
Algorithmic Redistribution Methods for Block CyclicDecompositions�Antoine P. Petitety, Jack J. Dongarraz7th February 1998Abstract. In a serial computational environment, transportable e�ciency is the essential motiva-tion for developing blocking strategies and block-partitioned algorithms. An algorithmic blockingfactor adjusts the granularity of the subtasks to maximize the e�ciency of the hardware resources.In a distributed-memory environment, load balance is the essential motivation for distributing ar-ray entries over a collection of processes according to the block cyclic decomposition scheme. Adistribution blocking factor is used to partition an array into blocks that are then mapped ontothe processes. Optimal values of the algorithmic and distribution blocking factors often di�er for agiven algorithm and target architecture. Despite this fact, most of the parallel algorithms proposedin the literature assume the values of these blocking factors to be identical. This feature limitsthe exibility and ease of use of such algorithms. When these blocking factors di�er, methods arenecessary to redistribute some data into the appropriate algorithmic form. This paper presents anddiscusses such algorithmic redistribution methods for the block cyclic decomposition scheme.Algorithmic redistribution methods attempt to reorganize logically the computations and commu-nications within an algorithmic context. In order to derive such methods, some properties of theblock cyclic data distribution are �rst exhibited. Various algorithmic redistribution methods arethen presented and applied to the representative outer product matrix-matrix multiply algorithm.Performance results are �nally discussed and analyzed. The general block cyclic decompositionscheme is shown to allow for the expression of exible and e�cient algorithmically blocked basiclinear algebra operations. Moreover, block cyclic data layouts, such as the purely scattered dis-tribution, which seem less promising as far as performance is concerned, are shown to be able toachieve high performance and e�ciency for a given set of matrix operations. Consequently, thisresearch not only demonstrates that the restrictions imposed by the optimal block cyclic data lay-outs can be alleviated, but also that e�ciency and exibility are not antagonistic features of theblock cyclic mappings. These results are particularly relevant to the design of dense linear algebrasoftware libraries as well as to data parallel compiler technology.Key words. algorithmic blocking, redistribution, block cyclic decomposition�This work was supported by the Defense Advanced Research Projects Agency under contract DAAH04-95-1-0077,administered by the Army Research O�ce.yDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996.zDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996 and Mathematical SciencesSection, Oak Ridge National Laboratory, Oak Ridge, TN 37831.1

1 IntroductionIn a serial computational environment, transportable e�ciency is the essential motivation for de-veloping blocking strategies and block-partitioned algorithms [3, 6, 26, 41]. An algorithmic block-ing factor adjusts the granularity of the subtasks to maximize the e�ciency of the hardware re-sources. In a distributed-memory environment, load balance is the essential motivation for dis-tributing array entries over a collection of processes according to the block cyclic decompositionscheme [1, 14, 37, 29, 17, 22, 30]. A distribution blocking factor is used to partition an array intoblocks that are then mapped onto the processes. Optimal values of the algorithmic and distributionblocking factors often di�er for a given algorithm and target architecture. Despite this fact, most ofthe parallel algorithms proposed in the literature assume the values of these blocking factors to beidentical [21, 22, 51, 58]. This feature limits the exibility and ease of use of such algorithms. Theexpression and implementation of these algorithms is simpli�ed thanks to alignment restrictions onthe operands that are naturally suggested by the unique blocking factor. Consequently, the scopeof application of these algorithms is limited in a way that does not satisfy general purpose libraryrequirements. High performance is however achievable on a wide range of distributed-memory con-current computers, but usually depends on the chosen value of the distribution blocking factors.High performance can be maintained across platforms by parameterizing the user's data distribu-tion or across library function calls by using general redistribution packages [42, 53]. When thealgorithmic and distribution blocking factors di�er, methods are necessary to redistribute somedata into the appropriate algorithmic form. This paper presents and discusses such algorithmicredistribution methods for the block cyclic decomposition scheme.Algorithmic redistribution methods attempt to reorganize logically the computations and commu-nications within an algorithmic context. In order to derive such methods, some properties of theblock cyclic data distribution are exhibited in Section 2. These properties are the basis of e�cientalgorithms for address generation, fast indexing techniques, and communication scheduling. Someof these algorithms are described in detail along with the properties from which they are deduced.Various algorithmic redistribution methods are then presented and applied to the representativeouter product matrix-matrix multiply algorithm in Section 3. The originality of this section ismainly the presentation of these distinct techniques within a single framework, making them suit-able for their integration into a software library. For some of these strategies little is known interms of their impact on e�ciency and/or ease of modular implementation. To our knowledge,little practical experiments have been so far reported in the literature. A scalability analysis of thepresented algorithmic redistribution methods is �nally given in Section 4. A number of experimentalperformance results are also presented and commented.The general block cyclic decomposition scheme is shown to allow for the expression of exibleand e�cient algorithmically blocked basic linear algebra operations. Moreover, block cyclic datalayouts, such as the purely scattered distribution, which seem less promising as far as performanceis concerned, are shown to be able to achieve high performance and e�ciency for a given set ofmatrix operations. Consequently, this research not only demonstrates that the restrictions imposedby the optimal block cyclic data layouts can be alleviated, but also that e�ciency and exibility arenot antagonistic features of the block cyclic mappings. These results are particularly relevant tothe design of dense linear algebra software libraries as well as to data parallel compiler technology.2

2 Properties of the Block Cyclic Data DistributionDue to the non-uniform memory access time of distributed-memory concurrent computers, theperformance of data parallel programs is highly sensitive to the adopted data decomposition scheme.The problem of determining an appropriate data decomposition scheme is to maximize systemperformance by balancing the computational load among the processors and by minimizing thelocal and remote memory tra�c. The data decomposition problem involves data distribution, whichdeals with how data arrays should be distributed among processor memories, and data alignment,which speci�es the collocation of data arrays. Since the data decomposition largely determinesthe performance and scalability of a concurrent algorithm, a great deal of research [18, 32, 34, 38]has aimed at studying di�erent data decompositions [7, 13, 39]. As a result the two-dimensionalblock cyclic distribution [46] has been suggested as a possible general purpose basic decompositionfor parallel dense linear algebra software libraries [23, 37, 49] because of its scalability [29], loadbalance and communication [37] properties.The purpose of this section is to present important properties of the two-dimensional block cyclicdata distribution. These properties are the basis of e�cient algorithms for address generation, fastindexing techniques, and communication scheduling. Some of these algorithms are described indetail along with the properties from which they are deduced.2.1 Analytical De�nition of the Block Cyclic Data DistributionIn general there may be several processes executed by one processor, therefore, without loss ofgenerality, the underlying concurrent computer is regarded as a set of processes, rather than physicalprocessors. Consider a P �Q grid of processes, where � denotes the set of all process coordinates(p; q) in this grid: � = f(p; q) 2 f0 : : :P � 1g � f0 : : :Q� 1gg:Consider an M �N matrix partitioned into blocks of size r� s. Each matrix entry aij is uniquelyidenti�ed by the integer pair (i; j) of its row and column indexes. Let � be the set constructedfrom all these pairs:� = f(i; j) 2 f0 : : :M � 1g � f0 : : :N � 1gg= f((l P + p) r+ x; (m Q+ q)s+ y); ((p; q); (l;m); (x; y))2 � � ���gwith � = f(l;m) 2 f0 : : :b M�1rP cg � f0 : : :b N�1sQ cgg and � = f(x; y) 2 f0 : : :r � 1g � f0 : : :s � 1g:De�nition 2.1 The block cyclic distribution is de�ned by the three following mappingsassociating to a matrix entry index pair (i; j):� the coordinates (p; q) of the process into which the matrix entry resides(� �! �(i; j) = ((l P + p) r+ x; (m Q+ q) s+ y) 7�! (p; q) (2.1)3

