STOCHASTIC MODELS FOR
PERFORMANCE ANALYSES OF ITERATIVE
ALGORITHMS IN DISTRIBUTED
ENVIRONMENTS

A Dissertation
Presented for the
Doctor of Philosophy Degree

The University of Tennessee, Knoxville

Henri Casanova

May 1998



Copyright © 1998 by Henri Casanova

All rights reserved

ii



To my parents and my sister.

iii



Acknowledgments

The author expresses gratitude and appreciation to the members of his dis-
sertation committee, Jack Dongarra, Jens Gregor, Samuel Jordan and Michael
Thomason for their encouragement and participation throughout my doctoral ex-
perience.

Special appreciation is due to Professor Jack Dongarra, Chairman, and Profes-
sor Mike Thomason, Chairman, who provided guidance and support, appropriate
and thorough commentaries as well as the opportunity to expand my perspectives
in the ever changing computer science research community during the course of
my graduate study.

I also would like to thank L. Susan Blackford who was always available to
answer my questions, regardless of their nature.

Finally, I am grateful to the Department of Computer Science at the University
of Tennessee for allowing me to use its computing facilities to do this doctoral

work.

iv



Abstract

This research aims at creating a framework to analyze the performance of
iterative algorithms in distributed environments. The parallelization of certain
iterative algorithms is indeed a crucial issue for the efficient solution of large
or complex optimization problems. Diverse implementation techniques for such
parallelizations have become popular. They are examined here with a view to un-
derstanding their impact on the algorithm behavior in a distributed environment.
Several theoretical results concerning the sufficient conditions for, and speed of,
convergence for parallel iterative algorithms are available. However, there is a gap
between those results and what is relevant to the user at the application level. In
particular, an estimate of the algorithm execution time is often desirable.

The performance characterization presented in this dissertation follows a stochas-
tic approach partially based on a Markov process. It addresses different character-
istics of the algorithmic execution time such as mean values, standard deviations
and rare events. It is shown how this approach can fill the aforementioned gap
thanks to stochastic models, which take into account the distributed environment
used to run the algorithm. We concentrate on distributed-memory systems. The
results of this research enable the end-user to make informed choices about what
combinations of distributed environment and implementation style should lead to

appropriate execution time distributions.



Contents

1 Introduction 1
1.1 Motivation . . . . . .. . L 3
1.2 Problem Statement . . . . .. . ... 5
1.3 Organization of this Dissertation . . . . ... ... ... ... .. 5

2 Parallel Iterative Algorithms 8
2.1 The Algorithm . . . . .. .. ... 8

2.1.1 Basics . .. ..o 9
212 AnExample . . . ... o o o 10
2.2 Parallel Implementations . . . . . . .. ... ... L. 13
221 Motivation . . . ... Lo 13
2.2.2 Scheduling . . . .. ... oo 14
2.2.3  The Synchronous Case . . . .. .. ... ... ... .... 15
2.2.4  The Asynchronous Case . . .. .. ... ... ... .... 20
2.3 Convergence Results . . . .. ... ... .. 0. 25

vi



2.3.1 Convergence Theorem for Contracting Operators . . . . . 26

2.3.2 A More General Theorem 7 . . . . ... ... ... .... 30
2.4 Towards a Stochastic Approach . . . . . ... ... ... . .... 33
2.4.1 Motivation . . . . ..o 33
2.4.2 Related Work . . . . .. .o 35
2.4.3 Objectives . . . . . . . 37
Stochastic Models 39
3.1 Application-level Modeling . . . . . .. .. ... .. ... 40
3.2 Modeling the Distributed Environment . . . . . .. ... ... .. 42
3.2.1 The Network . . . ... .. ... ... ... ... 43
3.22 TheNodes . . . . . . .. . 45
3.3 Modeling the Algorithm . . . . . ... .. ... .. .. ... 46
3.4 The Complete Model . . . . .. .. .. ... ... ... ... 49
3.4.1 Definitions and Notation . . . . . ... ... .. ... ... 49
3.4.2  Main Time Equations . . . . ... .. ... .. ...... 52
343 AnExample . . . ... oo oo 54
3.4.4 Assumptions. . . . ... 56
3.4.5 Model Discussion . . . . .. .. ... oL 58
3.5 Underlying Markov Chain . . . . ... .. ... ... ..... 61
3.5.1 Basic Definitions and Equations . . . . ... .. ... ... 62

vii



3.5.2 Finite Space . . . . . .. 63

3.5.3 The Wavefront as a Markov Chain . . . .. .. ... ... 67
3.6 Random Variables of Interest . . . . . .. .. ... .. ... ... 68
3.6.1 The Waiting Time . . . .. .. ... ... .. ... ... 68
3.6.2 The Phase Time . . .. .. .. .. ... .. ... ..... 70
3.6.3 The Number of Additional Updates . . . . . .. ... ... 71
3.7 Conclusion . . . .. ... 72
New Performance Estimates 74
4.1 Computing the Wavefront . . . . . . ... ... ... ... .. 75
4.1.1 Transition Matrix and Stationary Distribution . . . . . . . 75
4.1.2  Examples of the Wavefront Behavior . . . . ... ... .. 77
4.1.3  Discussion . . . . . . ..o 85
4.2 FEstimating the Convergence Rate . . . . . .. ... .. ... ... 89
4.2.1 Preliminary Remark . . . ... ... ... ... ...... 89
4.2.2  Three Estimates of the Convergence Rate . . . . . .. .. 90
423 AnExample. . . . ... oL 94
424 Conclusion . . . . .. .. oL 98
4.3  Estimating the Implementation Execution Speed . . . . . . . . .. 99
4.3.1 Defining a Speed Measure . . . . . ... ... ... ... 99
432 AnExample. . . . ... oo oo 101

viii



4.3.3 A Mean Estimate . . . . . . . . .. ... .. 104

4.3.4  Refining this Estimate . . . .. ... ... ... 105

4.4  Large Deviations Results . . . . . .. ... .. ... ... 106
4.4.1 Large Deviations Theory . . . . . .. ... ... ... ... 106
4.4.2 Rate Function in our Model . . . . . .. .. ... ... .. 110
4.4.3 An Example of Large Deviation Computation . . . .. .. 115

4.5 Performance Characterization . . . . . .. ... ... ... .... 126
4.5.1 Putting Things Together . . . . . . . ... ... ... ... 126
4.5.2  Characterizing the Execution Time . . . . . .. .. .. .. 130
4.5.3 Level 1 Performance Characterization . . . . . .. ... .. 131
4.5.4  Level 2 Performance Characterization . . . . . .. ... .. 131
4.5.5 Level 3 Performance Characterization . . . . . ... .. .. 133
4.5.6 A Complete Example . . . . .. ... .. ... ... .. .. 135

4.6 Conclusion . . . . . . .. L 140
5 Model Validation 142
5.1 Simulation Results . . . . ... ... 0oL 142
5.1.1 The Experiment . . . . . . . .. .. ... ... 143
5.1.2  Synchronous Implementation . . .. ... ... .. .... 144
5.1.3  Asynchronous Implementations . . . . ... .. ... ... 146
5.1.4  Discussion of the Level 1 Characterization . . . .. . ... 149

ix



5.1.5 Discussion of the Level 2 Characterization . . . .. .. ..

5.1.6  Discussion of the Level 3 Characterization . . . .. .. ..

5.1.7 Conclusion . . . . . . . .

5.2 Experimental Results . . . . .. .. .. .. ... 0L

5.2.1 The Experiment . . . . . . . .. .. ...

5.2.2  General Observations on the Measurements . . . . . . ..

5.2.3 The One Week Time Period . . . . . . . .. .. ... ...

5.2.4 The 24 Hour Time Period . . . . . . . . .. .. ... ...

5.3 Conclusion

6 Conclusion

6.1 Contribution of this Dissertation . . . . . . . .. . . . ... ...

6.2 TFuture Research Directions . . . . . . . . . . . . . . . ... ...

Bibliography

Vita

182

185

186

190

199



List of Tables

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

5.4

3.5

5.6

Convergence rate estimates for each implementation . . . . . . ..
Level 1 characterization : Mean of © (in seconds) for various con-
vergence rates . . . ... L. oL Lo e
Level 2 characterization : standard deviationof @ . . . . . .. ..
Asymptotic deviation probabilities. . . . . .. ... ... ...

Level 2 deviations from @, by +2%,4+5%, £10% and +20%.

Convergence rate estimates and observed convergence rate
Level 2 characterizations and observed standard deviation

FError between level 2 characterization and observed standard devi-

Level 2 error for increasing valuesof e . . . . . ... . ... .. ..

Observed mean and standard deviations of the execution time . .

Observed means and standard deviations of the execution time . .

xi

137

137

138

139

151

155

156

157

166

168



List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

Gradient algorithm example . . . . . ... .. ..o
Synchronous algorithm . . . .. ... ... .00

Asynchronous algorithm . . . . .. .. ... o000

Distributed environment model . . . . . ... .00 L.
Decomposition of the algorithm in phases . . . . . . .. .. .. ..

Example algorithm phase . . . . . . .. ... ... L.

Workload distribution for example 1 . . . . . ... ... ... ..
Portrait of the wavefront transition matrix Py for the first example

Stationary distribution and corresponding wavefront shapes for ex-

x1i

79

80

82

82

84



4.7  Workload and Network distributions for example 3 . . . . . . .. 86

4.8 Stationary distribution and corresponding wavefront shapes for ex-

ample 3 . ..o 87
4.9 Convergence rate estimates computation . . . ... .. ... ... 95
4.10 Implementation Speed . . . . . .. ... Lo oL 102
411 Rectangle W . . . . .. ..o o 114
4.12 Rate functionfor A;, =land B, =0. . ... ... ... ...... 117
4.13 Rate functionfor A;, =land B;=1. ... .. ... ........ 118
4.14 Overview of the rate function for A;, =1l and B; =1 . ... .. .. 118
4.15 Rate functionfor A;, =land B, =2. . ... ... ... ...... 120
4.16 Overview of the rate function for A;, =1l and B, =2 . ... .. .. 120
417 R-NWand REFNW L0000 123
4.18 Example of Large Deviation Computation . . . .. .. ... ... 124
4.19 Exponential decay rate for various € values . . . . . . . .. .. .. 125
4.20 Performance Characterization method . . . . . .. .. .. .. .. 127
4.21 Probability distributionof @ . . . . . . ..o o000 141
5.1 Update time distributions for the three processors . . . . . . . .. 144

5.2 Simulation vs. characterization for a synchronous implementation 145

5.3 Adjusted curve for a synchronous implementation . . . . . . . .. 147

xiii



5.4

3.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

Simulation vs. characterizations for the first asynchronous imple-
mentation . . . ... Lo 147
Adjusted curve for the first asynchronous implementation . . . . . 148

Simulation vs. characterizations for the second asynchronous im-

plementation . . . . ... oL 150
Adjusted curve for the second asynchronous implementation . . . 150
Measured update time distributions over a week . . . . . . . . .. 162
Measured update time distributions over 24 hours . . . . . . . .. 162
Execution time measurements over a week . . . .. .. .. .. L. 164
Differences in execution times . . . . . . . ... ... 165
Different experimental behaviors throughout one week . . . . . .. 168

Experiment vs. Characterization for the synchronous implementation171

Experiment vs. Characterization for the first asynchronous imple-

mentation . . . ... Lo 173
Adjusted curve for the first asynchronous implementation . . . . . 173
Measurements during 24 hours for the three implementations . . . 176

Experiment vs. Characterization for the synchronous implementation176
Experiment vs. Characterization for the first asynchronous imple-
mentation . . . ... Lo 178

Adjusted curve for the first asynchronous implementation . . . . . 178

Xiv



Chapter 1

Introduction

[terative algorithms are widely used to obtain solutions to a variety of problems
that arise in different areas of science and engineering. Examples include solving
systems of linear or non-linear equations that arise in modeling, simulation, and
engineering design problems; and optimization problems, including linear pro-
gramming, that arise in engineering design, economics modeling, and operations
research applications.

A broad class of iterative algorithms aims at finding a fixed point of a given
operator. Some of the well-know numerical methods in that class are Jacobi and
Gauss-Seidel algorithms, overrelaxation methods (JOR and SOR), Gradient and
Scaled Gradient algorithms, and Newton and Approximate Newton methods. The
example problems studied in this dissertation are all non-linear methods, but our

results are applicable to linear cases as well. We emphasize non-linear problems



because they usually lead to larger amounts of numerical computation than linear
problems of comparable size. In many iterative methods, if the operator is non-
linear, the gradient and sometimes the Hessian of the operator, if not known
analytically, must be approximated at each iteration usually by approximating
partial derivatives in each dimension. Such approximations are usually costly,
especially when no preliminary knowledge of the nature of the operator is available.

For problems with large numbers of dimensions or extensive numerical compu-
tation for each component at each iteration (e.g. Hessian computation), it is nat-
ural to consider a parallel implementation of the iterative algorithm. The parallel
implementations that have been investigated in the past usually fall into two cate-
gories: synchronous implementations and asynchronous implementations. Several
types of distributed environment can be used to run such implementations. One
might consider shared-memory or distributed-memory super-computers. However,
the use of networks of workstations as distributed-memory super-computers has
become popular in the last years due to their increased versatility and reduced
cost. In this research, we are primarily interested in distributed-memory environ-
ments as they seem to be most widely used. It becomes necessary to understand
the behavior of parallel implementations in such environments and, ideally, predict
their performance. This can only be done by taking into account the specifics of
the distributed environment. Such a study should allow users to choose the most

efficient implementation style for their purposes depending on the computational



facilities they can access and may also provide some guidance in the design of

distributed systems.

1.1 Motivation

Analyzing the behavior and thus the performance of a parallelized iterative algo-
rithm running in a distributed environment is not an easy task. The environment
imposes its own constraints on the execution. The users may not have frequent ac-
cess to a dedicated system to run their applications. In such a case, the workloads
of the processors and the network contention depend on the load of the system
generated by other users in addition to the iterative algorithm execution itself.
Therefore, the processor workloads are usually disparate and vary over time ac-
cording to different patterns. Furthermore, the amount of computation performed
by a processor to update a component of the solution vector may not be known a
priori: generally, it depends on the shape of the operator around the current so-
lution vector. As we have already mentioned, different versions of parallelization
have been studied for such iterative algorithms. In some cases, convergence results
indirectly support a quantitative assessment of the parallel algorithm convergence
rate. However, almost all these results are purely theoretical and do not take into
account the nature of the distributed environment itself.

For instance, a technique first introduced as Chaotic [terations (an asyn-



chronous implementation) partially addresses the distributed nature of the execu-
tion environment. Indeed, one of the purposes of chaotic iterations is to produce
an implementation more adaptive to the fluctuations that can take place in the
distributed environment. But even in cases that identify sufficient conditions for
this method to converge, there has been little work concerned with measuring the
improvement an asynchronous implementation offers over a synchronous parallel
implementation, in a given distributed environment. The only commonly available
result for a chaotic iteration implementation is a lower bound on its theoretical
rate of convergence. It is difficult for the user to relate this measure of convergence
to the actual performance he can expect for his implementation on his distributed
environment in terms of execution time for instance.

Due to non-determinism (randomness) both in communication and in com-
putation, stochastic methods appear to be a natural way to move towards more
complex and relevant models. These new models should capture more details
about the distributed environment itself in terms of computation and commu-
nication speeds and patterns, and their impact on the user’s implementation.
Few attempts at using stochastic models to analyze the performance and behav-
ior of parallel iterative algorithms appear in the literature. Indeed, stochastic
approaches seem to lead to complicated models which present difficulties in ob-
taining useful performance characterizations. Most difficulties come from trying

to properly model the distributed environment in connection with the algorithm.



Hence, most stochastic approaches in the past used very stringent assumptions and
are therefore limited in their domain of application. If some reasonable assump-
tions could lead to tractable models, then those models should provide insight
into the performance analysis of parallel iterative algorithms in given distributed
environments. Furthermore, a reasonable model of the distributed environment
will provide performance results directly useful to the user for his application,
rather than considerations on the algorithm’s theoretical convergence rate that

have no concrete relevance to that application.

1.2 Problem Statement

This dissertation examines different implementation techniques for parallelizations
of certain iterative algorithms in a view to characterize their performance in a
distributed environment. The performance characterization, in terms of execution
times, is based on a stochastic approach and addresses different properties of this

performance such as mean values, standard deviations and rare events.

1.3 Organization of this Dissertation

In Chapter 2, we precisely define the class of iterative algorithms that we consider
in this research. We then describe in detail the two types of parallel implementa-

tion that we will study: (i) synchronous and (ii) asynchronous. Those implemen-



tations have been the object of extensive theoretical study in the past, especially
concerning sufficient conditions for their convergence and their convergence rates.
We review these results and select the ones that we will extend for this research.
Finally, we present related works on the stochastic modeling of parallel iterative
algorithms. We thereby not only motivate the use of a stochastic approach but
also highlight the existing shortcomings that we plan to address.

Chapter 3 defines application-level modeling and outlines a model for the dis-
tributed environment and for the iterative algorithm. Once those preliminary
foundations have been set, we give a more formal and rigorous definition of the
complete model encompassing both the environment and the algorithm. Using
these definitions as well as some reasonable assumptions, it is possible to extract
a Markov chain as the underlying random process in our model. One can then
define several random variables (RV) of interest and the distributions of those RV
can be derived from the Markov chain.

At this point, our stochastic model is complete and ready to be exploited. This
is done in Chapter 4 which starts with examples of Markov chain computations.
These examples are used to obtain more insight into the behavior of a parallel
implementation of an iterative algorithm. We then propose three new estimates
for the algorithm convergence rate. These estimates are stochastic extensions
of existing results and take into account the distributed environment. The im-

plementation speed in terms of number of iterations performed per time unit is



also defined and characterized. We introduce Large Deviation Theory and show
how it can be used to obtain in-depth details about the extreme behaviors of the
implementations. We conclude the chapter with a description of our entire per-
formance characterization in terms of execution time. It consists of three levels,
each of which provides information about different features of the execution time
distribution.

The last step is to validate our approach with experimental results. This is
done in Chapter 5. First, we conduct a simulation and compare its results to
our performance characterization. Second, we conduct experiments for a real
implementation of an iterative algorithm on a real distributed environment. We
obtain different experimental results for different time periods. Those results are
compared to the simulation and to our performance characterization.

Chapter 6 concludes this dissertation by summarizing our results, explaining
how this work contributes to the field of performance modeling for parallel iterative

algorithms, and suggesting numerous future research directions.



Chapter 2

Parallel Iterative Algorithms

In this chapter, we give some background material about iterative algorithms
and we discuss possible parallel implementations. We then describe convergence
results available for those implementations. Finally, we explain our motivations
for taking a stochastic approach for analyzing those algorithms and develop such

an approach.

2.1 The Algorithm

This section contains some basic concepts of the algorithms we are considering,

an example, and discussion of some implementation details.



2.1.1 Basics

In this research, we focus on iterative algorithms in which an operator is applied
to a set of data (usually a vector) repetitively until some convergence criteria are
met. If the set of data constructed by the algorithm is a sequence of vectors x(t)

in R™, then the algorithm can be written as

z(0) € R™
(2.1.1)

x(t+1) = Op(a(t)) forallt e N.

If the algorithm converges, the sequence x(t) converges to a fixed point of operator
Op. Much work has been devoted in the past to finding useful operators for some
specific problems or finding operators that provide the highest convergence speeds.

[terative algorithms are used in particular for two purposes:
e Solving linear systems of equations,
e Minimizing a continuously differentiable cost function.

In fact, solving a linear system of equations can be seen as a minimization problem,
i.e., the solution to Ax = b in R™ also minimizes the cost function F : R™ — R
defined as F(x) = La’Ax — 2'b. The algorithm converges for symmetric and
positive definite matrices.

The names used in the literature for iterative methods vary from author to



author, and usually depend on whether the operator is linear or non-linear. We
use the terminology of [9] for iterative methods. There is a long history of iterative
methods for solving linear systems [27](p. 326). The earliest methods are the
Jacobi and Gauss-Seidel methods. The Gauss-Seidel method is a variation on the
Jacobi method where the evaluation of the operator at each step uses components
of the previously computed solution vector during that step. Variations of those
methods are obtained by using a relaxation parameter and are respectively called
the Jacobi Overrelaxation (JOR) and Successive Overrelaxation (SOR) methods.
Those methods have immediate non-linear counterparts. Another method for
solving linear systems of equations is sometimes called Richardson’s method; its
non-linear counterpart is called the Gradient algorithm or the Steepest Descent
algorithm and can be generalized into the Scaled Gradient method. Other non-
linear algorithms include Newton and Approximate Newton methods (the linear
version of which converges in one step). It can be shown that for non-quadratic
problems, the Newton methods converge much faster than the other methods we
have introduced (see [42] for instance). All those methods can be used in a Jacobi

or a Gauss-Seidel fashion.

2.1.2 An Example

In order to better understand what really happens when an iterative algorithm

is implemented, we consider the following example. Say we want to find the

10



minimum of a cost function F : R? = R. To do so, we can use the Gradient

algorithm which can be written as:

z(0) e R™

z(t+1)=a() —yVF(x(t)) wherey € R.

The convergence of this algorithm is insured under certain conditions. First, the
gradient of the function to be minimized must be Lipschitz continuous in some
subset D of R™. That is, ||[VF(z) — VF(y)|| < L||x — y|| for all x and y in D
where L is a real constant and ||.|| denotes a norm of R™. Second, the step-size
~ must be less than some constant that depends on the Lipschitz constant, L, of
the gradient of the cost function. Details on those conditions can be found for
instance in [9].

Figure 2.1 shows what happens during one step of the algorithm (this figure is
inspired by the ones found in many reference manuals). On the figure, the curves
represent sets of points where the value of F is constant. The minimum of F is
attained for a point located inside the innermost curve. At the current iteration
step, the solution vector lies on the outermost curve, meaning that F(x(t)) = 3
according to the figure. To update this solution vector, the gradient of the function
at point (t) is computed, scaled by the factor v and subtracted from «(¢). This

is shown on the figure with the thick arrow that goes from x(¢) to (¢t + 1). This

11



F(x)=3 X(t)

-§ VF(x(®)

Figure 2.1: Gradient algorithm example

process is repeated until a convergence criterion is met. Usually such a criterion
specifies that the distance between successive solution vectors is smaller than
some e. Incidentally, this figure shows that the descent direction of the Gradient
algorithm (the steepest) is not the shortest path to achieve convergence in this
case. The descent direction shown with the dotted arrow, for instance, would lead
to a faster convergence. These situations have motivated other methods such as
the Scaled Gradient algorithm.
For each iteration, the algorithm requires an evaluation of the gradient V.F(x(?)).

If this gradient is not known directly or analytically, then the algorithm must com-
pute an approximation. Furthermore, some classic iterative methods require the
knowledge of the Hessian matrix for each iteration. For instance, the Newton

iteration can be written as:

et +1)=a(t) — y[VF(z(t)] ' VF(x(1)).

12



Not only is the Hessian needed at each iteration, but it must be inverted. The
Approximate Newton method does not require the actual matrix inversion, but
can be implemented instead thank to another iterative algorithm at each iteration.
This second algorithm is used to solve a linear system; it is, however, executed
only for a few steps.

The actual details of the numerical methods in use are not the central focus of
this dissertation. The general equation 2.1.1 will be sufficient for our needs most
of the time, and specific methods will be mentioned only for the sake of practical

examples.

2.2 Parallel Implementations

2.2.1 Motivation

[terative algorithms can have prohibitive execution times when implemented se-
quentially. First, the size of the problem influences the amount of computation to
be performed because every component of the solution vector is updated at each
iteration. Second, some particular iterative methods have inherently high time
complexity at each step. For instance the Newton method for non-linear problems
involves computation and inversion of a Hessian matrix at each iteration. Even
though this method leads to fast convergence in terms of number of iterations, it

might be too computationally intensive for medium or large size problems, when

13



implemented sequentially. Many of today’s challenging scientific applications lead
to very large optimization problems. Examples include Positron Emission Tomog-
raphy (PET) reconstruction for medical imaging [40], or non-linear network flow
problems that occur in electrical networks, communication networks and financial
models [7]. In order to satisfy such computational requirements, it seems natural
to consider parallel implementations of iterative algorithms.

We recall (see Section 1.1) that we are mainly considering parallel implemen-
tations in distributed memory environments in this research. In the two following
sections we describe the two main implementation strategies: synchronism and

asynchronism.

2.2.2 Scheduling

When implementing a parallel version of an iterative algorithm, perhaps the first
question concerns scheduling. The computation, in our case updating the compo-
nents of the solution vector, has to be distributed among the processors contribut-
ing to the algorithm. One can usually distinguish two main scheduling strategies.
In a static scheduling strategy, a processor always updates the same components
of the solution vector and typically is the only one to update those components.
In a dynamic scheduling strategy, processors can update any (or at least differ-
ent) components of the solution vector at different iterations. In this research, we

chose to consider only static scheduling. This choice is motivated by the schedul-

14



ing analysis presented in [55] where it is shown that a static scheduling strategy
is almost always a little more efficient than any dynamic ones for parallel iter-
ative algorithms. Since dynamic scheduling is more difficult to implement than
static scheduling, the choice seems clear. Furthermore, the main focus of [55] is
the case of shared-memory environments which are usually the best ones for dy-
namic scheduling; hence we consider static scheduling since we are concentrating

on distributed memory settings.

2.2.3 The Synchronous Case

Synchronous implementations of iterative algorithms are generalizations of se-
quential implementations. As such, their convergence properties are well known.
Often, 1t is rather straightforward to convert a sequential implementation of a

given algorithm into a synchronous parallel implementation.

The Principle

Let us assume that the distributed environment used to execute the algorithm
consists of p processors and that each processor is the only one that can access
its local memory. The processors, however, can communicate via a network. A
rigorous description of such a distributed environment is given in Section 3.2.
The algorithm operates on a vector x(t) of R™ according to equations 2.1.1. Each

processor is in charge of updating a piece of x(¢), that is some subset of the

15



components of this vector. In general it is assumed that the components assigned
to different processors are pairwise disjoint. For instance, if z(¢) € R? and if p = 3,
then each processor could be in charged of updating three components of ().

Figure 2.2 depicts the execution of a synchronous implementation running on 3
processors where the solution vector is segmented in three pieces. Each processor
starts each iteration with the entire current solution vector in its memory. Then,
each processor updates its piece of x(?) by applying part of the operator Op to
the entire vector. This is symbolized by the thick arrows on the figure. To keep
the figure readable, only the first piece of the solution vector, the one assigned to
processor 1, is entirely described. It is shown in shaded grey on the figure and
is labeled by the iteration number. After each processor has updated its piece
of the solution vector, the processors have an inconsistent version of that vector
in their memory. For instance, as shown in the figure, processor 1 possesses the
first piece of (¢ 4+ 1) but processors 2 and 3 still possess the first piece of x(¢).
To return to a coherent state, the processors perform an all-to-all communication
and exchange their up-to-date pieces of the solution vector. This is shown on the
figure by thin arrows. Once the all-to-all communication is completed, all the
processor have the same vector (¢ + 1) in memory and can perform the updates
of the next iteration in a similar way.

