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AbstractThis research aims at creating a framework to analyze the performance ofiterative algorithms in distributed environments. The parallelization of certainiterative algorithms is indeed a crucial issue for the e�cient solution of largeor complex optimization problems. Diverse implementation techniques for suchparallelizations have become popular. They are examined here with a view to un-derstanding their impact on the algorithm behavior in a distributed environment.Several theoretical results concerning the su�cient conditions for, and speed of,convergence for parallel iterative algorithms are available. However, there is a gapbetween those results and what is relevant to the user at the application level. Inparticular, an estimate of the algorithm execution time is often desirable.The performance characterization presented in this dissertation follows a stochas-tic approach partially based on a Markov process. It addresses di�erent character-istics of the algorithmic execution time such as mean values, standard deviationsand rare events. It is shown how this approach can �ll the aforementioned gapthanks to stochastic models, which take into account the distributed environmentused to run the algorithm. We concentrate on distributed-memory systems. Theresults of this research enable the end-user to make informed choices about whatcombinations of distributed environment and implementation style should lead toappropriate execution time distributions.v
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Chapter 1IntroductionIterative algorithms are widely used to obtain solutions to a variety of problemsthat arise in di�erent areas of science and engineering. Examples include solvingsystems of linear or non-linear equations that arise in modeling, simulation, andengineering design problems; and optimization problems, including linear pro-gramming, that arise in engineering design, economics modeling, and operationsresearch applications.A broad class of iterative algorithms aims at �nding a �xed point of a givenoperator. Some of the well-know numerical methods in that class are Jacobi andGauss-Seidel algorithms, overrelaxation methods (JOR and SOR), Gradient andScaled Gradient algorithms, and Newton and Approximate Newton methods. Theexample problems studied in this dissertation are all non-linear methods, but ourresults are applicable to linear cases as well. We emphasize non-linear problems1



because they usually lead to larger amounts of numerical computation than linearproblems of comparable size. In many iterative methods, if the operator is non-linear, the gradient and sometimes the Hessian of the operator, if not knownanalytically, must be approximated at each iteration usually by approximatingpartial derivatives in each dimension. Such approximations are usually costly,especially when no preliminary knowledge of the nature of the operator is available.For problems with large numbers of dimensions or extensive numerical compu-tation for each component at each iteration (e.g. Hessian computation), it is nat-ural to consider a parallel implementation of the iterative algorithm. The parallelimplementations that have been investigated in the past usually fall into two cate-gories: synchronous implementations and asynchronous implementations. Severaltypes of distributed environment can be used to run such implementations. Onemight consider shared-memory or distributed-memory super-computers. However,the use of networks of workstations as distributed-memory super-computers hasbecome popular in the last years due to their increased versatility and reducedcost. In this research, we are primarily interested in distributed-memory environ-ments as they seem to be most widely used. It becomes necessary to understandthe behavior of parallel implementations in such environments and, ideally, predicttheir performance. This can only be done by taking into account the speci�cs ofthe distributed environment. Such a study should allow users to choose the moste�cient implementation style for their purposes depending on the computational2



facilities they can access and may also provide some guidance in the design ofdistributed systems.1.1 MotivationAnalyzing the behavior and thus the performance of a parallelized iterative algo-rithm running in a distributed environment is not an easy task. The environmentimposes its own constraints on the execution. The users may not have frequent ac-cess to a dedicated system to run their applications. In such a case, the workloadsof the processors and the network contention depend on the load of the systemgenerated by other users in addition to the iterative algorithm execution itself.Therefore, the processor workloads are usually disparate and vary over time ac-cording to di�erent patterns. Furthermore, the amount of computation performedby a processor to update a component of the solution vector may not be known apriori: generally, it depends on the shape of the operator around the current so-lution vector. As we have already mentioned, di�erent versions of parallelizationhave been studied for such iterative algorithms. In some cases, convergence resultsindirectly support a quantitative assessment of the parallel algorithm convergencerate. However, almost all these results are purely theoretical and do not take intoaccount the nature of the distributed environment itself.For instance, a technique �rst introduced as Chaotic Iterations (an asyn-3



chronous implementation) partially addresses the distributed nature of the execu-tion environment. Indeed, one of the purposes of chaotic iterations is to producean implementation more adaptive to the uctuations that can take place in thedistributed environment. But even in cases that identify su�cient conditions forthis method to converge, there has been little work concerned with measuring theimprovement an asynchronous implementation o�ers over a synchronous parallelimplementation, in a given distributed environment. The only commonly availableresult for a chaotic iteration implementation is a lower bound on its theoreticalrate of convergence. It is di�cult for the user to relate this measure of convergenceto the actual performance he can expect for his implementation on his distributedenvironment in terms of execution time for instance.Due to non-determinism (randomness) both in communication and in com-putation, stochastic methods appear to be a natural way to move towards morecomplex and relevant models. These new models should capture more detailsabout the distributed environment itself in terms of computation and commu-nication speeds and patterns, and their impact on the user's implementation.Few attempts at using stochastic models to analyze the performance and behav-ior of parallel iterative algorithms appear in the literature. Indeed, stochasticapproaches seem to lead to complicated models which present di�culties in ob-taining useful performance characterizations. Most di�culties come from tryingto properly model the distributed environment in connection with the algorithm.4



Hence, most stochastic approaches in the past used very stringent assumptions andare therefore limited in their domain of application. If some reasonable assump-tions could lead to tractable models, then those models should provide insightinto the performance analysis of parallel iterative algorithms in given distributedenvironments. Furthermore, a reasonable model of the distributed environmentwill provide performance results directly useful to the user for his application,rather than considerations on the algorithm's theoretical convergence rate thathave no concrete relevance to that application.1.2 Problem StatementThis dissertation examines di�erent implementation techniques for parallelizationsof certain iterative algorithms in a view to characterize their performance in adistributed environment. The performance characterization, in terms of executiontimes, is based on a stochastic approach and addresses di�erent properties of thisperformance such as mean values, standard deviations and rare events.1.3 Organization of this DissertationIn Chapter 2, we precisely de�ne the class of iterative algorithms that we considerin this research. We then describe in detail the two types of parallel implementa-tion that we will study: (i) synchronous and (ii) asynchronous. Those implemen-5