� the coordinates (l;m) of the local block in which the matrix entry resides(� �! �(i; j) = ((l P + p) r + x; (m Q+ q) s + y) 7�! (l;m) (2.2)� the local row and column o�sets (x; y) within this local block (l;m)(� �! �(i; j) = ((l P + p) r + x; (m Q+ q) s+ y) 7�! (x; y) (2.3)A few particular occurrences of the above de�nition are worth mentioning. First, the blockeddistribution is determined by De�nition 2.1 with r = dMP e and s = dNQ e, i.e., � = f(0; 0)g. Second,the square block cyclic distribution is a special case of De�nition 2.1 with r = s. Finally, thepurely scattered or cyclic decomposition is a particular instance of the square block cyclicdistribution with r = s = 1, i.e., � = f(0; 0)g. The expression of the properties presented in thefollowing section can often be simpli�ed for those speci�c cases, however, these properties will bestated for the above general de�nition of the block cyclic distribution.2.2 Properties of the Block Cyclic Data Distribution and LCM TablesThe purpose of this section is surely to formally exhibit properties of the block cyclic distribution.More importantly, this collection of properties aims at determining an elegant and convenient datastructure that encapsulates and reveals the essential features of this data distribution scheme inorder to derive algorithmic redistributed operations.The k-diagonal of a matrix is de�ned to be the set of entries aij such that i � j = k. With thisde�nition the 0-diagonal is the \main" diagonal of a matrix. The �rst sub-diagonal and super-diagonal are respectively the 1-diagonal and the �1-diagonal.De�nition 2.2 Given a k-diagonal, the k-LCM table (LCMT) is a two-dimensional in�nite arrayof integers local to each process (p; q) de�ned recursively by8><>: LCMT p;q0;0 = q s � p r + k;8l 2 IN; LCMT p;ql;� = LCMT p;ql�1;� � P r;8m 2 IN; LCMT p;q�;m = LCMT p;q�;m�1 +Q s:An equivalent direct de�nition is8(l;m) 2 IN2 LCMT p;ql;m = (m Q+ q) s � (l P + p) r + k:The above de�nition of an LCM table could be generalized in order to encompass the entire family ofCartesian mappings [10]. Indeed, an alternate de�nition of an LCM table entry would be the globalnumber of columns up to the blocks of local coordinates (�; m)minus the global number of rows up tothe blocks of local coordinates (l; �). This constructive de�nition is more general than the one usedin this document. In particular, De�nition 2.2 can easily be adapted to a block cyclic distribution4

with a partial �rst block [52]. In other words, the �rst block of rows (respectively columns) is of sizeir (respectively is) instead of r (respectively s). Such a generalization is convenient to allow for thespeci�cation of sub-matrix operands which upper left corner is not aligned on block boundaries [45].The equation for the k-diagonal is given byLCMT p;ql;m = x� y; (2.4)with (x; y) in �. Thus, blocks owning the k-diagonal entries are such that1� s � LCMT p;ql;m � r � 1: (2.5)In addition the value of LCMT p;ql;m speci�es where the diagonal starts within a block owning diag-onals as illustrated in Figure 1.
x

yy

x

pq(LCMT lm,0)

lm
pq)(0,−LCMT

LCMTlm
pq = −1 <= 0 LCMT lm

pq = 2 >= 0

s s

rr Figure 1: Meaning of di�erent values of LCMT p;ql;m with r = 6, s = 8It follows from De�nition 2.2 that the local blocks in process (p; q) such that LCMT p;ql;m � 0(respectively LCMT p;ql;m � 0) own matrix entries aij that are globally below (respectively above)the k-diagonal. Similarly, the local blocks in process (p; q) such that LCMT p;ql;m � �s (respectivelyLCMT p;ql;m � r) correspond globally to strictly lower (respectively upper) blocks of the matrix.Moreover, within each process, if the r�s block of local coordinates (l;m) owns k-diagonal entries,the block of local coordinates (l+ 1; m) (respectively (l;m+ 1)) owns either k-diagonals or matrixentries that are strictly below (respectively above) the k-diagonal. Similarly, within each process,if the r�s blocks of local coordinates (l;m) and (l+1; m) (respectively (l;m+1)) own k-diagonals,then the block of local coordinates (l;m+ 1) (respectively (l+ 1; m)) owns matrix entries that arestrictly above (respectively below) the k-diagonal.Let L = lcm(P r;Q s) and g = gcd(P r;Q s) be respectively the least common multiple andgreatest common divisor of the quantities Pr and Qs. The index pairs (i; j), (i + L; j), (i; j + L)and (i+ L; j + L) refer to array entries that are residing in the same process (p; q). Indeed, L is amultiple of Pr and Qs. In other words, the distribution pattern repeats after each square block ofsize L. This square matrix is called an LCM block. Each process owns exactly L=P � L=Q entries5

of this LCM block. This larger partitioning unit has been originally introduced in the restrictedcontext of square block cyclic mappings in [19, 20, 21]. The meaningful part of the LCM tables tobe considered in each process is of size L=(Pr)� L=(Qs).Figure 2 shows an LCM block-partitioned matrix and the r � s blocks of this matrix that residein the process of coordinates (p; q). Depending on their relative position to the k-diagonal, theseblocks are identi�ed by a di�erent shade of color. The arrangement of these blocks in process (p; q)is also represented and denoted by the local array in process (p; q). This �gure illustrates the directimplications of De�nition 2.2 and demonstrates that the essential piece of information necessaryto locate the diagonals locally in process (p; q) is contained in the diagonal LCM blocks. Thesediagonal LCM blocks separate the upper and lower parts of the matrix. Moreover, because of theL-periodicity of the distribution mapping, only one diagonal LCM block is needed in order to locatethe k-diagonals in every process of the grid. This implies that only a very small fraction of theLCM table needs to be computed in each process to locate the k-diagonals. This information ischeap to compute and one can a�ord to recompute it when needed.
Local array in process (p,q)

Upper

Lower

Diag

Upper

Lower

Diag

LCM block−partitioned matrixFigure 2: LCM template (P = 2, Q = 3, r = 4, s = 2 and (p; q) = (1; 1)).Figure 3 shows a 1-LCM block for a given set of distribution parameters P , r, Q and s as well as theassociated 1-LCM tables. Each of these tables is associated to a distinct process of coordinates (p; q).These coordinates are indicated in the upper left corner of each table. Examine for example thetable corresponding to process (0; 0). The value of the LCM table entry (0; 0) is 1. Since this value isgreater than �s = �3 and less than r = 2, it follows that this block (0; 0) owns diagonals. Moreover,locally within this block the diagonal starts in position (LCMT 0000 ; 0) = (1; 0). The periodicity inthis table is shown by the block of coordinates (3; 2) which is such that LCMT 0000 = LCMT 0032 = 1.One can also verify that a block of local coordinates (l;m) in this table corresponds to a strictly lower(respectively upper) block in the original 1-LCM block if and only if LCMT 00lm � �s (respectivelyLCMT 00lm � r). These same remarks apply to all of the other LCM tables shown in Figure 3.6

111090 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0

1

4

5

8

9

−8 −2

2

(0,1) 3 4 5 9 10 11

12

13

10

−4

0 6

15

4

4

2

3

6

7

10

11

−2

−6

4

0

3 4 5 9 10(1,1)

2 8

11 15

2

−1

−5 1

5

876210(1,0)

2

3

6

7

10

11
−3−9

12

−1

1 7

3

−1−7

−3

(0,0)

0

1

4

5

8

9

0 1 2 6 7 8

13

12
−5−11

12

1

Figure 3: 1-LCM block and 1-LCM tables for P = 2, r = 2, Q = 2 and s = 3.Property 2.1 The number of r� s blocks owning k-diagonal entries is given by8><>: L (r+ s� gcd(r; s))r s if gcd(r; s) divides k;L (r+ s)r s otherwise:Proof. (sketch) First note that one can assume without loss of generality that �s < k < r byrenumbering the processes with their relative process coordinates. Second, consider an array ofr � s blocks of size lcm(r; s). If k divides gcd(r; s), there is exactly one r � s block such that its(r � 1; s � 1) entry belongs to the k-diagonal. Otherwise, such a block does not exist. Third,the column (respectively row) edges of the blocks will be cut exactly lcm(r; s)=s (respectivelylcm(r; s)=r) times by the k-diagonal. To see that L=lcm(r; s) is indeed an integer, one may observethat this quantity can be rewritten as ((u Q) P r+ (t P) Q s)=g with u and t in ZZ. Finally, thereare exactly L=lcm(r; s) such blocks in an LCM block.Property 2.2 A necessary and su�cient condition for every process to own k-diagonal entries isgiven by r + s � gcd(r; s) � g if gcd(r; s) divides k and r + s � g otherwise.Proof. The condition is su�cient: remark that gcd(r; s) divides g. If gcd(r; s) divides k (notethat this will always be the case if gcd(r; s) = 1), then r + sgcd(r; s) � 1 is the number of multiples of7

gcd(r; s) in the interval Ip;q = (p r� (q� 1) s : : :(p+1) r� q s). The number of multiples of g in theinterval Ip;q is ggcd(r; s). Thus, the inequality r + sgcd(r; s) � 1 � ggcd(r; s) is a su�cient condition fora multiple of g to be in this interval Ip;q. Otherwise, when gcd(r; s) does not divide k, Equation 2.5can be rewritten as p r � (q + 1) s < m Q s� l P r + k < (p+ 1) r � q s: (2.6)For any given process of coordinates (p; q), there must exist a t 2 ZZ such that m Q s� l P r = t gverifying Inequality 2.6. Moreover, the interval of interest Ip;q is of length r + s � 1. A su�cientcondition for all processes to have k-diagonals is given by r + s � 1 � g. Since gcd(r; s) 6= 1 andgcd(r; s) divides g, this su�cient condition can be equivalently written as r + s � g.The condition is necessary: suppose there exists a process (p; q) having two distinct blocks owningk-diagonals. Then, r + s � gcd(r; s) � g if gcd(r; s) divides k, and r + s � g otherwise. Thereare two multiples of g in some interval Ip;q. Otherwise, each process owns at most one r � s blockin which k-diagonals reside. Therefore, the number of blocks owning k-diagonals is equal to thenumber of processes owning these diagonals. The result then follows from Property 2.1.Property 2.3 The number of processes owning k-diagonal entries is given by8>><>>: max(P Q (r+ s� gcd(r; s)g); P Q) if gcd(r; s) divides k;max(P Q (r+ sg); P Q) otherwise:Proof. The result follows from the fact that Lg = (P r)(Q s) and Properties 2.1 and 2.2.These last properties are summarized in Table 1. The end of this section aims at determiningthe probability that the quantities r + s � gcd(r; s) or r + s are greater or equal to g, that is,the probability that every process owns k-diagonals entries. The result obtained is particularlyinteresting because it quanti�es the complexity of general redistribution operations as a functionof the distribution parameters, namely the perimeter r + s of the r � s partitioning unit and thequantities gcd(r; s) and g = gcd(P r;Q s).Table 1: Properties of the k-diagonal for the block cyclic distributionBlocks owning k-diagonals �s < m Q s � l P r + q s� p r + k < rProcesses owning k-diagonals 9t 2 ZZ, such that p r � (q + 1) s < t g + k < (p+ 1) r � q sNumber of such processes min((P Q (r + s)) = g;P Q) if gcd(r; s) divides k;min((P Q (r + s � gcd(r; s))) = g;P Q) otherwise:It is di�cult to compute analytically the probability that all processes will own k-diagonal entries.However, it is likely that this probability, if it exists, converges rapidly [52]. It is possible to rely8

