ET , Vaidya provides the following equation [Vai97]:ET = �FT � e�(D+L�C+R) �e�(T+C) � 1�� (3)Note that EF may be derived from this when T = F and C = R = L = 0.5

3.3 Predicting the optimal checkpoint intervalAn approximation to Topt was �rst derived by Young [You74]:Topt = p2C=� (4)We refer to this as Young's approximation. In this approximation, it is assumed that C = L = R. Laterpapers provide re�nements to Young's approximation. Recently, Vaidya has provided the following equation forTopt [Vai97]: e�(Topt+C)(1� �Topt) = 1; Topt 6= 0 (5)We refer to this as Vaidya's approximation. It is important to note that although Vaidya includes overhead,latency and recovery time in his model, the equation for Topt depends only on the overhead and the failure rate.3.4 Predicting the failure rate of parallel systemsThere is less theoretical research on checkpointing performance in parallel systems. A straightforward approachis to assume that N processors are cooperating to run a parallel application, and periodically they coordinate totake checkpoints of the global system state. These are called coordinated checkpoints. For a thorough discussionof coordinated checkpointing, please see the survey paper by Elnozahy et at [EJW96]. If any processor fails, thenall the processors halt. When N processors again become functional, they all roll back to the stored checkpoint.In this scenario, the above equations may be employed to predict the performance of checkpointing, as long aswe use � = �N , which is the rate of the �rst processor in the collection failing.If processor failures are independent and they all follow Poisson distributions, then:�N = N�1: (6)This fact is employed in all performance predictions of parallel checkpointing systems (e.g. [Vai95, WF96, KS97]).4 Data CollectionTo assess the applicability of the above equations, we obtained collections of failure data for three separateworkstation networks. In each collection, a set of workstations was monitored for a period of at least six months.For each workstation, the data records the periods when the machine was functional. We assume that betweenfunctional periods, the machine is in a failure state. The granularity of the data is seconds, although the accuracy,as described below, is on the order of minutes to hours. We describe each data set below.6

4.1 LONG { Random machines on the InternetThe �rst set of data was collected by Long et al between July, 1994 and May, 1995. They wrote a programcalled \the tattler," which periodically queries a set of workstations on the Internet to determine their up-timeintervals. To remain una�ected by network partitions, the tattler is replicated at many sites, and the data ismerged to provide a uni�ed view of the workstations in question. A description of the tattler and an assessmentof the failure data appears in [LMG95]. In that paper, they report data from 1139 hosts distributed throughoutthe world.We obtained their data, and culled the number of hosts to 993, removing machines that reported times vastlyout of the July 1994 to May 1995 interval, and machines that had less than 50 percent availability, since it isunlikely that such machines would be used for scienti�c programming. It is for this reason that our TTF/TTRdata looks slightly di�erent than in [LMG95].It is obvious that this data collection method may not tell the whole story concerning a machine's failures. Forexample, if a machine fails twice between two queries of the tattler, then the corresponding interval between thefailures will be lost. Further, this data reports whether a machine is up, and not necessarily if it is usable. However,as a collection of a wide variety of geographically distributed machines, the LONG collection is extremely useful.4.2 PRINCETON { Network of DEC Alpha WorkstationsThe PRINCETON data set contains failure information for a collection of sixteen DEC Alpha workstationsin the Department of Computer Science at Princeton University. Some of machines are owned by individuals inthe department, and are sitting on their desks. The others are general-purpose workstations for any member ofthe department who needs them. Although the size of this network is much smaller than LONG, it represents atypical local cluster of homogeneous processors that is often used for parallel computation. The PRINCETONmachines are not rebooted or brought down for backups on any regular schedule. When they fail, it is typicallynot planned.The failure data for PRINCETON was collected between January and July, 1996. The method of collectiondi�ered from the LONG method. Instead, we used a program called ltest whose job was to \live" on each targetmachine, and to recognize failures. Ltest runs in the background on each machine, probing the machine everyten minutes to ensure that it is alive. It makes use of the cron daemon on each machine to spawn additionalcopies of itself every hour, four hours, eight hours, twelve hours, and 24 hours, so that if the main ltest programdies, due to machine or process failure, it gets restarted by the cron daemon.Ltest therefore measures a slightly di�erent class of failures than the tattler. For example, if the systemadministrator or the owner of the machine decides to kill all processes in the system, ltest will detect this as afailure, while it goes unnoticed by the tattler. However, ltest only detects that a machine is functional whenit (ltest) is running. Therefore, the time between a machine's restoration from a failure and when ltest gets7