More formally, if the components of the solution vector z(t) are denoted by

z;i(t), 1 =1,...,m and if the components of Op(x(t)) are denoted by Op;(x(t)) or

16



x(1) All-to—all x(t+1)

processor #1

processor #2

processor #3

Figure 2.2: Synchronous algorithm

Opi(x1(t),...,xn(t)), the synchronous iteration can be written as:

Vi,t  xi(t+ 1) = Opi(a1(t), ..., xm()). (2.2.2)

Due to the all-to-all communication taking place at each algorithm iteration,
the synchronous implementation is exactly equivalent to a sequential implemen-
tation in terms of numerical computations. It has therefore been a popular choice
of implementation for many iterative algorithms since the convergence properties
of sequential implementations have been studied extensively in the past. How-
ever, the performance of the algorithm in terms of execution time can suffer from

several factors.

17



Performance Bottlenecks

The most obvious performance bottleneck in a synchronous implementation can
be the network itself, during the all-to-all broadcast performed at each iteration.
Indeed, if the time to send a message over the network is relatively long compared
to the time necessary to perform an update of a piece of the solution vector,
the processors spend a non-negligible amount of time being idle, waiting for the
all-to-all communication to complete. This situation can occur if the network is
inherently slow when compared to the processors, or if a large number of processors
are participating in the computation and the network is flooded by messages at
each iteration.

A second and somewhat less immediate performance bottleneck is created by
a possible lack of synchronization among the processors [46, 35, 14, 25]. Let us
suppose that a processor, say 1, is slower than all other processors when computing
its piece of the solution vector. Then, during the all-to-all communication phase
of that iteration, all the other p — 1 processors will be idle, waiting for processor ¢
to finish its update and send its message. In other words, lack of synchronization
among the processors can be detrimental to the execution time due again to the
all-to-all communication.

The source of such lack of synchronization is twofold. First, the distributed

environment can generate situations leading to losses of synchronization: the pro-

18



cessors might not have the same computational speed. This can be due to actual
difference in processor designs (heterogeneous set of processors) or to different
processor workload distributions. Furthermore, a processor may not offer the
same computational speed from one iteration to another, due to random work-
load fluctuations within that processor. The network behavior may also vary due
to random fluctuations. Second, the iterative algorithm itself can lead to fluc-
tuations in the computational times of the processors. Indeed, in many cases,
applying the operator Op to the current solution vector can require more or less
computation depending on the shape of the operator in a neighborhood of that
vector. Typically, this happens in non-linear cases when, at each iteration, a gra-
dient is approximated in each direction as the limit of a ratio involving actual
cost function evaluations. In such cases a processor can exhibit various behaviors
regarding the time necessary to perform an update.

Synchronous implementations are clearly a good choice when executed on per-
fectly homogeneous distributed environments, with a fast network, and for al-
gorithms that exhibit uniform computational requirements for the solution vec-
tor updates. However, the use of Networks of Workstations (NoWs) as super-
computers has become popular in the last years. Such networks often contain
workstations of different types, with varying workload distributions and network-
ing performance depending on the current usage of those workstations. On the

algorithm side, there are many large non-linear optimization problems that gen-

19



erate non-deterministic computation patterns as explained above. In order to
provide efficient parallel versions of iterative algorithms under these conditions,

another strategy has to be employed.

2.2.4 The Asynchronous Case

As early as 1969 [16], but only in some special cases, another possible implemen-
tation for parallel iterative algorithm has been under investigation. Even though
the early motivations to examine such an alternative to the synchronous parallel
implementation were not really the same ones that interest us today, that early
work led the way for many other studies. Let us first describe the basic principle

of this type of asynchronous implementation.

Principle

As for the synchronous case, we assume that there are p processors in the dis-
tributed environment and that the solution vector is segmented in pieces assigned
to each processor. Figure 2.3 describes a possible execution of an asynchronous
implementation of an iterative algorithm. As in Figure 2.2, we consider 3 proces-
sors and the first piece of the solution vector (the one assigned to processor 1) is
the only one fully described. Unlike Figure 2.2, Figure 2.3 shows the beginning of
the algorithm (for ¢t = 0).

The execution starts as for a synchronous implementation: each processor up-

20



x(0) x(1) x(2) x(3)

processor #1

processor #2

processor #3

g S S |

Figure 2.3: Asynchronous algorithm

dates its piece of the solution vector. However, there is no all-to-all communication
phase following these updates to synchronize the processors. Instead, a proces-
sor is “free” to perform another update possibly using out-of-date data for the
pieces of the other processors, or not to perform any update at all. In addition,
a processor can decide at any time to send its most up-to-date piece to some of
the other processors. For instance, on the figure, processor 2 computes the second
piece of x(2) with an out-of-date first piece of the solution vector. Processor 1
chooses not to perform any update from x(2) to x(3). Some communications are
also performed (symbolized by thin arrows on the figure). For instance, processor
3, before computing x(2), sends its most up-to-date piece of x(1) to processor 2.

On Figure 2.2 the numbering of the pieces of the solution vector was identical to

21



the numbering of the solution vector sequence: z(¢ 4 1) was equal to Op't!(z(0)).
In the asynchronous case, this is not the case anymore. First, the processors do
not have the same view of the current solution vector at each iteration phase.
Second, the different pieces of x(¢ + 1) may not result from applying the operator
(t+1) times to the pieces of x(0). For instance, the first piece of #(3) on processor
1 results from updating the first piece of x(0) only twice, and the first piece of
x(3) on processor 3 results from updating the first piece of 2(0) only once.

A good formal description of the asynchronous iteration is given in [5] and is
inspired by the definition of chaotic relaxations in [16]. The definition we give

here is very similar:

zi(t —1) ifi ¢ J,
\V/i,t == 1,2, J}Z(t) =

Opi(x1(s1(t))s oo tm(sm(t)))  if i € Ji, (2.2.3)

where J; is a subset of {1,..,m}, s;(¢) is an integer for all ¢, and ¢t = 1,2, ....
This definition is extremely general; it just states that a processor can sometimes
update a component of the solution vector by applying the operator to some
solution vector value. If J, = {1,..,m}, then each processor updates its piece of
the solution vector at each iteration. In order to make this definition more useful,

Baudet in [5] proposes the three additional conditions:
Condition 2.2.1 Conditions for asynchronous iterations:

22



(1) si(t) <t forallt=1,2,..
(i1) limyoeo(si(t)) = oo.
(ii1) ¢ occurs infinitely often in the sets Jy, t = 1,2, ...

Condition (1) states that when a processor updates a component of the solution
vector it can only make use of past components. In other words, a processor cannot
use components not yet computed. Condition (ii) states that the same value for
a component cannot be used indefinitely when computing updates. This means
that eventually, the value of a component will be replaced in favor of a more up-
to-date value throughout the algorithm execution. Finally, condition (iii) says
that a processor does not abandon a component for ever. If a processor updates
component ¢ of the solution vector, that processor will update component ¢ an
infinite number of times. Nothing is said on the convergence or termination of the

algorithm and it is assumed to run forever.

Partial or Total Asynchronism

In the formal definition of asynchronous iterations that we have given so far,
there is no limit on the amount by which a component used in an update can be
out-of-date. The only statement concerning the use of out-of-date components
is made by condition 2.2.1(i1) and it is fairly non-restrictive. For instance, if

si(t) = [5] for some 7, then the components used in successive updates of x;(t)

23



are more and more out-of-date and their “out-of-datedness” is unbounded. Such a
case is referred to as a totally asynchronous implementation in [9]. If the amount
by which a component used in an update is out-of-date is bounded, then the

implementation satisfies the additional condition:

Condition 2.2.2 Additional condition for asynchronous iterations

(iv) There exists a fized integer s such that t — s;(t) < s for alli and t = 1,2, ....

Such a case is referred to as partially asynchronous. In fact, the integer s can be
seen as a measure of the asynchronism. If s = 1, then the algorithm behaves al-
most like a synchronous algorithm (a processor may still chose not to perform any
update during an iteration). When s increases, the algorithm tends to behave like
a totally synchronous algorithm. Actual implementations are often partially asyn-
chronous since it is often practical to fix some kind of bound on the asynchronism

for implementation purposes.

Discussion

One purpose of an asynchronous approach is to make a parallel iterative algorithm
more adaptive in a distributed environment. The definition of the asynchronous
iteration shows clearly that the algorithm can be as asynchronous as needed to
take advantage of the very phenomena that were performance bottlenecks for a

synchronous implementation. However, the definition also implies that the actual

24



numerical computations performed in an asynchronous implementation are differ-
ent from the ones performed in the synchronous case, and therefore different from
the ones performed in the sequential case. The convergence of the algorithm is no
longer implied by the same conditions as for the sequential case, and in fact, it is
not even clear that an asynchronous parallel iterative algorithm ever converges.
Furthermore, if convergence occurs, the rate of convergence is entirely unknown
for the same reason. Fortunately, some convergence results are available and the

most fundamental ones are presented in the next section.

2.3 Convergence Results

A fair amount of work has been devoted to proving and analyzing the convergence
of asynchronous parallel iterative algorithms [9, 11, 16, 38, 37, 5, 10, 6, 51, 24,
53, 54]. Some of the earliest focused on specific iterative algorithms or on specific
implementations. A sufficient condition for convergence for linear operators is
available in [16], only for partially asynchronous implementations. In [38, 37], this
sufficient condition is generalized to the case of certain non-linear operators, still in
a partially asynchronous setting. In [5], Baudet gives a convergence theorem and
a convergence analysis for those non-linear operators and for any asynchronous
implementation (total or partial). Baudet’s work is the object of the following

section.

25



2.3.1 Convergence Theorem for Contracting Operators

In [5], Baudet establishes a sufficient condition of convergence for asynchronous
iterative algorithms whose operator is contracting. He then proceeds with a con-
vergence analysis that provides a lower bound for the convergence rate. Let us

first define the contracting operator concept.

Contracting Operators

Definition 2.3.1 An operator Op from R™ to R™ is a contracting operator on a

subset D of R™ if there exists a nonnegative m x m matriz A such that

Ve,ye D |Op(x) — Op(y)| < Alz —y|, component-wise

and p(A) < 1 where p(A) denotes the spectral radius of A.

The uniqueness of a fixed point for a contracting operator on a subset D is im-
mediate. The existence of such a fixed point can be proved in different situations.
For instance, if D is closed and if Op(D) C D, a proof of the existence of a fixed
point is given in [42]. Many examples of contracting operators and references can
be found in [5] and it is shown that many linear and non-linear problems give
rise to contracting operators. Among other examples, Baudet describes how con-
tracting operators arise in linear and non-linear elliptic differential equations and

shows that virtually all iterative functions occurring in the classical super-linear

26



methods are contracting operators.

The Theorem

Baudet’s main theorem can be stated as follows:

Theorem 2.3.1 If Op is a contracting operator on a closed subset D of R™ and
if Op(D) C D, then any asynchronous iteration corresponding to Op according to
equation 2.2.3 and satisfying condition 2.2.1 converges to the unique fixed point

of Opin D.

This theorem is impressive since it states that for contracting operators, any
asynchronous algorithm will converge, no matter how asynchronous. Let us give
here a short sketch of the proof since it impacts Baudet’s convergence rate estima-
tion and our work in Chapter 4. To prove this theorem, Baudet uses the following

lemma:

Lemma 2.3.1 Let A be a nonnegative square matrix. Then p(A) < 1 if and only
if there exists a positive scalar w and a positive vector v such that Av < wv and

w < 1. Furthermore, w > p(A) and in fact w can be chosen arbitrarily close to
p(A).

In the proof of the theorem, Baudet constructs a sequence of indices {{;},
k =0,1,..., such that |z(¢) — £| < aw®v for ¢t > #; where ¢ is the unique fixed

point of Op in D. Since 0 < w < 1, this shows that () — £ as t — oo, meaning

27



that the algorithm converges.

Convergence Rate

After this theorem, [5] contains an analysis of the convergence rate of asynchronous
iterative algorithms. Baudet defines the rate of convergence of such an algorithm

as:

Definition 2.3.2 Rate of Convergence Definition
Ay .
R lim inf[(~ log lo(t) — €]/

|||l denotes a norm of R™ In all that follows, we will choose to use the norm
|z|| = max{|x;||¢ = 1,...,n}, which corresponds to the worst possible case for
the convergence of the components. The definition of the rate of convergence has
an immediate interpretation. If the logarithm is in base 10, then 1/R measures
the asymptotic number of iterations required to divide the error by a factor of 10
where an iteration is the computation described by equation 2.2.3 for all .
Again, we give here a sketch of the proof of the next theorem since that proof
will be used in Chapter 4. Baudet constructs a sequence of integers {k;} for
t = 0,1,... as follows. The proof of theorem 2.3.1 constructed the sequence of
integers {t;} for k = 0,1, ..., satisfying ||z(¢) — £|| < aw® where o can be chosen

as ||x(0) —£||, that is, the error with the initial guess of the solution vector. That

28



sequence was constructed as:

to - 0
(2.3.4)
thy1 = tp +ap + by,
with a; and b, defined as:

Definition 2.3.3 The {a.} and {b.} sequences:

(1) starting with the (1 + ag)-th iteration, no solution vector update makes use

of values of components corresponding to iterates with indices smaller than

tg.

(i1) all solution vector components are updated at least once between the (t,+ay)-

th and the (t; + ax + by)-th iterations.

Baudet then defines the sequence {k;} for t = 0,1, ... as:

kté sup{k € Nlag +bo+ ... + a1 + b1 < t}. (2.3.5)

The theorem follows as:

Theorem 2.3.2 Let Op be an operator satisfying the condition of theorem 2.3.1
and A the matrix of definition 2.3.1, then the rate of convergence R of any asyn-

chronous iteration corresponding to Op according to equation 2.2.3 and satisfying

29



condition 2.2.1 is such that:

R > —[lim inf(k;/)]log p(A).

This theorem provides a lower bound on the convergence rate of the algorithm.
The sequence {k;} depends on the implementation itself. This sequence is increas-
ing and the more asynchronous the implementation, the less rapidly the sequence
increases. Baudet concludes its study with experiments, and we discuss them in
Section 2.4. Another study of the convergence of parallel asynchronous iterative

algorithms can be found in [9] and is presented in the next section.

2.3.2 A More General Theorem ?

Bertsekas and Tsitsiklis in [9] also propose a convergence theorem stating a suffi-
cient condition for the convergence of asynchronous implementations of iterative
algorithms. This theorem is in a more general setting than Baudet’s theorem
since the conditions on the operator are less restrictive. They first state the two

conditions on the operator Op:

Condition 2.3.1 There is a sequence of non-empty sets { X (¢)} with

L CX(k+1)C X(k)C...CX(0)CR™,

such that:

30



(1) (Synchronous Convergence condition) We have:

Op(x) € X(t+1), Vtandx e X(1).

Furthermore, if {y'} is a sequence such that y* € X(t) for every k, then

every limit point of {y'} is a fized point of Op.

(ii) (Box Condition) For everyt, there exist sets X;(t) C R fori =1,...,m such

that:

X(1) = X1(t) % Xa(t) % oo % X (k).

The convergence theorem can then be stated as follows:

Theorem 2.3.3 (Asynchronous Convergence Theorem) If condition 2.3.1 holds,
and if the solution vector initial guess x(0) belongs to the set X(0), then every

limit point of {x(?)} is a fixed point of Op, where () is defined by equation 2.2.3.

Bertsekas and Tsitsiklis note after the proof that the challenge in applying the
theorem is to identify the sequence X (¢). They claim that it can be straightforward
in some cases, but that in other cases, it requires “creative analysis”. All the
applications of the theorem that are described in [9] are in fact in the case of
operators that are contractions or pseudo-contractions with respect to a weighted

maximum norm. The key idea is that under these assumptions, the boxes of

31



theorem 2.3.3 are spheres of R™. In fact, the condition on the operator is fairly
similar to Baudet’s definition of a contracting mapping (it is a “Lipschitz-like”
condition).

As in [5], a study of the convergence is provided. However, it appears less
useful than Baudet’s. Indeed, some additional assumptions are required in order
to be able to make any statement on the convergence rate, even in the case of
contractions with respect to a weighted maximum norm. Those assumptions
are not very easy to interpret, and even when they are satisfied, Bertsekas and
Tsitsiklis only give a lower bound on the rate of convergence of the algorithm,
which is what Baudet already provides. Due to these considerations, we will
mainly use Baudet’s theory in this research. The more general theorem in [9]
seems to lead to less directly applicable results and it is not clear that those
results would be in fact more powerful. Besides, Baudet’s proof techniques prove
to be fairly well suited to a stochastic approach as demonstrated in Chapter 4.

At the end of [9], a special study of Gradient-like optimization algorithms is
presented. It is shown that for some cost functions, totally asynchronous im-
plementations of the algorithms are never guaranteed to converge whereas there
are some partially asynchronous implementations of the Gradient algorithm that
always converge. This is an interesting result as it proves that total and partial
asynchronism are not always equivalent for some operators. This can be seen as

an extension of the result of theorem 2.3.1 to some other classes of operators. In

32



fact, partially asynchronous implementations of a Gradient-like algorithm with a
small enough step-size (see Section 2.1.2) always converge for some operators that
are not contracting operators in Baudet’s sense. This result seems to be rather
attractive and will be certainly the object of future work. However, in this dis-
sertation, we consider only the general case without consideration of the specifics
of the numerical method being used for the iterative algorithm. This seems to be
the best choice since this work is our first approach at stochastic modeling of such

algorithms and should therefore not be tailored to fit some specific algorithm.

2.4 Towards a Stochastic Approach

In this section we first explain our motivation for taking a stochastic approach to
a performance analysis of parallel iterative algorithms. We then examine previous
work concerning stochastic models for such an analysis and finally conclude with

the goals of our stochastic approach.

2.4.1 Motivation

An obvious weakness in all the convergence analyses presented in 2.3 is that they
are one step removed from actual implementations. Indeed, those results are fairly
difficult to exploit for an end-user, who wants to write a parallel iterative algorithm
to solve some scientific computational problem. Such a user needs an estimate

of the convergence rate of the algorithm in terms of execution time. The results

33



available so far give lower bounds of the convergence rate only in terms of number
of iterations. First, it may not be obvious to the user how to determine the amount
of time required to perform an iteration, especially in heterogeneous environments
or for large non-linear problems. Second, the distributed environment creates some
lack of synchronization among the processors as explained in Section 2.2.3, and
can therefore have a large impact on the actual computation performed in an
actual run of the implementation. Therefore, it is difficult for a user to decide
whether a synchronous or an asynchronous implementation is a good choice given
the distributed environment and the numerical method to be used. And if an
asynchronous implementation seems to be the right choice, then how can the user
choose the degree of asynchronism that will yield the best average performance ?

Even if the estimates of the rate of convergence of the iterative algorithms were
more in touch with what the end-user needs to make design decisions, they still
provide only lower bounds on the rate of convergence. These bounds correspond
to the worst-case scenario for a run of the implementation, the one for which
asynchronism is entirely detrimental to convergence. This could still be useful if
those bounds were tight. However, Baudet in [5] reports on several experiments
with actual implementations running on a supercomputer. These experiments
showed that the bounds on the rate of convergence are in fact fairly loose and
that the actual implementations perform on average much better than the worst-

case. This led Baudet to write

34



The bounds we have obtained (...) happen to be very conservative. It
would certainly be very useful to obtain bounds (or estimates) corre-

sponding to the average behavior of asynchronous iterations.

This is an early mention in the literature of the possibility of a stochastic approach
to a performance analysis of parallel iterative algorithms. In the following section,

we review research works since Baudet’s observation.

2.4.2 Related Work

Baudet implies a set of stochastic models that would describe the behavior of
parallel algorithms running on a given set of processors interconnected by some
network. One of the objectives of our research is to provide such stochastic models.
Few attempts at using stochastic models to analyze the performance and behavior
of iterative algorithms appear in the literature. For instance, [9] (Section 6.3.5)
provides comparisons between the synchronous and the asynchronous case, but the
model is entirely non-random and therefore difficult to apply for non-deterministic
real-world systems. In [52], it is shown that asynchronous algorithms have a
“good” communication complexity as compared to synchronous ones, but here
again, it is difficult to use these results to obtain quantitative measures of the
actual performance of the algorithm in a given distributed environment.

A unique reference that proposes a real stochastic approach is Uresin and

Dubois [55]. Its “probabilistic analysis” is based on the one in [33]. There are,

35



however, several missing elements in this work that we address. This is under-
standable enough since it may be the first published work using a probabilistic
approach to performance evaluation of distributed iterative algorithms. First, the
authors agree that their model is interesting only for a shared memory imple-
mentation, of little relevance for a distributed memory system, and not suitable
to model any heterogeneous system. By contrast, the research presented in this
dissertation attempts to find performance results for distributed memory systems,
including heterogeneous networks of workstations. Second, the scheduling strat-
egy used in [55] is called Age scheduling - a reasonable choice as it is easy to
implement on a shared memory machine. The entire stochastic model depends on
this scheduling assumption. However, as mentioned in Section 2.2.2, the authors
performed simulations to examine the accuracy of their stochastic model and took
this opportunity to simulate other scheduling strategies. It appears that the best
scheduling strategy is (expectedly) static scheduling whereas their probabilistic
model is only valid for an aging strategy. Based on this analysis, our work will
consider only static scheduling. Third, the stochastic model developed in [55] is
valid only for certain distribution functions for the processors’ execution times
(Increasing Failure Rate (IFR) functions). This is a fairly rigid constraint, and
the models of this research will be more flexible and, more importantly, tightly
connected to the underlying distributed environment. Finally, the probabilistic

model in [55] is in fact not a full-fledge stochastic model. It approximates expected

36



values, and simulation is used to compute some of its parameters. It is unclear
in the analysis, for instance, what influence the nature of the algorithm operator
has on the performance of the asynchronous model. By contrast, our research will
develop real models that capture the details of the distributed environment and

will not include any simulation as part of the models.

2.4.3 Objectives

The main objective of our stochastic analysis is to provide the user with useful
performance estimates for the implementation of a given iterative algorithm in
a given distributed environment. These estimates should then help that user in
making design decisions for the actual implementation of the algorithm. Two spe-
cific goals are (i) to describe a Markov chain model in detail, and (ii) to describe
computations on the model that are relevant to algorithm performance (e.g., time
to convergence) and that include contemporary development in probability calcu-
lations (the Theory of Large Deviations). The input to the model will be twofold.
First, the model will take into account the nature of the distributed environment
in terms of number of processors, computational speeds of these processors (in-
cluding workload distributions) and network performance. Second, the model will
also take into account the implementation strategy in terms of asynchronism. For

each input, the model will provide performance measures and estimates, allowing

37



comparisons of implementations in any distributed environment. The following

chapter describes how such a model can be constructed.

38



Chapter 3

Stochastic Models

One thing late or early can disrupt everything,
and the disturbance runs outward in bands
like the waves from a dropped stone in a quiet pool.

John Steinbeck (1902-1968)

This chapter describes in detail the stochastic models that we have constructed
for the analysis of parallel iterative algorithms. As it will be seen in Section 3.1,
our modeling is at the application-level. 1t is designed to capture the behavior of
these algorithms when implemented and executed on distributed environments.
Corresponding models are introduced in Sections 3.2 and 3.3 and the following
sections show how it is possible to formalize these models and extract relevant ran-
dom variables (RVs). These RVs are used in Chapter 4 to obtain new estimations

of several performance measures.

39



3.1 Application-level Modeling

Stochastic approaches are used in many fields of computer science, especially
for a better understanding of the behavior of computer systems. Usually, the
goals of such approaches are to provide one or more stochastic models that reflect
the random behavior of the system under investigation. The models can then
be used to make predictions about the system with different configurations. In
this work, we are interested in providing the end-user with useful insight into the
performance of different implementation strategies for parallel iterative algorithms
in some user-defined distributed environment. As explained in Section 2.4.1, an
end-user is one who is willing to write a parallel program to perform some scientific
computation. This is why we characterize our approach as application-level. By
contrast, one can find examples of stochastic models for computer systems that
are at a much lower level; and even though their results might impact the end-
user, they would be extremely difficult to interpret directly in terms of that user’s
application performance.

As an example of a non-application-level model one can cite the work described
in [45]. In that work, Ren, Mark and Wong are concerned with analyzing the end-
to-end performance of an ATM network, that is, a network of ATM multiplexer or
ATM switches. They use queuing theory (more specifically, tandem-queuing [59])

as well as a fluid flow approximation in order to build two different models. Then,

40



they compare the accuracy of the two models versus simulation results. In the con-
clusion of their article, they state that their work provides a better understanding
of the end-to-end behavior of an ATM network, and as such, can be used to make
“efficient resource allocation in call admission”. It is then clear that the results
from that work are very difficult to use directly by a end-user as we have defined
him, even though the call admission scheme in the distributed environment, if
any, is certainly going to have an impact on the user’s application at some level.

In order to provide results that are directly useful to the end-user, some of the
low-level elements of the computer system must be ignored or at least approxi-
mated to perform an application-level analysis. An example of such an analysis
can be found in [2]. In that work, Adve and Vernon propose to study the influ-
ence of random delays on the behavior of a parallel program running in a shared-
memory environment. After making stochastic assumptions about the system
(mainly about independence and distributions), they perform some expectation
and variance computations leading to the conclusion that process execution times
in the presence of random delays asymptotically approach a normal distribution.
Then, they conduct a series of experiments with actual parallel programs running
on multiprocessors to validate their analysis. Their work has clear implications
for parallel program performance prediction models, but also for actual program-
mers (end-users). Their results indicate that the effects of random communication

delays can usually be ignored in making the choice between static and dynamic

41



scheduling in the systems. This is a perfect example of application-level analysis
since it has direct bearings on the implementation choices made by the end-user
in our sense.

In this work, our goal is to carry out a stochastic analysis that provides directly
useful results to the programmer of a parallel iterative algorithm in a distributed

memory environment.

3.2 Modeling the Distributed Environment

In this dissertation, the distributed environment in which parallel iterative algo-
rithms are executed is a computer network of p geographically distributed nodes
connected by a communication facility. A node is composed of a processor, mem-
ory and a network interface. FEach node has its own memory accessed only by
its processor. In this distributed memory setting, nodes can exchange data via
the communication facility, thanks to their network interfaces. We do not re-
quire that all the nodes be identical and are therefore supporting a heterogeneous
environment.

