
Diskless CheckpointingJames S. Plank yKai Li xMichael Puening zy Department of Computer ScienceUniversity of TennesseeKnoxville, TN 37996plank@cs.utk.edux Department of Computer SciencePrinceton UniversityPrinceton, NJ 08544li@cs.princeton.eduz mpuening@cardinalsolutions.comDecember 12, 1997Technical Report UT-CS-97-380University of TennesseeAvailable via ftp to cs.utk.edu in pub/plank/papers/CS-97-380.ps.ZOr on the web at http://www.cs.utk.edu/~plank/plank/papers/CS-97-380.htmlSubmitted for publication. See the web page for futher information.1



Diskless CheckpointingJames S. Plank� Kai Li Michael A. PueningDecember 18, 1997This paper has been submitted for publication. Please see http://www.cs.utk.edu/~plank/plank/papers/CS-97-380.html for up to dateinformation concerning the publication status.The precursor to this work (where diskless checkpointing was �rst described) was presented at FTCS-24 [27].AbstractDiskless Checkpointing is a technique for checkpointing the state of a long-running computation on adistributed system without relying on stable storage. As such, it eliminates the performance bottleneck oftraditional checkpointing on distributed systems.In this paper, we motivate diskless checkpointing and present the basic diskless checkpointing scheme alongwith several variants for improved performance. The performance of the basic scheme and its variants is eval-uated on a high-performance network of workstations and compared to traditional disk-based checkpointing.We conclude that diskless checkpointing is a desirable alternative to disk-based checkpointing that can improvethe performance of distributed applications in the face of failures.1 IntroductionCheckpointing is an important topic in fault-tolerant computing as the basis for rollback recovery. Suppose auser is executing a long-running computation and for some reason (hardware or software), the machine running thecomputation fails. In the absence of checkpointing, when the machine becomes functional, the user must start theprogram over, thus wasting all previous computation. Had the user stored periodic checkpoints of the program'sstate to stable storage, then he or she could instead restart the program from the most recent checkpoint. Thisis called rolling back to a stored checkpoint. For long-running computations, checkpointing allows users to limitthe amount of lost computation in the event of a failure (or failures).There have been many programming environments intended for users with long-running computations thatrely on checkpointing for fault-tolerance. For example, Condor [34], libckpt [25] and others [16, 30, 37] provide�plank@cs.utk.edu. This material is based upon work supported by the National Science Foundation under grants CCR-9409496,MIP-9420653 and CDA-9529459, by the ORAU Junior Faculty Enhancement Award, and by DARPA under grant N00014-95-1-1144and contract DABT63-94-C-0049. 1



transparent checkpointing for uniprocessor programs, and checkpointers such as MIST [4], CoCheck [33] andothers [2, 10, 18, 28, 32] provide checkpointing in parallel computing environments.All of the above systems store their checkpoints on stable storage (i.e. disk), since stable storage typicallysurvives processor failures. However, since checkpoints can be large (up to hundreds of megabytes per processor),the act of storing them to disk becomes the main component that contributes to the overhead, or performancedegradation, due to checkpointing. This is more marked in parallel and distributed systems where the number ofprocessors often vastly outnumbers the number of disks.Several techniques have been devised and implemented to minimize this source of overhead, including incre-mental checkpointing [11, 38], checkpoint bu�ering with copy-on-write [9, 21], compression [20, 28] and memoryexclusion [25]. However with all of these techniques, the performance of the stable storage medium is still theunderlying cause of overhead.In this paper, we present diskless checkpointing. The goal of diskless checkpointing is to remove stable storagefrom checkpointing in parallel and distributed systems, and replace it with memory and processor redundancy.By eliminating stable storage, diskless checkpointing removes the main source of overhead in checkpointing.However, this does not come for free. The failure coverage of diskless checkpointing is less than checkpointing tostable storage, since none of the components in a diskless checkpointing system can survive a wholesale failure.Moreover, there is memory, processor and network overhead introduced by diskless checkpointing that is absentin standard disk-based schemes.The purpose of this paper is twofold. We �rst present basic schemes for diskless checkpointing and thenperformance optimizations to the basic schemes. Second, we assess the performance of diskless checkpointing ona network of Sparc-5 workstations as compared to standard disk-based checkpointing. As anticipated, disklesscheckpointing induces less overhead on applications than disk-based checkpointing, enabling the user to checkpointmore frequently without a performance penalty. This lowers the application's expected running time in thepresence of failures.Diskless checkpointing tolerates single processor failures, and in some cases multiple processor failures. How-ever, it does not tolerate wholesale failures (such as a power outage that knocks out all machines). Thus, anoptimized fault-tolerant scheme would be a two-level scheme, as advocated by Vaidya [35], where diskless check-points are taken frequently, and standard, disk-based checkpoints are taken at a much larger interval. In thisway, the more frequent case of one or two processors failing is handled swiftly, with low overhead, while the rarercase of a wholesale failure is handled as well, albeit with higher overhead and a longer rollback penalty.2 Overview of Diskless CheckpointingDiskless checkpointing is based on coordinated checkpointing. With coordinated checkpointing, a collection ofprocessors with disjoint memories coordinates to take a checkpoint of the global system state. This is called a2



\coordinated checkpoint". A coordinated checkpoint consists of checkpoints of each processor in the system plusa log of messages in transit at the time of checkpointing. Coordinated checkpointing is a well-studied topic infault-tolerance. For a thorough discussion of coordinated checkpointing, the reader is directed to the survey paperby Elnozahy, Johnson and Wang [8].With diskless checkpointing we assume that there is no message log to be stored (for example, the \Sync-and-stop" algorithm for coordinated checkpointing ensures that there is no message log [28]), or that the message logis contained within the checkpoints of individual processors. This reduces the problem of taking a coordinatedcheckpoint to saving the individual checkpoints of each processor in the system.Diskless checkpointing is composed of two parts { (1) checkpointing the state of each application processor inmemory, and (2) encoding these in-memory checkpoints and storing the encodings in checkpointing processors.When a failure occurs, the system is recovered in the followingmanner. First, the non-failed application processorsroll themselves back to their stored checkpoints in memory. Next, replacement processors are chosen to take theplace of the failed processors. Finally, the replacement processors use the checkpointed states of the non-failedapplication processors plus the encodings in the checkpointing processors to calculate the checkpoints of the failedprocessors. Once these checkpoints are calculated, the replacement processors roll back, and the applicationcontinues from the checkpoint. Note that either spare processors or some of the checkpointing processors may beused as replacement processors. If checkpointing processors are used, then the system will continue with fewer (orno) checkpointing processors, thus reducing the fault-tolerance. However, when more processors become available,they may be employed as additional checkpointing processors.2.1 Exact Problem Speci�cationThe user is executing a long-running application on a parallel or distributed computing environment composedof processors with disjoint memories that communicate by message-passing. The application executes on exactly nprocessors. With diskless checkpointing, an extra m processors are added to the system, and the n+m processorscooperate to take diskless checkpoints. As long as the number of processors in the system is at least n, and aslong as failures occur within certain constraints, the application may proceed e�ciently.As stated above, diskless checkpointing may be broken into two parts: application processors checkpointingthemselves, and checkpoint processors encoding the application processors' checkpoints. Each is explained below,followed by issues involved in gluing the two parts together.3 Application Processors Checkpointing ThemselvesHere the goal is for an application processor to checkpoint its state in such a way that if a rollback is calledfor, due to the failure of another processor, the processor can roll back to its most recent checkpoint. In standarddisk-based systems, a processor checkpoints itself by saving the contents of its address space to disk. Typically3



this involves saving all values in the stack, heap, global variables and registers as in Figure 1(a). If the processormust roll back, it overwrites the current contents of its address space with the stored checkpoint. As a last step,it restores the registers, which restarts the computation from the checkpoint, thereby completing the rollback.For more detail on general process checkpointing and recovery, see the papers on Condor [34] and libckpt [25].
Memory Disk

Registers

Application
Processor

A
dd

re
ss

 s
pa

ce
(u

nu
se

d)