tations have been the object of extensive theoretical study in the past, especiallyconcerning su�cient conditions for their convergence and their convergence rates.We review these results and select the ones that we will extend for this research.Finally, we present related works on the stochastic modeling of parallel iterativealgorithms. We thereby not only motivate the use of a stochastic approach butalso highlight the existing shortcomings that we plan to address.Chapter 3 de�nes application-level modeling and outlines a model for the dis-tributed environment and for the iterative algorithm. Once those preliminaryfoundations have been set, we give a more formal and rigorous de�nition of thecomplete model encompassing both the environment and the algorithm. Usingthese de�nitions as well as some reasonable assumptions, it is possible to extracta Markov chain as the underlying random process in our model. One can thende�ne several random variables (RV) of interest and the distributions of those RVscan be derived from the Markov chain.At this point, our stochastic model is complete and ready to be exploited. Thisis done in Chapter 4 which starts with examples of Markov chain computations.These examples are used to obtain more insight into the behavior of a parallelimplementation of an iterative algorithm. We then propose three new estimatesfor the algorithm convergence rate. These estimates are stochastic extensionsof existing results and take into account the distributed environment. The im-plementation speed in terms of number of iterations performed per time unit is6



also de�ned and characterized. We introduce Large Deviation Theory and showhow it can be used to obtain in-depth details about the extreme behaviors of theimplementations. We conclude the chapter with a description of our entire per-formance characterization in terms of execution time. It consists of three levels,each of which provides information about di�erent features of the execution timedistribution.The last step is to validate our approach with experimental results. This isdone in Chapter 5. First, we conduct a simulation and compare its results toour performance characterization. Second, we conduct experiments for a realimplementation of an iterative algorithm on a real distributed environment. Weobtain di�erent experimental results for di�erent time periods. Those results arecompared to the simulation and to our performance characterization.Chapter 6 concludes this dissertation by summarizing our results, explaininghow this work contributes to the �eld of performance modeling for parallel iterativealgorithms, and suggesting numerous future research directions.
7



Chapter 2Parallel Iterative AlgorithmsIn this chapter, we give some background material about iterative algorithmsand we discuss possible parallel implementations. We then describe convergenceresults available for those implementations. Finally, we explain our motivationsfor taking a stochastic approach for analyzing those algorithms and develop suchan approach.2.1 The AlgorithmThis section contains some basic concepts of the algorithms we are considering,an example, and discussion of some implementation details.8



2.1.1 BasicsIn this research, we focus on iterative algorithms in which an operator is appliedto a set of data (usually a vector) repetitively until some convergence criteria aremet. If the set of data constructed by the algorithm is a sequence of vectors x(t)in Rm, then the algorithm can be written as8>>><>>>:x(0) 2 Rmx(t+ 1) = Op(x(t)) for all t 2 N: (2.1.1)If the algorithm converges, the sequence x(t) converges to a �xed point of operatorOp. Much work has been devoted in the past to �nding useful operators for somespeci�c problems or �nding operators that provide the highest convergence speeds.Iterative algorithms are used in particular for two purposes:� Solving linear systems of equations,� Minimizing a continuously di�erentiable cost function.In fact, solving a linear system of equations can be seen as a minimization problem,i.e., the solution to Ax = b in Rm also minimizes the cost function F : Rm 7! Rde�ned as F(x) = 12x0Ax � x0b. The algorithm converges for symmetric andpositive de�nite matrices.The names used in the literature for iterative methods vary from author to9



author, and usually depend on whether the operator is linear or non-linear. Weuse the terminology of [9] for iterative methods. There is a long history of iterativemethods for solving linear systems [27](p. 326). The earliest methods are theJacobi and Gauss-Seidel methods. The Gauss-Seidel method is a variation on theJacobi method where the evaluation of the operator at each step uses componentsof the previously computed solution vector during that step. Variations of thosemethods are obtained by using a relaxation parameter and are respectively calledthe Jacobi Overrelaxation (JOR) and Successive Overrelaxation (SOR) methods.Those methods have immediate non-linear counterparts. Another method forsolving linear systems of equations is sometimes called Richardson's method; itsnon-linear counterpart is called the Gradient algorithm or the Steepest Descentalgorithm and can be generalized into the Scaled Gradient method. Other non-linear algorithms include Newton and Approximate Newton methods (the linearversion of which converges in one step). It can be shown that for non-quadraticproblems, the Newton methods converge much faster than the other methods wehave introduced (see [42] for instance). All those methods can be used in a Jacobior a Gauss-Seidel fashion.2.1.2 An ExampleIn order to better understand what really happens when an iterative algorithmis implemented, we consider the following example. Say we want to �nd the10



minimum of a cost function F : R2 7! R. To do so, we can use the Gradientalgorithm which can be written as:8>>><>>>:x(0) 2 Rmx(t+ 1) = x(t)� rF(x(t)) where  2 R:The convergence of this algorithm is insured under certain conditions. First, thegradient of the function to be minimized must be Lipschitz continuous in somesubset D of Rm. That is, krF(x) � rF(y)k � Lkx � yk for all x and y in Dwhere L is a real constant and k:k denotes a norm of Rm. Second, the step-size must be less than some constant that depends on the Lipschitz constant, L, ofthe gradient of the cost function. Details on those conditions can be found forinstance in [9].Figure 2.1 shows what happens during one step of the algorithm (this �gure isinspired by the ones found in many reference manuals). On the �gure, the curvesrepresent sets of points where the value of F is constant. The minimum of F isattained for a point located inside the innermost curve. At the current iterationstep, the solution vector lies on the outermost curve, meaning that F(x(t)) = 3according to the �gure. To update this solution vector, the gradient of the functionat point x(t) is computed, scaled by the factor  and subtracted from x(t). Thisis shown on the �gure with the thick arrow that goes from x(t) to x(t+ 1). This11



x(t)

x(t+1)

F(x) = 3

F(x) = 2

F(x) = 1
F(x(t))Figure 2.1: Gradient algorithm exampleprocess is repeated until a convergence criterion is met. Usually such a criterionspeci�es that the distance between successive solution vectors is smaller thansome �. Incidentally, this �gure shows that the descent direction of the Gradientalgorithm (the steepest) is not the shortest path to achieve convergence in thiscase. The descent direction shown with the dotted arrow, for instance, would leadto a faster convergence. These situations have motivated other methods such asthe Scaled Gradient algorithm.For each iteration, the algorithm requires an evaluation of the gradientrF(x(t)).If this gradient is not known directly or analytically, then the algorithmmust com-pute an approximation. Furthermore, some classic iterative methods require theknowledge of the Hessian matrix for each iteration. For instance, the Newtoniteration can be written as:x(t+ 1) = x(t)� [r2F(x(t))]�1rF(x(t)):12