The communication facility is seen as an abstract device that allows reliable
point-to-point communication between any two nodes of the network. Figure 3.1
shows a schematic representation of such an organization. For the sake of sim-

plicity, we will use the term network to describe the communication facility only.

42



Communication
facility

P = Processor
M = Memory
NI = Network Interface

Figure 3.1: Distributed environment model

3.2.1 The Network

Our model does not make any assumption about the topology of the underlying
physical network. This physical network delivers some service to the user that
makes it appear as a reliable point-to-point communication facility. Our model
will therefore be applicable for diverse computer networks, from a Massively Par-
allel System (MPP) to an Internet-wide collection of machines, and anything in
between. In order to analyze the impact of this network on the behavior of any
kind of parallel algorithm running in such a setting, it is necessary to somehow
quantify the performance of the service that can be expected at the user end. Let

us first define network performance in a way that is relevant to our purpose.

43



As seen in Section 2.2, parallel iterative algorithms exhibit some determinism
in communications. Typically, the messages exchanged by the different nodes are
always of the same lengths (or at least of very comparable lengths). This simplifies
greatly the task of network modeling, for we do not expect real networks to deliver
the same performance in terms of transmission rate for all message sizes. This
is due not only to physical constraints (the number of workstations, for instance
- see [50]), but also to system software overhead and communication protocol
design [18], and traffic management mechanisms [41, 8]. A possible approach
would then be to model the network service as a single number for each point to
point communication, that is, the time required for each node to send a message to
each other node. Since we are at the application level, this time would be measured
from the instant when the user’s program issues a send on the sending node,
until the data has entirely arrived in the user space on the receiving node. This
includes all the overheads aforementioned and allows the network to be seen as an
abstract layer delivering constant service for each point-to-point communication.
The entire network could then be modeled via a p x p real matrix, where p is the
number of nodes in the system and element (i, j) of the matrix the time for node
i to send a message to node j.

Even though attractive, that approach does not take into account one of the
major factors that influence network performance: network traffic. Depending

on the number of messages traveling on the network, depending on the sources

44



and destinations of these messages and on the traffic patterns, one can expect
varying network performance. Network performance can degrade rapidly with
increasing traffic [8]. Measuring network performance with a single number seems
inadequate because of network traffic fluctuations. A better way to estimate
network performance is then to model each point-to-point communication time
as an RV. The entire network can then be modeled with a p x p matrix of RVs.
Different choices in the distribution of these RVs will reflect different network
behaviors. Choosing a particular distribution of these Random Variables can
be done by sampling network communication times and performing statistical

inference (see [32] for instance).

3.2.2 The Nodes

As described in Section 2.2, a parallel iterative algorithm consists of a series of
updates performed on parts of the solution vector. These updates take place on
the nodes in the system. As for the network performance, one possibility would
be to model a node’s performance with a single number: the time it takes for that
node to perform one update. The nodes could then be modeled with a vector of

h

size p where the ;b component is the time for processor 7 to perform one update.
This simplistic approach, however, is not satisfactory. First, as network traffic can

cause fluctuations in network performance, processor load can also have an impact

on execution speed. Depending on the load of its processor, a node will perform

45



one update at different speeds, modifying the global execution time of the entire
algorithm. Second, as explained in Section 2.2.3, the amount of computation
required to perform an update is not constant: it depends of the shape of the
operator Op around the current solution vector and can not be determined before
the execution. We have thus identified two sources of randomness at the node
level, justifying again the use of RVs in our model. Fach node will be modeled by
a single RV that describes the times the node requires to perform one update, and
the entire set of nodes is modeled by a vector of RVs. The distributions of these
RVs describe the behavior of the algorithm execution at the node level. As for
the network, the distributions can be chosen thanks to sampling and statistical

inference (see [32] for instance).

3.3 Modeling the Algorithm

The principle of the iterative algorithms we are studying has been already given in
Section 2.1. In Section 2.2, we have seen that several parallel implementations are
possible, mainly synchronous and asynchronous ones. In this section, we give the
outline of our model for parallel implementations. By modifying some parameters
of this model, the implementation can be either synchronous or asynchronous.
This will allow us to compare different implementation schemes in different dis-

tributed environments as opposed to changing the entire model for each scheme.

46



First, we assume that if there are p nodes in the distributed environment used
to execute the parallel algorithm, then there are p user processes (or threads of
control) on each node’s processor. From now on, we will use the terms node,
process or processor indifferently, since there is always one single process running
as part of the iterative algorithm on the single processor of each node. Second,
we assume that each processor updates one piece of the current solution vector as
stated in 2.2.2. The implementation of the algorithm is segmented in phases. At
the beginning of a phase, the current solution vector is in the memory of the nodes.
Each phase is composed of two sub-phases. During the first sub-phase, called the «
sub-phase, each processor performs successive updates on its piece of the solution
vector. If a processor performs more than one update during the o sub-phase,
then it begins to use out-of-date data for the components of the solution vector
that it is not updating. At the end of the a sub-phase, each processor broadcasts
its piece of the current solution vector to all the other processors. Just after
this broadcast, starts the § sub-phase. During the 3 sub-phase each processor
is waiting to receive p — 1 messages from the other processors. Each processor
also has the possibility to perform additional updates on its piece of the solution
vector, using more out-of-date data. A processor finishes its 3 sub-phase when it
has received all the p — 1 messages. This is also the end of the current phase, and
the next phase is about to start.

Figure 3.2 depicts this algorithm. Three processors are numbered ¢, 1 + 1 and

47



All messages All messages

sent received
Local Local
Computation Computation

process #i

Alpha
sub—phase Broadcast

process #i+1

Beta
sub—phase

process #i+2

next

previous
phase

phase current phase

time

Figure 3.2: Decomposition of the algorithm in phases

1+2. On the left side of the figure, the three processors are starting a new phase of
the algorithm (the current phase). One can see that processor i+1 is “late” to start
the new phase as compared to processors 7 and ¢ 4+ 2. Fluctuations in the network
traffic and update computational times, as explained in Section 3.2, are responsible
for this lack of synchronization among the processors (taking advantage of such
lacks of synchronization is precisely one of the goals of asynchronous parallel
iterative algorithms). After the o and the 3 sub-phases of the current phase, the
processors start a new phase. In the figure, it is now processor ¢ + 2 which is late
when compared to processors 7 and ¢ + 1.

The next section will establish definitions and notation that lead to a rigorous

description of the algorithm execution in a given distributed environment.

48



3.4 The Complete Model

In this section, we introduce a set of formal definitions that will allow us to derive
analytical results. We then state all the assumptions that we use in our study and

conclude with some final remarks on the model.

3.4.1 Definitions and Notation

From now on, we assume that the distributed environment consists of p nodes,
numbered ¢ = 1,2,...,p and that phases of the parallel iterative algorithm are
numbered k£ = 0, .... For mathematical simplicity, we also assume that each pro-
cessor sends a message to itself as well as to every other processor after its «
sub-phases. This means that each processor expects to receive p messages during

each algorithm phase.

Definition 3.4.1 Implementation dependent parameters

(i) A; > 0 denotes the number of updates performed by processor ¢ during the o

sub-phase of each algorithm phase.

(i) B; denotes the maximum number of updates that processor 1 is allowed to

perform during the 3 sub-phase of each algorithm phase.

These two definitions are fundamental, since they constrain entirely the way

the algorithm iterates on the solution vector. For each process, the number of

49



updates performed during the 3 sub-phase of each algorithm phase is not in general
fixed ahead of time. The only thing that the user can do is to bound above the
number of additional updates allowed during that sub-phase. For instance, if
A; = 1 for all + and B; = 0 for all i, then the implementation is synchronous.
If for some 7, B; > 0, then the implementation is asynchronous. By modifying
the values of A; and B; for each 7, the implementation can be made more or less
asynchronous. The totally asynchronous case corresponds to B; = oo for some 1.

In order to quantify the algorithm execution time, we need to replace the
continuous time by a discrete approximation. We therefore segment time on each
processor into CPU time units. On each processor, this CPU time unit has a value
in seconds, and every duration in the model can be expressed as a combination of
the CPU time units of all the processors. For our model to fit reality exactly, this
measure must be taken exactly equal to the CPU cycle time on each processor.
Indeed, at the user level, processor time is discrete, and segmented in CPU cycles.
Bigger values of the time unit lead to approximations. However, as it will be
seen in what follows, taking an exact value leads to intractable models in terms
of size. Furthermore, it will also be seen that such a level of precision, even if
computable, would bring little or no improvement over less precise models. By
increasing the CPU time unit value, one replaces the actual algorithm run by a
coarser discrete approximation, but one creates more tractable models. We can

now give the following definitions:

50



Definition 3.4.2 Network- and node-specific variables
(i) ' € R denotes the duration in seconds of the CPU time unit on processor 1.

(ii) o'(k,0) € N for 0 € {1,.., A; + B;} denotes the duration of the 0" update,
if it is performed, of the solution vector during the k' algorithm phase, on

processor v, in CPU time units of processor 1.

(ii1) ni;(k) € N is the difference between the time when the user program on
processor 1 posts a “message send” to processor j, and the time when the
user program on processor j has entirely received the message in the user’s
space, during the k' algorithm phase and in CPU time units of processor i.

By convention, n;;(k) =0 for all i and k.

Let us note that definition 3.4.2(ii) says that § € {1,..,A; + B;}. Indeed,
processor 1 performs A; updates of the solution vector during its « phase, and
performs at most B; updates during its # phase (the actual number of updates
performed in the 3 phase is random).

In our model, a’(k,0) and n,_,;(k) are modeled as integer RVs for each 1, j, k
and . These RVs reflect all the randomness in the parallel algorithm execution
in the distributed environment. Every other RV that will be introduced in future
development will be in fact a function of these original RVs.

Finally, we define two variables that will allow us to describe the evolution of

the algorithm throughout time:

51



Definition 3.4.3 Time variables

(i) T'(k) € R denotes the time of the beginning of the k'™ algorithm phase on

PTOCESSOT 1.

(ii) w'(k) € R is the duration in seconds of the 3 sub-phase of the k' algorithm

phase on processor 1.

In the next section, we derive the first equations from these definitions.

3.4.2 Main Time Equations
First, in order to simplify notations, let us define o(k) as:

A;

o' (k)= al(k,0)

=1

for all 2 and k. Let us now consider the algorithm during its &% phase on processor
i. The phase started at time T"(k). One of the first questions one might ask
is : "When does the (k + 1) phase start on processor ¢ ?” Or in other words,
what is the value of Ti(k + 1) knowing the value of Ti(k)? The duration of the
k™" phase is the sum of the durations of its o and 3 sub-phases. By definition,
the duration of the 3 sub-phase is w'(k). The duration of the a sub-phase is

the sum of all durations of the A; solution vector updates performed during that

52



sub-phase. Therefore:

T'(k+1) = T(k) + p'a(k) + w'(k). (3.4.1)

Let us now try to find the value of w'(k), or the duration of the 3 sub-phase on
processor i during the k" phase. Clearly, the 3 sub-phase starts at time 3, ,(k),

with

Buare(k) = T (k) + p'a’ (k).

On the other hand, the 3 sub-phase ends when processor ¢ has received all expected
p messages. Let us consider another processor, j. At the end of its a sub-
phase, processor j sends a message to processor ¢. This message is sent at time

Zm,,t(k), and received by processor 7 at time ﬁztart(k) + win;_(k), according to

definition 3.4.2(ii1). Therefore, the last message received by processor i is received

at time 3! (k) with:

ﬁ;nd(k) = max [ﬁztart(k) + Iu]n]—”(k)]

je{17"7p}

53



Now, w'(k) is given by

wz(k) = ﬁénd(k) - ﬁitart(k)

= max [ﬁzmrt(k) + 17 nini(R)] = Bigan(k)

j€{1,...p}

= maX [ﬁztart(k) + M]n]—>z(k) - ﬁitart(k)]
j€{1,...p}

= max [T](k) + Mla](k) - ﬁgtart(k) + Iu]n]_”(k)]
j€{1,...p}

J

Yiar (k) with its expression. Since n;;(k) = 0, one can rewrite the

by replacing 3
expression of w'(k) as

w'(k) =max[0, max (T7(k)+ p/c’ (k)
]E{l,..,p}—{l} (342)

— TR — il () + i ()]

This last equation shows that w'(k) > 0 for each 7 and k, which is of course
natural, since w'(k) is a duration. Equations 3.4.1 and 3.4.2 are used as the first
base of our model; they will be referenced frequently in future developments. In
order to illustrate these notations, the next section shows a simple example of

how an algorithm phase is modeled.

3.4.3 An Example

Let us consider a distributed environment that consists of 3 processors, and the

algorithm during its £ phase. The implementation of the parallel algorithm is

54



such that A' = A? = A3 =3, B'=B?=2and B> =1.

Figure 3.3 shows a diagram similar to Figure 3.1, but with all the details.
The 3 processors enter their respective o sub-phase at different times. They each
perform 3 updates during that sub-phase before entering their respective 3 sub-
phase. Just before entering the 3 sub-phase, each processor broadcasts its current
piece of the solution vector to every other processor. This is represented with thin
dotted lines on the figure, and only for processor 2 for the sake of clarity. The
time at which a processor receives a message is noted on that processor time axis
with a big dot. There are 2 dots on each time axis since each processor receives 2
messages. Let us examine each processor’s (3 sub-phase one by one.

Processor 3 can perform one solution vector update during its g sub-phase.
Before it has finished that update, it has already received one message. The
second expected message arrives after the update is completed, leading processor
3 to stay idle as shown on the figure by the thick dotted line. Processor 2 is in
the same situation. It can perform at most 2 updates during its 3 sub-phase,
and it has time to do so before the last message it expects arrives. As shown
on the figure, processor 2 stays idle between the end of its second update and
the arrival of the last message. Processor 1, however, is in a different situation.
Indeed, it receives its last message while it is performing its second update. It
then interrupts its execution, and puts an end to its 3 sub-phase.

As seen on the figure, the processors enter their (k + 1) phase in a different

55



® incoming message U communication == idle time

a sub-phase 3 sub-phase

Tl
| ® |
[ [
proc 1\ 2) a'(k,3) | al(k4)
proc 2 / | Y

| 02(k.2)  a2(k,3)[a*(k. 1) a2(k,5)
| [
proc 3 | o( (k,2) (K, 3) o?(k, 4)

Tk + 1)

T3k +1)

k" phase

Figure 3.3: Example algorithm phase

order than the one with which they entered their k** phase. For instance, processor
2 is the first one to enter the k'" phase but the last one to enter the (k + l)th
phase. This example does not reflect all the possible scenarios. For instance, a
processor can have an empty (8 sub-phase, or it is possible that no processor is

able to perform any update of the solution vector during its 4 sub-phase.

3.4.4 Assumptions

In this section, we list all the assumptions made on the different components of

our model.

56



Assumption 3.4.1 The original RVs have a finite range, that is

Vi k.0 ai(k,0) € {',..,al} CN,

\V/iv.jvk nl%](k) S {ni—ﬂv "7ni—>j} CN.

From now on, the notations x and T design the smallest and largest value that can
be taken by a RV z. Assumption 3.4.1 implies that solution vector updates and
network communications are completed in a finite amount of time. In other words,
there is no processor failure during the run of the algorithm, and no message is

lost by the network.

Assumption 3.4.2

(i) The RVs o'(k,0) are independent and identically distributed.
(ii) The RVs n;—;(k) are independent and identically distributed.

This last assumption is in fact the entire basis of our stochastic model. Similar
assumptions have been popular in the past for the purpose of generating tractable
models [55, 2]. Some recent work [58] suggests that the network traffic in a dis-
tributed environment like the one that we are considering is such that it cannot be
accurately modeled by independent and identically distributed (i.i.d.) RVs. How-
ever, in a model with no restrictions on the dependences and the distributions of
the different RVs, it is usually very difficult or even impossible to obtain satisfac-

tory and useful results. Without taking such an extreme approach, it would for

57



instance be possible to model quantities such as the update time for a processor as
a Markov-modulated random process [41] (e.g. Bernoulli or Poisson Markov Mod-
ulated process) to reflect processor workload fluctuation patterns. Or we could
use ON/OFF sources [43, 22, 45, 31] or Markov-modulated arrivals [1] to model
the network traffic and transmission rate. For now, we will consider that the i.i.d.

case is a reasonably good approximation and we discuss this in more details in

Chapter 6.

3.4.5 Model Discussion

Severals aspects of our model raise questions about the actual implementation of
the parallel iterative algorithm. In this section, we answer the most crucial ones

and state what assumptions we are making for the implementation, if any.

Broadcasting

We have already said that each processor, at the end of its a sub-phase broadcasts
its piece of the solution vector to every other processor. In the model, we assume

that when such a broadcast is performed:

o The sending processor spends 0 CPU time units initiating the broadcast.

o All the messages of a broadcast are sent at exactly the same time.

The first assumption is for the sake of simplicity. It would be very easy to add

to the model a RV representing, for each processor and each phase, the number

58



of CPU time units necessary to initiate the broadcast. However, in practice this
RV should be small, when compared to the update time, or even the network
time. We ignore it and set to 0 the number of CPU cycles spent by the sending
processor to initiate a broadcast. Besides, from the point of view of the receiving
processor, this additional time spent by the sender can easily be incorporated in
the distributions of the n,;(k) RVs.

The second assumption is justified basically by the same considerations. Since
the sender spends 0 CPU time units to initiate a broadcast, it is natural to assume
that all the messages are put on the network at the same time. This is not tech-
nically true, since usually a broadcast is a succession of sends at the application
level. If such a subtle distinction were to be taken into account by our model, one

could always incorporate it again in the distributions of the n,;_;(k) RVs.

Receiving Messages

We have already mentioned that during its # sub-phase, a processor interrupts its
execution when it receives the last message it was expecting. This may be difficult
to implement exactly in the algorithm. A way to achieve this would be to use
mechanisms like active messages [21, 20, 56]. When a message arrives at its desti-
nation, the receiving processor’s execution is interrupted and a handler is called.
This handler processes the message. If no more messages are to be received, then

the ongoing [ sub-phase is not resumed. However, active message facilities are

59



not always available to the user. Another possibility is to have each process pe-
riodically check for messages received while it is in a 3 sub-phase. For instance,
such a check can be performed each time the processor is about to update a single
component of its piece of the solution vector. Or if necessary, this check can be
performed even more often, several times during a single update. No matter how
often this check is performed, a processor can not interrupt its 3 sub-phase exactly
when the last message it was expecting arrives. We do not make any assumption
on the implementation regarding this point. If the implementation uses active
messaging, then the model fits exactly what happens during the 3 sub-phase. If
the implementation performs periodical checks, then the model is an approxima-
tion, and depending on the frequency of these checks, this approximation is more
or less accurate. For a “reasonable” implementation which performs “enough”

checks, we expect our model to be a very good approximation.

Local Blocking

If the implementation of the iterative algorithm runs on p processors, the solution
vector is generally of dimension greater than p. If the dimension of the solution
vector is much greater than the number of available processors, then each processor
is in charge of a relatively big piece of the solution vector. It may be interesting,
convergence-wise, to perform more network communications than in our execution

model. For instance, each processor could send to every other processor each half

60



of its updated solution vector piece as soon as it is completed. More generally,
each piece could be divided into blocks. Each time a processor updates a block, it
is broadcasted to every other processor. This would minimize the number of out-
of-date data used in the updates, and thereby improve the algorithm convergence
in number of iterations. Choosing a block size smaller than the piece size is not
a real issue in a shared-memory implementation of a parallel iterative algorithm,
but can be a major issue in distributed memory settings. Of course, depending on
the computational complexity of a component update, too small a block size can
overflow the network and degrade the overall performance of the implementation.

In this work, we take the block size equal to the piece size, for the sake of
simplicity. Supporting different block sizes would not require many modifications

to the model.

3.5 Underlying Markov Chain

Now that the base of the stochastic model is established, we define a simple way
to describe the evolution of the algorithm throughout time. This is done by
associating a Markov chain to the algorithm; the current state of the Markov
chain is related to the current state of the algorithm, as shown in the following

sections.

61



3.5.1 Basic Definitions and Equations

The main idea is to represent the state of the algorithm in a phase k by the relative
times at which every processor entered that phase. On Figure 3.2, those times
are symbolized by points on the time axis. The processors enter the k' phase
of the algorithm at times T*(k), T?(k), .., T?(k), and they enter the next phase
at times T'(k + 1), T?*(k + 1), .., T?(k + 1), according to definition 3.4.3(i). On
Figure 3.2, the start of a new phase is represented with a thick line joining the
entry points of each processor in that phase. From now on, we call this line the
wavefront and its shape for the current phase determines the current algorithm

state. More formally:

Definition 3.5.1 Wavefront definition

X(k) = (0, T*(k) — T'(k), .., T*(k) — T'(k)) € R?

is the wavefront for each algorithm phase k.

In this definition, the first processor is taken as a point of reference. The
components of X (k) are the times of the entrances of the other processors in the
k' phase, when T'(k) is taken as the time origin. Several questions about this

wavefront are answered in the following sections.

62



3.5.2 Finite Space

In this section, we show that the wavefront vector, X(¢), can only take a finite

number of values in R?. This is done by proving the following two lemmas.

Lemma 3.5.1 The vector X (k) is bounded for k > 1:

AMNVE>1 || X(E)]leo <M with M = max (/,Lhnh_y).
hj€{l,...p} I

Proof. Recall that processor 1 is the reference processor. Consider a particular
phase of the algorithm, say k, and a given processor, say . We assume that ¢ # 1,
since X (k) = 0 where X;(k) denotes the first component of vector X (k), and since
the case where there is only one processor is of little interest. After performing
their respective solution vector updates during their a sub-phases, both processors
1 and ¢ are waiting for p incoming messages. When those messages are received,
then both 1 and ¢ can proceed to phase k + 1.

The times at which processors 1 and ¢ receive a message from some processor
h are apart by p”|ny_1(k) — np_:(k)|. Indeed, recall that we assume that when
a processor broadcasts its message, all the messages are sent at the exact same
time. Therefore, the times at which processors 1 and 7 receive the last messages

they were waiting for are apart by at most maxhe{17..7p}(/,ch|nh_>1(k) — npi(K)]).

63



Using assumption 3.4.1, one can write that:

Vh |nh—>1(k) - nh—>i(k)| < ma‘X(nh_>1 T Rhsis Mgy — nh—>1)

< max(nh—nv nh—n’)

< ).
< )

Therefore, the times at which processors 1 and i receive their last message are
apart by at most maxhde{lwp}(uhnh_}j). By definition 3.4.3(i), those times are

apart by |T"(k+ 1) — T'(k + 1)| = | X;(k)|, implying that:

X;(k+ 1) < h ) = M.
| Xi(k + )I_hﬁjggfp}(u i)

This is true for every processor 7, and since || X (k+1)||oc = maxieqr,. py [ Xi(E+1)],

the proof is completed. 1

We now know that vector X (k) is in a bounded sub-set of RP, for each k >
1. The case & = 0 corresponds to the entrance of the processors in the first
algorithm phase. We do not impose any constraint on how this entrance is done.
The processors can enter the algorithm at any time the implementation and the
operating system impose. Therefore, X (0) may very well be such that || X(0)|[.. >
M. The preceding lemma implies that no matter how big || X(0)]|~, the following

wavefronts will all be bounded by M.

64



We now prove that this bounded subset of R? in which X (k) resides is also
finite. Let us first rewrite equation 3.4.1 in terms of X (k). By subtracting from

equation 3.4.1 the special case of 1 = 1, one obtains:
Xl 4 1) = Xi(k) + il () + (k) — wh (k) — e ().
Similarly, one can rewrite equation 3.4.2 as:

w'(k) =max{0, max (X;(k)+pe’(k)
— Xi(k) = pla’ (k) + i/ njoi(k))].

These two equations imply that for all & and ¢, X;(k) can be written as a linear

combination:

P P
Xz(k) = Z )\kﬂ"l/,bl + Z I/]mJXKO) where )\k,i,la Vil € Z.
=1 =1

(3.5.3)

To prove that X (¢) is in a finite subset of R?, we need to following technical

assumption:

Assumption 3.5.1 The durations of the CPU time units and the components of

65



the initial wavefront are rational numbers, that is:

Vie{l,...p} Xi(0)€Q,

Vie{l,..p} p'eq.

If assumption 3.5.1 is satisfied, then equation 3.5.3 implies that X;(k) € Q for all
processors ¢ and all phases k. This means that X;(k) can be written as p; /0 where
§ is the common denominator of the u'’s and the X;(0)’s. Using lemma 3.5.1, on

obtains

Vi, k tir € NN [—(SM, —I—(SM],

which is a finite set. Therefore, § being fixed, X;(k) is in a finite set. Since this is

true for all 7, we have proved the following lemma:

Lemma 3.5.2 The vectors X (k) for & > 1 reside in a finite subset of R?. This
subset is at most of cardinality (2M + 1)?~!. We denote that subset by X' =

X xox X, (X = {0}).

This upper bound on the cardinality of the subset is immediate, since the wave-
front is determined by p — 1 components, and each component can take at most
2M + 1 values. This bound is not expected to be tight, and in fact experiments

in Chapter 4 we show that it can be fairly loose for some models. 1

66



Assumption 3.5.1 is really purely technical. It is always valid in a real-life
experiment, where all the data being manipulated is in Q since it is processed by

computers with finite arithmetic.

3.5.3 The Wavefront as a Markov Chain

Let us recall that

Xk +1) = X(h) + o (k) + w'(k) — ' (k) — ' (k),

and

w'(k) =max[0, max (X;(k)+u'e’(k)
— X,(k) = i (k) + e ()]

Using the facts that X;(k) = 0 and that

ey €R max(0,z — y) +y = max(z, ),

one can then write

Xi(k + 1) = max[X;(k) + p'a’ (k) (X(k) + i o (k) + p'nji (k)] —

, max
je{lv"vp}_{i}

max{ Xy (k) + p'al (k) max (X;(k) + ol (k) + pnoa (k).
Je{1,..p}—{1}

67



Since n;;(k) = 0 for all 7, the equation above can be rewritten as

Vi Xi(k+1)= max [X;(k)+p (k) + p'njoi(k)] —

je{17"7p}

Xo(k) 4 1 0 (k) 4+ wina (k).
jgﬁ??fp}[ ik) + wla’(k) + pinj (k)] (3.5.4)

This last equation is fundamental. We call it the wavefront equation. It shows that
the wavefront at the entrance of the k" phase depends only on the wavefront at
the entrance of the previous phase and on the realizations of the RVs o' (k, #) and
ni—; (k) for all i, and §. Thanks to assumption 3.4.2, we can now state that X (k)
is a Markov variable. Equation 3.5.4 can be used to compute the transition

probabilities of the finite-state, time-homogeneous Markov chain associated to

X(k).