Memory

Registers

Application
Processor

A
dd

re
ss

 s
pa

ce
D

is
kl

es
s

ch
ec

kp
oi

nt

Memory

Registers

Application
Processor

A
dd

re
ss

 s
pa

ce

P
ag

e 
fa

ul
ts

MemoryClone

Registers

Application
Processor

A
dd

re
ss

 s
pa

ce

C
he

ck
po

in
t

(u
nu

se
d)(a) (b) (c) (d)Figure 1: (a) Checkpointing to disk, (b) simple diskless checkpointing, (c) incremental diskless checkpointing,(d) forked diskless checkpointingWith diskless checkpointing, the processor saves its state in memory, rather than on disk. In its simplest form,diskless checkpointing requires an in-memory copy of the address space and registers, as in Figure 1(b). If arollback is required, the contents of the address space and registers are restored from the in-memory checkpoint.Note that this checkpoint will not tolerate the failure of the application processor itself; it simply enables theprocessor to roll back to the most recent checkpoint if another processor fails.One drawback of simple diskless checkpointing is memory usage. A complete copy of the application mustbe retained in the memory of each application processor. A solution to this problem is to use incrementalcheckpointing [11, 38], as in Figure 1(c). To take a checkpoint, an application processor sets the virtual memoryprotection bits of all pages in its address space to be read-only [1]. When the application attempts to write apage, an access violation (page fault) occurs. The checkpointing system then makes a copy of the faulting page,and resets the page's protection to read-write. Thus, a processor's checkpoint consists of the read-only pages inits address space plus the stored copies of all the read-write pages. To roll back to a checkpoint, the processorsimply copies (or maps) the checkpointed copies of all its read-write pages back to the application's address space.As long as the application does not overwrite all of its pages between checkpoints, incremental checkpointingimproves both the performance and memory utilization of checkpointing.The last useful checkpointing method is forked (or copy-on-write) checkpointing [9, 21, 25]. To checkpoint,the application clones itself (with, for example, the fork() system call in Unix) as depicted in Figure 1(d).This clone is the diskless checkpoint. To roll back, the application overwrites its state with the clone's, or if4



possible, the clone merely assumes the role of the application. Forked checkpointing is very similar to incrementalcheckpointing because most operating systems implement process cloning with copy-on-write. This means thatthe process and its clone will share pages until one of the processes alters the page. Thus, it works in the samemanner as incremental checkpointing, except the identi�cation of modi�ed pages and the page copying are allperformed in the operating system. This results in less CPU activity switching back and forth from system to usermode. Moreover, forked checkpointing does not require that the user have access to virtual memory protectionfacilities, which are not available in all operating systems.4 Encoding the checkpointsThe goal of this part is for extra checkpoint processors to store enough information that the checkpointsof failed processors may be reconstructed. Speci�cally, there are m checkpoint processors. These processorsencode the checkpoints of the application processors in such a way that when application processors fail, theircheckpoints may be recalculated from the checkpoints of the non-failed processors plus the encodings in thecheckpoint processors.4.1 Parity (Raid Level 5)The simplest checkpoint encoding is parity (Figure 2(a)). Here there is one checkpoint processor (i.e. m = 1)that encodes the bitwise parity of each of the application's checkpoints. In other words, let byte bji represent thej-th byte of application processor i. Then the j-th byte of the checkpoint processor will be:bjckp = bj1 � bj2 � : : :� bjnIf any application processor fails, the state of the system may be recovered as follows. First, a replacementprocessor is selected to take the place of the failed application processor. This could be the checkpoint processor,a spare processor that had previously been unused, or the failed processor itself if the failure was transient. Thereplacement processor calculates the checkpoint of the failed processor by taking the parity of the checkpoints ofthe non-failed processors and the encoding in the checkpoint processor. In other words, suppose processor i isthe failed processor. Then its checkpoint may be reconstructed as:bji = bj1 � : : :� bji�1 � bji+1 � : : :� bjn � bjckpNote that this is the same recovery scheme as Raid Level 5 in disk array technology [5]. When the replacementprocessor has calculated the checkpoint of the failed processor, then all application processors roll back to theprevious checkpoint, and the computation proceeds from that point.Besides parity, there are several other schemes than can be used to encode the checkpoints. They vary in thenumber of checkpoint processors, the e�ciency of encoding, and the amount of failure coverage. They are detailedbelow. 5



P P P P P P P P P

C

1 2 3 4 5 6 7 8 9

1

P P P P P P P P P

C C C C C C C C C

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9(a) (b)
P P P P P P P P P

C C C

1 2 3 4 5 6 7 8 9

1 2 3(c)Figure 2: Encoding the checkpoints: (a) Raid Level 5, (b) Mirroring, (c) One-dimensional parity4.2 MirroringCheckpoint mirroring (Figure 2(b)) is another simple encoding scheme. With mirroring, there are m = ncheckpoint processors, and the i-th checkpoint processor simply stores the checkpoint of the i-th applicationprocessor. Thus, up to n processor failures may be tolerated, although the failure of both an application processorand its checkpoint processor cannot be tolerated. Checkpoint mirroring should have a very low checkpointingoverhead because no encoding calculations (such as parity) need to be made.4.3 1-dimensional parityWith one-dimensional parity (Figure 2(c)) there are 1 � m � n checkpoint processors. The applicationprocessors are partitioned into m groups g1; : : : ; gm of roughly equal size. Checkpoint processor i then calculatesthe parity of the checkpoints in group i. This increases the failure coverage, because now one processor failure pergroup may be tolerated. Moreover, the calculation of the checkpoint encoding should be more e�cient becausethere is no longer a single bottleneck (the checkpoint processor). Note that 1-dimensional parity reduces to RaidLevel 5 when m = 1, and to mirroring when m = n.4.4 2-dimensional parityTwo-dimensional parity (Figure 3(d)) is an extension of one-dimensional parity. With two-dimensional parity,the application processors are arranged logically in a two-dimensional grid, and there is a checkpoint processor foreach row and column of the grid. Each checkpoint processor calculates the parity of the application processors inits row or column. Two-dimensional parity requires m � 2pn checkpoint processors, and can tolerate the failureof any one processor in each row and column. This means that any two-processor failures may be tolerated.6



C C C

C

C

C

P P P

P P P

P P P

1 2 3

4

5

6

1 2 3

4 5 6

7 8 9

C C C C

P P P P P P P P P

1 2 3 4

1 2 3 4 5 6 7 8 9(d) (e)
1

2

+

+

P P P P P P P P P

C C

1 2 3 4 5 6 7 8 9

1 2

α

β

γ

P P P P P P P P P

C C C

1 2 3 4 5 6 7 8 9

1 2 3(f) (g)Figure 3: Encoding the checkpoints: (d) Two-dimensional parity, (e) Hamming coding, (f) EvenOdd coding, (g)Reed-Solomon coding4.5 Other parity-based codesThe well-known Hamming codes (Figure 3(e)) may be used to tolerate any two-processor failures with theaddition of roughly logn processors [13]. Each checkpoint processor calculates the parity of a subset of theapplication processors. EvenOdd coding (Figure 3(f)) is a technique where m = 2 checkpoint processors areemployed and all two-processor failures may be tolerated [3]. The encoding is based on parity calculations, butis a little more complex than the above schemes.4.6 Reed-Solomon codingThe most general purpose encoding technique is Reed-Solomon coding [24] (Figure 3(g)). Here m checkpointingprocessors use Galois Field arithmetic to encode the checkpoints in such a way that any m failures may betolerated. Since the encoding is more complex than parity, the CPU overhead of Reed-Solomon coding is greaterthan the other methods, but it achieves maximal failure coverage per checkpoint processor.7



5 Gluing the two parts togetherSections 3 and 4 have discussed how application processors store checkpoints internally, and how the checkpointprocessors encode information. The �nal component of diskless checkpointing is coordinating the applicationand checkpointing processors in an e�cient and correct way. This section discusses the relevant details in thecoordination of the two sets of processors. We focus primarily on Raid Level 5 encodings, and then discuss thedi�erences that the other encodings entail.5.1 Tolerating failures when checkpointingAs with all checkpointing systems, diskless checkpointing systems must take care to remain fault-tolerant evenif there is a failure while checkpointing or recovery is underway. This is done by making sure that each coordinatedcheckpoint remains valid until the next coordinated checkpoint has been completed. The checkpointing processorscontrol this process. When all the checkpointing processors have completed calculating their encodings for thecurrent checkpoint, then they may discard their previous encodings, and then notify the application processorsthat they may discard their previous checkpoints.Upon recovery, if the checkpointing processors all have valid encodings for the most recent checkpoint, thenthese are used for recovery, along with the most recent checkpoints in the non-failed application processors. Ifany checkpointing processor does not have a valid encoding for the most recent checkpoint, then the previousencoding must be used along with the previous checkpoints in the non-failed application processors.This protocol ensures that there is always a valid coordinated checkpoint of the system in memory. If allcheckpoint processors have their encodings for coordinated checkpoint i, then all application processors willhave their checkpoints for coordinated checkpoint i. If any checkpoint processor has an incomplete encoding forcheckpoint i, then all checkpoint processors will still contain their encodings for coordinated checkpoint i � 1.Moreover, all application processors will have their checkpoints for coordinated checkpoint i�1. Thus, the wholesystem may recover to coordinated checkpoint i � 1.If a failure is detected during recovery, then the remaining processors simply initiate the recovery procedureanew.5.2 Space demandsA rami�cation of the preceding protocol is that at the moment when the checkpoint processors �nish storingtheir encodings, all processors contain two checkpoints in memory: the current checkpoint and the previouscheckpoint. Thus, the memory usage of diskless checkpointing is a serious issue.Suppose the size of an application processor's address space is M bytes. Then simple diskless checkpointingconsumes an extra M bytes of memory to hold a checkpoint. To ensure that only M bytes of extra memoryare consumed at all times, the application must be frozen during checkpointing. Then the application's address8