Not only is the Hessian needed at each iteration, but it must be inverted. TheApproximate Newton method does not require the actual matrix inversion, butcan be implemented instead thank to another iterative algorithm at each iteration.This second algorithm is used to solve a linear system; it is, however, executedonly for a few steps.The actual details of the numerical methods in use are not the central focus ofthis dissertation. The general equation 2.1.1 will be su�cient for our needs mostof the time, and speci�c methods will be mentioned only for the sake of practicalexamples.2.2 Parallel Implementations2.2.1 MotivationIterative algorithms can have prohibitive execution times when implemented se-quentially. First, the size of the problem inuences the amount of computation tobe performed because every component of the solution vector is updated at eachiteration. Second, some particular iterative methods have inherently high timecomplexity at each step. For instance the Newton method for non-linear problemsinvolves computation and inversion of a Hessian matrix at each iteration. Eventhough this method leads to fast convergence in terms of number of iterations, itmight be too computationally intensive for medium or large size problems, when13



implemented sequentially. Many of today's challenging scienti�c applications leadto very large optimization problems. Examples include Positron Emission Tomog-raphy (PET) reconstruction for medical imaging [40], or non-linear network owproblems that occur in electrical networks, communication networks and �nancialmodels [7]. In order to satisfy such computational requirements, it seems naturalto consider parallel implementations of iterative algorithms.We recall (see Section 1.1) that we are mainly considering parallel implemen-tations in distributed memory environments in this research. In the two followingsections we describe the two main implementation strategies: synchronism andasynchronism.2.2.2 SchedulingWhen implementing a parallel version of an iterative algorithm, perhaps the �rstquestion concerns scheduling. The computation, in our case updating the compo-nents of the solution vector, has to be distributed among the processors contribut-ing to the algorithm. One can usually distinguish two main scheduling strategies.In a static scheduling strategy, a processor always updates the same componentsof the solution vector and typically is the only one to update those components.In a dynamic scheduling strategy, processors can update any (or at least di�er-ent) components of the solution vector at di�erent iterations. In this research, wechose to consider only static scheduling. This choice is motivated by the schedul-14



ing analysis presented in [55] where it is shown that a static scheduling strategyis almost always a little more e�cient than any dynamic ones for parallel iter-ative algorithms. Since dynamic scheduling is more di�cult to implement thanstatic scheduling, the choice seems clear. Furthermore, the main focus of [55] isthe case of shared-memory environments which are usually the best ones for dy-namic scheduling; hence we consider static scheduling since we are concentratingon distributed memory settings.2.2.3 The Synchronous CaseSynchronous implementations of iterative algorithms are generalizations of se-quential implementations. As such, their convergence properties are well known.Often, it is rather straightforward to convert a sequential implementation of agiven algorithm into a synchronous parallel implementation.The PrincipleLet us assume that the distributed environment used to execute the algorithmconsists of p processors and that each processor is the only one that can accessits local memory. The processors, however, can communicate via a network. Arigorous description of such a distributed environment is given in Section 3.2.The algorithm operates on a vector x(t) of Rm according to equations 2.1.1. Eachprocessor is in charge of updating a piece of x(t), that is some subset of the15



components of this vector. In general it is assumed that the components assignedto di�erent processors are pairwise disjoint. For instance, if x(t) 2 R9 and if p = 3,then each processor could be in charged of updating three components of x(t).Figure 2.2 depicts the execution of a synchronous implementation running on 3processors where the solution vector is segmented in three pieces. Each processorstarts each iteration with the entire current solution vector in its memory. Then,each processor updates its piece of x(t) by applying part of the operator Op tothe entire vector. This is symbolized by the thick arrows on the �gure. To keepthe �gure readable, only the �rst piece of the solution vector, the one assigned toprocessor 1, is entirely described. It is shown in shaded grey on the �gure andis labeled by the iteration number. After each processor has updated its pieceof the solution vector, the processors have an inconsistent version of that vectorin their memory. For instance, as shown in the �gure, processor 1 possesses the�rst piece of x(t + 1) but processors 2 and 3 still possess the �rst piece of x(t).To return to a coherent state, the processors perform an all-to-all communicationand exchange their up-to-date pieces of the solution vector. This is shown on the�gure by thin arrows. Once the all-to-all communication is completed, all theprocessor have the same vector x(t+ 1) in memory and can perform the updatesof the next iteration in a similar way.More formally, if the components of the solution vector x(t) are denoted byxi(t), i = 1; :::;m and if the components of Op(x(t)) are denoted by Opi(x(t)) or16
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Figure 2.2: Synchronous algorithmOpi(x1(t); :::; xm(t)), the synchronous iteration can be written as:8i; t xi(t+ 1) = Opi(x1(t); :::; xm(t)): (2.2.2)Due to the all-to-all communication taking place at each algorithm iteration,the synchronous implementation is exactly equivalent to a sequential implemen-tation in terms of numerical computations. It has therefore been a popular choiceof implementation for many iterative algorithms since the convergence propertiesof sequential implementations have been studied extensively in the past. How-ever, the performance of the algorithm in terms of execution time can su�er fromseveral factors. 17



Performance BottlenecksThe most obvious performance bottleneck in a synchronous implementation canbe the network itself, during the all-to-all broadcast performed at each iteration.Indeed, if the time to send a message over the network is relatively long comparedto the time necessary to perform an update of a piece of the solution vector,the processors spend a non-negligible amount of time being idle, waiting for theall-to-all communication to complete. This situation can occur if the network isinherently slow when compared to the processors, or if a large number of processorsare participating in the computation and the network is ooded by messages ateach iteration.A second and somewhat less immediate performance bottleneck is created bya possible lack of synchronization among the processors [46, 35, 14, 25]. Let ussuppose that a processor, say i, is slower than all other processors when computingits piece of the solution vector. Then, during the all-to-all communication phaseof that iteration, all the other p� 1 processors will be idle, waiting for processor ito �nish its update and send its message. In other words, lack of synchronizationamong the processors can be detrimental to the execution time due again to theall-to-all communication.The source of such lack of synchronization is twofold. First, the distributedenvironment can generate situations leading to losses of synchronization: the pro-18



cessors might not have the same computational speed. This can be due to actualdi�erence in processor designs (heterogeneous set of processors) or to di�erentprocessor workload distributions. Furthermore, a processor may not o�er thesame computational speed from one iteration to another, due to random work-load uctuations within that processor. The network behavior may also vary dueto random uctuations. Second, the iterative algorithm itself can lead to uc-tuations in the computational times of the processors. Indeed, in many cases,applying the operator Op to the current solution vector can require more or lesscomputation depending on the shape of the operator in a neighborhood of thatvector. Typically, this happens in non-linear cases when, at each iteration, a gra-dient is approximated in each direction as the limit of a ratio involving actualcost function evaluations. In such cases a processor can exhibit various behaviorsregarding the time necessary to perform an update.Synchronous implementations are clearly a good choice when executed on per-fectly homogeneous distributed environments, with a fast network, and for al-gorithms that exhibit uniform computational requirements for the solution vec-tor updates. However, the use of Networks of Workstations (NoWs) as super-computers has become popular in the last years. Such networks often containworkstations of di�erent types, with varying workload distributions and network-ing performance depending on the current usage of those workstations. On thealgorithm side, there are many large non-linear optimization problems that gen-19