3.6 Random Variables of Interest

Now that we have extracted the Markov variable X (k) as the driving RV for the
algorithm execution, we can further define other RVs of interest that will help us
quantify the overall performance of the implementation.

3.6.1 The Waiting Time

This RV is w'(k). It measures the durations of the 3 sub-phases of processor 7 in

seconds. We call it waiting time since it corresponds to the time a processor has

68



to wait for all the messages coming from the other processors. We recall here the

expression for the waiting time:

wl(k) =max[0, max (X;(k)+ /,Ljozj(k)
Je{1,..p}—{i}

(3.6.5)
— Xi(k) = p'a’ (k) + p'njmi(F))).

Thanks to this equation, one can compute the conditional distribution of w(k),
conditioned on the current wavefront, X (k). In this section, we compute bounds
on the value that can be taken by the waiting time. From the equation above,
clearly, w'(k) > 0. Let us now find an upper bound. Let j be another processor,
and let us compute the maximum time that processor ¢ can wait for the message
from processor j. Processor j can enter the k' phase at most 2M seconds after
processor ¢, where M is from lemma 3.5.1. Then, processor ¢ can finish its «
sub-phase in Ai/ﬂoz_i seconds at the least, whereas processor j can spend up to
Aj/,cja in its a sub-phase. Finally, the message from processor j can take at most
/ﬂ@ seconds. Therefore, the maximum amount of time that processor 7 in its

3 sub-phase can wait for a message from processor 7, is given by w;_,; with:

wj; = 2M — Ai/,cioz_i—l— Aj/,cja—l—/,cjnj_ﬂ.

69



Therefore, w'(k) is bounded above as:
w'(k) < max (2M — Agi'a’ + Ajpal + /,Ljnj_n»)
je{17"7p} -

=2M — A;ulal Addad + win.
AL (e T hm )

=2 max (Mhnh—m‘) — A

o'+ max (A:lad +uin. ).
h,je{l,..,p} ( ]lu lu ]—)2)

- je{17"7p}

We have therefore proved the following lemma:

Lemma 3.6.1 Bounds on the waiting time:
Vik 0<w'(k)<w,
with
w =2 max (Mhm) — Agila’ + max (Ajplad + /ﬂ@).

h7j€{17~~7p} - je{17"7p}

3.6.2 The Phase Time

Another interesting RV for the analysis of the performance of the algorithm is
the phase time, the duration of an algorithm phase for a processor 7 in seconds.

Let ®‘(k) denote the duration of the k' algorithm phase on processor 7. ®'(k) is

70



given by the following equation:

(k) = pial(k) + w'(k). (3.6.6)

Thanks to equation 3.6.6 and 3.6.5, one can compute the conditional probability
distribution of ®'(k), conditioned on the current wavefront, X (k). The following
lemma, giving lower and upper bounds on the phase time, is immediate from

lemma 3.6.1:

Lemma 3.6.2 Bounds on the phase time:

Viok A’ <O'(k) < A+ w'.

3.6.3 The Number of Additional Updates

The last RV introduced here is the number of updates performed during a § sub-
phase on a processor i. Let Ni(k) denote the number of solution vector updates
performed by processor i during the 3 sub-phase of the k' algorithm phase.
Given the conditional distribution of the waiting time, one can also compute the

conditional distribution of Nl(k) conditioned on the current wavefront.

71



We already know, by definition of B; that:

Vk,i 0<N'(k)< B

On the other hand, the maximum number of updates that can be performed during

the 3 sub-phase of the k" algorithm phase on processor 7 is equal to w'(k)/(u'a’),

since an update takes at least o' CPU time units of processor 7. Therefore

Using the definition of wi, we have thus proved the following lemma:

Lemma 3.6.3 Bounds on the number of additional updates:

Vi,k 0< N'(k)<min(B;, —).
/,LZOZZ

3.7 Conclusion

In this chapter, we have designed our stochastic model and we have described how
we model the distributed environment and the algorithm implementation in that

environment. After stating our assumptions, we were able to extract a Markov

72



chain from the model: the wavefront. This Markov chain has and will be used
to describe the evolution of the algorithm throughout time. We then introduced
three other RVs, the waiting time, the phase time and the additional number of
updates. The conditional distributions of these RVs, conditioned on the current
wavefront, can be computed thanks to the equations we have given. The next
chapter describes how to effectively compute these distributions and use them to

obtain stochastic performance measures of the algorithm implementation.

73



Chapter 4

New Performance Estimates

This chapter explains how Baudet’s theory described in Section 2.3.1 and the
model defined in Chapter 3 can be combined to obtain performance results about
the convergence of parallel iterative algorithms in distributed environments. First,
we show how it is possible to compute the wavefront Markov chain defined in Sec-
tion 3.5 and give a few illustrative examples. Second, we extend Baudet’s results
to obtain new estimates of the convergence rate of the algorithm (in terms of
number of iterations to convergence). Third, we propose an estimate of the im-
plementation speed (in terms of number of iterations performed per second). We
then introduce the Large Deviation Theoryand explain how it can be used to gain
even more insight into the estimation of the implementation speed. Finally, we
summarize the results of the chapter in describing the general method of perfor-

mance characterization and conclude with an example.

74



4.1 Computing the Wavefront

As we have already stated in Chapter 3, the wavefront Markov chain is the driving
random process behind the iterative algorithm execution. In this section, we
compute the transition probability matrix of that chain, as well as its stationary

distribution.

4.1.1 Transition Matrix and Stationary Distribution

To compute the transition matrix Py of the wavefront, one needs to compute the

following probabilities:

Px(x,y)=P{X(k+1)=y|X(k)=2} Ve,yedX,

where X' is the subset of R? defined in lemma 3.5.2 and P is the probability

measure. Thanks to equation 3.5.4, one can compute the probability:

P{Xi(k+1)=z|X(k)=2a} Vie{l,.,p},zeX,zeX,

where &;, ¢« = 1,...,p, is also defined in lemma 3.5.2. There are two ways to
exploit equation 3.5.4 to compute the conditional probabilities. One can try to
formally derive from that equation the conditional probabilities Px (x,y) by using

standard results on independent and identically distributed RVs. Once these

75



distributions are derived, a program can be written to compute actual numerical
values. There are two major drawbacks to such an approach. First, the actual
formal derivation of the distributions leads to very intricate discrete computations,
and the resulting expressions are extremely complicated due to RV dependences.
Second, an actual implementation of those equations is very inefficient and leads
to prohibitive execution times as shown by some of our early attempts. Another
possibility is to write a program that exhaustively enumerates all the possible
observations of the original RVs in equation 3.5.4. Maybe surprisingly, such an
implementation is reasonably efficient provided the distributions of the original
RVs are of reasonable sizes.

In order to compute the matrix Px we have written a parallel program in
C using an implementation of the Message Passing Interface (MPI) [49]. The
design of the program is relatively simple in terms of parallelism and involves
very few inter-process communications. It is therefore extremely scalable and
we have been able to distribute the computation of the transition matrix Py on
many workstations, when necessary, to obtain quick results. Once Px is available,
it 1s possible to compute the stationary distribution of the Markov chain. This
distribution is represented by the left eigenvector 7 associated to eigenvalue 1 of
matrix Py: mPx = 7 (see [30, 12, 4] for instance). The stationary distribution of a
Markov chain is interpreted as the long term state occupancy rates of that chain.

In the experiments that we have conducted, the size of Py is not extremely large.

76



In fact, we were able to use direct methods for dense matrices to compute the =
vector. Our implementation used the LAPACK [3] package. For larger models
leading to larger transition matrices, one might have to use parallel numerical
libraries [13]. As we will see on a few examples in the next section, the structure

and properties of Py depend on the actual model.

4.1.2 Examples of the Wavefront Behavior

We give here three examples of wavefront Markov chains for three different dis-
tributed environments. In all these cases, A, = 1 for all i = 1,..,p (see defini-

tion 3.4.1).

Example 1: Homogeneous Case

We consider here a distributed environment consisting of 5 identical processors.
Furthermore, we assume that the workload distributions on those processors are
identical with small variance. This distribution is plotted on Figure 4.1. The CPU
time unit of each processor is taken to be equal to 1. The network is assumed
to deliver constant performance of 1 CPU time unit for each message from any
processor to any other. This model is very idealistic but has the advantage of
producing results that can be easily interpreted.

With the notation of lemma 3.5.1, M = maxh,je{l,..,p}(ﬂhm) = 1, meaning

that the wavefront X (k) is in a subset of R™ of cardinality (2 x 1 4+ 1)°~! =

77



091

08r Mean = 3
Std. deviation = 0.45

071

06

probability
o
13

04

031

02r

01r

update time (in CPU time units)

Figure 4.1: Workload distribution for example 1

81 (see lemma 3.5.2). In other words, there are at most 81 different shapes of
the wavefront that can be observed. This does not mean that each of these
81 possibilities will occur with zero probability, especially in such a simplistic
model. In our state numbering scheme, state #41 is called the middle state and
it corresponds to a “flat” wavefront, the one for which X (k) = (0, ...,0).

Figure 4.2 shows the portrait of matrix Px. The non-null entries of the matrix
are represented by black dots. One can immediately see that Px is extremely
sparse: most of its columns are empty, meaning that most of the 81 states are
unreachable. The Markov chain is reduced by removing those unreachable states
to obtain a smaller recurrent chain with a much less sparse transition matrix Pg.

There are only 6 non-empty columns in Py, implying that P% is a 6x6 matrix. In

78



101

20

30

4t

50

60

701

80

Figure 4.2: Portrait of the wavefront transition matrix Py for the first example

this example, the states that are part of the reduced Markov chain are the states
numbered 14, 32, 38, 40, 41 and 81.

The stationary distribution of the wavefront, computed from the matrix P%
thanks to dense eigensolvers, is depicted in Figure 4.3. The top part of the figure
shows the actual distribution (or 7 vector). One can see that the middle state
(#41) is the one with the highest m-value, with 741 ~ 0.91. The remaining 5 states
have much lower m-values: all equal and &~ 0.02. One can then conclude that in
the long run, the wavefront is found with high probability to be flat. The bottom
part of Figure 4.3 shows the actual shape of the wavefront corresponding to each
of the 6 states. The line thickness indicates the magnitude of the corresponding

m-value. On can see that, as explained above, state #41 corresponds to a flat

79



091 q

0.8 q

0.7 q

pi-values
o o I o
N w S ol
T T T T
L L L L

o
[
T
L

B N w s g o
L

processor number

o

10 20 30 40 50 60 70 80
state number

Figure 4.3: Stationary distribution and corresponding wavefront shapes for example 1

wavefront and it is shown with a very thick line since this state dominates all the
others. The other five states are also represented on the bottom part of the figure
(in thin lines).

There are many observations that can be made about Figure 4.3. First, the
wavefront is “usually” in state #41 throughout the algorithm execution. This was
expected in such an homogeneous environment where the processors are identical
and with identical low-variance workload distributions. Second, besides state #41,
every state corresponds to one processor entering an algorithm phase before all the
others. The fact that these 5 states have the same m-values is easily understood
because of the homogeneity of the system. The fact that these states correspond to

basically the same situation can also be explained. Let us consider the 5 processors

80



in the k™ algorithm phase. Let us assume that one processor, say i, finishes its
a sub-phase after all the others. Because of the model assumptions, processor 7
has already received all the messages it was expecting (all the CPU time units are
taken to be 1); it can start its (k + 1) phase immediately after the end of its «
sub-phase and never enter a 3 sub-phase. All the other processors have to wait
for 1 CPU time unit for the message from processor ¢. The five states numbered
14, 32, 38, 40 and 81 correspond to the cases where 1 = 4,3,2,1,5 as seen on
Figure 4.3. Those states have small m-values because the workload distributions
are identical and with small-variance so that a processor is “rarely” slower than
all the others during a particular algorithm phase. One can compute the entropy,

H, of the stationary distribution as an uncertainty measure (see [4]):

0<H=-— > milogy(m) ~ 0.6494 < log, 6 ~ 2.5850.

1€{14,32,38,40,41,81}
Example 2: Mildly Heterogeneous Case

We now perturb the system of example 1 by making processor 1 slower on average
than the other four. The workload distributions are represented on Figure 4.4.
The matrix P, has roughly the same structure as before, and the wavefront can
be reduced to a 6 x 6 chain in the same way. Figure 4.5 is similar in intent to
Figure 4.3 and shows the stationary distribution. Let us examine the differences

between the two figures.

81



Workload distribution for processors 2,3,4 and 5 Workload distribution for processor 1
1 T T T T T 1 T T T T T T T

Mean =5

0.9 B 0.9 Std. deviation = 0.71 —
0.8 Mean = 3 — 0.8
Std. deviation = 0.2
0.7 | — 0.7
0.6 - — 0.6

probability
e}

4]
probability
e}

&)}

0.4 B 0.4
0.3 1 0.3
0.2 - 1 0.2
0.1 1 0.1
° 1 2 3 4 é ° 2 3 4 5 6 7 8

update time (in CPU time units) update time (in CPU time units)

Figure 4.4: Workload distributions for example 2

091 q

0.7 4

pi-values
o o I o o
N w S ol (=]
T T T T T
L L L L L

o
[
T
L

o o

N
T

N
T

processor number
w
T

! J ‘ ! ! ! !
30 40 50

60 70 80

-
o

10 20
state number

Figure 4.5: Stationary distribution and corresponding wavefront shapes for example 2

82



First, instead of one state dominating the other 5, there are two states that
dominate the 7 distribution. The most likely state corresponds to processor 1
entering an algorithm phase first (state #40 with 74 &~ 0.71). This is consistent
with the model since processor 1 is slower on average than every other one (cf.
explanation in example 1). The other state that has a relatively large value is
state #41 (with m4; ~ 0.26): this is the middle state. The other four states have
very low m-values, all approximatively equal to 0.006.

The fact that state #41 still has a relatively high 7-value is due to the workload
distributions. Indeed, in this example, even though processor 1 is slower than all
the others on average, there is still a fairly high probability that it is not slower
on a particular observation, causing all the processors to be synchronized and
the wavefront to be in state #41. If we had chosen the workload distribution
of processor 1 such that it would have been always slower than the other, then
Figure 4.5 would have been similar to Figure 4.3 with state #40 playing the role
of state #41.

As mentioned earlier, our model generates the matrix Py, allowing us to draw
the diagram on Figure 4.6. On that diagram, one can observe how the wavefront
behaves. The transitions between the states are represented with arrowed arcs and
the thicker the arc, the larger the transition probability. One can see that all arcs
leading to state #40 are corresponding to transition probabilities /&~ 0.94. This, of

course, explains why myo 1s large. Once the chain is in state #40, it stays in that

83



— P(ij)<0.1
—» P(ij)~035
—> P(ij)~0.62
—- P(ij) ~ 0.94

Figure 4.6: Wavefront Markov chain diagram for example 2

state with probability ~ 0.62, goes to state #41 with probability ~ 0.35 or goes
to another state with probability ~ 0.03. This causes 74 to have a relatively high

value. Here again, one can compute the entropy, H, of the stationary distribution

as an uncertainty measure:

0<H=-— > milogy(m) ~ 1.0371 < log, 6 ~ 2.5850

1€{14,32,38,40,41,81}

This number reflects the fact that, in the long run, the state of the Markov chain

is more uncertain than in example 1.

84



Example 3: Heavily Heterogeneous Case

Our third example is a heterogeneous system consisting of only 3 processors, to
keep the figures simple. All the processors have different workload distributions.
The network has the same distribution for every communication but, by con-
trast with the previous two examples, this distribution has a non-null variance.
Figure 4.7 shows the different probability distributions.

Figure 4.8 shows the stationary distribution of the wavefront with the corre-
sponding wavefront shapes. For this example, matrix Px was 49 x 49, and matrix
P% is 34 x 34. By contrast with examples 1 and 2, no state strongly dominates
the others in the stationary distribution. In fact, it is fairly difficult to interpret

the figure in terms of a typical behavior of the wavefront.

4.1.3 Discussion

We give here some general directions in interpreting the structure and properties
of Px with reference to the experiments we have conducted.

The main observation is that the size of the wavefront Markov chain depends
on the network model. We have already seen that the size of matrix Py depends
on the number of processors in the system and on the maximum time delay to
send a message. But as stated in Chapter 3 and illustrated by the three previous
examples, Px can often be reduced to a smaller matrix P by eliminating all the

unreachable states.

85



probability
o o
o oo

o
N

o
N

probability
o o
<)) (=)

o
EaN

o
N

Workload distribution for processors 1

Mean=3 .
Std. deviation = 0.45

2 3 4
update time (in CPU time units)

Workload distribution for processor 3

Mean = 3,
Std. dev%f?on =1.10

2 3 45
update time (in CPU time units)

Workload distribution for processor 2

1 : :
Mean =
Std. deV|5ation =071
08
206
0
©
9
5 0.4
0.2
0
3 45 6 7
update time (in CPU time units)
Network distribution
1
Mean = 1.
Std. dev%t\?on =0.46
0.8
206
0
©
3
5 0.4
0.2
1 2

communication time (in CPU time units)

Figure 4.7: Workload and Network distributions for example 3

86



091 q

081 q

071 4

06 4

pi-values
o o b
w S ol
T T T
L L L

o
)
T
I

o

w o [
T
L

N
wn
T

i
o
T

processor number
N
T

1 1 1 1 1 1 1 1 |
10 15 20 25 30 35 40 45 50
state number

-

o
o

Figure 4.8: Stationary distribution and corresponding wavefront shapes for example 3

The relative sizes of those two matrices seem to depend on the variance of the
network time distributions. This phenomenon can be seen already in the examples.
In example 1, where the network times are distributed with zero variance, the sizes
of the two matrices are such that dim(P3)/dim(Px) = 0.0741 where dim(A) is
the number of lines (or columns) of a square matrix A. In example 3, however,
dim(P%)/ dim(Px) = 0.6939. Our other experiments seem to show that this ratio
tends to 1 when the variance of the network times increases, meaning that Py
tends to being dense. Quantifying such a result could be an interesting thread to
follow. The distribution of the actual shapes of the states in the reduced Markov
chain depends on the workload distribution on the processors. This is seen in

examples 1 and 2. The only difference between the models in those two examples

87



is the workload distributions (explaining that the dim(P% )/ dim(Px ) ratios are the
same in the two examples). The impact of the differences in workload distributions
has been illustrated on Figures 4.3 and 4.5 as differences in 7-values, and similar
observations have been possible in other experiments.

A reasonable hypothesis is that the structure of the Markov chain depends
mostly on the network model, whereas the actual stationary distribution is mostly
driven by the processor model. There are however strong interactions between the
two models and the hypothesis may be difficult to confirm analytically. In our
work, we are focused on designing new performance characterization techniques
for parallel iterative algorithms in distributed environments. Even though the
wavefront is the driving random process behind our stochastic model, it is too
early here to try to completely analyze its behavior. In the rest of this research,
we will use our implementation of the model to obtain the wavefront matrix Py,
and use that matrix to compute stochastic performance measures. Rather than an
extremely precise analysis of the wavefront behavior, measuring the performance
of the algorithm requires estimations of the time (in seconds) between two obser-
vations of the wavefront. Obtaining such estimations is the goal of the following

sections.

88



4.2 Estimating the Convergence Rate

In this section, we estimate the convergence rate of the algorithm in terms of
number of iterations to convergence by extending Baudet’s work [5]. Then, we
estimate the speed of the implementation of that algorithm in a given distributed

environment in terms of number of iterations performed per time unit.

4.2.1 Preliminary Remark

Before using and extending Baudet’s work, we need to give a strict definition of
an algorithm iteration. We recall that in the formal definition of asynchronous
implementation given by equation 2.2.3, a processor can choose not to perform
an update during an iteration. In our model, a processor 7 performs A; + N'(k)
updates during the k' algorithm phase. It is therefore possible (and most likely)
that the p processors do not perform the same number of updates of the solution
vector during a phase. According to our definition of asynchronism, the p proces-
sors all perform N(k) = mazieq,. p(Ai + N'(k)) iterations during a phase of the
algorithm. Some processors might not perform any update during some of these
iterations and this can be formalized by removing elements from the J; sets of

equation 2.2.3.

89



4.2.2 Three Estimates of the Convergence Rate

To estimate the convergence rate of the iterative algorithm, we use the part of
Baudet’s work that has been described in detail in 2.3.1. We recall that one of

Baudet’s main theorems states that:

R > ~[liminf(k,/1)]log p(A).

where p(A) is the spectral radius of the matrix associated with the contracting
operator Op, and {k;} is the sequence defined by equations 2.3.4 and 2.3.5. Equa-
tion 2.3.4 is a recursive definition of another integer sequence, {{}, in terms of
ay and by from definition 2.3.3. Let us compute the {{;} sequence in connection
with our stochastic model.

In the previous section, we have seen that the processors perform N(k) itera-
tions per algorithm phase. According to our execution model, the components of
the solution vector used in the updates corresponding to these iterations can not
be out-of-date by more than N(k) iterations. The first iteration following those
N (k) iterations updates all the components of the solution vector since A; # 0 for

all © = 1,..,p. Therefore, in terms of definition 2.3.3,

90



One can now write the expression of k; as:

ke = sup{k|ao + bo + ... + ag—1 + by—1 < 1}

= sup{k|N(0) 4+ ...+ N(k = 1) < t},

leading to:

k—1

ke = sup{k| > mazien,. (A + N'(1) <1}, (4.2.1)

(=0

which is a RV. The problem is now to compute a new lower bound on the asymp-

totic rate of convergence, R*, given by Baudet as:
wé—@mﬁ@ﬁm%mm.
—+00

The term k;/t in the expression for R* is a RV and, as such, makes it difficult
to compute R* directly. However, the implementation of our stochastic model can
be used to compute the conditional probability P{N (k) = «|X (k) = y) where x is
an integer and y is in R? (see Section 3.6.3); additionally, Section 4.1.1 explained
how the stationary distribution of the wavefront, X (k), can be computed. We are
here interested in the asymptotic rate of convergence of the algorithm, and can

therefore use the stationary distribution of the wavefront to compute a reasonable

91



approximation of the unconditional probability P{N (k) = x} as:

dim(P},)
PIN(k)=z}= Y  mP{N(k)=z|X(k) =X}, (4.2.2)

=1
where:

e P% is the transition matrix of the reduced wavefront as defined in Sec-

tion 4.1.2.

lth

o 7; is the m-value of the state of the reduced waveflront.

e X; € R? is the actual wavefront shape corresponding to the [ state of the

reduced wavefront.

Equation 4.2.2 is only an approximation since it uses the stationary distribu-
tion of the wavefront to convert a conditional probability into an unconditional
one. Possibly better ways to estimate this rate of convergence are described in
Chapter 6. At this point, we have access to an approximation of the actual dis-
tribution of the RV N(k), and it does not depend on k. It is now possible to

compute the distribution of £, since:

ke = sup{k|N(0) + ...+ N(k — 1) < t}.

Our implementation of the model performs this computation and can generate

the distribution for all t = 0,1, ....

92



We have now reduced the problem to somehow computing

lim inf(k: /1),

t—00

where the distribution of each k; is known. One might argue that this limit has
no meaning in the strict sense of the definition of convergence for a real sequence,
so we look here at asymptotic averages and bounds in order to compute R*. For
each value of ¢, one can compute the minimum value that can be taken by k.
Let k; denote that value. One can also compute the maximum value that can be
taken by k; and we denote it by k, . Finally, one can compute the expectation of

k; and we denote it by ]/C\t It is then possible to compute three different estimates

of R*:
R* 2 — [liminfi 0 (ke/t)] log p(A)
R* 2 — [liminf_oo(ki/1)]log p(A) (4.2.3)
R* 2 —[liminfoo(k, /1)]logp(A).

Those three estimates have different interpretations. R* is a worst case estimate
and it is close, in concept, to Baudet’s estimate. In fact, Baudet’s estimate cor-
responds to an even worse case than our model because he does not account for
any improvement due to long-run “averaging” over random events. In general,

Baudet’s worst case is not realistic, and our model shows that it happens with

93



probability 0. In other words, Baudet gives a theoretical worst convergence rate
given the A; and B; sequences whereas our worst case estimate takes also into
account the distributed environment’s behavior. R* is obviously a best case es-
timate. We call R* an average estimate. At this point, the usefulness of such
estimates is still unclear. It is even unclear that the limits in their expressions
exist. In fact, the existence of R* is proven by Baudet’s work. Proving the exis-
tence of the limits in R and R* is much more difficult and we leave it for future
research. In all the experiments we have conducted however, the three estimates

converge and we assume this convergence in all that follows.

4.2.3 An Example

Figure 4.9 shows the computation of our three estimates for a given distributed
environment, a given algorithm and for different implementations. The distributed
environment is the one of example 3 in Section 4.1.2. The algorithm corresponds
to a contracting operator whose contracting matrix has a spectral radius p = 0.9.
The different implementations are for different values of A; and B; for 1 =1,...,p.
To make the figure simpler, we assume that those values are the same for all three
processors. The figure shows six different graphs ((a) through (f)), corresponding
to all the possible cases where A; = 1,2 and B; = 0,1,2 for all . Each graph
contains four curves and these curves show different convergence rate estimates

for increasing values of ¢ (as in equation 4.2.3).

94



convergence rate estimate convergence rate estimate

convergence rate estimate

0.04f

0.02¢

0.04

0.02¢

0.04f

0.02f

average
max

20 25

10 15
(b)A=1B=1
BRAES v
—
)

Baudet
min
average
max

20 25

10 15
()A=1B=2
HHHHH
—
)
—

Baudet
min
average
max

10 15

Figure 4.9: Convergence rate estimates computation

20 25

95

convergence rate estimate convergence rate estimate

convergence rate estimate

0.04;

0.02

0.04}

0.02

0.04;

0.02}

(dA=2B=0
X—X  Baudet
k—% min
(5—) average
T max

[T

Baudet
min
average
max

average
Mmax




The “Baudet” curve show the estimated convergence rate as computed with
Baudet’s corollary of theorem 3 in [5]. This curve is flat, since Baudet’s estimate is
not computed as the limit of a sequence, but rather as a fixed lower bound on that
sequence. The “min” curve corresponds to the computation of R* for increasing
values of t. The “max” curve corresponds to R* and the “average” curve to R*.
The values of these three estimates come directly from equation 4.2.3. Let us
briefly comment on these six graphs.