P P P P P P P P C1 2 3 4 5 6 7 8 1 P P P P P P P P C1 2 3 4 5 6 7 8 1(a) (b)Figure 4: Calculating the encoding: (a) direct, (b) fan-inspace may be used (without being copied) to calculate the checkpoint encodings. When the encodings have beencalculated, the application's address space may be copied over its previous checkpoint, which is now expendable.Then the application is unfrozen.With incremental checkpointing, checkpointed copies of pages are made when page faults are caught. Atcheckpoint time, the processors calculate the encodings, then discard the checkpointed copies of pages and set theprotection of all application pages to read-only. Thus, if the incremental checkpoint size is I, then only I extrabytes of memory are necessary. In the worst case, all pages are modi�ed between checkpoints, and I equals M .With forked checkpointing, each checkpoint is a separate process. When the checkpoint processors completetheir encodings, there are three processes contained by each application processor: the application itself, itsmost recent checkpoint, and the previous checkpoint. Since process cloning uses the copy-on-write optimization,each checkpoint process only consumes an extra I bytes of memory. Therefore, forked checkpointing requires anextra 2I bytes of memory during checkpointing, and I bytes at all other times. In the worst case, this is 2Mduring checkpointing, and M at other times.Finally, disk-based checkpointing using the fork optimization requires I 0 bytes of memory, where I 0 consists ofall pages that are modi�ed while checkpointing is taking place. I 0 should be less than I, though if the latency ofcheckpointing is large compared to the checkpointing interval, I 0 may be close to I.5.3 Sending and calculating the encodingWith Raid Level 5 encoding, there is one checkpoint processor C1, and n application processors P1; : : : ; Pn.C1 stores the bitwise parity of the checkpoints of each application processor. The simplest way to calculate theparity is to employ the direct method: each application processor simply sends its checkpoint to C1. Initially,C1 clears a portion of its memory, which we call e1, to store the checkpoint encoding. Upon receiving ckpi fromPi, it sets e1 to (e1 � ckpi). This is shown in Figure 4(a). In Figure 4, the � signs are shown directly above theprocessors that perform the bitwise exclusive or. Arrows from one processor to another represent one processorsending its checkpoint to another. 9



There are two problems with the direct method. First, C1 can become a message-receiving bottleneck, sinceit is the destination of all checkpoint messages. Second, C1 does all of the parity calculations. Both problemsmay be alleviated with the fan-in algorithm. Here, the application processors perform the parity calculation inlogn steps and send the �nal result to C1, which stores the result in its memory. This is shown in Figure 4(b).For other encodings besides Raid Level 5, these two methods may be extended. In the direct method, eachprocessor sends its checkpoint in a multicast message to the proper checkpointing processors. If necessary (e.g.,for Reed-Solomon coding), the checkpointing processors modify the checkpoints, and then exclusive-or theminto their checkpoints. In the fan-in method, there is one fan-in performed for each checkpointing processor.This may entail the cooperation of all application processors (e.g., in Reed-Solomon coding), or a subset of theapplication processors (e.g., in one-dimensional parity). If a checkpoint must be modi�ed for the encoding, it isdone at application processor Pi before the fan-in starts.For most networks, the fan-in algorithmwill be preferable to the direct because it eliminates bottlenecks anddistributes the parity calculations. However, if the network supports multicast, the encodings involving multiplecheckpointing processors may pro�t from the direct method.5.4 Breaking the checkpoint into chunksThe preceding description implies that whole checkpoints are sent from processor to processor. Since check-points may be large, it often makes more e�cient use of memory to break the checkpoint into chunks of a �xedsize. For example, in the fan-in algorithm, only two extra chunks of memory are needed to receive an incomingchunk from another processor, make the parity calculation, and then send o� the result. The chunks should besmall enough that they do not consume too much memory, but large enough that the overhead in sending chunksis not dominated by message-sending start-up.5.5 Sending di�sIf the application processors use incremental checkpointing, then they can avoid overhead by sending onlypages that have been modi�ed since the previous checkpoint. However, this can cause problems in creating thecheckpoint encoding. Speci�cally, if the encoding is to be created anew at each checkpoint, it needs to have allcheckpointing data from all processors. The solution to this is to use di�s.Assume that the direct encoding method is being employed. The checkpoint processor �rst copies its previouscheckpoint to its current checkpoint. Then each application processor does the following. For each modi�ed pagepagek in its address space, it calculates di�k, which is the bitwise exclusive-or of the current copy of the pageand the copy of the page in the previous checkpoint (which of course is available to the application processor). Itthen sends di�k to the checkpoint processor, which XOR's it into its checkpoint. This has the e�ect of subtractingout the old copy of the page and adding in the new copy. In this way, unmodi�ed pages need not be sent to thecheckpointing processor. 10



One may use di�s with the fan-in algorithm as well, stipulating that if a processor does not modify a pageduring the checkpoint interval, then it does not need to send that page or XOR it with other pages when performingthe fan-in.5.6 Compressing Di�sBy sending di�s rather than actual bytes of the checkpoint, an interesting opportunity for compression arises.Suppose that an application modi�es just a few bytes on a page. Then the di� of that page and its previouslycheckpointed copy will be composed of mostly zeros, which can be easily compressed using either run-lengthencoding or an algorithm that sends tagged bytes rather than whole pages. Such compression trades o� use ofmore CPU for a reduced load on the network.Compression combines naturally with incremental checkpointing, where modi�ed pages are compressed beforebeing sent. It may also be used with simple and forked checkpointing by converting the entire checkpoint intoa di� and compressing it before sending it along. This has the e�ect of emulating incremental checkpointing,because regions of memory that have not been modi�ed get compressed to nothing.6 Implementation and ExperimentIn order to assess the performance of diskless checkpointing as compared to standard disk-based checkpointingon networks of workstations, we implemented a small transparent checkpointing system on a network of 24 SunSparc5 workstations at the University of Tennessee. Each workstation has 96 Mbytes of physical memory andruns SunOS version 4.1.3. The workstations are connected to each other by a fast, switched Ethernet which canbe isolated for performance testing. The measured peak bandwidth between any two processors is roughly 5megabytes per second. The workstations have very little accessible local disk storage: 38 megabytes per machine.However, the machines are connected via regular Ethernet to the department's �le servers using Sun NFS. Thesedisks have a bandwidth of 1.7 megabytes per second, but the performance of NFS on the Ethernet is far worse.With NFS, remote �le writes achieve a bandwidth of 0.13 megabytes per second. The page size of each machineis 4096 bytes, and access to the page tables is controlled by the mprotect() system call.Our checkpointer runs on top of PVM [12] and works like many PVM checkpointers [4, 33]. Applications donot need to be recompiled, but their object modules must be relinked with our checkpointing/modi�ed PVMlibrary. When the applications are started, the checkpointing code gets control and reads startup informationfrom a control �le. This information includes the checkpoint interval, which checkpointing optimizations to use,plus where checkpoints should be stored (to disk or to checkpointing processors).The application then starts, and one of the application processors is interrupted when the checkpointinginterval has expired. This processor coordinates with the other application processors using the \Sync-and-stop"synchronization algorithm, and once consistency has been determined, the processors checkpoint.11