on a computer to enumerate all 4-tuples in a �nite and practical range such that the quantitiesr + s � gcd(r; s) or r + s are greater or equal to g. The results are presented in Figure 4. It isimportant to notice that in practice, i.e., for a �nite range of values (1 � P; r; Q; s � n), there isalmost no di�erence between the �nite ratios of all 4-tuples verifying these inequalities over [1::n]4.Figure 4 does not prove the existence of the limit and therefore of the probability. However, if itexists, its value is very close to one. In other words, if one picks random distribution parameters,it is very likely that all processes in the grid will own k-diagonals. Figure 4 not surprisinglyshows that the ratios of distribution parameters such that k-diagonals are evenly distributed tends
gcd(P r, Q s) <= r + s − gcd(r, s)
gcd(P r, Q s) <= r + s

0 50 100 150 200 250 300 350 400 450 500
0.85

0.9

0.95

1

n

ra
tioFigure 4: Ratios of tuples (P; r; Q; s) in [1::n]4 such that r + s � gcd(r; s) � g or r + s � g.towards one. More interesting is the fact that this function R increases very rapidly (R(10)� :88,R(20) � :90, R(50) � :93). Therefore, it is very likely that all processes in the grid will ownk-diagonals. Properties 2.2 and 2.3 say that the distribution of the k-diagonals essentially dependson the perimeter of the r � s partitioning unit as opposed to its shape. In other words, restrictingthe data decomposition to a square block cyclic mapping does not a�ect in any way the problem oflocating the k-diagonals, and consequently the complexity of redistribution operations. To reducethis complexity, it is necessary to choose small values of the distribution parameters r and s.Furthermore, assume that the complexity of redistribution operations in terms of the number ofmessages exchanged for the same volume of data to be communicated grows with the number ofprocesses owning k-diagonals. The next two sections will con�rm the validity of this assumption. Itfollows that small distribution blocking factors are favorable to interconnection networks featuringa large startup time or latency, but high bandwidth. Conversely, small startup time and lowerbandwidth are more well-suited for medium and large distribution blocking factors, as far as theperformance of redistribution operations is concerned. Transportable e�ciency for redistributionoperations requires thus the support of the parameterized family of block cyclic mappings.The algorithmic redistributed operations described can be expressed in terms of locating diagonalsof a distributed matrix. The next section also illustrate the fundamental role played by LCMtables and the properties presented above in the formulation of these operations. Moreover, theimplications of these properties are analyzed in greater detail as these operations are speci�ed inthis document. Still, the correctness of these operations and the robustness and reliability of theirimplementation depend entirely on the material presented above.9

3 Algorithmic Redistribution MethodsThis section presents di�erent kinds of blocking strategies for distributed-memory hierarchies. Mostof them can be formulated in terms of \LCM-operations", i.e., operations relying on LCM tablesfor their derivation, expression and implementation. The originality of this section is mainly thepresentation of these distinct techniques within a single framework, making them suitable for theirintegration into a software library. For some of these strategies little is known in terms of theirimpact on e�ciency and/or ease of modular implementation. To our knowledge, little practicalexperiments have been so far reported in the literature.The same example operation called a rank-K update is used to illustrate the di�erences betweenall blocking strategies presented below. This operation produces an M �N matrix C by adding toitself the product of an M �K matrix A and a K �N matrix BC C +AB:The physical blocking strategy uses the distribution blocking factors as a unit for the computationalblocks. In other words, the computations are partitioned accordingly to the data distributionparameters. No attempts are made to either gather rows or columns residing in distinct processes,or scatter rows or columns residing in a single process row or column. It is assumed that thedistribution parameters have been determined a priori presumably by the user. Ideally, this choicehas been inuenced by its performance implications on the physical blocking strategy. Most of theparallel algorithms presented in the literature [2, 7, 10, 11, 22, 23, 30, 33, 34, 35, 39, 47, 48, 59]rely on this strategy. The algorithm performing the rank-K update operation using a physicalblocking strategy is relatively easy to express. Strong alignment and distribution assumptions aremade on the matrix operands. In particular, the distribution blocking factors used to decomposethe columns of A and the rows of B must be equal. Moreover, the rows of A (respectively thecolumns of B) must be aligned to the rows (respectively columns) of C. The pseudo code for thisalgorithm is given below.8>>>>>>><>>>>>>>: for kk = 1; K; NBdiskb = min(K � kk + 1; NBdis)Broadcast A(:; kk : kk + kb� 1) within process rows;Broadcast B(kk : kk + kb� 1; :) within process columns;C C + A(:; kk : kk + kb� 1) �B(kk : kk + kb� 1; :);end forIt is possible to take advantage of communication pipelines in both directions of the process grid.However the cyclic data allocation imposes that the source process of the broadcasts changes ateach iteration in a cyclic fashion. That is, a given process broadcasts all of its columns of A or rowsof B in multiple pieces of size proportional to the value of the distribution blocking factor NBdis.The smaller this value is, the larger the number of messages and the lower the possible data reuseduring each computational phase. In other words, the performance degrades as the value of thedistribution blocking factor is decreased. If the value of this factor is very large, the communicationcomputation overlap decreases causing a performance degradation. High performance and e�ciencycan still be achieved for a wide range of blocking factors. This has been reported in [2, 29, 51, 58, 16].10

Three alternatives to the physical blocking strategy are �rst presented in this section. Then, afew other related applications of those methods are outlined. The originality of the algorithmspresented here is their systematic derivation from the properties of the underlying mapping. Theseblocking strategies are expressed within a single framework using LCM tables. The resultingblocked operations are appropriate for library software. They indeed feature potential for highperformance without any speci�c alignment restrictions on their operands. This says that theantagonism between e�ciency and exibility is not a property of the block cyclic mapping, butmerely a characteristic of the algorithms that have been so far proposed to deal with a distributed-memory hierarchy.3.1 Aggregation and DisaggregationThe aggregation or algorithmic blocking strategy operates on a panel of rows or columns that areglobally contiguous. The local components of this panel before aggregation are also contiguous.The size of this panel is an algorithmic blocking factor. Its optimal value depends on the targetmachine characteristics. If this logical value is equal to the distribution blocking factors, thenaggregation and physical blocking are the same. Otherwise, a few rows or columns which areglobally contiguous and residing in distinct processes, are gathered into a single process row orcolumn and this panel becomes the matrix operand. This strategy is particularly e�cient when thedistribution blocking factor is so small that Level 3 BLAS performance cannot be achieved locally oneach process. Obviously, the aggregation phase induces some communication overhead. However,this must be weighted against the local computational gain. The problem is then to determine analgorithmic blocking factor NBalg that keeps this overhead as low as possible and simultaneouslyoptimizes the time spent in local computation. The feasibility and performance characteristicsof this approach have been illustrated for the numerical resolution of a general linear system ofequations and the symmetric eigenvalue problem in [13, 14, 8, 36, 54, 55] for the purely scattereddistribution. Similarly, it is sometimes bene�cial to disaggregate a panel into multiple panels inorder to overlap communication and computation phases. When applicable, this last strategy alsopresents the advantage of requiring a smaller amount of workspace. The pseudo code of the rank-Kupdate operation using aggregation follows.8>>>>>>>>>>>><>>>>>>>>>>>>: for kk = 1; K; NBalgkb = min(K � kk + 1; NBalg);Aggregate A(:; kk : kk + kb� 1) in one process column;Broadcast A(:; kk : kk + kb� 1) within process rows;Aggregate B(kk : kk + kb� 1; :) in one process row;Broadcast B(kk : kk + kb� 1; :) within process columns;C C + A(:; kk : kk + kb� 1) �B(kk : kk + kb� 1; :);end forThe aggregation and disaggregation techniques attempt to address the cases where the physicalblocking strategy is not very e�cient, i.e., for very small or large distribution blocking factors.In both techniques, the consecutive order of matrix columns or rows is preserved. It is thereforepossible to use this techniques for algorithms that feature dependent steps such as a triangularsolve or the LU factorization with partial pivoting. The disaggregation technique however can only11