Graph (a) corresponds to a synchronous implementation of the parallel itera-
tive algorithm. All the estimates in that case are identical since the computation
is deterministic (the number of iterations performed during an algorithm phase
is not random). Graph (b) is for A; = 1 and B; = 1 for all «. The implementa-
tion is therefore asynchronous. The first immediate observation is that Baudet’s
estimate is below our three estimates. The second immediate observation is that

R, R* and R~ all three seem to converge to finite values. And according to the

graph, R* < R~ < R*, which of course is consistent with equation 4.2.3. This
observation can be made on all the graphs of Figure 4.9 that correspond to non-
deterministic implementations (ones with random number of iterations performed
at each phase). The fact that our worst-case estimate (R*) is still higher than
Baudet’s is easily explained. Baudet’s estimate ignores the underlying distributed
environment, and therefore takes into account situations that might in fact not

be possible. R*, however, is a refinement of Baudet’s estimate and considers only

96



situations that occur with a non-null probability.

Graph (c) is for A; = 1 and B; = 2 for all <. In other words, graph (c)
corresponds to a more asynchronous implementation than graph (b). The same
observations can be made here, however, one can notice that the gaps between
our estimates are bigger than for graph (b). This can be explained as follows.
The implementation described by graph (c) has the possibility to perform more
additional updates during the processors’ [ sub-phases than the one in graph
(b), leading to more possible observations of the RVs N'(k) for all i. Therefore,
according to equation 4.2.1, the RV k; can take more values: it has a larger
variance. This leads to bigger gaps between “min”, “max” and “average”.

The implementation described in graph (d) is asynchronous but with deter-
ministic computations (A4; = 2 and B; = 0 for all 7). Here again, our estimates
all equal Baudet’s, even though their convergence is not as fast as in graph (a).
This is due to the fact that this implementation is asynchronous and allows use of
out-of-date data. Graph (e) introduces more asynchronism in the implementation
of graph (d) and one can now observe that our estimates are all above Baudet’s.
The gaps between our three estimates are much smaller than the ones on graph
(c) for instance. This shows that the RV k; takes fewer values. Graph (f) if similar
to graph (e) but shows wider gaps between our estimates than graph (d). This

can be explained by the same argument as for graphs (b) and (c).

97



4.2.4 Conclusion

The main conclusion to draw from Figure 4.2.1 is that our three estimates appear
to converge to finite values. R*, our worst-case estimate, is always equal or larger
than Baudet’s because we take into account the distributed environment in which
we run the application. The gaps between our estimates depend on the degree of
asynchronism of the implementation. For implementations that have deterministic
computations, our three estimates are all equal to Baudet’s. Again, a formal proof
of those results seems to be rather difficult, and will be reserved for future work.

Finally, one can notice that for this algorithm in this distributed environment,
a synchronous implementation seems preferable, in terms of number of iterations
to convergence, to any asynchronous implementation. This is true, no matter
which estimate is used. This result was of course expected, since asynchronism
slows down the convergence of the algorithm because of the use of out-of-date
data. However, this does not mean that an asynchronous implementation can-
not yield better performance to the end-user, in terms of time to convergence:
an asynchronous implementation may perform more iterations in total, but its
expected number of iterations per time unit may be larger - the net result being
that convergence is achieved in less wall-clock time. In the next section, we are
estimating the actual speed of a given implementation of the parallel iterative

algorithm.

98



4.3 Estimating the Implementation Execution Speed

4.3.1 Defining a Speed Measure

In the previous section, we have computed different estimates for the rate of
convergence of an implementation of a parallel iterative algorithm in a specific
distributed environment. The rate of convergence is immediately connected to
the number of algorithm iterations, as defined in Section 4.2.1, to divide the
initial error on the solution by some factor (see Section 2.3.1). In order to provide
something directly useful to the user, one now needs to estimate the speed of the
implementation in terms of number of iterations performed per time unit. This is
the purpose of this section.

We have already seen that the processors perform N(k) = mazieq, (A +
N'(k)) algorithm iterations during the k' algorithm phase. The speed of the
algorithm during the k™ phase in terms of number of iterations per time unit is
then given by N(k) divided by the duration of that phase. The duration of the
k'™ phase might be slightly different on each processor and is denoted by ®!(k) on
processor i (see Section 3.6.2). Since the p processors are partially resynchronized
at the beginning of each algorithm phase, a reasonable and applicable definition is
that the speed of the implementation during the k'* phase as S(k)éN(k)/CI)l(k).

Let us see how our model can help us estimate this speed.

99



Our implementation of the stochastic model computes the probability:

() Q- secemenen

where (Z) denotes the vector of R? with components a and b. Similar to Sec-
tion 4.2.2, one can replace this conditional probability by an unconditional one.
This is done thanks to the m-values of the wavefront Markov chain. Here again,
we are interested in long-run behavior of the algorithm and use the following

approximation:

P i) = (= Y =m0 = (e =

(4.3.4)

with the notation of equation 4.2.2. This approximation is performed by our
implementation of the model. Note that with this approximation, the probability
P{ (g&%) = (;”)} does not depend on k any longer. Therefore, this approximation
implies that the S(k) RVs are i.i.d., which is consistent with a long-run observation
of the Markov chain.

From now on, S(k) will denote the vector (gi%) in NxR. Since the distribution

of S(k) is known, one can easily compute E[S(k)] where E denotes the expectation

of a RV. One can write E[S(k)] = S that does not depend on k.

100



4.3.2 An Example

Figure 4.10 shows the probability distributions of S(k)éN(k)/CI)l(k) for a given
distributed environment, a given algorithm and for different implementations. As
we have seen earlier, N(k)/®*(k) can be interpreted as the implementation speed
during an algorithm phase. The distributed environment is the one of example
3 in Section 4.1.2. The algorithm corresponds to a contracting operator whose
contracting matrix has a spectral radius p = 0.9. The different implementations
are for different values of A; and B; for ¢« = 1,...,p. As in Section 4.2.2, we as-
sume that those values are the same for all three processors. The figure shows six
different graphs ((a) through (f)), corresponding to all the possible cases where
A; = 1,2 and B; = 0,1,2 for all 7 as in Figure 4.9. On each graph, the mean
value of N(k)/®'(k) is indicated by a vertical line, and the standard deviation
is represented on each side of the mean value as a horizontal solid line segment.
On graph (a), one can see that the distribution of s(k) has a relatively smooth
shape and a mean value of 0.1655. This means that, on average, a synchronous
implementation performs 0.1655 algorithm iterations per second. Graph (b) cor-
responds to an asynchronous implementation, and the distribution of s(k) is much
less regular. This is due to the fact that number of iterations performed during

an algorithm phase is random.

101



(@A=1B=0

05r
041
2
=031
Q
@
o]
02t
Q
01
0 1 1 1 1 1 1 1 J
0 0l 02 03 04 05 06 07 08
iterations per second
(h)A=1B=1
05r
041
2
=031
Q
@
o]
002t
o
0.1 |
0 1 1 1 1 1 1 1 J
0 01 02 03 04 05 06 07 08
iterations per second
(c)A=1B=2
05r
041
2
=031
Q
@
o]
002t
o
01
0 1 1 1 1 1 1 J
0 01 02 03 04 05 06 07 08
iterations per second

probability
o= o o
o E= o

o
-

probability
o o o
N E= o

o
i—

o
w

(@A=2B=0

o
w

01 02 03 04 05 06 07 08

iterations per second
()A=2B=1

probability
o o o
N = o

o
i—

o
w

01 02 03 04 05 06 07 08

iterations per second
fA=2B=2

01 02 03 04 05 06 07 08
iterations per second

Figure 4.10: Implementation Speed



The mean value here is of 0.2262, making the implementation approximatively
37% faster than for the synchronous case. This is due to the use of otherwise
wasted CPU cycles by performing additional updates during the 3 sub-phases.
Such an increase in implementation speed can make an asynchronous implementa-
tion worthwhile. Even though it might require more iterations than a synchronous
implementation in order to converge, it performs them faster. The mean value
on graph (c) is fairly similar to the one on graph (b), because there are few cases
in which a processor has the time to perform two additional updates during its 3
sub-phases. The same observations can be made on graphs (e), (d) and (f).

A fundamental question that the end-user wants to answer is : “How long
before convergence (in seconds) 77 Let us assume that the asymptotic convergence
rate of the algorithm is R as defined in definition 2.3.2. Let us also assume
that the algorithm runs for enough iterations so that we can use R as a good
approximation. Additionally, let w € N be the user’s convergence requirement:
convergence is reached when the initial error is divided by a factor of 10*. This is
a standard definition of user-defined convergence and is used by Baudet in [5] for
instance. Let © be the answer to the user’s question, that is, a time in seconds.

We are going to see how O can be estimated.

103



4.3.3 A Mean Estimate

The idea here is to find the asymptotic speed of the implementation. Let us con-
sider the algorithm after it has completed n phases. At that time, the implemen-

tation has been running for Y ;_, ®'(k) seconds and has performed > 7_ N(k)

iterations. Let us consider the vector S, defined as:

]
=
=

The Strong Law of Large Numbers states that:

n—oo 1

where S = E[S(k)]. Let us write S as (g) Then:

nx N ) -
Sy~ (n y (I)) with probability 1.

The speed achieved so far by the implementation after phase n can clearly be
seen as the ratio of the first and second components of 5,. Let s, denote that

speed; the equation above then shows that:

N N
LAY F3 with probability 1.

S, ~
"o nxo

104



This gives us our asymptotic implementation speed. Indeed, our model imple-
mentation, among other things, computes the vector 5. It is then easy to find an
estimate of ©. Assuming that the implementation performs N/® iterations per
second and that the algorithm must run for w/R iterations to meet the user’s

convergence criterion, we have the following estimate:

4.3.4 Refining this Estimate

After finding this asymptotic measure of the implementation speed, it is natural
to compute some certainty measure on that estimate; namely a variance. Since we
are considering here RVs in R?%, we can compute a covariance matrix because the
entire distribution of S(k) is known. Using that covariance matrix, it is natural to
construct the covariance matrix of .S, for any value of n. As it will be seen in what
follows, this covariance matrix can in turn be used to compute an approximation
of the standard deviation of the algorithm execution time. One can also try to
use Chebyshev’s inequality to estimate the deviations of the sample average from
the mean. Such a deviation analysis can provide answers to meaningful questions
like: “What is the probability that a run of the implementation is particularly slow
or particular fast?”. In fact, the analysis of the deviations of the sample average of

i.i.d. observations of a RV from its mean can be answered extremely precisely for

105



large deviations, much more precisely than by applying Chebyshev’s inequality.
The estimation of the probability of rare events such as deviations from the mean

by a significant amount can be performed thanks to the Large Deviation Theory.

4.4 Large Deviations Results

In this section, we present a brief outline of the Large Deviation Theory (LDT),

identify how it can be used in our analysis, and give an example.

4.4.1 Large Deviations Theory

LDT is a branch of probability concerned with quantifying and explaining the
behavior of rare events. It is a very active field of research at the moment, and
several reference books are available, as well as introductory papers. The material
we present in this section comes from [15, 48, 57]. Let x; for « = 0,1, ... be i.i.d.
real RVs of expectations E[z;] = E[x;]. The simplest large deviation question is:
what is

1+ ...+ 2z,

n

P{ > a}  where a > E[z{] 7

The Strong Law of Large Numbers tells us that the sample average converges
to E[z;] with probability 1. The event where the sample average deviates from

the mean is a rare event as n goes to co. Estimating the probability of such a

106



rare event is answered by Chernoff’s theorem for i.i.d. RVs (also called Cramer’s

theorem) [17, 19]. Let us define:

A

M(0)=E[¢*1] V0 € R,

(4.4.5)
l(a)é sup(fa —log M(0)) VYa € R.
0
M(0) is called the moment generating function of x;. Note that the function [
is non-negative (M(0) = 0) and convex (as the supremum of a family of convex

functions). It is called the rate function of x1. Chernoff’s theorem can be written

as:

Theorem 4.4.1 Consider the sequence i, x3,... of i.i.d. RVs. For every a >

E[x;] and positive integer n,
Pl + ...+ 2, > na} < emia), (4.4.6)

Assume that M(0) < oo for § in some neighborhood of 0 and that the supremum
in equation 4.4.5 is attained in that neighborhood. Then for every € > 0 there

exists an integer ng such that whenever n > ny,

Pley+ ...+ 2, > na}l > e nli@)+e), (4.4.7)

107



Equations 4.4.6 and 4.4.7 imply that

Pley + ...+ 2, > na}l = e~ nla)to(n), (4.4.8)

A proof of this theorem can be found in [48]. It is valid for discrete, continuous,

or mixed RVs. This result can be stated in a more general theorem:

Theorem 4.4.2 Let zy,29,... be i.i.d. RVs. The function [ defined in equa-

tion 4.4.5 is convex and lower semi-continuous. For any closed set F,

) 1 4.+, )

1 —1 ——— € '} < —infl 4.4.9

im sup - log P{—— € F'} < - inf l(a), (4.4.9)
and for any open set G,

oW1 T+ o+, )

1 f—1 ——————— € G} > —infl(a). 4.4.10

iminf ~log P{——8 € G} 2 —mfl(a) ( )

This theorem just states that the sample average of i.i.d. RVs satisfies a Large
Deviation Principle (LDP) according to Definition 2.2 in [48]. In [48] one can also

find the following definition:

Definition 4.4.1 A set S is called an [-continuity set for a rate function | if

inf I(z) = inf l(2),

rESe €S

108



where SO denotes the interior of S and S its closure.
The following theorem is given as an exercise in [48], but its proof is immediate:

Theorem 4.4.3 If S is an [-continuity set, then

1 n .
lim —10g77{u € St =—infl(a).

n—oo N n a€S

These results can be extended to the case where the RVs x; are vectors of R%.

The definition of the rate function in such a case is:

M(6) 2E[e)] V6 e R

(4.4.11)
l(a) Zsup,((0,a) —log M(#)) Vae R

where (.,.) denotes the Euclidean inner product in R?. Under the same assump-
tions as in the one-dimensional case, the average mean of i.i.d. random vectors
satisfies a LDP with that rate function.

All these versions of Chernoff’s Theorem are useful in telling us how often
specific rare events occur. Another theorem by Sanov [47] tells how these events
occur when they do. Sanov’s theorem indicates that rare events, with overwhelm-
ing probability, happen only one way: by a “conspiracy”. This means that when a
rare event occurs, the observations of the RVs behave as if they were samples from
a different distribution, often referred to as the “tilted” distribution. This kind

of consideration is part of what is called “level 2 large deviations” in [48]. LDT

109



contains many more fascinating results, but is noted for being mathematically
very demanding, involving solving difficult problems in the calculus of variations
for instance. The fundamental results we have already stated will be sufficient for

our purpose in this dissertation.

4.4.2 Rate Function in our Model

The rare events we consider here concern the speed of the implementation. That
speed has already been quantified as the sample average of observations of the
vector S(k) throughout time. The distribution function of that vector is provided
by our implementation of the model. We know from LDT that this sample average,
denoted %Sn, satisfies a LDP. The problem is to compute its rate function. Let
us proceed step by step.

Let 0 = (Z;) be a vector in R%. We recall that the moment generating function

of S(k) is defined as:
M(8) = R[50,

At this point, we need to describe the distribution of S(k) formally (it is computed

by our implementation of the model). Let us call D the subset of R? such that:
A &€ T
p2((*) emipisin = (7)1 £ o),

110



In other words, D is the set of possibles values for S(k) and is finite. Let also p,,

denote P{(S(k) = (%)} for (i) in D. The moment generating function of S(k)

T
Y

can then be written as:

This makes it clear that M () < oo for all § < oo, and therefore in a neighborhood

of 0. The rate function for the sequence S(k) can now be written as:

Va = <a1> € R? l(a) = sup [(91@1 + Oya9 — 10g( Z p$7y€€1x+€2y)]‘

a2 01,02 €R (I)GD
’ (4.4.12)

The rate function is therefore, at each point, the supremum over R? of an infinitely

continuously differentiable real function. Let us call this function f so that

[(a) = sup f(61,0,).

01,02 €R

One can rewrite f(6y,60,) as:

f(8y,0;) = —log( Z Py Ea) T2 (v=02)),

(y)ep

Let us see under which conditions the supremum in 4.4.12 is attained. If this

111



supremum is attained for 6y = 07 and 0, = 03, then:

2L (05,05) = 0

2L(05.05) = 0,

which can be rewritten as:

Z p%y(l' — G1)691($—a1)+92(y—a2)
(;)ep .
) Z Pz y€€1($_a1)+92(y—a2) =
(3)ep
Z px,y(y — a2)e€1(l’—a1)+92(y_a2)
(;)ep .
) Z Pz y€€1($_a1)+92(y—a2) =

(3)ep
Z px,y(l' — al)eé’l(x—al)+€2(y_a2) —0
(3)eD

Z pl’vy(y - Gz)eel(l’_“l)‘l‘%(g—@) —0.

(3)ep

112



Let us define z, 7, y and 7 as:

We are going to prove that the rate function, [, can take finite values only

inside a rectangle of the 2-D plane. This rectangle is denoted by ¥ and defined

by:

a
I
N
=
N
Mm
1S
|=
INA
=
INA
8|

I
IN
5
IN
<

The rectangle is shown on Figure 4.11. Let a = (Z;) be an arbitrary vector
of R? outside of the rectangle W. To prove that I(a) = 400, we are going to

construct a sequence of vectors in R% say {f(n) = (Z;EnD} for n € N, such that

n

lim f(01(n),05(n)) = 4o00. Let us assume for instance that a; < x. The cases

n—0oo

ay > 7T, ay; <y and az >y can be treated similarly. One can write that:

\V/<x>€D, :z;—a1>0.
Y

113



a1
I(a) =+00
y
U]
I(a) <=+ Co
y
X X
-z a2

Figure 4.11: Rectangle ¥

If we define

then

F(01(n),05(n)) = —log( Y prye™ ™)) —— +o0,

n— 0o
(7)ep

since x — a1 > 0 for all (;) in D.
This proves that [(a) = +o0 outside of W. This result is fairly intuitive. Indeed,

the sample average 5, of observations of S(k) is outside of ¥ with probability 0,

114



since

o peenD)
n\n xy n n\nxy

The fact that the rate function outside of W is infinite can be interpreted as follows:
The probability that the sample average stays outside W decays with an infinite
exponential rate.

However, depending on the probability distributions generated by our model,
the rate function might also take infinite values inside W. It seems difficult to find
a general analytical expression for the rate function inside ¥, but it is possible
to use numerical software to compute the supremum in equation 4.4.12. For this
research, we have used Matlab [28] because it is very straightforward, provides
visualization capabilities and seems to give reasonably accurate numerical results.
The next section gives examples of rate functions for a given iterative algorithm
in a given distributed environment, and shows how they can be used to estimate

probabilities of deviation of the implementation speed from its mean.

4.4.3 An Example of Large Deviation Computation

We first show three examples of rate functions for different models. We then
explain how the rate function can be used in practice to compute deviation prob-

abilities. Finally, we perform such computations on one of the examples.

115



Sample Rate Functions

The rate function is computed be means of a series of Matlab scripts. Those
scripts input the distribution of the RV S(k) and produce a discretized version
of the rate function. Once again, we use the distributed environment of example
3 in Section 4.1.2. The algorithm corresponds to a contracting operator whose
contracting matrix has a spectral radius p = 0.9. The different implementations
are for the cases where A; =1 and B; = 0,1,2 for all : = 1,2,3. Let us describe
the three rate functions generated by our stochastic model.

Figure 4.12 shows the rate function [ for A; = 1 and B; = 0. This is a syn-
chronous implementation and exactly 1 iteration is performed at each algorithm
phase. On the figure, the mean vector S is represented as a vertical line and the
rectangle W is represented on the horizontal plane with a thick line. First, let us
identify W. One recalls that W is defined by z, 7, y and 7 (see Section 4.4.2). In
this case, our implementation of the model givesus x =7 =1,y = 7 and y = 21.
The rectangle W is therefore reduced to a segment. One can also observe that the
rate function attains its minimum of 0 at .S. This is a property of the rate func-
tion (see [48]). It is very intuitive; since the Strong Law of Large Numbers states
that the probability that the sample average converges to the mean is 1, it should
therefore decay with an exponential rate equal to 0. As a general rule, every point

where the function is not represented is a point where [ takes an infinite value.

116



o o ~ ©

w

exp. decay rate
S

N

N 05 o0
number of iterations Phase duration

Figure 4.12: Rate function for 4; =1 and B; =0

Figure 4.13 shows the rate function [ for the asynchronous implementation
corresponding to A; = 1 and B; = 1. Here, ¥ is not reduced to a segment and
it is represented on the horizontal plane. The mean vector S is represented as a
vertical line and one again has [(S) = 0. The ragged aspect of the edge of the
curve is due to the Matlab discretization. Figure 4.14 shows another view of the
rate function, from “above”. On this figure, one can see more clearly on what
subset of W the rate function takes finite values. Again, the staircase shape of the
edges is due to the Matlab discretization. The mean vector is shown with a white

Cross.

117



exp. decay rate
w e (&3]

N

18

14 16
10 12
number of iterations 05 8

Phase duration

Figure 4.13: Rate function for 4; =1 and B; =1

4

251+

15

number of iterations

05 I I I I I I I
8 10 12 14 16 18 20

Phase duration

Figure 4.14: Overview of the rate function for 4; =1 and B; =1

118



Figure 4.15 and 4.16 are similar to the two previous ones, but are for A; =1
and B; = 2. The rectangle ¥ is wider since the implementation of the iterative

algorithm can now perform up to three iterations per phase.

Example Use of the Rate Function

Let us see how the rate function can be used to compute a useful result concerning
the implementation speed. The mean algorithm speed in terms of number of

iterations performed per second is

§ =

N
¢

Y

where N and ® are the components of the mean vector S.
Let us compute, for instance, the asymptotic probability that the observed

implementation speed after n phases is lower than the mean, meaning that:
s, < s—¢ where ¢>0.

This can only happen if the sample average vector S, lies in R, the subset of R?

defined as:

R;é{ (:1;) € R2|£ < s —ch.
Y Y

119



10

exp. decay rate

number of iterations 05 8

Phase duration

Figure 4.15: Rate function for 4; =1 and B; = 2

35+

number of iterations
n
T

15+

05 I I I I I I I
8 10 12 14 16 18 20

Phase duration

Figure 4.16: Overview of the rate function for 4; = 1 and B; = 2

120



R” is an open 2-D half plane above the line D, of equation

€

Let W* denote a closed subset of ¥ where the rate function takes finite values
and is continuous. The existence of W* is far from being obvious and depends
on the rate function properties. We do not perform here an in-depth analysis of
the rate function as it depends on the probability distributions in the stochastic
model. Experience shows that the rate function takes finite values in closed subsets
of ¥ and appears to be continuous on those subsets. Furthermore, those subsets
seem to be convex, and one can chose U* to be the “largest” one, meaning that
it contains all subsets where the rate function is continuous and finite. On the
previous rate function examples, we have seen that the set U* can be clearly
identified. In all that follows, we will see assume that such a U* always exists, but
we do not provide a formal proof of its existence. Such a proof seems to be very
involved and we leave it for future work. It is now easy to see that the set U*N RZ
is an [-continuity set according to definition 4.4.1. One can now use theorem 4.4.3
and state that:

1
lim —logP{s, e V"N R} =— inf I(a).

n—oo N aE‘lJ*r‘lRe_

The same kind of computation can also be performed to compute the asymp-

121



totic probability that the implementation speed observed after n algorithm phases
is larger than the mean. The only difference is in the definition of the half-plane.

In this case, we call it R} and it is the half-plane below the line D} defined as:

Figure 4.17 shows the intersection of the two half planes R and R} with W*.

In order to perform actual numerical computations, we are going to use the
third example rate function that we have considered at the beginning of this
section, that is, corresponding to the case where A; = 1 and B; = 2 for 1 =
1,2,3. The components of the mean vector S are respectively N = 1.8631 and
¢ = 12.3754. The asymptotic algorithm speed is therefore s = N/® = 0.1505
in iterations per second. Let us compute the asymptotic probabilities that the
speed observed after n algorithm phases, s,, deviates from the mean s by at least
e = 0.025 or e = —0.025. LDT tells us that those probabilities decay exponentially,

and that they respectively decay with rates vt and r with:

rt 2 inf +l(a),

mewInRe (4.4.13)
ro 2 inf l(a).

acW*NRBe

122



a
Ry 1w D¢
| o;
BN
R 1w
ap

Figure 4.17: RZ NV and RT N

Figure 4.18 shows the sets W N R and ¥ N R} as “triangles” on the horizon-
tal plane. The problem here is to find the minimum of the rate function on those
two triangles. The rate function is represented only on the triangles in the figure
and the ragged shape of the edges is here again due to Matlab’s discretization.
One can use Matlab to perform the computation of the minima, and the numerical

results obtained in this example are:

rdoes = 0.2917

ooy = 0.2508,

123



10

exp. decay rate

number of iterations

Phase duration

Figure 4.18: Example of Large Deviation Computation

so that:

7){871 2 01755} = €_0~2917Xn+o(n)

7){871 S 01255} = €_0~2508Xn+o(n)‘

Such a computation can be performed for any value of e. Figure 4.19 shows a
graph of r} for positive values of ¢ and of rZ, for negative values of ¢. Therefore,
the part of the graph for negative values of € corresponds to implementations of

the iterative algorithm that are slower than the mean, and the part of the graph

124



45 T T T T T T T T T

35F 9

250 , , , 8

15F 9

rate of exponential decay
N
T
1

5 | | | | | | | | |
-01  -008 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
epsilon

Figure 4.19: Exponential decay rate for various € values

for positive values of ¢ is for implementations that are faster than the mean. The
rate of exponential decay is infinite wherever it is not represented on the graph.
With such a graph, it is now possible to compute all the rates of exponential decay
that we are need for quantifying the behavior of the observed average speed of an

implementation of an iterative algorithm.

125



4.5 Performance Characterization

In this section, we summarize the results presented in this chapter as well as the
steps that are followed by our implementation of the stochastic model. We then
explain how these results can be used to obtain different levels of performance

characterization. Finally, we present a complete example.

4.5.1 Putting Things Together

Figure 4.20 shows a diagram that summarizes our performance characterization
process. Let us describe this diagram step by step. As symbolized by the topmost
box in the diagram, the input to our performance characterization mechanisms

consists of:

e The number of processors in the distributed environment (p),

The probability distributions of the processor update times (a'(k,0)),

The probability distributions of the network communications (n;-;(k)),

The spectral radius of the matrix associated with the contracting operator

(Op),

The A; and B; values for 1 =1, ..., p.