initiated by the cron daemon will be considered down time by ltest, but up time by the tattler.4.3 CETUS { Network of Sun Sparc WorkstationsThe CETUS data set contains failure information, collected by ltest, for the \Cetus lab" in the Departmentof Computer Science at the University of Tennessee. The Cetus lab is a collection of thirty-one Sun Sparc IPXworkstations connected by a local-area network. The machines are general-purpose workstations for use by anymember of the department who needs them. They are a popular computing platform for running parallel scienti�capplications. One big di�erence between the CETUS machines and the PRINCETON machines is that theCETUS machines may be reserved at night for exclusive use by researchers conducting timing tests. When thereservation begins, the machines are rebooted, their cron daemons are disabled, and logins are refused for anyuser but the one with the reservation. Thus, while the tattler would report uptimes for reserved times, ltestclassi�es them as down, since the machines are unavailable at that time. The CETUS data was collected fromDecember, 1995 to July, 1996.The CETUS and PRINCETON data sets are included as opposite ends of a spectrum. Both are homo-geneous, local-area networks of workstations, but the PRINCETON machines fail infrequently and on no setschedule, while the CETUS machines fail frequently and at quasi-regular intervals. We have no knowledge aboutthe usage of the machines in the LONG data set. In looking at the failure data, it is clear that some follow adaily rebooting schedule, while others fail at unpredictable times.5 Basic Characteristics of the Data SetsThe basic characteristics of the three data sets are in Table 1. As expected, the PRINCETON machines havethe longest mean time to failure, and the CETUS machines the shortest. As the TTF/TTR interval distributiongraphs show, the three networks have greatly varying distributions. The LONG data shows a variety of TTFand TTR intervals; however there is a distinct spike at just under one day. Long guesses that this is due to anumber of machine owners who reboot their machines at the end of the day [LMG95].Nearly half of the PRINCETON TTF intervals are longer than a month, and 75% are longer than ten days.80% of the TTR intervals are under one day.In contrast, 70% of the CETUS TTF intervals are less than a day, with one value, roughly 15.5 hours,accounting for over a third of the intervals. Similarly, over 40% of the TTR intervals are between eight and ninehours. Since the lab reservations are for 8.5-hour periods, the TTF and TTR distributions seem quite reasonable.In order for workstation failures to be governed by a Poisson process, the TTF intervals should be distributedexponentially. For reference, an exponential distribution with a MTTF of 13.306 days is shown in Figure 1. Whileone cannot rule out a set of observed data being governed by en exponential distribution, there are standard testsby which one may state with high or low con�dence whether a set of data is exponentially distributed. Long8

Network LONG PRINCETON CETUSNumber of machines 993 16 31Number of TTF intervals 10958 79 1898Number of TTR intervals 9965 63 1867Mean TTF interval (days) 13.306 32.715 3.207Mean TTR interval (days) 1.497 1.303 0.245Availability 0.899 0.962 0.929TTF interval distribution
0.01 0.1 1 10 100

Time to Failure (days)

0.00

0.02

0.04

0.06

0.08

F
ra

ct
io

n
of

 I
nt

er
va

ls

0.01 0.1 1 10 100
Time to Failure (days)

0.00

0.05

0.10

0.15

F
ra

ct
io

n
of

 I
nt

er
va

ls
0.01 0.1 1 10

Time to Failure (days)

0.0

0.1

0.2

0.3

F
ra

ct
io

n
of

 I
nt

er
va

lsTTR interval distribution
0.01 0.1 1 10 100

Time to Recovery (days)