be applied e�ciently for operations that do not feature any dependence between steps, such asa matrix-multiply. The disaggregated data remains consecutively ordered. Therefore, it cannotimprove signi�cantly the load imbalance caused by consecutive allocation and consecutive elimina-tion [40].3.2 LCM BlockingThe LCM blocking strategy operates on a panel of rows or columns that are locally contiguous. Thesize of this panel is also an algorithmic blocking factor. Its optimal value depends on the targetmachine characteristics. However, rows or columns that may not be locally contiguous are packed,but according to an external criterion, typically the distribution parameters of another operand.Consider the rank-K update operation illustrated in Figure 5. The LCM blocking strategy proceedsas follows. One is interested in �nding the columns of A residing in a particular process column qand the rows of B residing in a particular process row p that could be multiplied together in orderto update the matrix C. In Figure 5, these columns of A and rows of B are indicated in gray.To accomplish this, one can consider the virtual matrix, denoted VM in the �gure, de�ned bythe column distribution parameters of A and the row distribution parameters of B. Locating the0-diagonals of this VM in the process of coordinates (p; q) exactly solves the problem as illustratedin the �gure. This can be realized by using LCM tables. As opposed to the physical blockingstrategy, this technique does not assume the distribution equivalence of the columns of A and rowsof B as suggested in Figure 5. Moreover, the packing of these columns of A and rows of B is alocal data copy operation, i.e., without communication overhead. For a given q, one just needs togo over all process rows and thus treat all of the columns of A residing in this process column q.This algorithm can be regarded as a generalization of the physically blocked version. It presents,
A

B

C

VM

M

NK

K

Figure 5: Global view of the LCM blocked rank-K update12

however, some advantages. First, as mentioned above, it does not assume an equivalent distributionof the columns of A and rows of B. Second, the communication overhead of the physically blockedvariants has been partially replaced by a local data copy into a bu�er that was needed anyway. Thecommunication pipeline stages in the row direction have been shortened. The cost of this pipelinestartup has also been reduced by having the process column emitting the broadcasts remaining�xed as long as possible. Furthermore, this operation can also be logically blocked by limiting thenumber of columns of A in process column q and corresponding rows of B in the process row p thatwill be locally packed and broadcast at each step. The pseudo code for the LCM blocking strategyis given below.8>>>>>>>>>>>><>>>>>>>>>>>>: for q = 0; Q� 1for p = 0; P � 1npq = number of diagonals process (p; q) owns;Process column q packs and broadcasts those npq columns of A within process rows;Process row p packs and broadcasts those npq rows of B within process columns;Perform local matrix�matrix multiply;end forend forThis approach presents the advantage that the cost of the gathering phase is put on the processor asopposed to the interconnection network. However, it cannot be used for algorithms where each stepdepends on the previous one. Typically, the LCM blocking strategy is well-suited for multiplyingtwo matrices, where each contribution to the resulting matrix entries can be added in any order.The LCM blocking strategy is a typical algorithmic redistribution operation since it rearrangeslogically and physically the communication and computation phases for increased e�ciency andexibility.3.3 Aggregated LCM BlockingThe aggregated LCM blocking strategy is an hybrid scheme that combines the aggregation and LCMblocking strategies. In the aggregation scheme described earlier, the blocks to be aggregated wereglobally contiguous. It is, however, possible to use the same strategy for the local blocks obtainedvia LCM blocking. Furthermore, disaggregated LCM blocking is also possible as noted above. Thismore elaborate algorithmic blocking method maintains the local computational granularity evenif the number of diagonals residing in a process is or becomes too small. The algorithm goes asfollows. A process of coordinates (p; q) is considered and the number of diagonals npq that processowns are handled by chunks of size NBalg. If npq is a multiple of NBalg, then the algorithmproceeds to the next process in the grid, either (p+1; q) or (0; q+1). Otherwise, if (p+ 1; q) is thenext process, the remaining rows of B in process (p; q) are sent to the process (p+ 1; q), and theLCM blocking method proceeds to this process taking into account the remainder of the previousstep. If (0; q + 1) is the next process, this last procedure is applied to the remaining rows of Band columns of A. This algorithm therefore maintains the local computational granularity at a lowcommunication overhead. 13

3.4 Redistribution and Static BlockingThe above framework can be used to tackle the run-time array redistribution problem when thosearrays are distributed in a block cyclic fashion over a multidimensional process grid. Solving thisredistribution problem requires �rst to generate the messages to be exchanged, and second toschedule these messages so that communication overhead is minimized. A comparative survey ofthe available literature can be found in [61]. Most of the attention has been so far paid to themessage generation phase [15, 44, 44, 5, 57] and only a few papers deal with the communicationscheduling phase [43, 53, 60, 50]. It turns out that the properties of the block cyclic distributionpresented in this paper can be used to study further this scheduling problem as it is shown in [27].Moreover, the message generation phase can also be addressed with the help of the LCM tables.Figure 6 illustrates this fact in the one-dimensional case. X (respectively Y) is a M � N one-dimensional array distributed over P (respectively Q) processes with a distribution blocking factorof r (respectively s). The �gure shows the global and local view of the redistribution mappingas well as the M �M distributed matrix induced by X and Y . Locating the diagonals of thismatrix using LCM tables naturally provides a possible message generation algorithm. This �gurealso shows that the general complexity of the redistribution problem is related to the number ofprocesses in the P �Q grid owning diagonals. Furthermore, the transpose and shift operations canbe handled similarly within this framework. Finally, this approach can be generalized to handlethe multidimensional case and the problem of accessing array entries with a non-unit stride [52].It follows that e�cient algorithms for the re-alignment of operands block cyclically distributed canalso be expressed using the LCM tables and the above properties. In other words, exible ande�cient basic linear algebra kernels for distributed-memory concurrent computers can be expressedwithin the same framework.
X

Y

M

M

N

N

s

r

N

N

Y

X

r

s

Figure 6: Global and local view of one-dimensional redistributionLCM tables can be also used to derive another algorithmic blocking method, called the staticblocking strategy thereafter, which deals only with purely local computational phases. It is assumedthat the operation has reached a stage where the operands have already been redistributed ifnecessary by other techniques. Only local remaining computations need to be performed. It may,however, be the case that a local output operand has to be redistributed subsequently. Within14

this context, the symmetric rank-K update operation C C + AAT is easy to describe. C isan N �N symmetric matrix for which only the upper or lower triangle should be referenced, andA is a matrix of dimension N � K. The matrix A has been replicated in every process columnand the matrix AT replicated in every process row. The distributed matrix C is partitioned intodiagonal and strictly upper or lower LCM blocks as shown in Figure 7. This �gure shows the LCMblock-partitioned matrices A and C and the r � s, r �K and K � s blocks of these matrices thatreside in the process of coordinates (p; q). The arrangement of these blocks in process (p; q) is alsorepresented and denoted by the local arrays in process (p; q). Depending on their relative positionto the diagonal, the r� s blocks of C are identi�ed by a di�erent shade of color. It is usually easyto deal with the strict upper or lower part using the BLAS matrix-matrix multiply. The diagonalLCM block requires however particular attention.
Local arrays in process (p,q)

K

K

N

A

A C

C

N

TA

TA

LCM block−partitioned matricesFigure 7: Static symmetric rank-K updateFigure 7 shows that the local update can be expressed in terms of symmetric rank-K updates andmatrix-matrix multiplies. The LCM tables provide the necessary information to organize the localcomputation in such a way that one can take advantage of the high e�ciency of the matrix-matrixmultiply kernel [9, 62]. A similar approach has been proven highly e�cient for GEMM-based BLASimplementations such as [26, 41]. The static blocking strategy, even in its simplest form, imposesstrong restrictions on the alignment and distribution of the operands. This is, nevertheless thelast opportunity for a large operation to logically rearrange the computations. This suggests thatan e�cient implementation of the symmetric rank-K update when N � K would use the LCMblocking strategy to replicate A over C, and the static blocking technique to perform the localupdate. The algorithmic blocking factors for both phases can be chosen independently.15