Abbreviation DescriptionBASE No checkpointingDISK-FORK Checkpointing to disk using fork()SIMP Simple diskless checkpointingINC Incremental diskless checkpointingFORK Forked diskless checkpointingINC-FORK Incremental, forked diskless checkpointingC-SIMP Simple diskless checkpointing with compressionC-INC Incremental diskless checkpointing with compressionC-FORK Forked diskless checkpointing with compressionC-INC-FORK Incremental, forked diskless checkpointing with compressionTable 1: Checkpointing variants implemented in our experimentsPVM includes some basic forms of failure detection. Speci�cally, if a processor in the current PVM session fails,the rest of the processors eventually notice the failure and remove the failed processor from the PVM session.PVM allows the user to be noti�ed of such events. Our checkpointer uses this facility to recognize processorfailures. When such a failure occurs, then if there is a spare processor in the PVM session, it is selected toreplace the failed processor. If there is no spare processor, and diskless checkpointing is being employed, then acheckpoint processor is chosen to be the replacement processor. Recovery proceeds automatically, either from thedisk-based or diskless checkpoint.It is important to note that our checkpointer does not require the programmer to modify his or her code toenable checkpointing. A simple relinking is all that is necessary.The gamut of checkpointing variants is enumerated in Table 1. This includes standard disk-based checkpointingusing the fork() optimization. We do not test incremental, disk-based checkpointing because it does not improvethe performance of checkpointing in any of our tests.1.For diskless checkpointing, we implement Raid Level 5 encoding using the fan-in algorithm. Checkpointencodings are created in chunks of 4096 bytes (conveniently, also the page size). The choice of algorithm has somerami�cations on how certain optimizations work. For example, when performing incremental checkpointing, theencoding is created chunk-by-chunk, but if a processor has not modi�ed the corresponding page, then an emptymessage is sent as part of the fan-in instead of the page.When using di�-based compression, pages are compressed using a bitmap-based compression algorithm [29].Compression is performed by the sending processor before sending, and then uncompressed by the receiving1This is not to say that incremental, disk-based checkpointing is not often a useful optimizations. It simply does not help in anyof our tests. 12



Application Running Time Checkpoint Size per node(sec) (h:mm:ss) (Mbytes)NBODY 5722 1:35:22 3.7MAT 6602 1:50:02 15.5PSTSWM 5610 1:33:30 24.4CELL 6351 1:45:51 41.4PCG 5873 1:37:53 66.6Table 2: Basic parameters of the testing applicationsprocessor, which merges the page with its own, and compresses the result before sending it along. When the�nal compressed chunk reaches the checkpointing processor, it uncompresses the chunk and merges it with theprevious checkpoint encoding, which is then stored as the next encoding.7 ApplicationsWe used �ve applications to test the performance of checkpointing. These applications are all CPU-intensive,parallel programs of the sort that often require hours, or sometimes days of execution. We executed instances ofthese programs that took between 1.5 and 2 hours to run on sixteen processors in the absence of checkpointing. Inall cases, it is clear how the programs scale in size, and how this scaling will a�ect the performance of checkpointing.The basic parameters of each application are presented in Table 2. We briey describe each application, orderedby checkpoint size, below.7.1 NBODYNBODY computes N-body interactions among particles in a system. The program is written in C, and usesthe parallel multipole tree algorithm [19]. The instance used in our tests was 15,000 particles and ten iterations.The basic structure of the program is as follows. Each particle is represented by a data structure with several�elds. The particles are partitioned among \slave" processors (sixteen in our tests) in such a way that processorsthat are \close to each other" (by some metric) reside in the same slave, to limit interslave communication. Forthis reason, slave processors can di�er in the number of particles they hold and therefore in their sizes. Forexample, in our tests, the slave processors averaged 3.7 megabytes in size, but the largest was six megabytes.At each iteration, the \location" �eld (among others) of each particle is updated to reect the n-body inter-action. Since the size of a particle's data structure is less than the machine's page size, this means that almostall pages of the slave processors are modi�ed during each iteration, leading to poor incremental checkpointingbehavior when the checkpointing interval spans multiple iterations. However, since much of each particle's data13



is left unmodi�ed from iteration to iteration, only a few bytes per page are changed, resulting in good di�-basedcompression.There are two parameters that a�ect the running time and memory usage of NBODY. These are the numberof particles, which a�ects both time and space, and the number of iterations, which only a�ects the running time.NBODY is the only application where the checkpoints are small enough to allow the same number of check-points (six) in both diskless and disk-based checkpointing.7.2 MATMAT is a C program that computes the oating point matrix product of two square matrices using Cannon'salgorithm [17]. The matrix size in our tests was 4,608�4,608, leading to 15.1 megabyte checkpoints per processor.On a uniprocessor, matrix multiplication typically shows excellent incremental checkpointing behavior, sincethe two input matrices are read-only, and the product matrix is calculated sequentially, �lling up whole pages ata time in such a way that once a product element is calculated, it is never subsequently modi�ed [25]. However,most high-performance parallel algorithms, such as Cannon's algorithm, di�er in this respect.In Cannon's algorithm, all three matrices are partitioned in square blocks among the n processors (and itis assumed n is a perfect square). The algorithm proceeds in pn steps. In each step, each processor adds theproduct of its two input submatrices to its product submatrix. Then the processors send their input submatrices toneighboring processors, receiving new ones in their place, and repeat until the product submatrices are calculated.The rami�cation of this data movement is that during the course of an iteration, all matrices are modi�ed.Therefore, if checkpoints span iterations (as is the case in disk-based checkpointing), incremental checkpointingwill have no bene�cial e�ect. If multiple checkpoints are taken in the same iteration (as is the case in disklesscheckpointing), then incremental checkpointing will be successful as in the uniprocessor case.When pages are updated inMAT, they are updated in their entirety, leading to very poor di�-based compres-sion.MAT's time and space demands are determined by the size of the matrix. For an N �N matrix, the memoryusage is proportional to N2, and the running time is proportional to N3. The communication patterns of MATdepend on the number of processors, and are the same for all matrix sizes.MAT andNBODY are the only applications where it is possible to take more than one disk-based checkpointduring the program's execution. Three disk-based checkpoints (as opposed to seven diskless checkpoints) are takenin MAT.7.3 PSTSWMPSTSWM is a fortran program that solves the nonlinear shallow water equations on a rotating sphere usingthe spectral transform method [14]. The instance used here simulates the state of a 3-D system for a duration of102 (simulated) hours. 14



Like NBODY, PSTSWM modi�es the majority of its pages during each iteration, but it only modi�esa few bytes per page. Therefore, incremental checkpointing should show limited improvement, but di�-basedcompression should work well. PSTSWM's checkpoints are large | approximately 25 megabytes per processor.However, since each machine has 96 megabytes of physical memory, two checkpoints may be stored in theirentirety without stressing the limits of physical memory.PSTSWM can scale in size by simulating a denser particle grid. Once the size is set, each iteration performsroughly the same actions. Therefore, simulating longer time frames increases the running time in a linear fashionwithout altering the general behavior (e.g. memory access pattern) signi�cantly.7.4 CELLCELL is a parallel cellular automaton simulation program. Written in C, this program distributes two gridsof cellular automata evenly across all the application processors. One grid is denoted current, and one is denotednext. The values of the current grid are used to calculate the values in the next grid, and then the two grids'identities are swapped. The instance used in our tests simulates a 18,512 by 18,512 cellular automaton grid for475 generations.During each iteration, CELL updates every automaton in the next grid. Therefore, if checkpoints span two ormore iterations, all memory locations will be updated, rendering incremental checkpointing useless. Compress-ibility depends on the data itself. \Sparse" grids (where many automata take on zero values) may see little changein the automata's values over time, which can lead to good compression. Denser grids lead to less compression.In our tests, we used very sparse grids.The program size is directly proportional to the grid size. The running time is proportional to the grid sizetimes the number of iterations. Each pair of iterations performs the same operations, and thus has the samememory access and communication patterns.7.5 PCGPCG is a fortran program that solves Ax = b for a large, sparse matrix A using the \Preconditioned Con-jugate Gradient" iterative method The matrix A is converted to a small, dense format, and then approximationsto x are calculated and re�ned iteratively until they reach a user-speci�ed tolerance from the correct values. Inour tests, A is a 1,638,400 by 1,638,400 element sparse matrix, and the program takes 3,750 iterations.The exact mechanics and memory usage ofPCG are detailed in [26]. The salient points are as follows. The maindata structures in the program may be viewed as many vectors of length N (in our instances, N = 1; 638; 400).These vectors are distributed among all the application processors. Roughly three quarters of these vectors arenever modi�ed once the program starts calculating. The rest are updated in their entirety at each iteration.Therefore, incremental checkpoints should be one quarter the size of non-incremental checkpoints. The data that15