0.00

0.02

0.04

F
ra

ct
io

n
of

 I
nt

er
va

ls

0.01 0.1 1
Time to Recovery (days)

0.00

0.05

0.10

0.15

F
ra

ct
io

n
of

 I
nt

er
va

ls

0.01 0.1 1 10
Time to Recovery (days)

0.0

0.1

0.2

F
ra

ct
io

n
of

 I
nt

er
va

lsTable 1: Basic characteristics of the data setsperforms one such test on his data to determine that the probability that the intervals are distributed exponentiallyis vanishingly small. Likewise, we performed Q-Q tests [CKSS91] on all three sets of data using the SPSS softwarepackage [SPS96], and reached the same conclusion.6 Simulation of Checkpointing and Rollback RecoveryTo assess the applicability of the theoretical results presented in section 3, we wrote a program to simulate theexpected performance of long-running programs with periodic checkpointing and rollback recovery. As input, thesimulator takes one of the above data sets, plus F , C, L, R, and I. It then does the following for each machine inthe data set. It picks a starting time when the machine is up, and simulates running the program on that machineat that starting time. Every I seconds, the program takes a checkpoint, which requires C seconds of processing,9

0.01 0.1 1 10 100
Time to Failure (days)

0.00

0.02

0.04

0.06

0.08

F
ra

ct
io

n
of

 I
nt

er
va

lsFigure 1: An exponential TTF distribution with a MTTF of 13.306 days
0 2000 4000 6000 8000 10000

Run 1
Start = 0s

Run 2
Start = 3600s

End = 8000s

End = 10750s

down

down

1500s 1500s
Lost
work 1500s500s

Normal
Execution

Overhead
Committing
checkpoint

Recovering

Time Line (seconds)Figure 2: Example program simulation,and is not committed until L seconds after it started. When the program gets F seconds of running time (thisis in addition to the checkpoint overhead), it �nishes. If the machine fails before the program �nishes, then theprogram must wait until the machine becomes functional again, and then it takes R seconds to recover fromthe most recently committed checkpoint (zero seconds if there is no committed checkpoint). It then continuesprocessing until the program completes, or until the next failure occurs.One such simulation is calculated for each hour of the machine's lifetime. Speci�cally, if the last simulationstarted at time t, then the next simulation starts at t + 1h. If the machine is down at t + 1h, then the nextsimulation starts at the next uptime after t + 1h. Simulations are run in this manner until we get to the end ofthe data set. The running times are then averaged to yield an expected running time for that program on allmachines in the collection.For example, suppose our data set consists of one machinewith two uptime intervals, (0s,4000s) and (5000s,11000s),and we wish to simulate a program with F = 5000s, C = 250s, L = R = 500s, and I = 1500s. The graph inFigure 2 shows how each simulation proceeds, including the checkpoints, failures and recoveries. In the �rstrun, two checkpoints are completed before the machine fails. After the machine comes back up, the program is10

0 5 10 15 20

Failure-free running time, F (days)

0

10

20

30

40

50

E
xp

ec
te

d
ru

nn
in

g
tim

e,
 E

_F
 (

da
ys

) Simulated
Projected with Eq. 2
E_F = F

LONG

0 5 10 15 20

Failure-free running time, F (days)

0

10

20

30

40

50 Simulated
Projected
E_F = F

PRINCETON

0 5 10 15 20
Failure-free running time, F (days)