3.5 RationaleThe use of physical blocking in conjunction with static blocking can lead to a comprehensive andscalable dense linear algebra software library. Existing serial software such as LAPACK [6] can bereused. The ScaLAPACK [12] software library is the result of this reasoning. As suggested above,if one limits oneself to static and physical blocking, strong alignment restrictions must be met bythe matrix operands. It is nevertheless argued that these restrictions are reasonable because, �rst,general redistribution software is available. Second, the user is ultimately responsible for choosingthe initial data layout. Finally, the majority of practical cases are covered by this approach.This section summarized di�erent blocking strategies for block cyclic mappings. It also introducedoriginal LCM techniques extending the physical blocking scheme. These LCM techniques allowfor greater exibility. They are equivalent to the usual techniques for the restricted cases. Thepresentation of these general strategies stressed their systematic derivation from the properties ofthe underlying mapping. The importance of the LCM tables introduced in Section 2.2 has beendiscussed and shown to provide an acceptable and convenient framework to present algorithmicredistribution operations. The latter form the elementary building blocks to express more complexparallel operations such as a complete, e�cient and exible set of parallel linear algebra operations.Four categories of operations naturally emerge from the previous discussion:� Statically blocked computational operations,� Aggregation kernels,� LCM blocking tools,� One and two-dimensional redistribution.These basic buildings blocks are well delimited. They can all be expressed within a single frameworkusing LCM tables. Such a partitioning is suitable for software library design.4 Performance Analysis and Experimental ResultsA theoretical model of a distributed-memory computer is presented early in this section. It is anabstraction of physical models that provides a convenient framework for developing and analyzingparallel distributed dense linear algebra algorithms without worrying about the implementationdetails or physical constraints. The model is then applied to the algorithmic blocking strategiespresented in Section 3 in order to analyze their scalability. Finally, a number of experimental resultsare presented and commented.4.1 The Machine ModelDistributed-memory computers consist of processors that are connected using a message passinginterconnection network. Each processor has its own memory called the local memory, which is16

accessible only to that processor. As the time to access a remote memory is longer than the time toaccess a local one, such computers are often referred to as Non-Uniform Memory Access (NUMA)machines [46]. The interconnection network of our machine model is static, meaning that it consistsof point-to-point communication links among processors. This type of network is also referred toas a direct network as opposed to dynamic networks. The latter are constructed from switchesand communication links. These links are dynamically connected to one another by the switchingelements to establish at run time the paths between processors' memories. The interconnectionnetwork of the machine model considered here is a static two-dimensional P �Q rectangular meshwith wraparound connections. It is assumed that all processors can be treated equally in termsof local performance and the communication rate between two processors is independent from theprocessors considered. Each processor in the two-dimensional mesh has four communication ports.However, the model assumes that a processor can send or receive data on only one of its ports ata time. This assumption is also referred to as the one-port communication model [46].The time spent to communicate a message between two processors is called the communicationtime Tc. In our machine model, Tc is approximated by a linear function of the number L of itemscommunicated. Tc is the sum of the time to prepare the message for transmission � and the time� L taken by the message of length L to traverse the network to its destination, i.e.,Tc = � + � L:This approximation of the communication time supposes that any two processors are equidistantfrom a communication point of view (cut-through or worm-hole routing). This approximation isreasonable for most current distributed-memory concurrent computers. Finally, the model assumesthat the communication links are bidirectional, that is, the time for two processors to send eachother a message of length L is also Tc. A processor can send and/or receive a message on only oneof its communication links at a time. In particular, a processor can send a message while receivinganother message on the same or di�erent link at the same time.Since this paper is only concerned with a single regular local operation, namely the matrix-matrixmultiplication, the time taken to perform one oating point operation is assumed to be a constant in our model. This very crude approximation summarizes in a single number all the steps performedby a processor to achieve such a computation. Obviously, such a model neglects all the phenomenaoccurring in the processor components, such as cache misses, pipeline startups, memory load orstore, oating point arithmetic and so on, that may inuence the value of as a function of theproblem size for example. Similarly, the model does not make any assumption on the amount ofphysical memory per node. This machine model is a very crude approximation that is designedspeci�cally to illustrate the cost of the dominant factors to our particular case. More realisticmodels are described for example in [46] and the references therein.4.2 Scalability AnalysisThe rank-K update operation produces an M �N matrix C by adding to itself the product of anM �K matrix A and a K �N matrix BC C +AB:17

In the following we assume for simplicity thatM = N = K. The number of oating point operationsis assumed to be equal to 2N3. All three matrices are distributed onto the same square processgrid. Moreover, we also assume that the matrix operands are distributed according to the squareblock cyclic data distribution (see De�nition 2.1), and that the distribution blocking factors arethe same for all operands. Therefore, no re-alignment phase is necessary to be performed. Thisdistribution blocking factor is denoted by NBdis in the following.Four algorithms are considered, denoted by PHY, AGG, LCM and RED. PHY denotes the physi-cally blocked variant, AGG identi�es the aggregation algorithm and the LCM blocking algorithmis denoted by LCM. Finally, a fourth variant RED is considered where the matrices A and B arecompletely redistributed before hand. For the algorithmic blocking variants AGG and LCM, thealgorithmic blocking factor is denoted by NBalg. Parallel e�ciency, E(n; p), for a problem of sizen on p processors is de�ned in the usual way [32] byE(n; p) = 1p Tseq(n)T (n; p) (4.7)where T (n; p) is the runtime of the parallel algorithm, and Tseq(n) is the runtime of the bestsequential algorithm. An implementation is said to be scalable if the e�ciency is an increasingfunction of n=p, the problem size per processor (in the case of dense matrix computations, n = N2,the number of words in the input). The parallel runtime and e�ciency on our machine model forthe four algorithms PHY, AGG, LCM and RED are computed below as a function of the localcomputational speed , the communication parameters � and �d (the time for a oating pointnumber to traverse the network), and the total number of processors p.The key-factor of this performance analysis is to model the cost of a sequence of broadcasts on aring [2, 58] where the source either remains the same or is incremented by one after each broadcast.In the physical blocking strategy, the source process of the broadcast sequence is incremented ateach step. The parallel runtime of the physically blocked variant algorithm is given byTPHY (N; p) � 2N3 p (1 + 2 (p �NBdisN2 + pp �dN)) when NNBdis �pp:A similar analysis for the physical blocking variant can also be found in [2, 58]. The aggregationblocking strategy essentially performs a sequence of accumulations followed by a ring broadcast.For the sake of simplicity, it is assumed that k blocks of the same size are aggregated (k � 2).In practice, the blocks are only approximately of the same size. k is clearly bounded above bypp. In addition, the algorithmic blocking factor NBalg is used to partition the communicationand computation. It follows that the estimated execution time on our machine model for theaggregation strategy is given byTAGG(N; p) � 2N3 p (1 + k (p �NBalgN2 + pp �dN)) when NNBalg �pp:In the LCM blocking strategy, one looks at the diagonals of the virtual distributed matrix inducedby the columns of A and rows of B residing in all process column and row pairs. It is assumed inthis section that each process in the grid owns a number of diagonals that is proportional to NBalg.With these assumptions, the estimated execution time of the LCM blocking strategy is given byTLCM (N; p) � 2N3 p (1 + 32 (p �NBalgN2 + pp �dN)) when NNBalg �pp:18

Finally, the parallel run time of the RED variant is obtained by adding to the quantity TPHY (N; p)computed above the approximated time to redistribute two square matrices of order N , that is2 (p �+ N2 �dp).Table 2 summarizes the estimated parallel e�ciency for each variant studied in this Section. TheLCM blocking variant features a slightly higher e�ciency than the physical blocking strategy. Thistheoretical analysis also explains why one expects to observe better performance for the physicalstrategy than the aggregation variant when a \good" value of the distribution blocking factorNBdisis selected. The physical blocking algorithm is thus scalable in the sense that if the memory useper process (pN2) is maintained constant, this algorithm maintains e�ciency. The physical blocksize NBdis can be used to lower the importance of the latency �. The aggregation algorithm is alsoTable 2: Estimated parallel e�ciencies for various blocking variantsEPHY (N; p) (1 + 2 (p �NBdisN2 + pp�dN))�1EAGG(N; p) (1 + k (p �NBalgN2 + pp �dN))�1 with k � dNBalgNBdis eELCM (N; p) (1 + 32 (p �NBalgN2 + pp�dN))�1ERED(N; p) (1 + 1 ((2 + pNBdisN) p �NBdisN2 + (2pp+ 1) �dN))�1scalable. The value of k is a constant that only depends on the ratio between the algorithmic NBalgand distribution NBdis blocking factors. This formula show the communication overhead inducedby the aggregation strategy in terms of the number of messages as well as the communicationvolume. When the distribution blocking factor is larger than the algorithmic blocking factor, thephysical blocks are split into smaller logical blocks. Therefore, the estimated execution time of thedisaggregation variant is bounded above by the result obtained for the aggregation strategy. TheLCM blocking variant is also scalable for aligned matrix operands. This variant is slightly moree�cient than the physical and aggregation strategies. It should be noted however that our machinemodel assumes that the local data copy operation is free. In reality, such an assumption depends onthe target machine and may a�ect the results presented in Table 2. The RED algorithm, however,is not scalable because of the latency term.4.3 Experimental Performance ResultsThe purpose of this section is to illustrate the general behavior of algorithmically redistributed op-erations as opposed to presenting a collection of particular performance numbers. The presentation19