gets updated at every iteration is stored densely on contiguous pages, o�ering little opportunity for di�-basedcompression.The program size is directly proportional to N , and like CELL and PSTSWM, the running time is propor-tional to the size times the number of iterations.Each application processor holds 66.6 megabytes worth of data in PCG. Therefore, one simple diskless check-point will not �t into memory. However, when incremental and copy-on-write checkpointing are employed, theapplication and one or two checkpoints consume just a few megabytes more memory than is available. The sizeof the checkpoints combined with the speed of Sun NFS results in the inability to take disk-based checkpoints ofPCG. This is because the time to store one checkpoint is longer than the running time of the application.8 ResultsIt should be reiterated that the instances for these tests were chosen to run for a period of time that waslong enough to measure the impact of checkpointing and recovery. In all applications, there are natural inputparameters which result in longer execution times and larger checkpoints. Our goal in these tests is to assess theperformance of checkpointing so that users of longer-running applications may be able to project the expectedrunning time of their applications in the presence of failures while employing the various checkpointing variants.The raw data for the experiments is in the Appendix of this paper. All graphs in this section are deriveddirectly from the raw data. In most cases, the tests were executed in triplicate. The number of times each testwas executed plus the standard deviations in execution times is displayed in the tables in the Appendix. Thetables and graphs display average data.We concentrate on two performance measures: latency and overhead. Latency is the time between when acheckpoint is initiated, and when it may be used for recovery. Overhead has been de�ned previously. Overheadis a direct measure of the performance penalty induced on an application due to checkpointing. The impact oflatency is more subtle, and will be discussed in detail in Section 9.8.1 Checkpointing to diskFigure 5 plots checkpoint latency and overhead of checkpointing to disk (the DISK-FORK tests). Theseare plotted as a function of the applications' per-processor checkpoint sizes. As displayed in leftmost graph,the latency in the DISK-FORK tests is directly proportional to the checkpoint size, achieving a bandwidth of0.129 Mbytes/sec. Here bandwidth is calculated as per-processor checkpoint size times the number of processors,divided by the checkpoint latency. Using that information, the checkpoint latency of the PCG test is projectedto be roughly 8,663 seconds.The rightmost graph displays overhead as a function of checkpoint size. While the graph appears roughlylinear, it should be noted that the overhead of checkpointing is not a simple function of checkpoint size. The bulk16



0 20 40 60

Checkpoint size
(Mbyte / processor)

0

3000

6000

9000
La

te
nc

y 
pe

r 
C

he
ck

po
in

t (
se

c)

NBODY

CELL

MAT

PSTSWM

PCG (projected)

0 10 20 30 40

Checkpoint size
(Mbyte / processor)

0

30

60

90

O
ve

rh
ea

d 
pe

r 
C

he
ck

po
in

t (
se

c)

NBODY

MAT

PSTSWM

CELL

Figure 5: Checkpoint latency and overhead of checkpointing to disk (DISK-FORK)
0 10 20 30 40 50 60 70

Checkpoint size
(Mbyte / processor)

0

100

200

300

400

La
te

nc
y 

P
er

 C
he

ck
po

in
t (

se
c)

SIMP
FORK

N
BO

D
Y

M
A

T PS
TS

W
M

C
EL

L

PC
G

0 10 20 30 40 50 60 70

Checkpoint size
(Mbyte / processor)

0

100

200

300

400

O
ve

rh
ea

d 
pe

r 
C

he
ck

po
in

t (
se

c) SIMP
FORK

N
BO

D
Y

M
A

T PS
TS

W
M C
EL

L

PC
G

Figure 6: Checkpoint latency and overhead of SIMP and FORKof work performed in checkpointing involves DMA from each processor's memory to its network interface card.The CPU is only a�ected signi�cantly when one of the following occurs:� A DMA transaction needs to be initiated or repeated.� A copy-on-write page fault occurs in the application.� There is contention for the memory bus.There are also e�ects on the cache as a result of checkpointing. Therefore, although checkpoint size is a roughmeasuring stick for computing the overhead of DISK-FORK checkpointing, it is not the whole story. As has beenshown in other research, the copy-on-write optimization does an excellent job of reducing overhead [9, 21, 25]. Inthis test, the overhead is between 0.7 and 5.5 percent of the checkpoint latency.17



8.2 Diskless checkpointing: SIMP and FORKFigure 6 plots checkpoint latency and overhead of the SIMP and FORK tests, again plotted as a function ofcheckpoint size. As in the DISK-FORK case, both the SIMP and FORK latencies are directly proportional tothe checkpoint size, with the exception of the SIMP test in the PCG application. Here, the combined size ofthe application and its checkpoint exceeds the size of physical memory, resulting in pages being swapped to thebacking store. This degrades the performance of checkpointing. In the FORK test, the checkpoint only requiresan additional 16.6 Mbytes of memory, since the unmodi�ed pages of memory are shared between the applicationand its checkpoint. Therefore, the checkpoint latency follows the same linear pattern as in the other applications.With the exception of the SIMP test in the PCG application, the bandwidth of checkpointing in SIMP andFORK is roughly 4.4 Mbytes/sec. This is a factor of 34 faster than the DISK-FORK bandwidth.The overhead of the SIMP tests is identical to the latency, since the application is halted during checkpointing.In the FORK tests, the overhead is reduced by 29.4 (in MAT) to 53.7 (in PCG) percent. Although this is animprovement, it is not the same degree of improvement as in the DISK-FORK tests. The reason for this is thatthe CPU is more involved in diskless checkpointing than in disk-based checkpointing. In diskless checkpointing,the parity of each processor's checkpoint must be calculated, and this takes the CPU (plus some memory) awayfrom the application. The only time when disk-based checkpointing makes more use of the CPU than disklesscheckpointing is when the longer latency of checkpointing causes more copy-on-write page faults to occur.8.3 The rest of the testsAll of the diskless checkpointing results are displayed in Figure 7. The top row of graphs shows the checkpointlatency for each test in each application. The middle row shows checkpoint overhead, and the bottom row showsthe average checkpoint size. This is a bit of a misnomer, because in all cases, the in-memory and parity processorcheckpoints are the same size. However, with incremental checkpointing and compression, fewer bytes are sentper processor. The \checkpoint size" graphs (and the \checkpoint size" columns in the Appendix) display theaverage number of bytes that each processor sends during checkpointing.Some salient features from Figure 7 are as follows. First, incremental checkpointing signi�cantly reduces theaverage checkpoint sizes in the MAT and PCG applications. In the other three applications, the checkpoint sizeof SIMP and INC are roughly the same. In theMAT and PCG applications, signi�cant reductions in checkpointlatency and overhead result from incremental checkpointing. In both cases, the mixture of incremental and forkedcheckpointing result in the lowest overhead of the all diskless checkpointing tests.When incremental checkpointing fails to decrease the size of checkpoints, as in the NBODY and CELL ap-plications, the overhead of checkpointing is greater than with simple checkpointing. In both of these applications,the INC-FORK tests yielded the highest checkpoint latencies.The results of di�-based compression are interesting. In three applications (NBODY,PSTSWM andCELL),18



SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

051015

Checkpoint
Latency (sec)

N
B

O
D

Y

SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

0204060
M

A
T

SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

020406080

P
S

T
S

W
M

SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

05010
0

15
0

20
0

C
E

L
L

SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

0

10
0

20
0

30
0

P
C

G

SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

05101520

Checkpoint
Overhead (sec)

N
B

O
D

Y

SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

01020304050

M
A

T

SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

020406080
P

S
T

S
W

M
SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

05010
0

15
0

C
E

L
L

SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

0

10
0

20
0

30
0

P
C

G

SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

0123

Checkpoint
Size (Mbyte)