0

10

20

30

40

50 Simulated
Projected
E_F = F

CETUSFigure 3: Running times in the presence of failurerestored from the second checkpoint, and takes one more checkpoint before completing. The running time forthis program is 8000s (5000 execution, 750 checkpoint overhead, 500 recovery overhead, 750 lost computation,1000 downtime). In the second run, the program executes for 400s before the machine fails. When it comes backup, the program must be restarted from the beginning. It takes three checkpoints before completing, and thetotal running time is 7150s (5000 execution, 750 checkpoint overhead, 0 recovery overhead, 400 lost computation,1000 downtime). There is no third run, because the program cannot complete if it starts at 7200s. Therefore,the expected time to completion of this program on this machine is 7575 seconds.7 Simulation ResultsWe ran many simulations on the three data sets, and compared the results to the analytic equations of Section 3.We present the results in the four prediction categories presented in Section 3.7.1 Predicting the performance of a program without checkpointingTo predict EF for a program, we use Eq. 2 from Section 3. Figure 3 displays the results of simulating programswith no checkpointing and varying running times on each of the networks. Unsurprisingly, the PRINCETONnetwork gives the fastest running times, and the CETUS network gives the slowest. Figure 3 also plots theprojected values of EF using Eq. 2 from Section 3, and a line at EF = F for reference. In all networks, theprojected and simulated values start o� the same, but as the running time increases, the projected values risemuch more rapidly than the simulated values. The e�ect is more marked in the networks with higher failurerates.This suggests that as EF deviates from F , Eq. 2 loses its utility.7.2 Predicting the performance of a program with checkpointingTo predict the performance of a program with periodic checkpointing, we use Eq. 3 from Section 3. Tomeasure how well Eq. 3 predicts the running time of programs that employ checkpointing, we ran simulations of11

0 1 2 3 4 5
I (days)

0

10

20

30

40

50

E
xp

ec
te

d
R

un
ni

ng
 T

im
e

(d
ay

s)

E = 10d

E = 20d

E = 30d

LONG

0 1 2 3 4 5
I (days)

0

10

20

30

40

50

PRINCETON

0 1 2 3 4 5
I (days)

0

10

20

30

40

50

CETUSFigure 4: E�ect of modifying I on programs with C = L = R = 10m, F = 10d; 20d; 30dprograms that ran for 10, 20, and 30 days, had overheads of 1, 10, and 60 minutes, and varied I from just greaterthan the overhead to ten days. These overheads are consistent with those reported in real-life checkpointingapplications [WHV+95]. In these tests, we assume that C = L = R.We display the results for 10-minute overheads, and I varying from 15 minutes to 5 days in Figure 4. ThisFigure displays many features that are typical of all the tests. First, as anticipated, when I is too small, theoverhead of checkpointing dominates the running time of the program. However, this e�ect decreases rapidly asI increases until the expected running time reaches some minimal value. This is where I = Iopt. After that, therunning time increases more slowly with I as lost work due to failures because signi�cant.Second, for each network the shape of each curve is quite similar. Thus, we can say that to a �rst approximation,the e�ect of varying I on the running time of the program is independent of F . Third, in all cases, the minimumrunning time is at a value of I that is well less than 5 days.The shape of the curve for the CETUS network is more jagged than for the others. This is a direct result ofthe TTF distribution. As displayed in Table 1, more than a third of the TTF intervals occur at roughly 15.5h(0.645 days). Therefore, it makes sense for there to be a sharp increase in EI as I grows past 15.5h. Similarly,one expects to see a smaller increase as I grows past 7.7h. This e�ect is more pronounced in subsequent graphs.For brevity, in the �gures that follow we only plot values for E = 30 days, and we restrict the values of I tothose that are near Iopt.In Figure 5, we plot both simulated and projected values of EI for programs where C = L = R = 1m, 10m,and 60m. To project EI with Eq. 3, we assume EI = ET , where T = I �C. As anticipated, when the overheadof checkpointing is lower, the overall EI is lowered for all values of I. The value of Iopt is also lower. Similarly,when the overhead is higher, EI is higher for all values of I and the value of Iopt is higher. A striking featureof all the graphs in Figure 5 is that the projected values of EI are quite close to the simulated values. This isespecially true for I near Iopt, and even holds for the often-failing CETUS machines. From this, we draw thesurprising conclusion that for small values of I, Eq. 3 is a reasonable predictor of checkpointing performance.12

0.0 0.5 1.0 1.5 2.0
I (days)

30

35

40

45

50

E
xp

ec
te

d
R

un
ni

ng
 T

im
e

(d
ay

s)

LONG

C,L,R = 1h

0 1 2 3
I (days)

30

35

40

45

50

PRINCETON

0.0 0.2 0.4 0.6 0.8 1.0
I (days)