style aims at facilitating the comparison of the di�erent blocking strategies for a set of illustra-tive and particular cases. Experimental performance results are presented below for two distinctdistributed-memory concurrent computers, namely the Intel XP/S Paragon [25] and the IBM Scal-able POWERparallel System [4, 24, 56]. All of our experiments were performed in double precisionarithmetic. The local rank update operation was performed by calling the appropriate subprogramof the vendor-supplied BLAS. The communication operations were implemented by explicit calls tothe Basic Linear Algebra Communications Subprograms (BLACS). The BLACS [28, 31] are a mes-sage passing library speci�cally designed for distributed linear algebra communication operations.The computational model consists of a one or two-dimensional grid of processes, where each pro-cess stores matrices and vectors. The BLACS include synchronous send/receive routines to send amatrix or sub-matrix from one process to another, to broadcast sub-matrices, or to compute globalreductions (sums, maxima and minima). There are also routines to establish, change, or query theprocess grid. The BLACS provide an adequate interface level for linear algebra communicationoperations. The performance of our algorithms is measured in Mops/s. This is appropriate forlarge dense linear algebra computations since oating point dominates communication.The matrix operands used for our experiments were distributed in such a way that no re-alignmentphase was necessary as explained in Section 4.2. Experimental performance results for non-alignedoperands have been reported in [52]. Di�erent values of the distribution blocking factor have beenused. A machine dependent value of the algorithmic blocking factor NBalg used by the AGG andLCM variants has �rst been determined for each platform and used for all of the experiments. Onour Intel XP/S Paragon, we found that a reasonable value for this algorithmic blocking factor was14. On the IBM SP, the value of 70 has been selected. The �rst experiment denoted XP A0 forthe Intel XP/S paragon and SP A0 for the IBM SP uses the value of NBalg as the distributionblocking factor NBdis for all of the matrix operands. These experiments aim at verifying thatthe algorithmically redistributed variants do not a�ect the reference performance obtained by thephysical blocking strategy. Figure 8 shows the performance of the physical blocking (PHY), aggre-gation (AGG) and the LCM blocking (LCM) strategies using the value of NBalg as the distributionblocking factors for the three matrix operands. According to the conclusions of the previous section,the performance of the three variants is almost identical on each platform with a slight advantage
PHY (XP_A0)

AGG (XP_A0)

LCM (XP_A0)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

problem size

M
flo

ps

4x4

4x8

PHY (SP_A0)

AGG (SP_A0)

LCM (SP_A0)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

4x4

4x8

Figure 8: Performance in Mops/s of algorithmic blocking variants for a \good" physical datalayout case and various process grids on the Intel XP/S Paragon and the IBM SP20

to the LCM blocking variant. In the rest of this section, the performance curves shown in Figure 8are considered as a reference. The combined maximum of these curves has been replicated on allof the other plots presented. This maximal curve is thereafter always represented as a bold solidline. Ideally, one would like to observe no di�erence between the performance obtained for this\good" physical layout and the performance achieved by distributions induced by other distributionblocking factors. Table 3: Speci�cation of the experimentsExperiment # Distribution parametersXP A0, SP A0 NBdis = NBalg for all operands.XP A1, SP A1 NBdis = 1 for all operands.XP A10 NBdis = 10 for all operands.SP A20 NBdis = 20 for all operands.XP A40 NBdis = 40 for all operands.XP A100 NBdis = 100 for all operands.SP A200 NBdis = 200 for all operands.A few other experiments have been speci�ed as follows. Each experiment has been given an encodedname of the form XX A#. XX identi�es on which target machine the experiment has been run,either XP for the Intel XP/S Paragon or SP for the IBM SP. # is a number or a string distinguishingeach experiment. For each experiment, the distribution parameters of the matrix operands A, Band C are the same. Table 3 contains the speci�cations of all of the experiments that have beenperformed. In all of the experiments, the matrix operands were square of order N . The valuesof N used for all experiments are 100, 250, 500, 1000, 1500, 2000 and 3000. Due to memory sizeconstraints, it was not always possible to perform the experiments for all of these values. Resultsare reported on a 4� 4 Intel XP/S Paragon and a 4� 8 IBM SP.Figure 9 shows the performance results obtained by the physical blocking strategy on aligneddata. The physical blocking variant uses the distribution blocking factors as the computational
XP_A1

XP_A10

XP_A40

XP_A100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

SP_A1

SP_A20

SP_A200

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

psFigure 9: Performance of the PHY variant on a 4� 4 Intel XP/S Paragon and on a 4� 8 IBM SP21

unit. When the distribution parameters are very small, the performance is dramatically degraded,because of the local performance of the rank-k update for small values of k. This is the di�erencethat one should expect when using Level 1 or 2 BLAS based algorithms as opposed to Level 3 BLASbased algorithms on such computers. Very large distribution parameters increase the computationload imbalance, which is characterized by highly irregular performance results. For the experimentSP A200, for N = 1500, each processor has almost the same amount of data. However, for N =2000, the most loaded processes have locally a 600� 400 matrix on which to operate. The matricesresiding in the least loaded processes are however of size 400� 200. Therefore, some processes havethree times as much work to perform than others. The ragged curves shown in Figure 9 are typicalof this phenomenon.Figure 10 shows the performance results obtained for the aggregation strategy on aligned data.The dependence of the performance from the physical distribution parameters is largely decreased.The performance results are pushed towards the result of reference. For very small values of thedistribution parameters, one expects a large performance improvement compared to the physicalblocking strategy. This aspect is particularly evident for both target platforms as shown in Fig-ure 10. The aggregation phase induces some communication overhead that somewhat limits thepotential of this strategy. This phenomenon is not particularly well illustrated on the Intel XP/SParagon due to the high speed of the interconnection network compared to the local computationalperformance. However, on the IBM SP, even if the performance of Experiment SP A1 has beenconsiderably improved, it remains much lower than the reference performance because of the lessfavorable communication-computation performance ratio of this machine.
XP_A1

XP_A10

XP_A40

XP_A100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

SP_A1

SP_A20

SP_A200

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

psFigure 10: Performance of the AGG variant on a 4� 4 Intel XP/S Paragon and on a 4� 8 IBM SPFigure 11 shows the performance results obtained for the LCM blocking strategy on aligned data.These �gures show that the LCM blocking variant produces the same e�ect as the aggregation strat-egy. It decouples the performance results from a poor choice of the distribution blocking factor. TheLCM results are however better than the ones shown above for the aggregation variant. In partic-ular, the performance results observed for Experiments XP A1 and SP A1 have been considerablyimproved. On the Intel XP/S Paragon, the performance obtained for very small distribution block-ing factors is now superior to the performance observed for distribution blocking factors slightlylarger than NBalg (XP A40). On the IBM SP, there is virtually no performance di�erence betweenExperiments SP A1 and SP A20. The impact of the less favorable communication-computation22

performance ratio of this particular machine is somewhat hidden by the algorithmic blocking strat-egy. This relatively low ratio is however, the reason for the performance di�erence between thereference case and the Experiments SP A1 and SP A20. The LCM blocking strategy builds panelsof NBalg rows and columns with less communication overhead because it essentially determinesand regroups the columns of A and rows of B that belong to a given process column and processrow pair. This phase is communication free. These results show that for aligned data and uniformdata distributions, the performance di�erence due to various distribution blocking factors is nomore than a few percentage points from the reference as de�ned above.
XP_A1

XP_A10

XP_A40

XP_A100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

SP_A1

SP_A20

SP_A200

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

psFigure 11: Performance of the LCM variant on a 4� 4 Intel XP/S Paragon and on a 4� 8 IBM SPFigure 12 shows the performance results when the matrix operands A and B are aligned but redis-tributed (RED) for e�ciency reasons. To perform the complete redistribution of a two-dimensionalblock cyclically distributed matrix, the appropriate component of the ScaLAPACK [12] softwarelibrary [53] has been used. Even if these plots show the performance obtained for the same exper-iments as above, one could argue that complete redistribution (RED) should only be used for theextreme cases. A major feature of redistributing the entire matrix operands A and B at once isthe large memory cost required by this operation. This increases the chances of the possible useof virtual memory by a large factor. Figure 12 illustrates the dramatic performance consequences
XP_A1

XP_A10

XP_A40

XP_A100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

SP_A1

SP_A20

SP_A200

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

psFigure 12: Performance of the RED variant on a 4� 4 Intel XP/S Paragon and on a 4� 8 IBM SP23