erate non-deterministic computation patterns as explained above. In order toprovide e�cient parallel versions of iterative algorithms under these conditions,another strategy has to be employed.2.2.4 The Asynchronous CaseAs early as 1969 [16], but only in some special cases, another possible implemen-tation for parallel iterative algorithm has been under investigation. Even thoughthe early motivations to examine such an alternative to the synchronous parallelimplementation were not really the same ones that interest us today, that earlywork led the way for many other studies. Let us �rst describe the basic principleof this type of asynchronous implementation.PrincipleAs for the synchronous case, we assume that there are p processors in the dis-tributed environment and that the solution vector is segmented in pieces assignedto each processor. Figure 2.3 describes a possible execution of an asynchronousimplementation of an iterative algorithm. As in Figure 2.2, we consider 3 proces-sors and the �rst piece of the solution vector (the one assigned to processor 1) isthe only one fully described. Unlike Figure 2.2, Figure 2.3 shows the beginning ofthe algorithm (for t = 0).The execution starts as for a synchronous implementation: each processor up-20
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Figure 2.3: Asynchronous algorithmdates its piece of the solution vector. However, there is no all-to-all communicationphase following these updates to synchronize the processors. Instead, a proces-sor is \free" to perform another update possibly using out-of-date data for thepieces of the other processors, or not to perform any update at all. In addition,a processor can decide at any time to send its most up-to-date piece to some ofthe other processors. For instance, on the �gure, processor 2 computes the secondpiece of x(2) with an out-of-date �rst piece of the solution vector. Processor 1chooses not to perform any update from x(2) to x(3). Some communications arealso performed (symbolized by thin arrows on the �gure). For instance, processor3, before computing x(2), sends its most up-to-date piece of x(1) to processor 2.On Figure 2.2 the numbering of the pieces of the solution vector was identical to21



the numbering of the solution vector sequence: x(t+1) was equal to Opt+1(x(0)).In the asynchronous case, this is not the case anymore. First, the processors donot have the same view of the current solution vector at each iteration phase.Second, the di�erent pieces of x(t+1) may not result from applying the operator(t+1) times to the pieces of x(0). For instance, the �rst piece of x(3) on processor1 results from updating the �rst piece of x(0) only twice, and the �rst piece ofx(3) on processor 3 results from updating the �rst piece of x(0) only once.A good formal description of the asynchronous iteration is given in [5] and isinspired by the de�nition of chaotic relaxations in [16]. The de�nition we givehere is very similar:8i; t = 1; 2; ::: xi(t) =8>>><>>>:xi(t� 1) if i 62 JtOpi(x1(s1(t)); :::; xm(sm(t))) if i 2 Jt; (2.2.3)where Jt is a subset of f1; ::;mg, si(t) is an integer for all i, and t = 1; 2; :::.This de�nition is extremely general; it just states that a processor can sometimesupdate a component of the solution vector by applying the operator to somesolution vector value. If Jt = f1; ::;mg, then each processor updates its piece ofthe solution vector at each iteration. In order to make this de�nition more useful,Baudet in [5] proposes the three additional conditions:Condition 2.2.1 Conditions for asynchronous iterations:22



(i) si(t) � t for all t = 1; 2; :::(ii) limt!1(si(t)) =1.(iii) i occurs in�nitely often in the sets Jt, t = 1; 2; :::Condition (i) states that when a processor updates a component of the solutionvector it can only make use of past components. In other words, a processor cannotuse components not yet computed. Condition (ii) states that the same value fora component cannot be used inde�nitely when computing updates. This meansthat eventually, the value of a component will be replaced in favor of a more up-to-date value throughout the algorithm execution. Finally, condition (iii) saysthat a processor does not abandon a component for ever. If a processor updatescomponent i of the solution vector, that processor will update component i anin�nite number of times. Nothing is said on the convergence or termination of thealgorithm and it is assumed to run forever.Partial or Total AsynchronismIn the formal de�nition of asynchronous iterations that we have given so far,there is no limit on the amount by which a component used in an update can beout-of-date. The only statement concerning the use of out-of-date componentsis made by condition 2.2.1(ii) and it is fairly non-restrictive. For instance, ifsi(t) = d t2e for some i, then the components used in successive updates of xi(t)23



are more and more out-of-date and their \out-of-datedness" is unbounded. Such acase is referred to as a totally asynchronous implementation in [9]. If the amountby which a component used in an update is out-of-date is bounded, then theimplementation satis�es the additional condition:Condition 2.2.2 Additional condition for asynchronous iterations(iv) There exists a �xed integer s such that t� si(t) � s for all i and t = 1; 2; :::.Such a case is referred to as partially asynchronous. In fact, the integer s can beseen as a measure of the asynchronism. If s = 1, then the algorithm behaves al-most like a synchronous algorithm (a processor may still chose not to perform anyupdate during an iteration). When s increases, the algorithm tends to behave likea totally synchronous algorithm. Actual implementations are often partially asyn-chronous since it is often practical to �x some kind of bound on the asynchronismfor implementation purposes.DiscussionOne purpose of an asynchronous approach is to make a parallel iterative algorithmmore adaptive in a distributed environment. The de�nition of the asynchronousiteration shows clearly that the algorithm can be as asynchronous as needed totake advantage of the very phenomena that were performance bottlenecks for asynchronous implementation. However, the de�nition also implies that the actual24



numerical computations performed in an asynchronous implementation are di�er-ent from the ones performed in the synchronous case, and therefore di�erent fromthe ones performed in the sequential case. The convergence of the algorithm is nolonger implied by the same conditions as for the sequential case, and in fact, it isnot even clear that an asynchronous parallel iterative algorithm ever converges.Furthermore, if convergence occurs, the rate of convergence is entirely unknownfor the same reason. Fortunately, some convergence results are available and themost fundamental ones are presented in the next section.2.3 Convergence ResultsA fair amount of work has been devoted to proving and analyzing the convergenceof asynchronous parallel iterative algorithms [9, 11, 16, 38, 37, 5, 10, 6, 51, 24,53, 54]. Some of the earliest focused on speci�c iterative algorithms or on speci�cimplementations. A su�cient condition for convergence for linear operators isavailable in [16], only for partially asynchronous implementations. In [38, 37], thissu�cient condition is generalized to the case of certain non-linear operators, still ina partially asynchronous setting. In [5], Baudet gives a convergence theorem anda convergence analysis for those non-linear operators and for any asynchronousimplementation (total or partial). Baudet's work is the object of the followingsection. 25