30

35

40

45

50

CETUS

0.0 0.2 0.4 0.6 0.8 1.0
30

35

40

45

50

E
xp

ec
te

d
R

un
ni

ng
 T

im
e

(d
ay

s)

C,L,R = 10m

0.0 0.5 1.0 1.5 2.0
30

35

40

45

50

0.0 0.2 0.4 0.6 0.8 1.0
30

35

40

45

50

0.0 0.2 0.4 0.6 0.8 1.0
30

35

40

45

50

E
xp

ec
te

d
R

un
ni

ng
 T

im
e

(d
ay

s)

Simulated
Projected

C,L,R = 1m

0.0 0.5 1.0 1.5 2.0
30

35

40

45

50

0.0 0.2 0.4 0.6 0.8 1.0
30

35

40

45

50

Figure 5: The e�ect of modifying I on EI , simulated and projected, for F = 30d, C = L = R = 1m; 10m; 1h.7.3 The optimal checkpoint intervalPerhaps a more important equation from Section 3 is the determination of the optimal checkpoint interval. Inthis section we evaluate the utility of both Young's approximation and Vaidya's approximation on the three datasets. For programs with running times of 30 days, we used our simulator to determine the optimal checkpointinterval Iopt for values of C = L = R between ten seconds and one hour. We then compared these to values ofIopt as calculated by Young and Vaidya's approximations.Figure 6 shows the results of these tests. The top row of graphs plots all three values of Iopt as a function ofcheckpoint overhead. For the bottom two rows of graphs, we used each value of Iopt | simulated, Young's andVaidya's | and simulated the expected running time of the program with that as the checkpoint interval. In themiddle row of graphs, we plot the expected running times as a function of checkpoint overhead. By de�nition,the simulated value of Iopt will yield the lowest expected running time. The bottom row of graphs prints theperformance penalty in using Young or Vaidya's approximation to Iopt instead of using the simulated value.There are several interesting results in Figure 6. First, if we consider the simulator's determination of Iopt to13

0 20 40 60
C,L,R (minutes)

0.0

0.5

1.0

I_
op

t (
da

ys
)

Simulated
Young’s approx.
Vaidya’s approx.

LONG

0 20 40 60
C,L,R (minutes)

0

1

2

PRINCETON

0 20 40 60
C,L,R (minutes)

0.0

0.2

0.4

CETUS

0 20 40 60
C,L,R (minutes)

30

31

32

33

34

35

E
_I

op
t (

da
ys

)

0 20 40 60
C,L,R (minutes)

30

31

32

0 20 40 60
C,L,R (minutes)

30

32

34

36

0 20 40 60
C,L,R (minutes)

0

1

2

3

P
en

al
ty

 o
ve

r
th

e
op

ti
m

al
 r

un
ni

ng
 ti

m
e

(h
ou

rs
)

0.0

0.2

0.4

LONG

0 20 40 60
C,L,R (minutes)

0

1

2

0.0

0.1

0.2

0.3

PRINCETON

0 20 40 60
C,L,R (minutes)

0

10

20

30

0

1

2

3

%
 penalty over the optim

al running tim
e

CETUSFigure 6: Comparing simulated and projected values of Iopt for C = L = R between 1m and 1h, F = 30d.be its true value, then we note that the true value of Iopt is almost always greater than Vaidya's approximation.Moreover, it resembles a step function which changes \steps" whenever it approaches Vaidya's approximation.The \steps" are larger in the LONG and CETUS networks, and appear related to the fact that both of thesedata sets have a single TTF value which is disproportionately represented (roughly 0.98d in LONG, and 0.64din the CETUS network). Therefore, when Young or Vaidya's approximation says, for example, that Iopt shouldbe 0.25d in the CETUS network, Iopt should actually be somewhere near 0.32d, because the same number ofcheckpoints (two) will be committed in the most frequent TTF interval, and less computation will be lost whenthe TTF interval is 0.64d, and the checkpoint interval is just less than 0.32d.is 0.32d. Obviously, there is more going on in Figure 6 than can be explained by this e�ect, but the dispro-portionately represented TTF values in CETUS and LONG seem to have an impact on Iopt.The second and third rows of graphs quantify the performance penalty of choosing Young or Vaidya's approx-imation to Iopt instead of the correct value. In the LONG and PRINCETON networks, the penalty is quitesmall { just a few hours in each case, which is less than 0.5% of the total running time of the application. In the14