of using virtual memory on the Intel XP/S Paragon. On this particular machine the completeredistribution beforehand leads to lower performance than the one obtained by the LCM blockingvariant. In other words, the cost of redistributing when needed beforehand is larger than the costinduced by the algorithmically redistributed LCM strategy. In both variants the amount of com-putation is performed at the same speed. On the IBM SP, the complete redistribution beforehandleads to slightly higher performance than the LCM blocking strategy. The lower total number ofredistribution messages of the complete redistribution strategy takes better advantage of the lowcommunication-computation performance ratio of this machine. It is clear that the IBM SP mayneed to use virtual memory for su�ciently large problem sizes. However, the nodes of the machinewe used for our experiments had each at least 128 Megabytes of physical memory. It was notfeasible to estimate the impact of the use of virtual memory in a reasonable amount of time.The results presented in this section show that for the aligned experiments on both platforms, it islegitimate to use algorithmic redistribution variants. By doing so, one can obtain high performanceand e�ciency independently from the distribution parameters. Moreover, the performance numbersobtained by the aggregation and LCM blocking techniques show a slight superiority for the latter.However, both techniques are complementary in the sense that it is not always possible to use theLCM blocking strategy as mentioned in Section 3.1. In order to address the problems induced bybadly balanced computations, it is always possible to redistribute the matrix operand C, even ifthis somewhat contradicts the \owner's compute" rule.The larger the operands, the more bene�ts one should obtain from a complete redistribution. How-ever, the amount of memory necessary to perform such an operation grows with the number of itemsto be redistributed. This prevents from redistributing the largest operands. This argumentationwas at the beginning of our motivation for developing algorithmically redistributed operations thatrequire a much smaller amount of memory.5 ConclusionsMost of the parallel algorithms for basic linear algebra operations proposed in the literature thusfar focus on the naturally aligned cases and rely on the physical blocking strategy to e�ciently usea distributed memory hierarchy. This restricted interest prevents one from providing the necessaryexibility that a parallel software library requires to be truly usable. These restrictions considerablyhandicap the ease-of-use of such a library since one often needs to reformulate general operationsto match obscure alignment restrictions that are di�cult to document and to explain.A number of properties of the block cyclic distribution were formally exhibited. The relationshipbetween the distribution parameters and the complexity of the array redistribution was deter-mined. The intuitive result that the complexity of these operations increases with the perimeterof the distribution partitioning unit was proved for a �nite range of possible and realistic valuesof the distribution parameters. Moreover, these properties form the theoretical basis for a charac-terization of the block cyclic decomposition. They naturally suggested an elegant and convenientdata structure that encapsulates and reveals the essential features of the LCM block partitioningunit. LCM tables were thus introduced and shown to be a convenient tool for the derivation ofalternatives techniques to the physical blocking strategy. The originality of the algorithmic redis-24

tribution methods then presented resides in their systematic derivation from these properties of theunderlying mapping. Such a feature is particularly attractive from the software library design pointof view. Furthermore, this approach can be generalized to the more general family of Cartesianmappings.The performance results presented in this paper show that when the matrix operands are aligned,the algorithmically redistributed operations based on the aggregation and the LCM blocking strate-gies are competitive in terms of performance with the beforehand complete redistribution variant(RED). For a variety of distribution and machine parameters one can thus a�ord to redistributethe matrix operands \on the y" without a signi�cant performance degradation. This conclusionmust be re�ned when the matrix operands have to be redistributed before the aligned operation cantake place [52]. Nevertheless, for certain distributed memory concurrent computers featuring slowcommunication performance compared to their computational power, it is necessary to preserve thepossibility of redistributing the data beforehand despite the high memory cost. This problem canbe tackle in two ways. First, it is conceivable to redistribute the operands in two steps. At eachstep the same workspace can be reused and only part of the computation performed. This approachis viable, even if it is problematic from a software point of view to estimate at run-time the amountof usable memory on each process. Second, redistribution in place is also possible assuming a largeenough amount of memory has been initially allocated.Algorithmic redistribution methods can alleviate natural alignment restrictions at a low, sometimesnegligible, performance cost for basic operations and various block cyclic distributions. In addition,these techniques considerably reduce and often completely remove the complicated dependencebetween the performance of parallel basic linear algebra operations and the physical distributionparameters. We believe that the preceding statement is the major contribution of this paper.Indeed, it says that the algorithms presented in this document allows to produce a general purposeand exible parallel software library of basic linear algebra subprograms. These algorithms havebeen shown to achieve high performance independently from the actual block cyclic distributionparameters. E�ciency and exibility are not antagonistic objectives for basic dense linear algebraoperations, but merely a characteristic of the algorithms that have been so far proposed to dealwith a distributed memory hierarchy.Software AvailabilityA complete set of parallel basic linear algebra subprograms (PBLAS) for distributed-memory com-puters heavily relying on the algorithmic redistribution methods presented in this paper, namelythe aggregation and aggregated LCM blocking strategies, is available at the following addresshttp://www.netlib.org/scalapack/prototype. This version (V2.0�) of the software is upwardcompatible with the version 1.5 currently used by the ScaLAPACK library [12]. In this prototypeversion, all the alignment restrictions have been removed. Data re-alignment is performed on the yand only when necessary. All operands should be distributed according to the general block cyclicscheme as before, or to the general block cyclic scheme with a partial �rst block (see Section 2.2).In addition, operands can be replicated in process rows, columns or both. The algorithmic blockingtechniques described in this paper are used throughout the software. Testing and timing programs25

have been upgraded and are also provided to test the above new functionalities. Preliminary perfor-mance results are highly satisfactory. Nevertheless, �ne performance tuning, pro�ling and precisetiming analysis of each component for various distributed-memory concurrent computers are ongo-ing tasks. Finally, a proper documentation as well as a precise software design description will bemade available with the �nal release of PBLAS V2.0 in 1998.AcknowledgmentsThe authors acknowledge the use of the Intel Paragon XP/S 5 computer, located in the OakRidge National Laboratory Center for Computational Sciences (CCS), funded by the Departmentof Energy's Mathematical, Information, and Computational Sciences (MICS) Division of the O�ceof Computational and Technology Research. This research was also conducted using the resourcesof the Cornell Theory Center, which receives major funding from the National Science Foundation(NSF) and New York State, with additional support from the Advanced Research Projects Agency(ARPA), the National Center for Research Resources at the National Institutes of Health (NIH),IBM Corporation, and other members of the center's Corporate Partnership Program.References[1] M. Aboelaze, N. Chrisochoides, and E. Houstis. The Parallelization of Level 2 and 3 BLASOperations on Distributed Memory Machines. Technical Report CSD-TR-91-007, PurdueUniversity, West Lafayette, IN, 1991.[2] R. Agarwal, F. Gustavson, and M. Zubair. A High Performance Matrix Multiplication Algo-rithm on a Distributed-Memory Parallel Computer, Using Overlapped Communication. IBMJournal of Research and Development, 38(6):673{681, 1994.[3] R. Agarwal, F. Gustavson, and M. Zubair. Improving Performance of Linear Algebra Al-gorithms for Dense Matrices Using Algorithmic Prefetching. IBM Journal of Research andDevelopment, 38(3):265{275, 1994.[4] T. Agerwala, J. Martin, J. Mirza, D. Sadler, D. Dias, and M. Snir. SP2 System Architecture.IBM Systems Journal, 34(2):153{184, 1995.[5] C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. A linear Algebra Framework for StaticHPF Code Distribution. Technical Report A-278-CRI, CRI-Ecole des Mines, Fontainebleau,France, 1995. (Available at http://www.cri.ensmp.fr).[6] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide, SecondEdition. SIAM, Philadelphia, PA, 1995.[7] C. Ashcraft. The Distributed Solution of Linear Systems Using the Torus-wrap Data mapping.Technical Report ECA-TR-147, Boeing Computer Services, Seattle, WA, 1990.26

[8] P. Bangalore. The Data-Distribution-Independent Approach to Scalable Parallel Libraries.Master's thesis, Mississippi State University, 1995.[9] J. Bilmes, K. Asanovic, J. Demmel, D. Lam, and C. Chin. Optimizing Matrix Multiply usingPHiPAC: a Portable, High-Performance, ANSI C Coding Methodology. Technical Report UTCS-96-326, LAPACK Working Note No.111, University of Tennessee, 1996.[10] R. Bisseling and J. van der Vorst. Parallel LU Decomposition on a Transputer Network. InG. van Zee and J. van der Vorst, editors, Lecture Notes in Computer Sciences, volume 384,pages 61{77. Springer-Verlag, 1989.[11] R. Bisseling and J. van der Vorst. Parallel Triangular System Solving on a mesh network ofTransputers. SIAM Journal on Scienti�c and Statistical Computing, 12:787{799, 1991.[12] L. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users'Guide. SIAM, Philadelphia, PA, 1997.[13] R. Brent. The LINPACK Benchmark on the AP 1000. In Frontiers, 1992, pages 128{135,McLean, VA, 1992.[14] R. Brent and P. Strazdins. Implementation of BLAS Level 3 and LINPACK Benchmark onthe AP1000. Fujitsu Scienti�c and Technical Journal, 5(1):61{70, 1993.[15] S. Chatterjee, J. Gilbert, F. Long, R. Schreiber, and S. Tseng. Generating Local Adressesand Communication Sets for Data Parallel Programs. Journal of Parallel and DistributedComputing, 26:72{84, 1995.[16] J. Choi. A New Parallel Matrix Multiplication Algorithm on Distributed-Memory ConcurrentComputers. Technical Report UT CS-97-369, LAPACK Working Note No.129, University ofTennessee, 1997.[17] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker,and R. C. Whaley. ScaLAPACK: A Portable Linear Algebra Library for Distributed MemoryComputers - Design Issues and Performance. Computer Physics Communications, 97:1{15,1996. (also LAPACK Working Note No.95).[18] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A Scalable Linear AlgebraLibrary for Distributed Memory Concurrent Computers. In Proceedings of Fourth Symposiumon the Frontiers of Massively Parallel Computation (McLean, Virginia), pages 120{127. IEEEComputer Society Press, Los Alamitos, California, 1992. (also LAPACKWorking Note No.55).[19] J. Choi, J. Dongarra, and D. Walker. Parallel Matrix Transpose Algorithms on DistributedMemory Concurrent Computers. In Proceedings of Fourth Symposium on the Frontiers ofMassively Parallel Computation (McLean, Virginia), pages 245{252. IEEE Computer SocietyPress, Los Alamitos, California, 1993. (also LAPACK Working Note No.65).[20] J. Choi, J. Dongarra, and D. Walker. PUMMA: Parallel Universal Matrix Multiplication Algo-rithms on Distributed Memory Concurrent Computers. Concurrency: Practice and Experience,6(7):543{570, 1994. (also LAPACK Working Note No.57).27