2.3.1 Convergence Theorem for Contracting OperatorsIn [5], Baudet establishes a su�cient condition of convergence for asynchronousiterative algorithms whose operator is contracting. He then proceeds with a con-vergence analysis that provides a lower bound for the convergence rate. Let us�rst de�ne the contracting operator concept.Contracting OperatorsDe�nition 2.3.1 An operator Op from Rm to Rm is a contracting operator on asubset D of Rm if there exists a nonnegative m�m matrix A such that8x; y 2 D jOp(x)�Op(y)j � Ajx� yj; component-wiseand �(A) � 1 where �(A) denotes the spectral radius of A.The uniqueness of a �xed point for a contracting operator on a subset D is im-mediate. The existence of such a �xed point can be proved in di�erent situations.For instance, if D is closed and if Op(D) � D, a proof of the existence of a �xedpoint is given in [42]. Many examples of contracting operators and references canbe found in [5] and it is shown that many linear and non-linear problems giverise to contracting operators. Among other examples, Baudet describes how con-tracting operators arise in linear and non-linear elliptic di�erential equations andshows that virtually all iterative functions occurring in the classical super-linear26



methods are contracting operators.The TheoremBaudet's main theorem can be stated as follows:Theorem 2.3.1 If Op is a contracting operator on a closed subset D of Rm andif Op(D) � D, then any asynchronous iteration corresponding to Op according toequation 2.2.3 and satisfying condition 2.2.1 converges to the unique �xed pointof Op in D.This theorem is impressive since it states that for contracting operators, anyasynchronous algorithm will converge, no matter how asynchronous. Let us givehere a short sketch of the proof since it impacts Baudet's convergence rate estima-tion and our work in Chapter 4. To prove this theorem, Baudet uses the followinglemma:Lemma 2.3.1 Let A be a nonnegative square matrix. Then �(A) < 1 if and onlyif there exists a positive scalar ! and a positive vector v such that Av � !v andw < 1. Furthermore, ! � �(A) and in fact ! can be chosen arbitrarily close to�(A).In the proof of the theorem, Baudet constructs a sequence of indices ftkg,k = 0; 1; :::, such that jx(t) � �j � �!kv for t � tk where � is the unique �xedpoint of Op in D. Since 0 < ! < 1, this shows that x(t)! � as t!1, meaning27



that the algorithm converges.Convergence RateAfter this theorem, [5] contains an analysis of the convergence rate of asynchronousiterative algorithms. Baudet de�nes the rate of convergence of such an algorithmas:De�nition 2.3.2 Rate of Convergence De�nitionR�= lim inft!1 [(� log kx(t)� �k)=t]:k:k denotes a norm of Rn. In all that follows, we will choose to use the normkxk = maxfjxijji = 1; :::; ng, which corresponds to the worst possible case forthe convergence of the components. The de�nition of the rate of convergence hasan immediate interpretation. If the logarithm is in base 10, then 1=R measuresthe asymptotic number of iterations required to divide the error by a factor of 10where an iteration is the computation described by equation 2.2.3 for all i.Again, we give here a sketch of the proof of the next theorem since that proofwill be used in Chapter 4. Baudet constructs a sequence of integers fktg fort = 0; 1; ::: as follows. The proof of theorem 2.3.1 constructed the sequence ofintegers ftkg for k = 0; 1; :::, satisfying kx(t)� �k � �!k where � can be chosenas kx(0)� �k, that is, the error with the initial guess of the solution vector. That28



sequence was constructed as:8>>><>>>:t0 = 0tk+1 = tk + ak + bk; (2.3.4)with ak and bk de�ned as:De�nition 2.3.3 The fakg and fbkg sequences:(i) starting with the (tk + ak)-th iteration, no solution vector update makes useof values of components corresponding to iterates with indices smaller thantk.(ii) all solution vector components are updated at least once between the (tk+ak)-th and the (tk + ak + bk)-th iterations.Baudet then de�nes the sequence fktg for t = 0; 1; ::: as:kt�=supfk 2 Nja0 + b0 + :::+ ak�1 + bk�1 � tg: (2.3.5)The theorem follows as:Theorem 2.3.2 Let Op be an operator satisfying the condition of theorem 2.3.1and A the matrix of de�nition 2.3.1, then the rate of convergence R of any asyn-chronous iteration corresponding to Op according to equation 2.2.3 and satisfying29



condition 2.2.1 is such that:R � �[lim inft!1 (kt=t)] log �(A):This theorem provides a lower bound on the convergence rate of the algorithm.The sequence fktg depends on the implementation itself. This sequence is increas-ing and the more asynchronous the implementation, the less rapidly the sequenceincreases. Baudet concludes its study with experiments, and we discuss them inSection 2.4. Another study of the convergence of parallel asynchronous iterativealgorithms can be found in [9] and is presented in the next section.2.3.2 A More General Theorem ?Bertsekas and Tsitsiklis in [9] also propose a convergence theorem stating a su�-cient condition for the convergence of asynchronous implementations of iterativealgorithms. This theorem is in a more general setting than Baudet's theoremsince the conditions on the operator are less restrictive. They �rst state the twoconditions on the operator Op:Condition 2.3.1 There is a sequence of non-empty sets fX(t)g with::: � X(k + 1) � X(k) � ::: � X(0) � Rm;such that: 30



(i) (Synchronous Convergence condition) We have:Op(x) 2 X(t+ 1); 8t and x 2 X(t):Furthermore, if fytg is a sequence such that yt 2 X(t) for every k, thenevery limit point of fytg is a �xed point of Op.(ii) (Box Condition) For every t, there exist sets Xi(t) � R for i = 1; :::;m suchthat: X(t) = X1(t)�X2(t)� :::�Xm(k):The convergence theorem can then be stated as follows:Theorem 2.3.3 (Asynchronous Convergence Theorem) If condition 2.3.1 holds,and if the solution vector initial guess x(0) belongs to the set X(0), then everylimit point of fx(t)g is a �xed point of Op, where x(t) is de�ned by equation 2.2.3.Bertsekas and Tsitsiklis note after the proof that the challenge in applying thetheorem is to identify the sequenceX(t). They claim that it can be straightforwardin some cases, but that in other cases, it requires \creative analysis". All theapplications of the theorem that are described in [9] are in fact in the case ofoperators that are contractions or pseudo-contractions with respect to a weightedmaximum norm. The key idea is that under these assumptions, the boxes of31