0 20 40 60
L (minutes)

0.0

0.2

0.4

Io
pt

 (
da

ys
)

C = 10m

C = 5m

C = 1m

0 20 40 60
L (minutes)

0.0

0.2

0.4

0.6

0.8

0 20 40 60
L (minutes)

0.0

0.1

0.2

0.3

0 20 40 60
L (minutes)

30

31

32

33

34

R
un

ni
ng

 T
im

e
(d

ay
s)

C = 5m

C = 1m

C = 10m

LONG

0 20 40 60
L (minutes)

30.0

30.5

31.0

31.5

PRINCETON

0 20 40 60
L (minutes)

30

31

32

33

34

CETUSFigure 7: The optimal checkpoint interval as a function of latencyCETUS network, the places where the approximations di�er the most from the correct values show the worst per-formance penalties. The conclusions that we draw from this is that in the LONG and PRINCETON networks,both Young's and Vaidya's approximations achieve close to optimal performance on long-running programs. Inthe CETUS network, both approximations have points at which they penalize performance signi�cantly (morethan a day) over the optimal selection of the checkpoint interval.As a �nal remark about Figure 6, the middle row of graphs displays how decreasing checkpoint overheadimproves the performance of the application. For example, in the LONG network, lowering the overhead fromone hour to 20 minutes improves the average running time by one day. Lowering the overhead from one hour toone minute improves the running time by two days. Note that the points at which these curves meet the y-axiscorrespond to the availability of the respective systems. For example, the availability of the PRINCETONnetwork is 0.962. Thus, one would expect an optimal expected running time of 30d/0.962 = 31.2d, which isapproximately where its curve intersects the y-axis.LatencyAnother result from Section 3 is that the optimal checkpoint interval is independent of the checkpoint latency.To test this, we performed three tests which �x the checkpoint overhead at C = 1m, 5m and 10m, and vary thelatency between C and 60m. The results are displayed in Figure 7.The top row of graphs shows the value of Iopt as a function of the latency. Though no consistent patternemerges, to a �rst approximation it does appear that Iopt is independent of L. The second row of graphs shows15

0 10 20 30 40 50
Number of processors

0

1

2

3

4

la
m

bd
a_

N
 (

fa
il

ur
es

/d
ay

)

Simulated
Projected with Eq. 6

LONG

0 5 10 15
Number of processors

0.00

0.05

0.10

0.15

0.20

PRINCETON

0 10 20 30
Number of processors

0.0

0.5

1.0

1.5

CETUSFigure 8: Determination of �N for each network.the optimal running time for each value of L. As L increases, the running time increases as well, although not tothe same degree as when C is increased. This agrees with Vaidya's assertion that checkpoint latency has far lessimpact on the running time of a program than overhead [Vai97].7.4 Predicting the failure rate of parallel systemsWe performed one �nal test to explore the validity of Eq. 6 from Section 3. Here we wrote a program that takesas input a data set (LONG, PRINCETON or CETUS) and a number of processors N , and calculates �N forthe data set. It does this using a Monte Carlo simulation. The program runs for a given number of iterations,and during each iteration, it chooses a random set of N processors from the data set. It then calculates the TTFintervals for that data set, stipulating that an up state is when all N processors are functional, and a down stateis when less than N processors are functional. The TTF intervals are averaged over all iterations, and the MTTFis calculated. �N is then the inverse of the MTTF.Figure 8 displays �N as calculated by our program (20,000 iterations per value of N). This is plotted as afunction of N , and compared to N�1. The results are quite di�erent for each network. In the LONG network,�N appears to grow linearly with N , but at a rate of 1:26N�1, rather than N�1. In the PRINCETON andCETUS networks, �N grows much more slowly than N�1. This is to be expected because given the proximityof machines to each other within each network, it is unlikely that failures will be independent. For the CETUSnetwork, the reservation schedule guarantees that processor failures are not independent, and that �N will becloser to �1 than to N�1.From this data, it is hard to draw general conclusions concerning the failure rate of parallel systems. Certainlyassuming that �N = N�1 does not seem to be reasonable in any of the networks, with the possible exception ofthe LONG network. It remains to be seen what the implication of this is for predictions of parallel checkpointingperformance (e.g. [Vai95, WF96, KS97]). 16