N
B

O
D

Y

SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

051015
M

A
T

SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

0510152025
P

ST
SW

M

SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

010203040
C

E
L

L

SIMP
FORK
INC
INC-FORK
C-SIMP
C-FORK
C-INC
C-INC-FORK

0204060

P
C

G

Figure7:Disklesscheckpoin
tlatency,overhead,andsize

perapplication
incrementalcheckpointingfa

ilsbecausemostoftheprogr
ams'pagesareupdatedatev

eryiteration.However,di�-
basedcompressionsucceeds

inreducingcheckpointsizeb
ecausethepagesareeithers

parselymodi�ed(NBODY
andPSTSWM)orupdated

withthesamevalues(CELL
).Inthesethreeapplications

,theC-FORKtestsyielded
thelowestcheckpointoverh

ead.Notethatsincecomp
ressionaddsextrademands

ontheCPU,thereduction
inoverheadisnotasdrasti

caswithincrementalcheck
pointing.Itisalsointerest

ingtonotethatthelowest
overheadisachievedwithC

-FORKratherthanC-INC
orC-INC-FORK.Thisisbe

causeinthesetests,almost
allpagesaremodi�edbetwe

encheckpoints,andtherefor
eincrementalcheckpointing

merelyaddstheoverheadof
processingpagefaults. Intheothertwotests(MAT

andPCG),di�-basedcomp
ressionbringsthecheckpoin

tsizesoftheFORKand
SIMPteststoroughlythesa

mesizeasincrementalcheck
pointing.However,itdoesn

otimproveuponincrementa
l

19



Application Recovery Time(sec)NBODY 15.7MAT 46.0PSTSWM 66.3CELL 138.3PCG 375.3Table 3: Recovery times for the SIMP testscheckpointing in terms of size or overhead. This is because the modi�ed pages showed little compressibility.8.4 Recovery timeTable 3 shows the time that it takes the system to recover from a single failure and continue execution fromthe most recent checkpoint during the SIMP tests. Here, a processor failure is simulated by terminating one ofthe application processors. PVM has been written so that the other processors recognize this failure, and ourmodi�cations take advantage of this to automate the process of recovery. In our tests, the checkpointing processortakes the place of the failed application processor.The recovery times are roughly equal to the checkpoint latencies of the SIMP applications. It should be notedthat in all but the DISK-FORK tests, the recovery times are equal, since the entire diskless checkpoint of thefailed processor must be calculated. In the DISK-FORK tests, the recovery times are equal to the checkpointlatencies. Thus, like the latencies, they are extremely large.9 Discussion9.1 Diskless vs. disk-based checkpointingThere are two basic results that we may draw from our tests concerning diskless vs. disk-based checkpointing:� The checkpoint latency and recovery time of diskless checkpointing is vastly lower than disk-based checkpointing. As stated in section 8.2, the latency (and recovery time) of disk-based checkpointingis a factor of 34 slower than diskless checkpointing. This is a result of the poor performance of Sun NFScombined with the fact that all processors use the same disk.� The overhead of diskless checkpointing is comparable to disk-based checkpointing. Figure 8 plotsthe overhead of disk-based checkpointing and the overhead of the best diskless variant for each application.20



D
ISK

-FO
R

K

C
-FO

R
K

0

5

10

15

20

25

C
he

ck
po

in
t

O
ve

rh
ea

d 
(s

ec
)

D
ISK

-FO
R

K

IN
C

-FO
R

K

0

5

10

15

20

D
ISK

-FO
R

K

C
-FO

R
K

0

10

20

30

40

50

D
ISK

-FO
R

K

C
-FO

R
K

0

20

40

60

80

D
ISK

-FO
R

K

IN
C

-FO
R

K

0

20

40

?

NBODY MAT PSTSWM CELL PCG

Figure 8: Checkpoint overhead of disk-based checkpointing as compared to the best diskless variant.In some cases (NBODY and PSTSWM), diskless checkpointing outperforms disk-based, and in others(MAT) disk-based outperforms diskless. The question mark is plotted in PCG because we were unable tocomplete a disk-based checkpoint during the lifetime of the application.There are two reasons why diskless checkpointing may be viewed as preferable to disk-based checkpointing.First, it lowers the expected running time of the application in the presence of failures. Second, it has less e�ecton the computing environment, which is of special concern if the environment is shared. We consider each ofthese in turn.9.1.1 Expected running timeSupposing that failure rate is governed by a Poisson process, Vaidya has derived equations for assessing theperformance of an application in the presence of checkpointing and rollback recovery [36]. These equations takeas input the average overhead, latency, and recovery time per checkpoint, plus the rate of failures, and are de�nedas follows. e�(Topt+O)(1� �Topt) = 1 for Topt 6= 0 (1)� = ��1e�(L�O+R)(e�(Topt+O) � 1) (2)r = �Topt � 1 (3)Tckp = Tbase(r + 1) (4)Tnockp = ��1(e�Tbase � 1) (5)where: � = The rate of failures (1=MTBF ).Topt = The optimal checkpoint interval.O = The average overhead per checkpoint.L = The average latency per checkpoint.R = The average recovery time from a checkpoint.Tbase = The running time of the application in the absence of checkpointing, recovery, and failures21



(i.e. the BASE test).r = The \overhead ratio," which is a measure of the performance penalty due to checkpointing, recoveryand failures[36].� = The expected running time of the optimal checkpoint interval in the presence of failures,checkpointing and recovery.Tckp = The optimal expected running time of the application in the presence of failures, checkpointingand recovery.Tnockp = The expected running time of the application in the presence of failures, but no checkpointingand recovery (i.e. the application is restarted from scratch following a failure).In all these equations, the repair time is assumed to be zero. This approximates the case when a spare processoris ready to continue computation immediately following a failure. If repair time is signi�cant, then Eq's 2 and 5become: � = ��1e�(L�O+R+Trepair )(e�(Topt+O) � 1) (6)Tnockp = ��1e�Trepair (e�Tbase � 1) (7)These equations may be used to compare checkpointing algorithms as follows. First, for each algorithm Toptmay be calculated from � and O using Eq. 1. Next, � and r may be determined by Eqs. 2 and 3. If so desired,the expected running time of an application (Tckp) for each algorithm may then be determined by Eq. 4. Thecheckpointing algorithm with the lowest value of r will be the one with the smallest expected running time.Thus, r su�ces as a metric by which to compare checkpointing algorithms.If Tckp is greater than Tnockp, then the application cannot bene�t from checkpointing. This occurs when theapplication's running time (Tbase) is not signi�cantly greater than Topt. However, as Tbase grows, Tnockp increasesmore rapidly than Tckp to the point that checkpointing improves the program's expected running time in thepresence of failures.In Table 4, we use the data from Section 8 to derive values for Topt, �, r, Tckp and Tnockp for each of the testspresented in Figure 8. We calculated � in the following manner. In their study of host reliability on the Internet,Long et at [22] determined an average MTBF of 29.29 days. Assuming independent processor failures, this meansthat the MTBF of a collection of 16 processors is 29.29/16 = 1.837 days, and the MTBF of a collection of 17processors is 29.29/17 = 1.729 days. This gives � a value of 6:301 � 10�6 failures per second for 16 processors,and 6:694 � 10�6 failures per second for 17 processors. We use the former value as the failure rate for disk-basedcheckpointing and for no checkpointing, and the latter value for diskless checkpointing.Table 4 shows that in all applications, diskless checkpointing performs better than disk-based checkpointing.This can be seen in the lower expected running times (Tckp), and the lower overhead ratios (r). Therefore, eventhough the two have similar checkpoint overheads, the extremely large latency and recovery time of disk-basedcheckpointing makes it unattractive in comparison to diskless checkpointing.Another signi�cant result of Table 4 is that in two applications,NBODY andMAT, the expected running timein the presence of failures is minimized by diskless checkpointing. In the other three applications, no checkpointing22