theorem 2.3.3 are spheres of Rm. In fact, the condition on the operator is fairlysimilar to Baudet's de�nition of a contracting mapping (it is a \Lipschitz-like"condition).As in [5], a study of the convergence is provided. However, it appears lessuseful than Baudet's. Indeed, some additional assumptions are required in orderto be able to make any statement on the convergence rate, even in the case ofcontractions with respect to a weighted maximum norm. Those assumptionsare not very easy to interpret, and even when they are satis�ed, Bertsekas andTsitsiklis only give a lower bound on the rate of convergence of the algorithm,which is what Baudet already provides. Due to these considerations, we willmainly use Baudet's theory in this research. The more general theorem in [9]seems to lead to less directly applicable results and it is not clear that thoseresults would be in fact more powerful. Besides, Baudet's proof techniques proveto be fairly well suited to a stochastic approach as demonstrated in Chapter 4.At the end of [9], a special study of Gradient-like optimization algorithms ispresented. It is shown that for some cost functions, totally asynchronous im-plementations of the algorithms are never guaranteed to converge whereas thereare some partially asynchronous implementations of the Gradient algorithm thatalways converge. This is an interesting result as it proves that total and partialasynchronism are not always equivalent for some operators. This can be seen asan extension of the result of theorem 2.3.1 to some other classes of operators. In32



fact, partially asynchronous implementations of a Gradient-like algorithm with asmall enough step-size (see Section 2.1.2) always converge for some operators thatare not contracting operators in Baudet's sense. This result seems to be ratherattractive and will be certainly the object of future work. However, in this dis-sertation, we consider only the general case without consideration of the speci�csof the numerical method being used for the iterative algorithm. This seems to bethe best choice since this work is our �rst approach at stochastic modeling of suchalgorithms and should therefore not be tailored to �t some speci�c algorithm.2.4 Towards a Stochastic ApproachIn this section we �rst explain our motivation for taking a stochastic approach toa performance analysis of parallel iterative algorithms. We then examine previouswork concerning stochastic models for such an analysis and �nally conclude withthe goals of our stochastic approach.2.4.1 MotivationAn obvious weakness in all the convergence analyses presented in 2.3 is that theyare one step removed from actual implementations. Indeed, those results are fairlydi�cult to exploit for an end-user, who wants to write a parallel iterative algorithmto solve some scienti�c computational problem. Such a user needs an estimateof the convergence rate of the algorithm in terms of execution time. The results33



available so far give lower bounds of the convergence rate only in terms of numberof iterations. First, it may not be obvious to the user how to determine the amountof time required to perform an iteration, especially in heterogeneous environmentsor for large non-linear problems. Second, the distributed environment creates somelack of synchronization among the processors as explained in Section 2.2.3, andcan therefore have a large impact on the actual computation performed in anactual run of the implementation. Therefore, it is di�cult for a user to decidewhether a synchronous or an asynchronous implementation is a good choice giventhe distributed environment and the numerical method to be used. And if anasynchronous implementation seems to be the right choice, then how can the userchoose the degree of asynchronism that will yield the best average performance ?Even if the estimates of the rate of convergence of the iterative algorithms weremore in touch with what the end-user needs to make design decisions, they stillprovide only lower bounds on the rate of convergence. These bounds correspondto the worst-case scenario for a run of the implementation, the one for whichasynchronism is entirely detrimental to convergence. This could still be useful ifthose bounds were tight. However, Baudet in [5] reports on several experimentswith actual implementations running on a supercomputer. These experimentsshowed that the bounds on the rate of convergence are in fact fairly loose andthat the actual implementations perform on average much better than the worst-case. This led Baudet to write 34



The bounds we have obtained (...) happen to be very conservative. Itwould certainly be very useful to obtain bounds (or estimates) corre-sponding to the average behavior of asynchronous iterations.This is an early mention in the literature of the possibility of a stochastic approachto a performance analysis of parallel iterative algorithms. In the following section,we review research works since Baudet's observation.2.4.2 Related WorkBaudet implies a set of stochastic models that would describe the behavior ofparallel algorithms running on a given set of processors interconnected by somenetwork. One of the objectives of our research is to provide such stochastic models.Few attempts at using stochastic models to analyze the performance and behaviorof iterative algorithms appear in the literature. For instance, [9] (Section 6.3.5)provides comparisons between the synchronous and the asynchronous case, but themodel is entirely non-random and therefore di�cult to apply for non-deterministicreal-world systems. In [52], it is shown that asynchronous algorithms have a\good" communication complexity as compared to synchronous ones, but hereagain, it is di�cult to use these results to obtain quantitative measures of theactual performance of the algorithm in a given distributed environment.A unique reference that proposes a real stochastic approach is �Uresin andDubois [55]. Its \probabilistic analysis" is based on the one in [33]. There are,35



however, several missing elements in this work that we address. This is under-standable enough since it may be the �rst published work using a probabilisticapproach to performance evaluation of distributed iterative algorithms. First, theauthors agree that their model is interesting only for a shared memory imple-mentation, of little relevance for a distributed memory system, and not suitableto model any heterogeneous system. By contrast, the research presented in thisdissertation attempts to �nd performance results for distributed memory systems,including heterogeneous networks of workstations. Second, the scheduling strat-egy used in [55] is called Age scheduling - a reasonable choice as it is easy toimplement on a shared memory machine. The entire stochastic model depends onthis scheduling assumption. However, as mentioned in Section 2.2.2, the authorsperformed simulations to examine the accuracy of their stochastic model and tookthis opportunity to simulate other scheduling strategies. It appears that the bestscheduling strategy is (expectedly) static scheduling whereas their probabilisticmodel is only valid for an aging strategy. Based on this analysis, our work willconsider only static scheduling. Third, the stochastic model developed in [55] isvalid only for certain distribution functions for the processors' execution times(Increasing Failure Rate (IFR) functions). This is a fairly rigid constraint, andthe models of this research will be more exible and, more importantly, tightlyconnected to the underlying distributed environment. Finally, the probabilisticmodel in [55] is in fact not a full-edge stochastic model. It approximates expected36



values, and simulation is used to compute some of its parameters. It is unclearin the analysis, for instance, what inuence the nature of the algorithm operatorhas on the performance of the asynchronous model. By contrast, our research willdevelop real models that capture the details of the distributed environment andwill not include any simulation as part of the models.2.4.3 ObjectivesThe main objective of our stochastic analysis is to provide the user with usefulperformance estimates for the implementation of a given iterative algorithm ina given distributed environment. These estimates should then help that user inmaking design decisions for the actual implementation of the algorithm. Two spe-ci�c goals are (i) to describe a Markov chain model in detail, and (ii) to describecomputations on the model that are relevant to algorithm performance (e.g., timeto convergence) and that include contemporary development in probability calcu-lations (the Theory of Large Deviations). The input to the model will be twofold.First, the model will take into account the nature of the distributed environmentin terms of number of processors, computational speeds of these processors (in-cluding workload distributions) and network performance. Second, the model willalso take into account the implementation strategy in terms of asynchronism. Foreach input, the model will provide performance measures and estimates, allowing37



comparisons of implementations in any distributed environment. The followingchapter describes how such a model can be constructed.
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Chapter 3Stochastic ModelsOne thing late or early can disrupt everything,and the disturbance runs outward in bandslike the waves from a dropped stone in a quiet pool.John Steinbeck (1902-1968)This chapter describes in detail the stochastic models that we have constructedfor the analysis of parallel iterative algorithms. As it will be seen in Section 3.1,our modeling is at the application-level. It is designed to capture the behavior ofthese algorithms when implemented and executed on distributed environments.Corresponding models are introduced in Sections 3.2 and 3.3 and the followingsections show how it is possible to formalize these models and extract relevant ran-dom variables (RVs). These RVs are used in Chapter 4 to obtain new estimationsof several performance measures. 39