[21] J. Choi, J. Dongarra, and D. Walker. PB-BLAS: A Set of Parallel Block Basic Linear AlgebraSubroutines. Concurrency: Practice and Experience, 8(7):517{535, 1996.[22] A. Chtchelkanova, J. Gunnels, G. Morrow, J. Overfelt, and R. van de Geijn. Parallel Im-plementation of BLAS: General Techniques for Level 3 BLAS. Technical Report TR95-49,Department of Computer Sciences, UT-Austin, 1995. Submitted to Concurrency: Practiceand Experience.[23] E. Chu and A. George. QR Factorization of a Dense Matrix on a Hypercube Multiprocessor.SIAM Journal on Scienti�c and Statistical Computing, 11:990{1028, 1990.[24] IBM Corporation. IBM RS6000. (http://www.rs6000.ibm.com/), 1996.[25] Intel Corporation. Intel Supercomputer Technical Publications Home Page.(http://www.ssd.intel.com/pubs.html), 1995.[26] M. Dayde, I. Du�, and A. Petitet. A Parallel Block Implementation of Level 3 BLAS forMIMD Vector Processors. ACM Transactions on Mathematical Software, 20(2):178{193, 1994.[27] F. Desprez, J. Dongarra, A. Petitet, C. Randriamaro, and Y. Robert. Scheduling Block-Cyclic Array Redistribution. Technical Report UT CS-97-349, LAPACKWorking Note No.120,University of Tennessee, 1997. (To appear in IEEE Transactions on Parallel and DistributedSystems).[28] J. Dongarra and R. van de Geijn. Two dimensional Basic Linear Algebra CommunicationSubprograms. Technical Report UT CS-91-138, LAPACK Working Note No.37, University ofTennessee, 1991.[29] J. Dongarra, R. van de Geijn, and D. Walker. Scalability Issues in the Design of a Library forDense Linear Algebra. Journal of Parallel and Distributed Computing, 22(3):523{537, 1994.(also LAPACK Working Note No.43).[30] J. Dongarra and D. Walker. Software Libraries for Linear Algebra Computations on HighPerformance Computers. SIAM Review, 37(2):151{180, 1995.[31] J. Dongarra and R. C. Whaley. A User's Guide to the BLACS v1.0. TechnicalReport UT CS-95-281, LAPACK Working Note No.94, University of Tennessee, 1995.(http://www.netlib.org/blacs/).[32] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems onConcurrent Processors, volume 1. Prentice Hall, Englewood Cli�s, N.J, 1988.[33] G. Fox, S. Otto, and A. Hey. Matrix Algorithms on a Hypercube I: Matrix Multiplication.Parallel Computing, 3:17{31, 1987.[34] G. Geist and C. Romine. LU Factorization Algorithms on Distributed Memory MultiprocessorArchitectures. SIAM Journal on Scienti�c and Statistical Computing, 9:639{649, 1988.[35] M. Heath and C. Romine. Parallel Solution Triangular Systems on Distributed Memory Mul-tiprocessors. SIAM Journal on Scienti�c and Statistical Computing, 9:558{588, 1988.28

[36] B. Hendrickson, E. Jessup, and C. Smith. A Parallel Eigensolver for Dense Symmetric Matrices.Personal communication, 1996.[37] B. Hendrickson and D. Womble. The Torus{wrap Mapping for Dense Matrix Calculationson Massively Parallel Computers. SIAM Journal on Scienti�c and Statistical Computing,15(5):1201{1226, September 1994.[38] G. Henry and R. van de Geijn. Parallelizing the QR Algorithm for the Unsymmetric AlgebraicEigenvalue problem: Myths and Reality. Technical Report UT CS-94-244, LAPACK WorkingNote No.79, University of Tennessee, 1994.[39] S. Huss-Lederman, E. Jacobson, A. Tsao, and G. Zhang. Matrix Multiplication on the IntelTouchstone DELTA. Concurrency: Practice and Experience, 6(7):571{594, 1994.[40] S. L. Johnsson. Communication E�cient Basic Linear Algebra Computations on HypercubeArchitectures. Journal of Parallel and Distributed Computing, 2:133{172, 1987.[41] B. K�agstr�om, P. Ling, and C. van Loan. GEMM-Based Level 3 BLAS: High-PerformanceModel Implementations and Performance Evaluation Benchmark. Technical Report UMINF95-18, Department of Computing Science, Ume�a University, 1995. Submitted to ACM TOMS.[42] E. Kalns. Scalable Data Redistribution Services for Distributed-Memory Machines. PhD thesis,Michigan State University, 1995.[43] E. Kalns and L. Ni. Processor Mapping Techniques towards E�cient Data Redistribution.IEEE Transactions on Parallel and Distributed Systems, 12(6):1234{1247, 1995.[44] K. Kennedy, N. Nedeljkovi�c, and A. Sethi. A Linear-Time Algorithm for Computing the Mem-ory Access Sequence in Data Parallel Programs. In Proceedings of the Fifth ACM SIGPLANSymposium on Principles and Practice of Parallel Programming, Santa Barbara, CA, 1995.[45] C. Koebel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel. The High Performance FortranHandbook. The MIT Press, Cambridge, Massachusetts, 1994.[46] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing. TheBenjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1994.[47] G. Li and T. Coleman. A Parallel Triangular Solver for a Distributed-Memory Multiprocessor.SIAM Journal on Scienti�c and Statistical Computing, 9(3):485{502, 1988.[48] G. Li and T. Coleman. A New Method for Solving Triangular Systems on Distributed-Memory Message-Passing Multiprocessor. SIAM Journal on Scienti�c and Statistical Com-puting, 10(2):382{396, 1989.[49] W. Lichtenstein and S. L. Johnsson. Block-Cyclic Dense Linear Algebra. SIAM Journal onScienti�c and Statistical Computing, 14(6):1259{1288, 1993.[50] Y. Lim, P. Bhat, and V. Prasanna. E�cient Algorithms for Block-Cyclic Redistribution ofArrays. Technical Report CENG 97-10, Department of Electrical Engineering - Systems,University of Southern California, Los Angeles, CA, 1997.29

[51] K. Mathur and S. L. Johnsson. Multiplication of Matrices of Arbitrary Shapes on a DataParallel Computer. Parallel Computing, 20:919{951, 1994.[52] A. Petitet. Algorithmic Redistribution Methods for Block Cyclic Decompositions. PhD thesis,University of Tennessee, Knoxville, 1996. (also LAPACK Working Note No.128).[53] L. Prylli and B. Tourancheau. E�cient Block-Cyclic Data Redistribution. Technical Report2766, INRIA, Rhône-Alpes, 1996.[54] P. Strazdins. Matrix Factorization using Distributed Panels on the Fujitsu AP1000. In Proceed-ings of the IEEE First International Conference on Algorithms And Architectures for ParallelProcessing (ICA3PP-95), Brisbane, 1995.[55] P. Strazdins and H. Koesmarno. A High Performance Version of Parallel LAPACK: PreliminaryReport. In Proceedings of the Sixth Parallel Computing Workshop, Fujitsu Parallel ComputingCenter, 1996.[56] C. Stunkel, D. Shea, B. Abali, M. Atkins, C. Bender, D. Grice, P. Hochshild, D. Joseph,B. Nathanson, R. Swetz, R. Stucke, M. Tsao, and P. Varker. The SP2 High-PerformanceSwitch. IBM Systems Journal, 34(2):185{204, 1995.[57] A. Thirumalai and J. Ramanujam. Fast Address Sequence Generation for Data Parallel Pro-grams Using Integer Lattices. In P. Sadayappan and al., editors, Languages and Compilers forParallel Computing, Lecture Notes in Computer Science. Springer Verlag, 1996.[58] R. van de Geijn and J. Watts. SUMMA: Scalable Universal Matrix Multiplication Algorithm.Technical Report UT CS-95-286, LAPACK Working Note No.96, University of Tennessee,1995.[59] E. van de Velde. Experiments with Multicomputer LU-Decomposition. Concurrency: Practiceand Experience, 2:1{26, 1990.[60] D. Walker and S. Otto. Redistribution of Block-Cyclic Data Distributions Using MPI. Con-currency: Practice and Experience, 8(9):707{728, 1996.[61] L. Wang, J. Stichnoth, and S. Chatterjee. Runtime performance of parallel array assignment:an empirical study. In Proceedings of Supercomputing '96. Sponsored by ACM SIGARCH andIEEE Computer Society, 1996. (ACM Order Number: 415962, IEEE Computer Society PressOrder Number: RS00126. http://www.supercomp.org/sc96/proceedings/).[62] R. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Software. Technical ReportUT CS-97-366, LAPACK Working Note No.131, University of Tennessee, 1997.
30