8 ConclusionsWe have used the results of three workstation monitoring projects to assess the applicability of theoreticalequations concerning the performance of checkpointing. Since the equations require that failure and recoveryrates follow Poisson processes, and the actual failure and recovery rates did not follow Poisson processes, weexpected the equations to have little applicability. To our surprise, there are several cases where the equationsprovide an excellent barometer of checkpointing performance. To summarize our �ndings:� Eq. 2 is a poor predictor of the running time of a program without checkpointing. In particular, whenfailures play a signi�cant role in the execution of the program, Eq. 2 overestimates the expected runningtime drastically.� Eq. 3 provides a good approximation to the expected running time of a program for checkpoint intervalsthat are near the optimal interval.� Both Young and Vaidya's approximations to Topt/Iopt may be used without a huge performance penalty.In particular, these approximations for the LONG and PRINCETON networks penalized performanceonly by a few hours on a program that ran for 30 days.� The optimal checkpoint interval appears to be independent of checkpoint latency. Moreover, to optimizethe performance of checkpointing, decreasing overhead has more impact than decreasing latency.� Little can be said about the rate to �rst failure, �N , in a N -processor parallel system except that it cannotalways be assumed to equal N�1. In systems where failures are not independent, like the CETUS network,�N � N�1.We make no attempt to quantify the actual failure distribution of the three networks in terms of well knowndistributions. Nor do we attempt to characterize the mathematical properties of the distributions as they impactthe equations of Section 3. It is a subject of future work analyze the mathematical underpinnings of our results.There are several other avenues of future work in this area. The �rst is to encourage the collection anddissemination of a wider variety of failure data. Second is to consider factors such as CPU load and networkperformance in the data collection and simulation. Third is to consider parallel systems, and more advancedcheckpointing algorithms than simple coordinated checkpointing.9 AcknowledgmentsThe authors thank Darrell Long and Richard Golding for sharing their failure data, and Lee Hamner forwriting ltest and monitoring the PRINCETON and CETUS networks. We also thank Geo� Abers and AdamBeguelin for letting us monitor their workstation networks, and Nitin Vaidya and Yi-Min Wang for answeringquestions. 17

References[ACD+96] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel.TreadMarks: Shared memory computing on networks of workstations. IEEE Computer, 29(2):18{28,February 1996.[Bac81] B. Baccelli. Analysis of a service facility with periodic checkpointing. Acta Informatica, 15:67{81,1981.[CKSS91] M. J. Crowder, A. C. Kimber, R. L. Smith, and T. J. Sweeting. Statistical Analysis of ReliabilityData. Chapman & Hall, London, 1991.[CPL97] Y. Chen, J. S. Plank, and K. Li. CLIP: A checkpointing tool for message-passing parallel programs.In SC97: High Performance Networking and Computing, San Jose, November 1997.[CR72] K. M. Chandy and C. V. Ramamoorthy. Rollback and recovery strategies for computer programs.IEEE Transactions on Computers, 21:546{556, June 1972.[CS84] L. H. Crow and N. D. Singpurwalla. An empirically developed fourier series model for describingsoftware failures. IEEE Transactions on Reliability, R-33:176{183, June 1984.[Dud83] A. Duda. The e�ects of checkpointing on program execution time. Information Processing Letters,16:221{229, 1983.[EJW96] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang. A survey of rollback-recovery protocols in message-passing systems. Technical Report CMU-CS-96-181, Carnegie Mellon University, October 1996.[EJZ92] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The performance of consistent checkpointing.In 11th Symposium on Reliable Distributed Systems, pages 39{47, October 1992.[GD78] E. Gelenbe and D. Derochette. Performance of rollback recovery systems under intermittant failures.Communications of the ACM, 21(6):493{499, June 1978.[Gel79] E. Gelenbe. On the optimum checkpoint interval. Journal of the ACM, 26:259{270, April 1979.[GRW88] R. Geist, R. Reynolds, and J. Westall. Selection of a checkpoint interval in a critical-task environment.IEEE Transactions on Reliability, 37:395|400, October 1988.[HKW95] Y. Huang, C. Kintala, and Y-M. Wang. Software tools and libraries for fault tolerance. IEEETechnical Committee on Operating Systems and Application Environments, 7(4):5{9, Winter 1995.[KS97] G. P. Kavanaugh and W. H. Sanders. Performance analysis of two time-based coordinated checkpoint-ing protocols. In 1997 Paci�c Rim International Symposium on Fault-Tolerant Systems (PRFTS'97),,Taipei, Taiwan, December 1997. 18