3.1 Application-level ModelingStochastic approaches are used in many �elds of computer science, especiallyfor a better understanding of the behavior of computer systems. Usually, thegoals of such approaches are to provide one or more stochastic models that reectthe random behavior of the system under investigation. The models can thenbe used to make predictions about the system with di�erent con�gurations. Inthis work, we are interested in providing the end-user with useful insight into theperformance of di�erent implementation strategies for parallel iterative algorithmsin some user-de�ned distributed environment. As explained in Section 2.4.1, anend-user is one who is willing to write a parallel program to perform some scienti�ccomputation. This is why we characterize our approach as application-level. Bycontrast, one can �nd examples of stochastic models for computer systems thatare at a much lower level; and even though their results might impact the end-user, they would be extremely di�cult to interpret directly in terms of that user'sapplication performance.As an example of a non-application-level model one can cite the work describedin [45]. In that work, Ren, Mark and Wong are concerned with analyzing the end-to-end performance of an ATM network, that is, a network of ATM multiplexer orATM switches. They use queuing theory (more speci�cally, tandem-queuing [59])as well as a uid ow approximation in order to build two di�erent models. Then,40



they compare the accuracy of the two models versus simulation results. In the con-clusion of their article, they state that their work provides a better understandingof the end-to-end behavior of an ATM network, and as such, can be used to make\e�cient resource allocation in call admission". It is then clear that the resultsfrom that work are very di�cult to use directly by a end-user as we have de�nedhim, even though the call admission scheme in the distributed environment, ifany, is certainly going to have an impact on the user's application at some level.In order to provide results that are directly useful to the end-user, some of thelow-level elements of the computer system must be ignored or at least approxi-mated to perform an application-level analysis. An example of such an analysiscan be found in [2]. In that work, Adve and Vernon propose to study the inu-ence of random delays on the behavior of a parallel program running in a shared-memory environment. After making stochastic assumptions about the system(mainly about independence and distributions), they perform some expectationand variance computations leading to the conclusion that process execution timesin the presence of random delays asymptotically approach a normal distribution.Then, they conduct a series of experiments with actual parallel programs runningon multiprocessors to validate their analysis. Their work has clear implicationsfor parallel program performance prediction models, but also for actual program-mers (end-users). Their results indicate that the e�ects of random communicationdelays can usually be ignored in making the choice between static and dynamic41



scheduling in the systems. This is a perfect example of application-level analysissince it has direct bearings on the implementation choices made by the end-userin our sense.In this work, our goal is to carry out a stochastic analysis that provides directlyuseful results to the programmer of a parallel iterative algorithm in a distributedmemory environment.3.2 Modeling the Distributed EnvironmentIn this dissertation, the distributed environment in which parallel iterative algo-rithms are executed is a computer network of p geographically distributed nodesconnected by a communication facility. A node is composed of a processor, mem-ory and a network interface. Each node has its own memory accessed only byits processor. In this distributed memory setting, nodes can exchange data viathe communication facility, thanks to their network interfaces. We do not re-quire that all the nodes be identical and are therefore supporting a heterogeneousenvironment.The communication facility is seen as an abstract device that allows reliablepoint-to-point communication between any two nodes of the network. Figure 3.1shows a schematic representation of such an organization. For the sake of sim-plicity, we will use the term network to describe the communication facility only.42
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= Network InterfaceFigure 3.1: Distributed environment model3.2.1 The NetworkOur model does not make any assumption about the topology of the underlyingphysical network. This physical network delivers some service to the user thatmakes it appear as a reliable point-to-point communication facility. Our modelwill therefore be applicable for diverse computer networks, from a Massively Par-allel System (MPP) to an Internet-wide collection of machines, and anything inbetween. In order to analyze the impact of this network on the behavior of anykind of parallel algorithm running in such a setting, it is necessary to somehowquantify the performance of the service that can be expected at the user end. Letus �rst de�ne network performance in a way that is relevant to our purpose.43



As seen in Section 2.2, parallel iterative algorithms exhibit some determinismin communications. Typically, the messages exchanged by the di�erent nodes arealways of the same lengths (or at least of very comparable lengths). This simpli�esgreatly the task of network modeling, for we do not expect real networks to deliverthe same performance in terms of transmission rate for all message sizes. Thisis due not only to physical constraints (the number of workstations, for instance- see [50]), but also to system software overhead and communication protocoldesign [18], and tra�c management mechanisms [41, 8]. A possible approachwould then be to model the network service as a single number for each point topoint communication, that is, the time required for each node to send a message toeach other node. Since we are at the application level, this time would be measuredfrom the instant when the user's program issues a send on the sending node,until the data has entirely arrived in the user space on the receiving node. Thisincludes all the overheads aforementioned and allows the network to be seen as anabstract layer delivering constant service for each point-to-point communication.The entire network could then be modeled via a p� p real matrix, where p is thenumber of nodes in the system and element (i; j) of the matrix the time for nodei to send a message to node j.Even though attractive, that approach does not take into account one of themajor factors that inuence network performance: network tra�c. Dependingon the number of messages traveling on the network, depending on the sources44



and destinations of these messages and on the tra�c patterns, one can expectvarying network performance. Network performance can degrade rapidly withincreasing tra�c [8]. Measuring network performance with a single number seemsinadequate because of network tra�c uctuations. A better way to estimatenetwork performance is then to model each point-to-point communication timeas an RV. The entire network can then be modeled with a p � p matrix of RVs.Di�erent choices in the distribution of these RVs will reect di�erent networkbehaviors. Choosing a particular distribution of these Random Variables canbe done by sampling network communication times and performing statisticalinference (see [32] for instance).3.2.2 The NodesAs described in Section 2.2, a parallel iterative algorithm consists of a series ofupdates performed on parts of the solution vector. These updates take place onthe nodes in the system. As for the network performance, one possibility wouldbe to model a node's performance with a single number: the time it takes for thatnode to perform one update. The nodes could then be modeled with a vector ofsize p where the ith component is the time for processor i to perform one update.This simplistic approach, however, is not satisfactory. First, as network tra�c cancause uctuations in network performance, processor load can also have an impacton execution speed. Depending on the load of its processor, a node will perform45