Application Test Tbase Topt � r Tckp Tnockp(sec) (sec) (sec) (sec) (sec)NBODY DISK-FORK 5722 2727 2789 0.0229 5853 5826NBODY C-FORK 5722 1267 1278 0.0087 5772 5826MAT DISK-FORK 6602 2215 2302 0.0393 6862 6741MAT INC-FORK 6602 2370 2409 0.0166 6711 6741PSTSWM DISK-FORK 5610 3778 4024 0.0652 5976 5710PSTSWM C-FORK 5610 3251 3325 0.0229 5739 5710CELL DISK-FORK 6351 5017 5539 0.1040 7012 6480CELL C-FORK 6351 4856 5025 0.0350 6573 6480PCG INC-FORK 5874 3357 3444 0.0260 5991 5984Table 4: Calculated values of Tint, �, r, Tckp and Tnockp.gives the smallest expected running time. That any checkpointing improves performance is somewhat surprising,given the relatively small execution times of the experiments with respect to the MTBF. There are no cases wheredisk-based checkpointing gives a smaller expected running time.As the execution time of an application grows, checkpointing becomes much more attractive. For example,suppose the user desires to simulate 5000 hours in PSTSWM instead of 102. Then the program will take roughly275,000 seconds, or 3.18 days. Such an execution would not alter the size of the checkpoints, and therefore we mayuse the same overhead, latency and recovery times as presented in Section 8. This leads to expected executiontimes of 3.256 days for diskless checkpointing, 3.390 days for disk-based checkpointing and 8.553 days for nocheckpointing.9.1.2 The e�ect on shared resourcesLarge checkpoint latencies can be detrimental in other ways. For example, in disk-based checkpointing, the entirelatency period is spent writing checkpoint data to stable storage. If other programs or users share the stablestorage, large checkpoint latencies are undesirable, because the performance of stable storage as seen by others isdegraded for a long period of time.In [23], the e�ect of DISK-FORK checkpointing on the performance of stable storage was assessed. While aDISK-FORK checkpoint was being stored to the central disk, a processor not involved in the application timedthe bandwidth of disk writes. In that test, the performance of stable storage was degraded by 87 percent. This issigni�cant, for it means that extremely long checkpoint latencies, such as those measured in our tests, have thepotential to degrade the performance of the system in a severe manner for a long time. Diskless checkpointing,on the other hand, exhibits much smaller checkpoint latencies, and because the calculation of the checkpointencoding involves both the network and the CPU, the impact on shared resources (in this case, the network) isfar less [23]. 23



9.2 RecommendationsGiven the results of these experiments, we can make the following recommendations. Of the checkpointingvariants tested in this paper, three stand out as the most useful: DISK-FORK, C-FORK and INC-FORK. On asystem with similar performance to ours, each is the most useful in certain cases:� If checkpoints are small or the likelihood of wholesale system failures is high, then DISK-FORK checkpoint-ing should be employed.� If the program modi�es a few bytes per page between checkpoints, or if the machine does not provide accessto virtual memory facilities, then C-FORK diskless checkpointing should be employed.� If the program does not modify a signi�cant number of pages between checkpoints, then INC-FORK disklesscheckpointing should be employed.Although we did not test such applications, there may be times when FORK and SIMP are the most usefulcheckpointing methods. This is when all pages are modi�ed in a dense manner between checkpoints. ThenFORK will have the lowest overhead when there is enough memory to store two checkpoints, and SIMP will havethe lower overhead otherwise.None of our applications would have bene�ted from incremental checkpointing to disk. However, if multiplecheckpoints are taken and the program modi�es only a fraction of its pages between checkpoints, incrementalforked checkpoints will outperform DISK-FORK.Finally, in interpreting the results, it is important to note that the speed of stable storage in these experimentsis quite slow. A faster network, a faster �le system, or a �le system with multiple disks will improve theperformance of disk-based checkpointing relative to diskless checkpointing. On the other hand, a system withmore processors will degrade the performance of disk-based checkpointing relative to diskless checkpointing. Itshould be possible using the equations in Section 9.1.1 to extrapolate the results of our experiments to systemswith di�erent performance parameters.10 Related WorkThere has been much research performed on checkpointing and rollback recovery. The important algorithmsand performance optimizations for disk-based checkpointing in parallel and distributed systems are presentedin [8]. Research more directly related to diskless checkpointing is cited below.The �rst paper on diskless checkpointing was presented by Plank and Li [27]. This paper may be viewed as acompletion of that original paper.Silva et al [32] implemented checkpoint mirroring on a transputer network, and performed experiments todetermine that it outperformed disk-based checkpointing. Chiueh and Deng [6] implemented checkpoint mirroring24



and Raid Level 5 checkpointing on a massively parallel (4096 processors) SIMD machine. They found thatmirroring improved performance by a factor of 10. Both implementations involved modifying the application toperform checkpointing, rather than simply relinking with a checkpointing library.Scales and Lam [31] implemented a distributed programming system built on special primitives with shared-memory semantics. They use redundancy built into the system, plus checkpoint mirroring when necessary totolerate single processor failures with low overhead. In a similar manner, Costa et al [7] took advantage ofthe natural redundancy in a distributed shared memory system to make it resilient to single processor failures.Both of these systems export a shared-memory interface to the programmer and embed fault-tolerance into theimplementation with no reliance on stable storage.Plank et al [26] embedded diskless checkpointing (with Raid Level 5 encoding) into several matrix operationsin the ScaLAPACK distributed linear algebra package, thus making them resilient to single processor failureswith low overhead. Kim et al [15] extended this work to employ one-dimensional parity encoding, which bothlowers the overhead and increases the failure coverage.In [23], diskless checkpointing ideas are extended to a disk-based checkpointing system where there is disparitybetween the performance of local and remote disk storage. In such environments, diskless checkpointing may beextended so that in-memory checkpoints are stored on local disks (which are fast, but do not survive processorfailures), and checkpoint encodings are stored on remote disks (which are slow, but are available following afailure). The performance of mirroring, Raid Level 5, and Reed-Solomon codings are all assessed and comparefavorably to standard checkpointing to remote disk. The impact of checkpointing on the remote disk and thenetwork is also assessed.Finally in [35], Vaidya makes the case for two-level recovery schemes, where a fast checkpointing methodtolerating single processor failures is combined with a slower method that tolerates wholesale system failures. Inhis examples, checkpoint mirroring is employed for the fast method, and DISK-FORK checkpointing is employedfor the slow method. His analysis applies to the methods presented in this paper as well.11 ConclusionDiskless checkpointing is a technique where processor redundancy, memory redundancy and failure coverageare traded o� so that a checkpointing system can operate in the absence of stable storage. In the process, theperformance of checkpointing, as well as its impact on shared resources is improved.In this paper, we have described basic diskless checkpointing plus several performance optimizations. Thesehave all been implemented and tested on �ve long-running application programs on a network of workstations andcompared to standard disk-based checkpointing. In this implementation, the diskless checkpointing algorithmsshow a 34-fold improvement in checkpointing latency combined with comparable checkpoint overhead. The resultis a lower expected running time in the presence of single processor failures.25



Several checkpointing systems [6, 23, 26, 32] have included variants of diskless checkpointing to improve theperformance of checkpointing. Designers of checkpointing systems should consider the variants of diskless check-pointing presented in the paper to optimize performance and minimize the impact of checkpointing on sharedresources.References[1] A. Appel and K. Li. Virtual memory primitives for user programs. In Fourth International Conference onArchitectural Support for Programming Languages and Operating Systems, pages 96{107, Santa Clara, CA,April 1991.[2] A. Beguelin, E. Seligman, and P. Stephan. Application level fault tolerance in heterogeneous networks ofworkstations. Journal of Parallel and Distributed Computing, September 1997.[3] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An optimal scheme for tolerating double diskfailures in RAID architectures. In 21st Annual International Symposium on Computer Architecture, pages245|254, Chicago, IL, April 1994.[4] J. Casas, D. L. Clark, P. S. Galbiati, R. Konuru, S. W. Otto, R. M. Prouty, and J. Walpole. MIST: PVMwith transparent migration and checkpointing. In 3rd Annual PVM Users' Group Meeting, Pittsburgh, PA,May 1995.[5] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson. RAID: High-performance, reliablesecondary storage. ACM Computing Surveys, 26(2):145{185, June 1994.[6] T. Chiueh and P. Deng. E�cient checkpoint mechanisms for massively parallel machines. In 26th Interna-tional Symposium on Fault-Tolerant Computing, pages 370{379, Sendai, June 1996.[7] M. Costa, P. Guedes, M. Sequeira, N. Neves, and M. Castro. Lightweight logging for lazy release consistentdistributed shared memory. In 2nd Symposium on Operating Systems Design and Implementation, October1996.[8] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang. A survey of rollback-recovery protocols in message-passingsystems. Technical Report CMU-CS-96-181, Carnegie Mellon University, October 1996.[9] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The performance of consistent checkpointing. In 11thSymposium on Reliable Distributed Systems, pages 39{47, October 1992.[10] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transparent rollback-recovery with low overhead, limitedrollback and fast output commit. IEEE Transactions on Computers, 41(5), May 1992.26