The diagram contains three boxes drawn with dashed lines. The middle box

corresponds to Section 4.1, the right box to Section 4.2, and the left box to

126



Number or processors
Workload prob. distributions
Network prob. distributions
Contract. matrix spect. radius

exponential rate
of decay for
rare events of interest

Ai and Bi values
() AU B
(|> (K Wavefront Markov
ong-run chain: X(k)
approximation § state-space reduction
. <N(k) Reduced Wavefront
(])(k) { dense eigensolver
Large Deviation Wavefront stationnary
Theory distribution
T — :—T 77777777
rate function N }
mean vector =
(6T~
. . | N\
Matlab covariance matrix || \\
\
\
\
el

Performance
Prediction

long-run
| approximation

Figure 4.20: Performance Characterization method

127

that our model computes is the wavefront transition matrix.

Section 4.3. We are going to describe each box step by step.

As seen in

We start with the middle box since it impacts the other two. The first thing
Sec-
tion 4.1.1, this is done with a parallel program in C using MPI. Once the transition
matrix is available, the state-space of the Markov chain is reduced to eliminate

unreachable states. The stationary distribution of the wavefront can then be com-



puted with a classic eigensolver (from the LAPACK numerical library). Examples
of such computations were given in Section 4.1.2.

Let us now have a look at the right box. It corresponds to the computation
of convergence speed estimates (in terms of number of iterations to convergence).
Our implementation of the stochastic model first computes the conditional prob-
abilities P{N(k) = x|X(k)} where N(k) is the number of iterations performed
by the implementation of the iterative algorithm during the kth algorithm phase
and X (k) is the wavefront state at the beginning of that phase. Using the wave-
front stationary distribution, an approximation of the unconditional probability
P{N(k) = x} is computed. This approximation is justified in Section 4.2.2. The
sequence {k;} for t = 0,1,... can then be constructed as a sequence of RVs of
known probability distributions. Giving three different senses to the limit of that
sequence yields the three estimates R*, R* and R~ (those estimates are actually
computed as limits of the sequence). We have at this point computed three esti-
mates of algorithm speed -worse, average and best cases- in terms of number of
iterations to convergence.

The third box corresponds to the computation of the algorithm speed in terms
of number of iterations performed per second. From its input, our implementation
of the stochastic model computes the conditional probability P{S (k) = (i) | X (k)}
where S(k) is the vector of Nx R whose first component if the number of iterations

performed during algorithm phase k, and whose second component is the duration

128



in seconds of that phase. Similarly to the computation of the convergence speed in
the right box, the stationary distribution of the wavefront can be used to obtain
an approximation of the unconditional probability P{S(k) = (Zj)} Once this
distribution is known, one can easily compute the mean vector S = (g) This
vector can be used to compute the asymptotic algorithm speed in terms of number
of iterations performed per second. This speed is denoted by s and is s = N/®
(see Section 4.3). As shown in the next section, one can compute the covariance
matrix of S(k).

Detailed information about probabilities that the observed algorithm speed
deviates from this asymptotic speed (leading to particularly short or long execu-
tion times) can be obtained with the Large Deviation Theory (see Section 4.4),
which is much more precise for rare events than a computation based on variance
alone. We can define a rate function for the sequence S(k) as in Section 4.4.2.
Computed numerically, this rate function gives precise values for the exponential
rate of decay for the probabilities of specific rare events. The rare events that we
are considering, since we want to analyze the algorithm performance, correspond
to the deviations aforementioned. Example of such computations were given in
Section 4.4.3.

One can distinguish two parts in the performance characterization scheme: es-

timating the convergence rate of the algorithm and estimating the speed of the

implementation. For the latter, we additionally have access to Large Deviation

129



results. It is clear that the most difficult part is the first one. Indeed, precisely
estimating the convergence rate of the algorithm requires knowledge of the shape
of the operator Op, and therefore of the shape of the cost function. The three
estimates for the rate of convergence are guidelines, and only experience will show
which ones are most useful in practice (see Chapter 5). In what follows, we em-
phasize characterizing the implementation speed, assuming that the convergence

rate is known precisely enough, hopefully thanks to one of our three estimates.

4.5.2 Characterizing the Execution Time

As already mentioned in Section 4.2.3, the end-user is interested in knowing how
long the parallel algorithm will run until convergence is attained. Convergence is
attained when the initial error has been divided by a factor of 10¥ where w € N is
specified by the user. In Section 4.2, we proposed three estimates of the asymptotic
rate of convergence for the algorithm. In what follows, each of those estimates
can be used. Let R be the chosen estimate of the asymptotic convergence rate
and let N be an estimate of the number of iterations that are to be performed by
the algorithm before convergence. We will assume that:

w

130



This estimate of the required number of iterations is asymptotic and is valid only
when the number of iterations is large. Let © be the time to convergence for a
run of the parallel iterative algorithm. In the next four sections, we describe how
our performance characterization scheme can be used to obtain several levels of
estimations for ©. These levels are called 1, 2 and 3 and offer different information

on the probability distribution of ©.

4.5.3 Level 1 Performance Characterization

Level 1 performance characterization has been done in Section 4.3.3. It uses the
mean vector S = (g) shown in the left dashed box in Figure 4.20. It says that O

can be estimated by 0,

0,2, (4.5.14)

where again s = %. In this case, our performance characterization consists of one

single expected value.

4.5.4 Level 2 Performance Characterization

Level 1 provides an estimate of the mean of ©. Level 2 is concerned with ap-
proximating its standard deviation. Our implementation of the model gives us

the probability distribution of the RV S(k). Let S denote the 2 x 2 covariance

matrix of S(k). S°Y is of course easy to compute since the entire distribution

131



function is known. Let us recall that we are assuming the observations of S(k) to

be 1.i.d. The covariance matrix of 5, denoted by 5S¢, is given for each n by:

cov __ cov
SV =mn x S,

One can now compute the standard deviation of the execution time as fol-
lows. Convergence is attained when some number of iterations, N, have been
performed. We are therefore interested in computing the variance of the execu-
tion time knowing that A iterations have been performed. The execution time
after n algorithm phases is given by the first component of 5,,, whereas its second
component gives the number of iterations performed so far. If we assume that on
average and in the long run N iterations are performed at each algorithm phase,
then convergence is attained after A'/N algorithm phases. Our goal is then to
compute the standard deviation of the conditional distribution of the first com-
ponent of Sy/n knowing its second component. Due to the “large number” and
i.i.d. assumptions, we approximate the distribution of Sy ,n by a Normal (Gaus-
sian) multivariate distribution with covariance matrix SJCVO7N. This is of course
inspired by the Central Limit Theorem [30]. It is well known that the conditional

distribution of the second component of Sy/n conditioned on its first component

is Normal. Furthermore, its standard deviation does not depend on the value of

132



the second component. If the covariance matrix is written as:

S./C\77N = )

(4.5.15)

This result is available in [30] for instance. o is our estimate for the standard

deviation of O.

4.5.5 Level 3 Performance Characterization

Now that we have estimates for the mean and the standard deviation of ©, one
may wonder about the tails of @’s distribution. Similarly to Section 4.4.3, we use
LDT to obtain estimates of rare events corresponding to extreme behaviors of the
algorithm (particularly fast or particularly slow). If we assume that on average
and in the long run N iterations are performed at each algorithm phase, then

convergence is attained after % algorithm phases. The computation in 4.4.3 gives

133



us an asymptotic estimate of the following probabilities as:

P{Sn > 5+ 6} — e—nxrj—l—o(n)

P{Sn <s— 6} _ e—nxr’;—l—o(n)7

where s, is the algorithm speed observed after n algorithm phases, and r and

r- are defined in equation 4.4.13. But © can be approximated as:

€

where N is the number of iterations to be performed to achieve convergence. One

can then write that:

77{3% >s+ep =e’e

77{3% <s—¢} = emrE o)

leading to:

134



and finally:

PO <Y = erdato)
(4.5.16)

P{O> L} =T,

Equation 4.5.16 is an easy way to compute the tails of the probability distribution
of ©.

Note that the 3 level of characterizations are related to each other as they all
depend on A. In the next section, we give an example and characterize the per-
formance of some implementations of an iterative algorithm in a given distributed

environment.

4.5.6 A Complete Example

Once again, we consider the distributed environment of example 3 in Section 4.1.2.
We assume that the matrix associated to the contracting operator Op has a spec-
tral radius p = 0.9 and we consider the performance of implementations of this
algorithm for Ay = Ay = A3 =1and B, =0,1,2 for : = 1,2,3. We assume that
the user defines convergence with a single integer w: convergence is obtained when
the initial error has been divided by a factor of 10¥. In this example, we chose

w = 4.

135



Convergence Rate

The characterization for the convergence rate comes from the computation de-
picted in Figure 4.9. The values of our three estimates as well as Baudet’s for the
three different implementations are shown in Table 4.1. We recall that R* is a
worst case estimate, R* can be interpreted as a mean estimate and R* is an ideal

estimate.

Level 1 Characterization

Level 1 characterization is very easy to perform. It provides an estimate of O, the
mean time in seconds to convergence. This estimate is denoted ©; and computed
according to equation 4.5.14. Table 4.2 shows the numerical value of O, for
each convergence rate estimate and each implementation. If the mean estimate
R* is taken to be the most informative one, then it seems that a synchronous

implementation will be more efficient than an asynchronous one.

Table 4.1: Convergence rate estimates for each implementation

H A; | B; r* R* R Baudet H
1 10 0.045757 | 0.045757 | 0.045757 | 0.045757
1
2

1 0.021964 | 0.025079 | 0.045757 | 0.015252
1 0.014532 | 0.023804 | 0.045757 | 0.009151

136



Table 4.2: Level 1 characterization : Mean of © (in seconds) for various convergence
rates

H A | By || R* ‘ R* ‘ R ‘ Baudet H
1 |0 1081 | 1081 | 1081 | 1081
1 |1 1272 | 1141 | 610 1832
1 |2 1828 | 1116 | 580 2903

Level 2 Characterization

Table 4.3 shows the numerical results provided by Level 2 characterization.

Level 3 Characterization

Let us compute, for instance, the probabilities that the observed execution time
deviates from Oy by 2, 5, 10 or 20 percent. One can use equation 4.5.16 to this
end, with ¢ = $/99,5/9,2 x s/8,3 x s/7 for the cases where 0 is 2%,5%, 10% or
20% bigger than ©;. Similarly, the values ¢ = s/101,s/11,2 x 5/12,3 x /13 are
for the cases when O is 2%,5%, 10% or 20% smaller than ©;. This is due to some
algebra and the fact that ©; = A/s. Notice that a deviation of 2% is not strictly

speaking a rare event. Equation 4.5.16 gives the content of Table 4.4, with r} and

Table 4.3: Level 2 characterization : standard deviation of ©

[AlB ] R | ® | R |
1 |0 | 17.54 | 17.54 | 17.54
1 [ 1 [[15.97 [ 14.95 [ 11.06
1 [2 [[17.67 | 13.80 | 9.96

137



Table 4.4: Asymptotic deviation probabilities.

+ N - N
P{@ < 0.98 x @1} ~ e T2xs/os N 7){@ > 1.02 x @1} ~ e T2xs/102N
+ N - N
P{@ < 0.95 x @1} ~ e 5xs/9s N 77{@ > 1.05 x @1} ~ e 5xs/105N
P .S - X
P{O<09Xx O} ~ ¢ </oN P{O>11x0,} ~ ¢ su¥
F x o X
P{@S 0.8 x @1} ~ e 2X%xs/8N 'P{@Z 12)(@1} ~ e 2xs/12N

r. defined in equation 4.4.13.

Computing the right-hand sides in Table 4.5 is possible thanks to our knowl-
edge of the rate function. Table 4.5 shows the values (computed with Matlab) of
these asymptotic probabilities for each implementation and each convergence rate
estimate. The table shows that the probabilities are obviously over-estimated for
small deviations. Let us consider the values in the table for deviations of 2% and

—2% from the mean. It is easy to see that, according to the table:

P{O < 0.98 x O,} + P{O > 1.02 x O,} > 1!

This is due to the fact that a deviation from the mean by 2% is not a rare event for
a number of sample as small as N'/N. More formally, when ¢ is small, then r} and
r_ are also small. In our approximation, we fixed the number of algorithm phases
(to N'/N). Therefore, the term o(n) in the Large Deviation asymptotic estimate is

not negligible and causes Table 4.5 to give incoherent probability values for small

deviations. In fact, LDT tells us that e~"< *", for instance, is an upper bound on

138



Table 4.5: Level 2 deviations from ©; by £2%,+5%, £10% and +20%.

Impl. r* R* R

A; | B; 2% | +2% 2% [ +2% 2% | 2%

1 ]0 0.4652 0.4690 0.4652 0.4690 0.4652 0.4690

1|1 0.5650 0.6133 0.6066 0.6517 0.7603 0.7908

1|2 0.5606 0.5585 0.7023 0.7008 0.8321 0.8311

Impl. R* R* R

A; | B, 5% | 45% 5% | % 5% | %

1 Jo 0.0079 0.0090 0.0079 0.0090 0.0079 0.0090

1|1 0.0256 0.0588 0.0404 0.0837 0.1723 0.2567
1 |2 0.0207 0.0444 0.0936 0.1493 0.2916 0.3718

Impl. R* R* R

A B || -10% [ +10% -10% | +10% -10% [ 4+10%

1 [0 [ 2:3808e-09 | 7.0465e-09 | 2.3808e-09 | 7.0465e-09 | 2.3808e-09 | 7.0465e-09
1 |1 | 6.3040e-08 | 4.2623e-05 | 4.9426e-07 | 1.4875e-04 | 3.4972e-04 |  0.0080

1 |2 [ 2731708 | 1.2820e-05 | 2.4130e-05 | 0.0010 0.0040 0.0279

Impl. r* R* R

A B | 2% [ +20% 20% | +20% 20% | +30%

1 [0 [ 2.8013e-38 | 1.0457e-33 | 2.8013¢-38 [ 1.0457e-33 | 2.8013e-38 | 1.0457e-33
1 |1 | 6.2358¢-38 | 8.2600e-15 | 2.6064e-33 | 4.6366e-13 | 1.3837e-18 | 1.7376e-07
1 |2 | 1.0324e-39 | 6.2265e-17 | 1.5831e-24 | 1.2783e-10 | 4.1529¢-13 | 7.1319e-06

the probability of deviation from the mean after n observations. The values in

the table are therefore upper bounds on the deviation probabilities and we expect

them to be fairly tight for large deviations. According to the table, the tail of

O’s distribution on the left side (corresponding to particularly slow executions) is

heavier than on the right side (particularly fast executions). This implies that the

distribution function of © is not symmetric. Chapter 5 will present some tentative

results that aim at quantifying this dissymmetry.

139




Figure 4.21 summarizes what elements of the probability distribution of © can

be approximated by our different characterization levels.

4.6 Conclusion

In this chapter, we have isolated the components of our model that are used to
perform a performance analysis of parallel iterative algorithms. The analysis of the
wavefront Markov chain (see Section 4.1) is the basis of the performance analysis.
Once the wavefront behavior is quantified, it is possible to obtain estimates for the
algorithm rate of convergence (see Section 4.2) and the implementation speed (see
Section 4.3). The analysis of the implementation speed can benefit from the use of
Large Deviation Theory, as explained in Section 4.4. Finally, we have summarized
our characterization techniques in Section 4.5 and given an example. There are
many ways in which the material presented in this chapter can be improved or
extended. Such developments are left for future work and are described in detail

in Chapter 6.

140



standard deviation
(Level 2)

, / \ : ,
left tail / \ right tail
(Level 3) / \ (Level 3)

L5 o 0N
mean
(Level 1)

Figure 4.21: Probability distribution of ©

141



Chapter 5

Model Validation

In the preceding chapter, we have seen how the model described in Chapter 3 can
be used to obtain performance characterizations for parallel iterative algorithms
in distributed environments. In this chapter, we examine these characterizations
and draw conclusions about their validity. First, we present simulation results
for a given distributed environment and iterative algorithm. Second, we present
experimental results for a real distributed environment and real runs of an iterative

algorithm.

5.1 Simulation Results

The first step when trying to validate our performance characterizations is to
perform simulations. We can make those simulations satisfy our basic assumptions

exactly and thereby verify that our models yield coherent results.

142



5.1.1 The Experiment

We implemented a simulation program that simulates any iterative algorithm in
any distributed environment. The program can be used to easily simulate a large
number of the algorithm runs. For each of these runs, the program produces the
execution time, the number of iterations to convergence and the error reduction of
the solution vector. Let us give more details about the specifics of the simulation

that we performed to obtain numerical results.

The Simulated Distributed Environment

The simulated distributed environment consists of three processors. Those pro-
cessors are identical but with different workload distributions. Figure 5.1 shows
the three distributions of the solution vector update times. The processors are in-
terconnected with a network that delivers constant performance of 0.001 seconds
per message. This environment is fairly simple, in order to make the results easier

to interpret.

The Iterative Algorithm

We chose to simulate a Gradient algorithm (see Section 2.1.2). The cost function
is multi-polynomial, from R* to R, and the step-size, 7, is equal to 0.005. The
operator of the iterative algorithm is then a contracting operator according to def-

inition 2.3.1. The matrix A associated to this contracting operator has a spectral

143



the algorithm.

o ~
T

probability

o
-

o
~
T

probability
oS o
~

o
-

probability
-~ W =
T

o

Figure 5.1:

mentations. We then

iterative algorithm as

agram. The empirica

w
T

w
T

Processor #1
T

0 0.2 04 0.6 08 1

Processor #2
T

ﬁ .Il |

0 0.2 04 0.6 08 1
Processor #3
T

Ins |

0 0.2 04 0.6 0.8 1
update time (in seconds)

Update time distributions for the three processors

radius of 0.7. The initial guess of the solution vector is the same for each run of

In what follows, we present the results of the simulation for different imple-

discuss all three characterization levels accordingly.

5.1.2 Synchronous Implementation

Figure 5.2 shows the simulation results for a synchronous implementation of the
well as the performance characterizations. The empirical
distribution of the algorithm execution time is shown on the figure as a bar di-

I mean is shown as a vertical solid line and the empirical

144



/|\\ T T T T
| ", o
o [ 1 Empirical distrib.
0.9 [ ——  Empirical mean b
Iy — Empirical stddev
[ it Level 1
0.8f R
N Level 2
oy - == Level 3
0.7+ | : . Norm. level 3 q
oo
0.6 ! ! \ ~
z Lo
3 | |
Sost —— -l 1
o ! | \
04 I 1 | 7
I ! \
I
0.3 ! , \ B
1 | \
! 1 \
0.2 1 I \ B
/ ! \
0.1 / ! \ i
H HH / : \
0 hﬁﬂﬂ H!—h—w—\ = 4 I L I N I I I
185 190 195 200 205 210 215 220 225 230 235

Execution time in seconds

Figure 5.2: Simulation vs. characterization for a synchronous implementation

standard deviation is represented as a horizontal line segment on each side of the
empirical mean. We recall from Section 4.2.3 that our three estimates for the rate
of convergence of the algorithm are all equal to Baudet’s estimate, hence, there is
only one set of characterizations on the figure. Level 1 characterization is shown as
a dashed vertical line. Level 2 characterization is shown as two horizontal dashed
line segments on each side of level 1. Level 3 characterization is represented by
a dash-dot curve. A dotted curve shows the normalized level 3. As we have seen
in Section 4.5.6, level 3 is not a probability density function as the area under its
curve is greater than 1. However, it is possible to normalize the curve so that it
becomes a probability density function. Note that we have not given any formal

justification that this normalized curve should fit the simulation data. Such a

145



justification is left for future investigation. Most graphs in this chapter will be
similar to Figure 5.2.

Figure 5.3 shows the same data as Figure 5.2, but the level 1 characteriza-
tion has been made equal to the empirical mean, so that it is easy to observe
the level 2 and level 3 characterization versus the shape of the empirical distribu-
tion. Thorough comments on these curves will be given in Sections 5.1.4, 5.1.5,

and 5.1.6.

5.1.3 Asynchronous Implementations

Let us now turn to the simulation results for asynchronous implementations. We
consider two such implementations as in the examples of Chapter 4: first, an imple-
mentation for which A; =1 and B; =1 for « = 1,2, 3 in terms of definition 3.4.1;
second, an implementation for which A; = 1 and B; = 2 for ¢« = 1,2,3. This
second implementation can be seen as “more asynchronous” than the first one.
Figure 5.4 shows the empirical distribution, mean and standard deviation of
the algorithm execution time (it is similar to Figure 5.2). However, four set of
performance characterizations are shown. Indeed, the three estimates of the rate
of convergence defined by equation 4.2.3 have here three different values. These
values have been computed as in Section 4.2.3 (see Figure 4.9). On Figure 5.4, we
also show the performance characterization based on Baudet’s convergence rate

estimate.

146



Probability

1 7 N T T
s [ ] Empirical distrib.
0.9 ! \ ———  Empirical mean B
! \ ——  Empirical stddev
sl / \ ----  Levell i
’ ! \ === Level2
! \ -—-  Level3
0.7 ! \ Norm. level 3 B
! \
1 \
0.6 , \ R
2 / \
=}
gosr h===f===4 i
2 !
: —t—
! \
0.4 R
! \
! \
0.3 / . i
/ \
02k / \ i
/ \
/ \
01 / N i
. H ’_H_‘ )
. N
0 — ’ﬁﬁr_ﬂl—ﬂ"_‘ 1 ’_‘!_h—w—\ . |
iss 190 195 200 205 210

Execution time in seconds

Figure 5.3: Adjusted curve for a synchronous implementation

1~
| | | |
| | | 1 Empirical distrib. |
0.9 I I I _— Empirical mean I
— Empirical stddev
| |] I I -— == Level 1 I
o8 | | | - Level 2 |
l|l lb\ I, - == Level 3 |
0.7 ¥ | | '_‘ Norm. level 3 I
|
| (N f |
|
osr I, b ! A
I | h I
| : |
os- M H il HI I
(L | |
' .
|
o4l h /! " e
I I I o
o " o P!
0.3+ Bt?sit J_:ase Simujation Average case Wd)rlst |case BéLIldqt
|
! I o oy
021~ 1 P! o o
’ I oL o T
oaf iy 1 P j ol
/ -\
I S N ;o
\ ;- . / " R
o | I I | PRI | I I | ]
150 200 250 300 350 400

Execution time in seconds

Figure 5.4: Simulation vs. characterizations for the first asynchronous implementation

147



Figure 5.5 is similar to Figure 5.3: level 1 characterization has been made
equal to the empirical mean so that it is easier to observe the level 2 and level
3 characterizations. This adjusted curve can be seen as the characterization for
a perfectly accurate convergence rate estimate. In the following sections, we will
compare the empirical distribution to characterizations for our three convergence
rate estimates, Baudet’s estimate and for the perfectly accurate estimate afore-

mentioned.

ool | L]  Empirical distrib.
_— Empirical mean
_ Empirical stddev
08F| =~ ~ Level 1 A
-— Level 2 \
- Level 3 ; \
0.71 Norm. level 3 / \
/ \
0.6 / \
/ \
? \
3 /
Qo
S05- |/__| \
£ \
£ F--f--4
0.4+ ! !
/ \
/ \
0.3F , \
/ \
/ \
0.2F , .
/ \
/ \
01 7 i / H H H ‘—‘ H H \
- N
0 s 1 ’—’\ ’_’ ’_‘ ’_‘ —e— S ]
160 165 170 175 180 185 190

Execution time in seconds

Figure 5.5: Adjusted curve for the first asynchronous implementation

148



Figure 5.6 shows the same results as Figure 5.4, but for the second asyn-
chronous implementation. Figure 5.7, also for the second implementation, is simi-
lar to Figure 5.5 with the adjusted level 1 characterization. In the following three
sections, we discuss each characterization level in detail using the graphs for the

synchronous and asynchronous implementations.

5.1.4 Discussion of the Level 1 Characterization

Level 1 characterization is an estimate of the mean execution time for the itera-
tive algorithm in a given distributed environment. In the case of the synchronous
implementation, our three estimates of the algorithm convergence rate are all
equal to Baudet’s estimate. As seen on Figure 5.2, level 1 characterization pre-
dicts a mean execution time of approximatively 210 seconds whereas the observed
mean execution time is around 194 seconds. This means that there is around
8% error between observed and predicted mean. This difference can be explained
rather easily. Indeed, our estimate of the rate of convergence, in terms of number
of iterations to convergence, depends only on the spectral radius of the matrix
associated to the contracting operator for a synchronous implementation. This
spectral radius does not describe the entire shape of the operator, which depends
itself on the shape of the cost function. In fact, two contracting operators with
matrices of identical spectral radius can lead to different (but hopefully close)

rates of convergence.

149



Probability

Empirical distrib.

I I
I iri I
I Empirical mean I
— Empirical stddev
| | - - == Level 1 |
osr | I -——— Level 2 I
I I - == Level 3 |
. Norm. level 3
o7 h I
i | I I
| \
o.e [ !I | I I
! I I I
| [
I Iy! I
0.5 .
H Ho W K ol
: I
1 | | I A
oA | 1 I
ll?lest case Avefrf:uj;e case ! ! T ’.
0.3 Ll | | Simpulation | 11 Wbrsﬁ case Ba,qdét
o I NI prl
o211 1 I I
k | \ |
! ] - I
Rl LR Iy .
R . e T
o | 1 | 1 1 1 | 1 1 1 1l
100 150 200 250 300 350 400 450 500 550
Execution time in seconds
Figure 5.6: Simulation vs. characterizations for the second asynchronous implementa-

tion

0.8

0.7

Probability
o o
o o
T T

1
»
T

0.3

0.1

Empirical distrib.
Empirical mean
Empirical stddev
Level 1

Level 2

Level 3

\ Norm. level 3

g T;;TT[—\HHHH

160

N
Hﬂﬂ .
(e e |
165 170 175 180 185 190

Execution time in seconds

Figure 5.7: Adjusted curve for the second asynchronous implementation

150



Our estimate of the rate of convergence is a lower-bound on the actual conver-
gence rate for all contracting operators with matrices of spectral radius 0.7. This
explains why the level 1 mean execution time is larger than the observed one. This
phenomenon occurs for any implementation, but it is especially easy to observe for
a synchronous implementation since all the convergence rate estimates are equal.