[KSL84] C. M. Krishna, K. G. Shin, and Y. H. Lee. Optimization criteria for checkpoint placement. Commu-nications of the ACM, 27:1008{1012, October 1984.[LM88] P. L'Ecuyer and J. Malenfant. Computing optimal checkpointing strategies for rollback and recoverysystems. IEEE Transactions on Computers, 37(4):491{496, April 1988.[LMG95] D. Long, A. Muir, and R. Golding. A longitudinal survey of internet host reliability. In 14th Sympo-sium on Reliable Distributed Systems, pages 2{9, Bad Neuenahr, September 1995. IEEE.[LS92] M. Litzkow and M. Solomon. Supporting checkpointing and process migration outside the Unixkernel. In Usenix Winter 1992 Technical Conference, pages 283{290, San Francisco, CA, January1992.[Mes94] Message Passing Interface Forum. MPI: A message-passing interface standard. International Journalof Supercomputer Applications, 8(3/4), 1994.[PBKL95] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under unix. InUsenix Winter 1995 Technical Conference, pages 213{223, January 1995.[PL94] J. S. Plank and K. Li. Ickp | a consistent checkpointer for multicomputers. IEEE Parallel &Distributed Technology, 2(2):62{67, Summer 1994.[SGDM93] V. S. Sunderam, G. A. Geist, J. J. Dongarra, and R. Manchek. The PVM concurrent computingsystem: Evolution, experiences, and trends. Journal of Parallel and Distributed Computing, 1993.[SLL87] K. G. Shin, T-H. Lin, and Y-H. Lee. Optimal checkpointing of real-time tasks. IEEE Transactionson Computers, 36(11):1328{1341, November 1987.[SPS96] SPSS, Inc. SPSS for Windows. Release 7.5, see http://www.spss.com, 1996.[Ste96] G. Stellner. CoCheck: Checkpointing and process migration for MPI. In 10th International ParallelProcessing Symposium, April 1996.[TB84] S. Toueg and �O. Babaoglu. On the optimum checkpoint selection problem. SIAM Journal on Com-puting, 13:630{649, August 1984.[Vai95] N. H. Vaidya. A case for two-level distributed recovery schemes. In ACM SIGMETRICS Conferenceon Measurement and Modeling of Computer Systems, Ottawa, May 1995.[Vai97] N. H. Vaidya. Impact of checkpoint latency on overhead ratio of a checkpointing scheme. IEEETransactions on Computers, 46(8):942{947, August 1997.[WF96] K. Wong and M. Franklin. Checkpointing in distributed systems. Journal of Parallel & DistributedSystems, 35(1), May 1996. 19

[WHV+95] Y-M. Wang, Y. Huang, K-P. Vo, P-Y. Chung, and C. Kintala. Checkpointing and its applications. In25th International Symposium on Fault-Tolerant Computing, pages 22{31, Pasadena, CA, June 1995.[You74] J. S. Young. A �rst order approximation to the optimum checkpoint interval. Communications ofthe ACM, 17(9):530{531, September 1974.

20