[11] S. I. Feldman and C. B. Brown. Igor: A system for program debugging via reversible execution. ACMSIGPLAN Notices, Workshop on Parallel and Distributed Debugging, 24(1):112{123, January 1989.[12] A. Geist, A. Beguelin, J. Dongarra, R. Manchek, W. Jaing, and V. Sunderam. PVM | A Users' Guide andTutorial for Networked Parallel Computing. MIT Press, Boston, 1994.[13] G. A. Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary Storage. The MIT Press, Cambridge,Massachusetts, 1992.[14] J. J. Hack, R. Jakob, and D. L. Williamson. Solutions to the shallow water test set using the spectraltransform method. Technical Report TN-388-STR, National Center for Atmospheric Research, Boulder,CO, 1993.[15] Y. Kim, J. S. Plank, and J. J. Dongarra. Fault tolerant matrix operations for networks of workstations usingmultiple checkpointing. In High Performance Computing on the Information Superhighway, HPC Asia '97,pages 460{465, Seoul, Korea, April 1997.[16] B. A. Kingsbury and J. T. Kline. Job and process recovery in a UNIX-based operating system. In UsenixWinter 1989 Technical Conference, pages 355{364, San Diego, CA, January 1989.[17] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing. Benjamin/Cummings,Redwood City, CA, 1994.[18] C. R. Landau. The checkpoint mechanism in KeyKOS. In Proceedings of the 2nd International Workshopon Object Orientation in Operating Systems, pages 86{91. IEEE, September 1992.[19] J. F. Leathrum, Jr. Parallelization of the fast multipole algorithm: Algorithm and architecture design. PhDthesis, Duke University, 1992.[20] C-C. J. Li and W. K. Fuchs. CATCH { Compiler-assisted techniques for checkpointing. In 20th InternationalSymposium on Fault Tolerant Computing, pages 74{81, 1990.[21] K. Li, J. F. Naughton, and J. S. Plank. Low-latency, concurrent checkpointing for parallel programs. IEEETransactions on Parallel and Distributed Systems, 5(8):874{879, August 1994.[22] D. Long, A. Muir, and R. Golding. A longitudinal survey of internet host reliability. In 14th Symposium onReliable Distributed Systems, pages 2{9, Bad Neuenahr, September 1995. IEEE.[23] J. S. Plank. Improving the performance of coordinated checkpointers on networks of workstations usingRAID techniques. In 15th Symposium on Reliable Distributed Systems, pages 76{85, October 1996.[24] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. Software { Practice& Experience, 27(9):995{1012, September 1997. 27



[25] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under unix. In UsenixWinter 1995 Technical Conference, pages 213{223, January 1995.[26] J. S. Plank, Y. Kim, and J. Dongarra. Fault tolerant matrix operations for networks of workstations usingdiskless checkpointing. Journal of Parallel and Distributed Computing, 43:125{138, September 1997.[27] J. S. Plank and K. Li. Faster checkpointing with N + 1 parity. In 24th International Symposium on Fault-Tolerant Computing, pages 288{297, Austin, TX, June 1994.[28] J. S. Plank and K. Li. Ickp | a consistent checkpointer for multicomputers. IEEE Parallel & DistributedTechnology, 2(2):62{67, Summer 1994.[29] J. S. Plank, J. Xu, and R. H. B. Netzer. Compressed di�erences: An algorithm for fast incremental check-pointing. Technical Report CS-95-302, University of Tennessee, August 1995.[30] M. Russinovich and Z. Segall. Fault-tolerance for o�-the-shelf applications and hardware. In 25th Interna-tional Symposium on Fault-Tolerant Computing, pages 67{71, Pasadena, CA, June 1995.[31] D. J. Scales and M. S. Lam. Transparent fault tolerance for parallel applications on networks of workstations.In Usenix 1996 Technical Conference on UNIX and Advanced Computing Systems, San Diego, January 1996.[32] L. M. Silva, B. Veer, and J. G. Silva. Checkpointing SPMD applications on transputer networks. In ScalableHigh Performance Computing Conference, pages 694{701, Knoxville, TN, May 1994.[33] G. Stellner. Consistent checkpoints of PVM applications. In First European PVM User Group Meeting,Rome, 1994.[34] T. Tannenbaum and M. Litzkow. The Condor distributed processing system. Dr. Dobb's Journal, #227:40{48, February 1995.[35] N. H. Vaidya. A case for two-level distributed recovery schemes. In ACM SIGMETRICS Conference onMeasurement and Modeling of Computer Systems, Ottawa, May 1995.[36] N. H. Vaidya. Impact of checkpoint latency on overhead ratio of a checkpointing scheme. IEEE Transactionson Computers, 46(8):942{947, August 1997.[37] Y-M. Wang, Y. Huang, K-P. Vo, P-Y. Chung, and C. Kintala. Checkpointing and its applications. In 25thInternational Symposium on Fault-Tolerant Computing, pages 22{31, Pasadena, CA, June 1995.[38] P. R. Wilson and T. G Moher. Demonic memory for process histories. In SIGPLAN '89 Conference onProgramming Language Design and Implementation, pages 330{343, June 1989.28



Raw DataNBODYTEST # of Running Time # of Avg Checkpoint Avg CheckpointRuns (sec) (std dev) Checkpoints Size (Mbytes) Latency (sec)BASE 3 5722.0 15.6SIMP 3 5805.3 4.5 6 3.7 18.0FORK 3 5780.7 4.6 6 3.7 16.9INC 3 5840.3 3.7 6 3.6 17.5INC-FORK 2 5814.0 13.0 6 3.6 19.6C-SIMP 3 5774.3 11.9 6 0.8 15.1C-FORK 2 5754.5 1.5 6 0.8 17.0C-INC 2 5855.5 25.5 6 0.8 17.8C-INC-FORK 2 5801.5 5.5 6 0.8 19.8DISK-FORK 3 5864.3 44.9 6 3.7 430.3MATTEST # of Running Time # of Avg Checkpoint Avg CheckpointRuns (sec) (std dev) Checkpoints Size (Mbytes) Latency (sec)BASE 3 6602.0 39.1SIMP 3 7021.0 17.5 7 15.5 61.3FORK 3 6913.7 54.5 7 15.5 63.0INC 3 6861.0 25.5 7 9.1 43.0INC-FORK 3 6735.3 3.4 7 9.2 44.0C-SIMP 2 6871.5 9.5 7 7.8 46.0C-FORK 2 6788.5 0.5 7 7.8 60.4C-INC 2 6871.5 26.5 7 8.5 44.7C-INC-FORK 2 6788.5 9.5 7 8.5 51.4DISK-FORK 3 6648.7 37.3 3 15.5 1955.0PSTSWMTEST # of Running Time # of Avg Checkpoint Avg CheckpointRuns (sec) (std dev) Checkpoints Size (Mbytes) Latency (sec)BASE 3 5610.0 22.8SIMP 3 6110.0 5.7 6 25.3 86.1FORK 3 5904.0 18.5 6 25.3 97.3INC 3 6096.3 28.4 6 19.9 75.8INC-FORK 3 5895.0 46.0 6 20.9 91.6C-SIMP 2 5916.5 19.5 6 2.8 49.8C-FORK 2 5825.5 17.5 6 2.8 66.0C-INC 2 5928.0 2.0 6 2.7 53.0C-INC-FORK 2 5870.5 9.5 6 2.7 70.8DISK-FORK 3 5655.7 15.5 1 24.4 3122.729



CELLTEST # of Running Time # of Avg Checkpoint Avg CheckpointRuns (sec) (std dev) Checkpoints Size (Mbytes) Latency (sec)BASE 3 6351.3 16.9SIMP 3 7119.7 8.5 5 41.5 156.2FORK 3 6850.3 33.3 5 41.5 160.4INC 2 7345.0 55.0 5 41.3 173.7INC-FORK 2 7075.5 42.5 5 41.3 234.2C-SIMP 3 6927.0 47.1 5 0.4 122.7C-FORK 3 6755.0 5.0 5 0.4 140.3C-INC 2 7025.5 6.5 5 0.4 123.7C-INC-FORK 1 6951.0 0.0 5 0.4 154.2DISK-FORK 3 6432.3 6.9 1 41.4 5346.0PCGTEST # of Running Time # of Avg Checkpoint Avg CheckpointRuns (sec) (std dev) Checkpoints Size (Mbytes) Latency (sec)BASE 3 5873.7 19.3SIMP 3 8011.7 34.2 6 66.6 322.9FORK 3 6546.7 36.4 6 66.6 242.0INC 3 6525.3 17.9 6 16.6 85.9INC-FORK 3 6103.7 6.9 6 16.6 101.6C-SIMP 2 8019.0 2.0 6 8.0 325.4C-FORK 2 6901.0 24.0 6 8.0 307.0C-INC 2 6488.5 52.5 6 12.0 79.7C-INC-FORK 2 6100.5 8.5 6 12.0 93.0

30