For the asynchronous implementations, we already explained that we have
obtained a set of four different characterizations. Each characterization yields
a different level 1, depending on the convergence rate estimates. The values of
these estimates are shown in Table 5.1 for all three implementations. As noted in

Section 4.2.3,

Let us recall from Section 4.5.3 that for a convergence rate estimate R, the level

1 characterization is computed as:

Table 5.1: Convergence rate estimates and observed convergence rate

H A; | B; R* ‘ R* ‘ R* ‘ Baudet H Observed H
1 0 0.0132 | 0.0132 | 0.0132 | 0.0132 0.0143
1

2

1 0.0.0066 | 0.0080 | 0.0132 | 0.0044 0.0097
1 0.0038 | 0.0069 | 0.0132 | 0.0026 0.0084

151



where w is the user’s convergence criterion and s the average speed of the imple-
mentation in terms of number of iterations per seconds, as computed thanks to
our stochastic model. As explained in Section 4.2.3, the gaps between the four
convergence rate estimates depend on the variances of the RVs N for ¢ = 1,2, 3.
This variance depends itself on the asynchronicity of the implementation and on
the distributed environment. The gaps increase when the asynchronicity of the
implementation increases. This comes directly from the definition of N'. For a
synchronous implementation, we have seen that the gaps are reduced to zero. For
an asynchronous implementation, if the probability distribution of the solution
vector update times on the different processors are small, then the gaps between
the different level 1 characterizations are small. Conversely, if those variances are
large then the gaps are also large (as for the synchronous implementations in our
simulation). More intuitively, the gaps between the different level 1 character-
izations increase with the number of additional updates that can be performed
during the 3 sub-phases of the algorithm run.

The absolute positions of the level 1 characterizations depend on the operator
of the iterative algorithm, the initial guess on the solution vector, the shape of
the cost function, the distributed environment and the end-user’s convergence
criterion. The implementation of our model produces those four estimates for any
implementation.

In this simulation, it appears that the observed execution times lie between

152



the characterizations for our “best case” and “average case” estimates. As men-
tioned in Section 4.2.2, it is fairly difficult to generalize this result to any iterative
algorithm in any distributed environment. Indeed, the influence of the shape of
the cost function is difficult to quantify. It is clearly possible to contrive different
cases where the cost functions, even though still leading to contracting operators,
can have different influences on the execution time empirical distribution. This
issue is part of the theoretical study of iterative methods and is outside the scope
of this work.

However, for classes of cost functions, it is likely that the observed execution
times will behave similarly for each function in a class. If several runs of an
iterative algorithm are to be performed for functions in the same class, in the
same distributed environment, then one can assume that the empirical mean of
the execution times will be located at some fixed position, relatively to our four
level 1 characterizations. For example, according to this simulation, using our
“average case” estimate, 7/3\*, leads to 18% error on the mean execution time.

Let us make a last observation on Figures 5.4 and 5.6. One can observe that
our level 1 characterizations for the “average” convergence rate estimate for the
two asynchronous implementations are very similar: 212.03 seconds and 213.24
seconds respectively. This can be easily interpreted. In fact, due to the charac-
teristics of the distributed environment, the second asynchronous implementation

rarely has the opportunity to perform more than one additional update of the

153



solution vector during the (3 sub-phases. It is in general fairly equivalent to the
first asynchronous implementation, and this can be seen easily on the empirical
distributions. Our stochastic model reflects this behavior when generating the
level 1 characterizations. However, one can see on the two figures that the level 1
characterizations for the “best” and “worst” case convergence rate estimates are
different for the two implementations. The second implementation exhibits much
larger gaps between the different level 1 characterizations. This can be easily
explained. Those two convergence rate estimates correspond to extreme cases.
With non-null probability, but rarely in this simulation, the second asynchronous
implementation can perform many more iterations on out-of-date data than the
first implementation, depending on the distributed environment. Therefore, the
second implementation can exhibit more extreme behaviors than the first imple-
mentation, explaining the larger gaps in Figure 5.6. We had already stated this

fact by saying that the gaps increase with asynchronicity.

5.1.5 Discussion of the Level 2 Characterization

Level 2 characterization provides an estimate of the standard deviation of the
algorithm execution time. Table 5.2 shows the four level 2 characterizations,
the level 2 characterization for the adjusted level 1, and the empirical standard
deviations, all for our three implementations.

The first obvious observation to make on Table 5.2 is that the level 2 characteriza-

154



Table 5.2: Level 2 characterizations and observed standard deviation

H A | By || R* ‘ R* ‘ R* | Baudet | Adjusted H Observed H
1 10 2.57 | 2.57 | 2.57 2.57 2.47 2.55
1 1 2.75 | 2.50 | 1.94 3.37 2.27 3.16
1 |2 3.31 | 2.47 | 1.94 3.37 2.23 3.25

tion increases for decreasing values of the convergence rate estimate. This is easy
to explain from the definition of the level 2 characterization given in Section 4.5.4.
Level 2 is in fact the standard deviation of a bi-variate Normal distribution whose
covariance matrix is computed as n x 5%, where n is the number of algorithm
phases to convergence and S°V a fixed matrix. Therefore, according to equa-
tion 4.5.15, level 2 characterization grows linearly with the predicted number of
algorithm phases. The number of phases of course decreases when the convergence
rate estimate increases, which agrees with our observation.

Table 5.3 shows the error percentages between the level 2 characterizations
and the observed standard deviations for all three implementations. Those errors
are caused by two factors. First, since the convergence rate estimates are not
equal to the actual convergence rate, the number of algorithm phases predicted
and used to compute level 2 characterization is not equal to the actual number
of algorithm phases. This is closely related to our earlier comment about the
linear growth in equation 4.5.15. Furthermore, the level 2 characterization uses

the “average” number of iterations performed per algorithm phase to compute

155



Table 5.3: Error between level 2 characterization and observed standard deviation

H A; | B; R* ‘ R* ‘ R* ‘ Baudet ‘ Adjusted H
1 10 0.8% 0.8% 0.8% 0.8% 3.1%

1 1 12.97% | 20.89% | 38.61% | 6.65% 28.16%
1 |2 1.85% | 24.00% | 40.31% | 3.69% 31.38%

the number of phases to convergence. This approximation certainly contributes
to the errors reported in Table 5.3. But, as we can see in that table, there are still
errors for the adjusted characterization. As we said in Section 5.1.4, the adjusted
characterization can be seen as one for the actual convergence rate. It does not
seem reasonable to attribute all the errors only to the use of the “average” number
of iterations performed per algorithm phases. Therefore, there has to be another
phenomenon other than the error in predicting the number of algorithm phases.
As we have already seen, the level 2 characterization is computed from a bi-
variate Normal approximation. This approximation is motivated by the introduc-
tion of the sample average of i.i.d. observation of a RV, S(k), of known distribution
(see Section 4.5.4). If the number of samples is not large enough, then the dis-
tribution of the sample average might be far from the Normal approximation.
Furthermore, the more asynchronous the implementation, the more values can be
taken by S(k). In the case of a synchronous implementation, this RV is actually
mono-variate and this explains why there is a small error for the corresponding

level 2 characterization in Table 5.3. Table 5.4 shows the level 2 characterization

156



error for our first asynchronous implementation (4; = 1 and B; = 1 for i = 1,2, 3)
and for decreasing values of ¢, the achieved error between the final solution vector
and the real solution. It appears clearly that the level 2 characterization error
decreases with e. Decreasing e corresponds to increasing the number of algorithm
phases performed, and therefore getting closer to the bi-variate Normal distribu-
tion (as the number of samples of S(k) increases). It seems difficult to precisely

quantify the different factor contributions to the errors in Table 5.4.

5.1.6 Discussion of the Level 3 Characterization

Level 3 characterization is shown on the graphs as a dash-dot line. First, let us
note that the graphical representation of level 3 in the figures in the beginning on
this chapter is not complete. We have not plotted the level 3 curve for all points
at which it is non-zero. This curve however is only non-zero on a bounded subset
of R. This subset is easily determined by our stochastic model to obtain values

for the maximum and minimum observable implementation speeds in terms of

Table 5.4: Level 2 error for increasing values of €

H € ‘ Level 2 ‘ Observed ‘ Error H
107° 2.45 3.52 30.4%
5x 107% [ 2.68 3.79 29.3%
1076 2.97 4.07 27.0%
5x 1077 | 3.14 4.06 22.7%
1077 3.93 4.86 19.1%
5x 1078 | 4.43 4.98 11.0%

157



number of iterations performed per algorithm phase.

The LDT allows us to estimate such probabilities as:

P{O<O;—¢ and P{O >0;+¢}.

Such estimations are explained in detail in Section 4.5.5. It is then possible to use

those estimates to approximate such probabilities as:

P{z <O <y} Va,y,€R.

This is how the dash-dot curve has been computed. According to LDT, this
curve should be an upper bound of the empirical distribution. And this is exactly
what can be observed on all the Figures 5.2 to 5.7. This upper bound is very
loose for small deviations, as explained in Section 4.5.6, but should be a good
approximation of the actual probabilities of large deviations of the execution time
from its mean: ©);.

Furthermore, one can see on Figure 5.4 that the peak of the the level 3 char-
acterization decreases as the estimate of the rate of convergence decreases. It is
notably much lower for the rightmost characterization (corresponding to Baudet’s
convergence rate estimate) than for the leftmost one (our best case estimate). This
is due to the fact that, as noted in Section 4.5.5, the Large Deviations computa-

tion depends on N, which increases when the convergence rate estimate decreases.

158



This phenomenon will be observed in all following graphs that show performance

characterizations for different convergence rate estimates.

5.1.7 Conclusion

Our different levels of characterizations give very satisfactory results for this sim-
ulation. The major issue is the accuracy of the convergence rate estimate. This
was discussed in Section 5.1.4 as it is very noticeable for level 1. The level 2
characterization seems to provide a reasonable order of magnitude of the empir-
ical standard deviation. The errors in level 2 were identified and explained in
Section 5.1.5. Finally, level 3 characterization seems to be very easy to inter-
pret, if not to compute. However, it is fairly difficult to check its validity for
rare events. Indeed, rare events are very unlikely to occur in a simulation and
their empirical probability will almost always be zero. Furthermore, if one rare
event occurs during a simulation, its empirical probability is bound to be much
higher than its actual probability due to a too small sample size. The simulation
of rare event is in fact an active field of research and is outside the scope of this
dissertation. (An important technique to obtain valid simulation results about
the probability of occurrence of rare events is Importance Sampling. One can find

further development and references on this subject in [26, 29].)

159



5.2 Experimental Results

This section presents actual experimental results obtained for a real implementa-
tion of an iterative algorithm running on a real network of workstations. After
describing the setting of the experiment, we give results for the algorithm execu-

tion as observed during a time period of a week and a time period of 24 hours.

5.2.1 The Experiment

We implemented a parallel iterative algorithm in C using MPI [49] for inter-
process communications. This implementation can be used on any number of
processors, and its degree of asynchronism can be easily modified. Indeed, it
takes as parameters the A; and B; values for i = 1,..,p (see definition 3.4.1).
It also takes as parameters the user’s convergence criterion and other variables
describing the iterative algorithm itself. Let us start with a description of the

distributed environment.

The Distributed Environment

As for the simulation, we used three workstations. Those workstations are part
of one of the laboratories available to students at the Department of Computer
Science of the University of Tennessee. The workstations are Sun Sparc Ultra
1 interconnected by a standard 10 Mbps Ethernet network. Those workstations

are being used by students for course-work as well as for personal research. The

160



load of each of the processors and of the network therefore varies considerably
throughout the day.

Figure 5.8 shows the empirical distributions of the solution vector update times
as measured throughout our time period of a week (Nov. 17-24, 1997). One can
see that the first processor is on average slower than the other two.

Figure 5.9 shows those empirical distribution as computed from measurements
for a time period of only 24 hours (Nov. 26, 1997). The distributions are dif-
ferent from the ones on Figure 5.8. The first two processors have fairly similar
distributions and are on average slower than the third one.

One can also see on the figure that we have discretized the distribution. This
discretization will lead to approximations in our computations but is necessary
in order to use our stochastic model. Increasing the level of refinement for the
discretization leads to more accurate results as the discrete distribution approaches
the real distribution. The level of refinement shown in the figure seems to be
sufficient here to obtain interesting results. The messages exchanged among the
processors are small (80 bytes) and the machines are on the same local area
network, so it is not surprising that our measurement of the network traffic shows
that the communication time distributions have almost a null variance, meaning
that the communication times are hardly random. This is due to the fact that no
user was saturating the network during our time period. We therefore used our

model assuming that the network delivers constant performance.

161



0.9+

0.8 —

0.7+ 1st processor
2nd processor

0.6 — 3rd processor

Probability
o
ol
[

o
IS
L

Update time in seconds

Figure 5.8: Measured update time distributions over a week

0.9 —
0.8 —

0.7

1st processor
2nd processor
3rd processor

Probability

Update time in seconds

Figure 5.9: Measured update time distributions over 24 hours

162



Since the network communication times are 2 orders of magnitude smaller than
the solution vector update times, this approximation should lead to no observable

error.

The Iterative Algorithm

The iterative algorithm is the same as for the simulation: a Gradient descent with
step-size 0.005 for a multi-polynomial function from R*° to R. Here also, the
initial guess on the solution vector is the same for each run of the algorithm. We
measured the execution times for the same three implementations of the parallel
iterative algorithm as for the simulation performed in Section 5.1. The different
implementations were executed alternatively on the same three processors. It
is therefore meaningful to compare their execution times throughout the time
periods.

The following section offers fundamental observations on the raw measure-
ments that we have collected and draws conclusions about the current limitations

and domain of application of our stochastic model.

5.2.2 General Observations on the Measurements

Immediate Comparisons of the Different Implementations

Figure 5.10 shows the execution times observed throughout the one week time

period for the synchronous implementation and for the first asynchronous imple-

163



300 T T T T 300

250 Synchronous - 250 First -Asynchronous
Implementation Implementation

200 - - 200

150 W - 150 |-
100 |- . 100 w

50

Execution time
Execution time

50

(o] 200 400 600 800 (o] 200 400 600 800
Observation number Observation number

Figure 5.10: Execution time measurements over a week

mentation. This corresponds to 862 consecutive observations for each implemen-
tation. The measurements for the second asynchronous implementation are not
shown because they would be difficult to distinguish from the ones of the first
asynchronous implementation on that time scale. Instead, Figure 5.11 shows the
differences in execution times throughout the time period between the first asyn-
chronous implementation and the synchronous implementation, and between the
first and the second asynchronous implementation.

The first observation to make is that the asynchronous implementations are
generally more efficient than the synchronous one. According to the top graph
in Figure 5.11, the first asynchronous implementation is up to 150 seconds faster

than the synchronous implementation, and 30 seconds faster on average. Out of

164



. Impl. = 1st Asynch. Impl.

Difference of execution time

-100 I I I I I I I I
0 100 200 300 400 500 600 700 800 900

Observation number

1st Asynch: Impl. = 2nd Asynch. Impl.

Difference of execution time

-100 I I I I I I I I
0 100 200 300 400 500 600 700 800 900

Observation number

Figure 5.11: Differences in execution times

the 862 observations, only 13 are such that the synchronous implementation is
actually faster than the asynchronous ones. This represents roughly 1.5% of the
observations. In fact, since the experiment runs the implementations one after
the other in a round-robin fashion, it is therefore highly likely that a quick change
in the distributed environment will lead to a few incoherent comparisons between
the different implementations.

The second observation concerns the two asynchronous implementations. Ana-
lyzing the data in the bottom graph of Figure 5.11, we compute that, “on average”
the second implementation is faster than the first one by about 1.9 seconds. How-
ever, one can observe cases where the first implementation is 100 seconds slower

than the second one, as well as cases where the second implementation is slower

165



than the first one by up to 85 seconds. However, in only 15% of the observations
is the absolute difference between between the two implementations more than 10
seconds.

It seems that, in this experiment, a good choice is to use an asynchronous
implementation as opposed to a synchronous one. This is explained both by the
nature of the distributed environment and by the nature of the iterative algorithm.
Table 5.5 shows the observed mean and standard deviations of the execution times
in seconds for each implementation: it seems that the mean and the standard
deviation decrease with the asynchronicity, and in fact the operator of our iter-
ative algorithm is smooth enough that the use of moderately out-of-date data is
rarely detrimental to convergence. Several other research works include examples
for which asynchronous implementations outperform synchronous ones [5, 7, 40].
Therefore, asynchronicity allows an implementation not only to achieve faster
convergence, but also to adapt to the fluctuations of the distributed environment.

This explains the decrease in mean and standard deviations witnessed in Table 5.5.

Table 5.5: Observed mean and standard deviations of the execution time

H A; ‘ B; H Mean ‘ Std. Dev. H
1 10 142.88 38.08
11 113.14 26.26
1 ]2 111.18 25.47

166



Burstiness of the Workload Distributions

Concerning the shape of the curves in Figure 5.10, a fundamental observation
is that: the execution time is bursty. In fact, the distributed environment, and
therefore the algorithm, behaves very differently at different times in our time
period, for the system is in use for a variety purposes during the experimental
runs.

In order to illustrate these different behaviors, Figures 5.12(a), (b) and (c)
show three close-ups of the execution times for each implementation during short
sub-periods of the one week time period. Table 5.6 shows the means and standard
deviations for each implementation corresponding to the three sub-periods that
we will call sub-periods (a), (b) and (c). Each of them is about two hours long.
The standard deviations for the small sub-periods are much lower than those for
the whole week shown in Table 5.5. Let us analyze the three sub-periods.

During sub-period (a), the gaps between the three implementations are large
and the execution time of the synchronous implementation is high. This tends
to suggest that the processors were heavily loaded, with a great load imbalance
among them. The more asynchronous the implementation, the more resistant it
is to this imbalance. During sub-period (b), the three implementations perform
comparably. This suggests that the processor loads were uniform during the sub-

period since the asynchronous implementations were not able to take advantage of

167



@ (b) (©)
300 300 - 300

250 - 250 — 250 —

@ 200 @ 2004 o« 200 |-
£ £ £
= = =
S S E S
= = =
(=3 (=3 =3
(<) (<] (5]
fin fini fi
150 150 - 150 -
a%
;\9—6—9—6/8\9’6’6\8—@ 9%
100 100 - 100
+— Synch. H— Synch. H— Synch.
p—¢ 1st Asynch. pe—¢ 1st Asynch. p—k 1st Asynch.
>-© 2nd Asynch. >-© 2nd Asynch| >© 2nd Asynch,|
50 . ! 50 . ! 50 . !
100 105 110 130 135 140 185 190 195
Observation number Observation number Observation number

Figure 5.12: Different experimental behaviors throughout one week

Table 5.6: Observed means and standard deviations of the execution time

Impl. sub-period (a) sub-period (b) sub-period (c)
A; ‘ B; || Mean ‘ Std. Dev. | Mean ‘ Std. Dev. | Mean ‘ Std. Dev.
1 10 260.51 3.30 194.73 4.68 195.80 6.70
1|1 141.99 2.77 183.01 7.47 115.44 3.88
1 |2 105.67 2.76 186.12 7.16 104.02 2.79

wasted CPU cycles. Sub-period (c) seems to be more “typical”. The asynchronous
implementations are close in performance and both faster than the synchronous
one. The load imbalance among the processors was not as extreme as during
sub-period (a) but more important than during sub-period (c). It is interesting
to note that the performance of the synchronous implementation stays the same
during sub-periods (b) and (c), wasting a lot of CPU cycles during sub-period (c).

It is clear that the distribution depicted in Figure 5.8 does not characterize the

168



workload of the processors during the whole week. The processor workload is
bursty, causing the execution times to be bursty as well. It would be interesting
to characterize precisely the burstiness of the workload. In [58, 34] it is shown that
the Ethernet traffic exhibits a self-similar behavior [36, 39]. In [43], it is shown
that the superposition of network traffics generated by Markov-modulated bursty
sources generates self-similar traffic. If the workload on the different processors is
modeled as such Markov-modulated sources, then it is possible that some elements
in our model could be seen as self-similar random processes, meaning that they
would be bursty on every time scale (or at least a great number of them as
an approximation). Such a study is outside the scope of this dissertation and
would require a much larger and detailed sample of measurements for a much
longer time period. Such extensive data-sets are used in [58, 34]. Furthermore,
precise measurements of the processor workloads fluctuations are needed in order
to construct the Markov-modulated random process. These considerations are left
for future work.

In what follows, we present results obtained with our model. We use the model
to characterize the performance of the different implementations for the two time
periods: first for the whole week, using the distribution shown in Figure 5.8;
and second,, a time period of 24 hours during which the distributed environment
exhibits more stable behavior, using the distribution shown in Figure 5.9. For

reasons explained earlier, we expect the model to be fairly inaccurate for the first

169



time period, whereas the second time period should lead to more satisfactory
results. In the following sections, we present and comment on some of the results
for both time periods. Many observations on the results are identical to the ones
we have already made on the simulation results in Section 5.1. We will only

describe here new phenomena not observed in the simulation.

5.2.3 The One Week Time Period
The Results

Figure 5.13(a) shows our characterization for the synchronous implementation
versus the experimental distribution of the execution time. Figure 5.13(b) shows
the same characterization when its convergence rate estimate is exactly equal
to the observed convergence rate. The experimental distribution, shown as a
bar diagram, is composed of three parts. Each of these parts corresponds to a
different typical mean execution time. Such typical behaviors were seen clearly
on Figure 5.10. Let us analyze each characterization level for those two figures.
The level 1 characterization on Figure 5.13(a) is around 119 seconds, whereas
the observed mean is 143 seconds. This is a an error of approximatively 17%.
This is explained by the burstiness of the workload distributions. Indeed, if the
distributed environment were behaving as assumed by our model, meaning that
the solution vector update times are i.i.d. with the distribution depicted in Fig-

ure 5.8, then the mean execution time for the parallel iterative algorithm would

170



@) (b)

1 1
I
I [ ] Empirical distrib. | ‘' [[C] Empirical distrib.
0.9 \ —— Empirical mean o9l \|— Empirical mean
11 -  Empirical stddev | = Empirical stddev
o — — Level 1 | — — Level 1
0.8 [ == Level 2 0.8 . == Level 2
o - Level 3 I - Level 3
| \ Norm. level 3 Norm. level 3
0.7 | | 0.7} | .
[
: |
0.6 - (. 0.6 | \
=z o = |
= = \
Eost | ————o-I Eosl ——
[=3 [=3 \
£ R £ ;K
0.4 \ 0.4 - !
I | |
\ \
I | |
0.3 \ 0.3 \
| | \
| \
oz ! f \ 0.2} ! \
o \ \
0.1+ / | i N 0.1} | . \
/ | . ~ N -
ol mhlinl e~ —m ‘ S 1 5 ‘
100 150 200 250 300 350 100 150 200 250 300 350
Execution time in seconds Execution time in seconds

Figure 5.13: Experiment vs. Characterization for the synchronous implementation

be smaller than the observed one. Due to the workload burstiness, the algorithm
can run extremely slowly for a large number of observations (see Figure 5.12(a)),
contributing to increasing the mean execution time over the one week time period.

The level 2 characterization, as seen on Figure 5.13(b) is most striking. It is
much smaller than the observed standard deviations, by a factor of 50! This was
also expected since level 2 is very sensitive to our assumption about the distributed
environment. Let us recall that level 2 is in fact the standard deviation of a bi-
variate Normal distribution of known covariance matrix (see Section 4.5.4). We
have already seen in Table 5.4 that some of the errors in level 2 characterizations
are due to too small a number of samples of the RV S(k). In other words, the

algorithm needs to go through “enough” phases for level 2 characterization to be

171



accurate. Furthermore, level 2 assumes that the samples of S(k) are independent
so that the Central Limit Theorem is applicable. In this experiment, due again to
the burstiness of the workloads, the samples of S(k) are also bursty and therefore
hardly independent.

Level 3 characterization seems to yield more satisfactory results than level 2.
The upper bound on the distribution suggested by the dash-dot curve in Fig-
ure 5.13(b) is non-symmetric. It suggests that the distribution should have a
heavier tail towards +oo, meaning that extreme observations of the execution
time correspond to slow executions. The experimental distribution appears to be
roughly under the level 3 characterization, but it is difficult to interpret this ob-
servation due to the shape of that distribution. Here, the normalized level 3 curve
(dotted line) does not fit the data as well as for the simulation in Section 5.1. It
seems difficult to really assess the accuracy of level 3 from this experiment because
of the extremely unstable distributed environment behavior throughout one week.

Figure 5.14 is similar to Figure 5.4. It shows the four characterizations of the
performance of the first asynchronous implementation for each convergence rate
estimate. Asin the simulation, the experimental mean is located between the level
1 characterizations for our “best case” and “average case” convergence rate esti-
mates. Figure 5.15 shows the adjusted characterization for the first asynchronous
implementation where the level 1 characterization is equal to the observed mean

execution time. As for the synchronous implementation, and for the same reasons,

172



Al ,\l H N
ool n h i -
' I M P I Empirical distrib.
1 1 | (Y _— Empirical mean
0.8 )\ P \ 10 — Empirical stddev
! P P I -— - = Level 1
| | | \ - - Level 2
0.7 - (Y [ L — Level 3
[ 1 \ [ | Norm. level 3
0.6 - [ .I | \ ! I /i ! \
g qustl cas’e A vérage\ case /b Worst \case Baulet '\
= 05k R I 1 L | 1 | \ |
80 | | g | T | ] | ; \
= | \ ﬂ \ / ﬂ ﬂ \.
0.4 | \
[ \ 1 \ | | \ 1 \
Il ! I | | I : I \
0.3+ N ) . \ .
;o I I : | \
\ \ /
I I I \ I \
ozl I v
. X | | | \ | \
K I VI I \ I .
oaf /- 1 I Y I \ I N
/0 I ]» I 2N I A\ I <
o _Ir—"lHﬁ z—H:—a\ﬂ—lm[_]f—[J—~~ L . Ll
100 150 200 250 300

Execution time in seconds

Figure 5.14: Experiment vs. Characterization for the first asynchronous implementation

Prohability

1~
\
| ] Empirical distrib.
0.9 \ _— Empirical mean
! Empirical stddev
I\ -—--- Level 1
o8- o - Level 2
- Level 3
o7k ! } Norm. level 3
. ' |
| \
0.6 -
| \
| \
L 1
0.5+ I , ’ - |
\
0.4
\
\
0.3 :
\
\
0.2+
\
\
0.1 N
I . [
o —— r—‘?r—vﬁm e ! )
50 150 200 250

Execution time in seconds

Figure 5.15: Adjusted curve for the first asynchronous implementation

173

300




level 2 characterization is much smaller than the observed standard deviation.
The level 3 characterization exhibits the same dissymmetry as for the synchronous
implementation. We can observe that the experimental distribution has a much
heavier tail than predicted by the level 3 characterization due again to the bursty
workloads of the processors.

The results for the second asynchronous implementation are not shown here.
They are fairly similar to the results for the first asynchronous implementation.
The only interesting observation has already been made in Section 5.1: the gaps
between the level 1 characterizations for the different convergence rate estimates

increase with asynchronicity.

Conclusion

The burstiness in workload for the one week time period is responsible for most
of the phenomena that differentiate this experiment from the simulation. Level 2
characterization is most sensitive to this violation of our fundamental assumptions
of stochastic independence. In the next section, we describe results obtained for

a 24 hour time period where the burstiness of the workload is less dramatic.

174



5.2.4 The 24 Hour Time Period
The Results

Figure 5.16 shows the execution times for the parallel iterative algorithm through-
out our 24 hour time period. The distributed environment exhibited a fairly stable
behavior similar to the one shown in Figure 5.12(c), leading to much smoother
measurements than the ones presented in Figure 5.10. Our model should yield
more accurate results than for the one week time period.

Figure 5.17(a) shows the results of our model for the synchronous implemen-
tation. Figure (b) is the usual adjusted curve where the level 1 characterization is
equal to the observed mean execution time. One can make three new observations
on these figures.

First, the level 1 characterization in Figure (a) is larger than the observed
mean. This can be explained by a comparison with the simulation results of
Section 5.1 and the experimental results for the one week time period. For the
simulation our independence assumption was completely satisfied and the level 1
was larger than the observed mean by 8%. For the one week time period, our
independence assumption was largely violated, and the level 1 characterization
was smaller than the observed mean by 16%. Here, the independence assumption
is not satisfied since the workload is still bursty (but not so bursty as for the entire

week). This explains why the level 1 characterization can be here larger (by 4%)

175



Execution time

Probability

170

—t Synch.
% 1st Asynch.
160 - o—o 2nd Asynch.
150 - A o N
! ¥4
140 -
130
120 -
110
100 1
20
80
Observation number
Figure 5.16: Measurements during 24 hours for the three implementations
@) (b)
1 | 1~
/I\ /I\v
0.9 - [ ] Empirical distrib. 0.9 - [ ] Empirical distrib.
—— Empirical mean —— Empirical mean
osl - Empirical stddev osl -— Empirical stddev
. - — Level 1 : - — Levell
== Level 2 == |Level 2
o7k - Level 3 0.7 - - Level 3
Norm. level 3 Norm. level 3
0.6 /. I \ 0.6+ | \‘
. | = . \
»l Iy \, 1 c;%; L 1
0.5 | | | 1 = o-5F ! '
I.|.__I_.|\ 5 /|.____.|\‘
0.4 I : 0.4 - \
/ \ /
| \ \
0.3 ! i o3 / - \
/ | \ / |
. - \
o2 / I : 0.2 / ' » \
/ | RN / - \
0.1 /A | | 0.1 71 o
- I 1 - .
o e — I ] ~ o e L

160 170 180 190 200 170 180 190 200
Execution time in seconds Execution time in seconds

Figure 5.17: Experiment vs. Characterization for the synchronous implementation

176



than the observed mean. This statement is valid because the iterative algorithm
is the same in all the simulations and experiments. Second, the level 2 error is
much smaller than for the one week time period (about 27%) for the adjusted
curve. This improvement is due to the decreased workload burstiness during this
shorter time period. Third, level 3 characterization seems to be fairly accurate.
The tail of the experimental distribution is a little heavier than suggested by level
3. Once again, this is to be attributed to workload burstiness and this explains
why the level 3 error is much less important than for the one week time period.
Figure 5.18 shows our model’s results for the first asynchronous implemen-
tation and can be analyzed exactly like Figure 5.14. Notice that the observed
mean execution time is closer to our level 1 characterization for the “best” case
convergence rate estimate than to the one for the “average” case estimate. This
differs from both the simulation and the one week time period. It is difficult to
quantify this behavior since it depends on the workload patterns of the processors
in the distributed environment. Figure 5.19 shows the adjusted characterization
for the first asynchronous implementation. One can observe that the error in level
2 characterization is here much smaller than for the one week time period (“only”
58%). As for the synchronous implementation, this is due to less extreme viola-
tions of our stochastic independence assumptions. Level 3 characterization is also

more accurate than for the one week time period for the same reason.

177



Probability

1 fl \
I
. . . I
ool \ : ,} ] Empirical distrib. i}
: I \ —— e
I I | Empirical mean Iy
i n || e Empirical stddev ¥
. |
o.8F I N Wil ———- Level 1 :
I M H == == Level 2 I
i 1 L Level 3 P!
0.7 I i e Norm. level 3 P!
i e [ ‘ P
oer Il Mt o I R
Best thse Ave‘réde case Wo,rslt &;ase Béluhe(t
o5 B A X
| Hi HA F-
0.4 - |- | | . | I
1 - | - [
L) by P o
031 [ P N
' ;o ;
Bk I For Pl
o2+ - nf | 1o N
| \ | | ! T |
S B [
: . ’ \ .
0.1+ | | | . | \
I o) N
o - I 2 | A PR | N I I I - L =
80 100 120 140 160 180 200 220 240 260 280

Execution time in seconds

Figure 5.18: Experiment vs. Characterization for the first asynchronous implementation

1
' - L
N [ ] Empirical distrib.
0.9 \ _— Empirical mean
NN ——  Empirical stddev
! \ -—-=--  lLevell
0.8 ! \ === Llevel2
I \ - - Level 3
07k | . Norm. level 3
! \
i
0.6F | !
\
z / \
B o5k 1 / ]
_8 . I 1 1
g F---1
0.4 ! \
! \
! \
0.3 / \
! \
0.2 ! \
! \
\
0.1 y N
- \
0 < LR —_ ,
80 85 90 95 100 105 110 115

Execution time in seconds

Figure 5.19: Adjusted curve for the first asynchronous implementation

178



However, the tails of the experimental distributions are still heavier than the ones
suggested by LDT. This is still due to violations of the stochastic independence

assumptions.

Conclusion

The experiments conducted over the 24 hour time period confirm some of our
interpretations of the simulation and of the experiment over one week. The results
given by our model for the 24 hour period can be considered between the ones for
the simulation and the one week experiment. The level 1 characterization was
“pessimistic” for the simulation, for the same reason that Baudet’s convergence
rate estimate is pessimistic: there is no precise control over the shape of the cost
function. By contrast, level 1 was “optimistic” for the one week time period
because our model is based on fundamental assumptions on the independence of
the solution vector update times. This assumption was violated since the processor
workloads exhibit bursty distributions. The level 2 characterization was useless
for the one week time period as it was several orders of magnitude smaller than
the observed standard deviations for the execution time. For the 24 hour time
period it yields much more acceptable results. However, it suffers from the same
errors identified during the simulation (see Section 5.1.6), in addition to the still
present (but reduced) workload burstiness. Finally, level 3 is not as accurate for

the 24 hour period as it was for the simulation. This is due to violations of the

179



independence assumption. As we have already noted, it is difficult to interpret

level 3 for the one week time period.

5.3 Conclusion

In this chapter we have presented three validations of the stochastic model pre-
sented in Chapter 3 and of the performance characterization described in Chap-
ter 4. First, in Section 5.1, we conducted a simulation which has the advantage of
matching our main assumptions exactly. The results were very conclusive and we
discussed their interpretations in detail. In particular, we identified the sources of
error in our performance characterizations. This simulation supports the hypoth-
esis that our stochastic approach is reasonable and that it produces useful results
when the necessary assumptions are satisfied.

In Section 5.2, we showed experimental results. The experiment was conducted
on a real network of workstations used by students at the University of Tennessee.
Three implementations( one synchronous and two asynchronous) of a parallel
iterative algorithm were run on this network during a time period of a week,
and then during an additional 24 hour period. The main differences between the
experiment and the simulation are explained by bursty processor workloads. This
burstiness is in violation of our stochastic independence assumption and impacts

on our performance characterization. The level 2 characterization seems to be

180



the most sensitive one. This impact was clear for the one week time period as
the distributed environment exhibits different general behaviors throughout the
week (see Figure 5.12). Our performance characterization gives very acceptable
results for the 24 hour time period as the distributed environment behaves more
consistently. Nevertheless, some workload burstiness can still be observed, leading
to heavier than expected distribution tails for the experimental execution time

distribution.

181



Chapter 6

Conclusion

The research described in this document contributes theoretical tools, techniques,
and interpretations in quantitative performance analysis of different parallel im-
plementations of some iterative algorithms. A broad class of algorithms has been
considered: those that can be reduced to solving a fixed point problem for a linear
or non-linear operator.

In Chapter 2, we described popular strategies that have been used for im-
plementing a parallel version of these iterative algorithms. The two schemes of
interest are the synchronous implementation and the partially asynchronous im-
plementation. These schemes have been studied in the past, and several theoretical
results concerning their conditions for convergence and their rates of convergence
have become available. However, these results are still a step removed from a

performance analysis of the algorithms in a given distributed environment. As

182



explained in Section 2.4, stochastic models appear to be natural tools to use in
conjunction with the convergence results to extend the study of these iterative
algorithms. We examined some earlier stochastic approaches to such a study and
illuminated their shortcomings.

In Chapter 3, we showed how to produce a stochastic model for the distributed
environment that can be easily used to analyze the execution of a parallel itera-
tive algorithm in that environment. Our model is based on an underlying Markov
chain. This Markov chain, the wavefront, has been clearly identified and described
in Section 3.5: it depends on the distributed environment and on the implementa-
tion of the algorithm, and can be easily computed. The wavefront can be exploited
to obtain a variety of results concerning the behavior of the algorithm implemen-
tation in the distributed environment.

In Chapter 4, we first presented three examples of actual wavefront computa-
tions and made several remarks on its structure and properties. We then proposed
three new estimates of the convergence rate of the algorithm. These new estimates
are stochastic extensions of Baudet’s estimate [5]. By contrast with Baudet’s es-
timate, our estimates take into account the random behavior of the algorithm’s
execution in a distributed environment. Baudet’s estimate has been replaced by
our own “worst case” convergence rate estimates, and we introduced “average”
and “best” case estimates.

Next, we then characterized the speed of the implementation in the distributed

183



environment in terms of the number of iterations it performs per time unit. This
number is computed thanks to the wavefront Markov chain. Large Deviation
Theory appeared as a natural tool to perform a more in-depth analysis of the im-
plementation speed. Basic concepts of this theory were given in Section 4.4 along
with examples in connection with our stochastic model. Finally, we summarized
the results of Chapter 3 in Section 4.5 and thereby extracted our three level perfor-
mance characterization. Level 1 is a characterization of the mean execution time
of an implementation of an iterative algorithm in a given environment. Level 2
is a characterization of the standard deviation of that execution time. It is based
on a bi-variate Normal approximation to the sample average of a random vector.
Level 3, thanks to Large Deviation Theory, characterizes the extreme behaviors
of the execution time and, as such, proposes estimates of the tail of the execution
time distribution.

The next step was to validate our performance model. This was done in
Chapter 5 in the form of simulations and experiments. Section 5.1 described
a simulation and obtained conclusive results about the validity of our stochas-
tic performance modeling. This simulation was designed to comply with all our
model requirements, especially stochastic independence assumptions for the so-
lution vector update times. The accuracy of each level of characterization was
studied and the sources of errors were identified. We also presented experimental

results obtained for a real implementation of an iterative algorithm on a real dis-

184



tributed system at the University of Tennessee. Two separate experiments were
conducted for two different time periods: (i) one week and (ii) 24 hours. The
most instructive observation to draw from these experiments is that our model is
sensitive to the processor workload burstiness because it violates the stochastic
independence assumption. This is very observable for the one week time period
where the algorithm execution times exhibit various behaviors throughout the
week (see Section 5.2.2). The level 2 characterization is the most sensitive to this
burstiness for reasons explained in Sections 5.1.5 and 5.2.3. The distributed envi-
ronment behaves much more consistently during our 24 hour time period, and our
performance characterization gives more accurate results than for the one week
time period. Intuitively, the results for the 24 our time period are between the

simulation results and the one week results.

6.1 Contribution of this Dissertation

Parallelizing iterative algorithms for the solution of large or complex optimization
problems is a crucial issue. Indeed, the amount of computation required to solve
such problems can be prohibitive for a sequential implementation, especially in
non-linear cases. We examined different popular parallelization strategies as well
as the corresponding theoretical results available in the literature and came to the

conclusion that there is a gap between those results and what the end-user needs

185



to know about the execution of his parallel iterative algorithm. This dissertation
showed that this gap can be filled using stochastic models that take into account
the distributed environment used to run the algorithm. Such models have been
developed and used to obtain a variety of performance characterizations that are
directly meaningful to the end-user. Our results can be used to make informed
choices about what combinations of distributed environment and implementation

style should lead to the shortest execution times.

6.2 Future Research Directions

There are multiple ways in which our research can be further expanded and im-
proved. Some important research directions are suggested here.

In Chapter 4, we have given examples of “wavefront” computations. The study
of the structure and properties of the wavefront transition matrix, Py, seems to be
very interesting and should lead to general results concerning the way processors
lose and recover synchronization throughout the execution of the algorithm. We
have given a few guidelines for such a study, but did not pursue it further as Py
is systematically computed by the implementation of our model.

Throughout Chapter 4, we have used several times an approximation to replace
conditional probabilities by unconditional ones. The conditional distribution of a

RV, A, conditioned on the observed state of the wavefront Markov chain can be re-

186



placed by an unconditional distribution, as seen in Section 4.2.2 for instance. This
approximation is only valid for long-run observations of A as it uses the steady
state distribution of the wavefront Markov chain. However, it is possible to use
more sophisticated approximation techniques that should lead to better results.
For instance, one can use one level of Hidden Markov Model HMM) [23, 44] to ap-
proximate the RV A as the state of a new Markov chain. This approximation still
uses the steady state distribution of the wavefront, but includes more information
about the evolution of A than a simple distribution function. In fact, there is no
limit to the number of levels that can be used and each additional level should
provide a more accurate description of A, still as a Markov chain. Such Markov
chains can be generated for all the RVs that we have introduced at the end of
Chapter 3 and used in the computations that we have described in Chapter 4.
In Section 4.2, we have described how we used Baudet’s convergence rate
estimate to generate three new estimates that take into account the behavior of
the distributed environment. Our “worst case” estimate is very easy to compute
and is a clear extension of Baudet’s work. The computation of our other two
estimates is an attempt at giving a meaning to the limit lim inf;_, . (k;/t) where k;
is a random variable. The experience proved that those two estimates are useful
in analyzing the behavior of the parallel iterative algorithm. However, there are
certainly many ways of improving the estimation of the algorithm convergence

rate. Such improvement will require a better understanding of the behavior of the

187



RV k; and of its impact on the algorithm execution.

Finally, and maybe most importantly, our work can be extended to take into
account the bursty workload patterns described in Chapter 5. In Section 5.2.2
we showed experimental results obtained over a one week time period. Those
results suggest that the solution vector update times are not i.i.d., violating one
of our model’s assumptions. Better suited for the update times would be the use
of Markov-modulated random processes [41] rather than simple i.i.d. observations
of a single RV. A popular and simple Markov-modulated process is one driven by
a two-state Markov chain and is often called an ON/OFF or zero/one source [43,
22, 45, 31]. Markov-modulated random processes are generally used to model
bursty behaviors. The idea would then be to model the processor workloads
(and thereby the solution vector update times) as bursty sources. This would
certainly lead to more accurate results than the current version of our model,
but will require many changes to the performance characterization described and
derived in Chapter 4. Furthermore, the statistical inference necessary to generate
suitable Markov-modulated processes for a given distributed environment will
be much more complicated than the one we have performed to generate simple
distributions. One possibility is to limit the bursty sources to be ON/OFF, but
this hardly seems a good choice since several processes can contribute to increase

the load of one processor simultaneously. Computing the appropriate number

188



of states of the underlying Markov chain for each bursty source, as well as its

transition probabilities, will be one of the challenges of this new approach.

189



Bibliography

190



Bibliography

[1] M. Abdelaziz and 1. Stavrakakis. Some Optimal Traffic Regulation Schemes
for ATM Networks: A Markov Decision Approach. [EEFE Transactions on

Networking, 2(5):508-519, October 1994.

[2] V. Adve and M. Vernon. The influence of Random Delays on Parallel Ex-
ecution Times. In Proceedings of the 1993 ACM Sigmetrics Conference on

Measurement and Modeling of Computer Systems, pages 61-73, May 1993.

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen. LAPACK Users” Guide, Second Fdition. STAM, Philadelphia,

PA, 1995.
[4] R. Ash. Information Theory. Dover Publications, Mineola, N.Y., 1990.

[5] G. Baudet. Asynchronous Iterative Methods for Multiprocessors. Journal of

the Association for Computing Machinery, 25:226-244, April 1978.

191



[6]

[11]

[12]

[13]

D. El Baz. M-functions and parallel asynchronous algorithms. SIAM Journal

of Numerical Analysis, 27:136—-140, 1990.

Didier El Baz, Pierre Spiteri, Jean-Claude Miellou, and Didier Gazen. Asyn-
chronous Iterative Algorithms with Flexible Communication for Nonlinear
Network Flow Problems. Journal of Parallel and distributed Computing, 38:1—

15, 1996.

D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Englewood

Cliffs, NJ, second edition, 1992.

D. Bertsekas and J. Tsitsiklis.  Parallel and Distributed Computation.

Prentice-Hall, Englewood Cliffs, NJ, 1989.

Dimitri P. Bertsekas. Distributed asynchronous computation of fixed point.

Math. Programming, 27:107-120, 1983.

Dimitri P. Bertsekas and John N. Tsitsiklis. Convergence rate and termina-
tion of asynchronous iterative algorithms. In Proceedings of the Int. Conf. on

Supercomputing, pages 461-470, 1989.

A. Bharucha-Reid. FElements of the Theory of Markov Processes and their

Applications. Dover Publications, Mineola, N.Y., 1997.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, 1. Dhillon,

J. Dongarra, 5. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,

192



[14]

[15]

[16]

[18]

[19]

[20]

and R. C. Whaley. ScalLAPACK Users’ Guide. SIAM, Philadelphia, PA,

1997.

L. Brochard, J.-P. Prost, and F. Fauire. Synchronization and load unbalance
effects of parallel iterative algorithms. In Proceedings of the International

Conference on Parallel Processing (ICPP), volume 111, pages 153-160, 1989.

James A. Buckllew. Large Deviation Techniques in Decision, Simulation,

and FEstimation. Wiley-Interscience, New York, NY, 1990.

D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and Appli-

cations, 2:199-222, 1969.

H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis

based on the sum of observations. Ann. Math. Statist., 23:493-507, 1952.

D. Comer and D. Stevens. Internetworking with TCP/IP. Prentice-Hall,

Englewood Cliffs, NJ, 1994.

H. Cramer. Sur un nouveau théoreme-limite de la théorie des probabilités.

In Hermann, editor, Colloque consacré a la théorie des probabilités, volume

736, pages 5-23, Paris, 1938.

David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken.

LogP: Towards a Realistic Model of Parallel Computation. In Proceedings of

193



[21]

[22]

23]

[24]

[25]

[26]

the Fourth ACM Symposium on Principles and Practice of Parallel Program-

ming, May 1993.

David E. Culler, Kim Keeton, Cedric Krumbein, Lok T. Liu, Alan Mainwar-
ing, Richard P. Martin, Kristin Wright, and Chad Yoshikawa. Generic Active
Message Interface Specification. Technical report, Department of Computer

Science, University of California, Berkeley, November 1994.

N. Duffield, J. Lewis, N. O’Connel, R. Russell, and F. Toomey. Entropy of
ATM Traffic Streams: A Tool for Estimating QoS Parameters. IEFE Journal

on Selected Areas in Communications, 13(6):981-989, August 1995.

Robert J. Elliott, Lakhdar Aggoun, and John B. Moore. Hidden Markov

Models. Springer-Verlag, New York, NY, 1995.

A. Frommer. On asynchronous iterations in partially ordered spaces. Numer-

ical Funct. Anal. Optimization, 12(3 & 4):315-325, 1991.

A. Greenbaum. Synchronization costs on multiprocessors. Parallel Comput-

ing, 10:3-14, 1989.

P. Heidelberger. Fast Simulation of Rare Events in Queueing and Reliability
Models. ACM transactions on Modeling and Computer Simulation, 5(1):43—

85, 1995.

194



[27] N. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadel-

phia, PA, 1996.

[28] The Math Works Inc. MATLAB Reference Guide. The Math Works Inc.,

1992.

[29] S. Junejas. Efficient Rare Fvent Simulation of Stochastic Systems. PhD
thesis, Dept. of Operations Research, Stanford University, Palo Alto, CA,

1993.

[30] S. Karlin and H. Taylor. A First Course in Stochastic Processes. Academic

Press, New York, NY, second edition, 1975.

[31] K. Kawahara, Y. Oie, M. Murata, and H. Miyahara. Performance Analysis of
Reactive Congestion Control for ATM Networks. [EEFE Journal on Selected

Areas in Communications, 13(4):651-661, May 1995.

[32] E.S. Keeping. Introduction to Statistical Inference. Dover Publications, Mi-

neola, N.Y., 1995.

[33] C. P. Kruskal and A. Weiss. Allocating independent subtasks on parallel pro-
cessors. In Proceedings of the International Conference on Parallel Processing

(ICPP), pages 236-240, 1984.

195



[34]

[35]

[36]

37]

38]

39]

[40]

W. Leland, M. Raqqu, and W. Willinger D. Wilson. On the Self-Similar
Nature of Ethernet traffic. IEEE/ACM Transactions on Networking, 2(1):1-

15, Feb. 1994.

Boris Lubachevsky and Debasis Mitra. Chaotic Asynchronous Algorithm for
Computing the Fixed Point of a Nonnegative Matrix of Unit Spectral Radius.

Journal of the ACM, 33(1):130-150, January 1986.

Benoit B. Mandelbrot and Murad S. Taqqu. Robust R/S Analysis of Long-run
serial Correlation. In Proceedings of the 42nd Session of the IS, volume 48,

pages 69-99, 1979.

J.C. Miellou. Algorithmes de relaxation a retards. Revue d’Automatique,

Informatique et Recherche Opérationnelle, 9:55-82, 1970.

J.C. Miellou. Itérations chaotiques a retards. Comptes Rendus de ["Acad,

Sci. Paris, 278:957-960, 1974.

llkka Norros. A storage model with self-similar input. Queuing systems,

16:387-396, 1994.

Soeren P. Olesen. Parallel Computation for Positron Emission FEmission
Tomography with Reduced Processor Communications. PhD thesis, Dept. of

Computer Science, University of Tennessee, Knoxville, TN, 1996.

196



[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

R. Onvural. Asynchronous Transter Mode Networks, Performance Issues.

Artech House, Inc., Norwood, MA | second edition, 1995.

J.M. Ortega and W.C. Rheinboldt. lterative Solution of Nonlinear Fquations

in Several Variables. Academic Press, New York, NY, 1970.

P. Pruthi and A. Erramilli. Heavy-Tailed ON/OFF Source Behavior and

Self-Similar Traffic. Unknown IEFEE Journal, 2:445-450, 1995.

Lawrence R. Rabiner. Mathematidcal Foundations of Hidden Markov Models.
Recent Advances in Speech Understanding and Dialog Systems, F46:183-205,

1988. NATO ASI Series.

J-F. Ren, J. Mark, and J. Wong. End-to-FEnd Performance in ATM Networks.

Unknown IEEE Journal, pages 996-1002, 1994.

John T. Robinson. Some Analysis Techniques for Asynchronous Multiproces-
sor Algorithms. IEEE Transactions on Software Engineering, SE-5(1):24-31,

January 1979.

[LN. Sanov. On the probability of large deviations of random variables. Se-
lected Translations in Mathematical Statistics and Probability I, pages 213—

244, 1961.

Adam Shwartz and Alan Weiss. Large Deviation for Performance Analysis.

Chapman & Hall, London, UK, 1995.

197



[49]

[50]

[51]

[52]

[53]

[55]

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI : The

Complete Reference. The MIT Press, Cambridge, MA, 1996.

W. Stalling. Local and Metropolitan Area Networks. Macmillan Publishing

Company, New York, NY, fourth edition, 1993.

El Tarazi. Some convergence results for asynchronous algorithms. Numerical

Mathematics, 39:325-340, 1982.

J. N. Tsitsiklis and G.D. Stamoulis. On the average communication complex-
ity of asynchronous distributed algorithms. Technical Report LIDS-P-1986,

Laboratory for Information and Decision Systems, 1990.

A. Uresin and M. Dubois. Sufficient conditions for the convergence of asyn-
chronous distributed algorithms. Parallel Computing, 10:83-92, November

1989.

A. Uresin and M. Dubois. Parallel asynchronous algorithms for discrete data.

Journal of the ACM, 37(3):588-606, 1990.

Aydin Uresin and Michel Dubois. Effects of Asynchronism on the Conver-
gence Rate of Iter ative Algorithms. Journal of Parallel and Distributed

Computing, 34:66-81, 1996.

198



[56]

[57]

[58]

[59]

Thorsten von FEicken, Veena Avula, Anindya Basu, and Vineet Buch. Low-
Latency Communication over ATM Networks using Active Messages. In Pro-

ceedings of Hot Interconnects I, August 1994.

Alan Weiss. An Introduction to Large Deviations for Communication Net-
work. [EEE Journal on Selected Areas in Communications, 13(6):938-952,

1995.

W. Willinger, M. Raqqu, W. Leland, and D. Wilson. Self-Similarity in High-
Speed Packet Traffic: Analysis and Modeling of Ethernet Traffic Measure-

ments. Statistical Seience, 10(1):67-85, 1995.

M. Woodward. Communication and Computer Networks. TEEE Computer

Society Press, Los Alamitos, CA, 1994.

199



Vita

Henri Casanova was born in Marseille, France on December 19, 1970. He
received his high-school education from College FEdgard Quinet and the Lycée
Montgrand in Marseille, France. He graduated in 1988. From 1988 until 1990 he
attended the classes préparatoire at the Lycée Thiers in Marseille, France. In June
1990 he entered the Fcole Nationale Supérieure d’Electrotechnique, d’Electronique,
d’Informatique et d’Hydraulique de Toulouse (ENSEEIHT), Toulouse, France. In
1993 he received the Applied Mathematics and Computer Science Engineer degree
from the ENSEEIHT and the Diplome d’Etudes Approfondies in Parallel Archi-
tectures and Software Engineering from the Université Paul Sabatier, Toulouse,
France. In January 1995, he entered the PhD program in Computer Science at
the University of Tennessee, Knoxville.

In 1992-1993 he was a trainee at the Institut de Recherche en Informatique de
Toulouse (IRIT), in Toulouse, France. From November 1993 until November 1994
he did his military service working from the French Ministry of Defense (DGA)
as Advisor for the Computer Science division of the DPAG. From January 1995
until 1998, he worked as a Graduate Research Assistant in the Computer Science
Department of the University of Tennessee, Knoxville. He was awarded the Doctor
of Philosophy degree in Computer Science from the University of Tennessee in May

of 1998.

200