one update at di�erent speeds, modifying the global execution time of the entirealgorithm. Second, as explained in Section 2.2.3, the amount of computationrequired to perform an update is not constant: it depends of the shape of theoperator Op around the current solution vector and can not be determined beforethe execution. We have thus identi�ed two sources of randomness at the nodelevel, justifying again the use of RVs in our model. Each node will be modeled bya single RV that describes the times the node requires to perform one update, andthe entire set of nodes is modeled by a vector of RVs. The distributions of theseRVs describe the behavior of the algorithm execution at the node level. As forthe network, the distributions can be chosen thanks to sampling and statisticalinference (see [32] for instance).3.3 Modeling the AlgorithmThe principle of the iterative algorithms we are studying has been already given inSection 2.1. In Section 2.2, we have seen that several parallel implementations arepossible, mainly synchronous and asynchronous ones. In this section, we give theoutline of our model for parallel implementations. By modifying some parametersof this model, the implementation can be either synchronous or asynchronous.This will allow us to compare di�erent implementation schemes in di�erent dis-tributed environments as opposed to changing the entire model for each scheme.46



First, we assume that if there are p nodes in the distributed environment usedto execute the parallel algorithm, then there are p user processes (or threads ofcontrol) on each node's processor. From now on, we will use the terms node,process or processor indi�erently, since there is always one single process runningas part of the iterative algorithm on the single processor of each node. Second,we assume that each processor updates one piece of the current solution vector asstated in 2.2.2. The implementation of the algorithm is segmented in phases. Atthe beginning of a phase, the current solution vector is in the memory of the nodes.Each phase is composed of two sub-phases. During the �rst sub-phase, called the �sub-phase, each processor performs successive updates on its piece of the solutionvector. If a processor performs more than one update during the � sub-phase,then it begins to use out-of-date data for the components of the solution vectorthat it is not updating. At the end of the � sub-phase, each processor broadcastsits piece of the current solution vector to all the other processors. Just afterthis broadcast, starts the � sub-phase. During the � sub-phase each processoris waiting to receive p � 1 messages from the other processors. Each processoralso has the possibility to perform additional updates on its piece of the solutionvector, using more out-of-date data. A processor �nishes its � sub-phase when ithas received all the p� 1 messages. This is also the end of the current phase, andthe next phase is about to start.Figure 3.2 depicts this algorithm. Three processors are numbered i, i+ 1 and47
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Figure 3.2: Decomposition of the algorithm in phasesi+2. On the left side of the �gure, the three processors are starting a new phase ofthe algorithm (the current phase). One can see that processor i+1 is \late" to startthe new phase as compared to processors i and i+2. Fluctuations in the networktra�c and update computational times, as explained in Section 3.2, are responsiblefor this lack of synchronization among the processors (taking advantage of suchlacks of synchronization is precisely one of the goals of asynchronous paralleliterative algorithms). After the � and the � sub-phases of the current phase, theprocessors start a new phase. In the �gure, it is now processor i+ 2 which is latewhen compared to processors i and i+ 1.The next section will establish de�nitions and notation that lead to a rigorousdescription of the algorithm execution in a given distributed environment.48



3.4 The Complete ModelIn this section, we introduce a set of formal de�nitions that will allow us to deriveanalytical results. We then state all the assumptions that we use in our study andconclude with some �nal remarks on the model.3.4.1 De�nitions and NotationFrom now on, we assume that the distributed environment consists of p nodes,numbered i = 1; 2; :::; p and that phases of the parallel iterative algorithm arenumbered k = 0; :::. For mathematical simplicity, we also assume that each pro-cessor sends a message to itself as well as to every other processor after its �sub-phases. This means that each processor expects to receive p messages duringeach algorithm phase.De�nition 3.4.1 Implementation dependent parameters(i) Ai > 0 denotes the number of updates performed by processor i during the �sub-phase of each algorithm phase.(i) Bi denotes the maximum number of updates that processor i is allowed toperform during the � sub-phase of each algorithm phase.These two de�nitions are fundamental, since they constrain entirely the waythe algorithm iterates on the solution vector. For each process, the number of49



updates performed during the � sub-phase of each algorithm phase is not in general�xed ahead of time. The only thing that the user can do is to bound above thenumber of additional updates allowed during that sub-phase. For instance, ifAi = 1 for all i and Bi = 0 for all i, then the implementation is synchronous.If for some i, Bi > 0, then the implementation is asynchronous. By modifyingthe values of Ai and Bi for each i, the implementation can be made more or lessasynchronous. The totally asynchronous case corresponds to Bi =1 for some i.In order to quantify the algorithm execution time, we need to replace thecontinuous time by a discrete approximation. We therefore segment time on eachprocessor into CPU time units. On each processor, this CPU time unit has a valuein seconds, and every duration in the model can be expressed as a combination ofthe CPU time units of all the processors. For our model to �t reality exactly, thismeasure must be taken exactly equal to the CPU cycle time on each processor.Indeed, at the user level, processor time is discrete, and segmented in CPU cycles.Bigger values of the time unit lead to approximations. However, as it will beseen in what follows, taking an exact value leads to intractable models in termsof size. Furthermore, it will also be seen that such a level of precision, even ifcomputable, would bring little or no improvement over less precise models. Byincreasing the CPU time unit value, one replaces the actual algorithm run by acoarser discrete approximation, but one creates more tractable models. We cannow give the following de�nitions: 50



De�nition 3.4.2 Network- and node-speci�c variables(i) �i 2 R denotes the duration in seconds of the CPU time unit on processor i.(ii) �i(k; �) 2 N for � 2 f1; ::; Ai + Big denotes the duration of the �th update,if it is performed, of the solution vector during the kth algorithm phase, onprocessor i, in CPU time units of processor i.(iii) ni!j(k) 2 N is the di�erence between the time when the user program onprocessor i posts a \message send" to processor j, and the time when theuser program on processor j has entirely received the message in the user'sspace, during the kth algorithm phase and in CPU time units of processor i.By convention, ni!i(k) = 0 for all i and k.Let us note that de�nition 3.4.2(ii) says that � 2 f1; ::; Ai + Big. Indeed,processor i performs Ai updates of the solution vector during its � phase, andperforms at most Bi updates during its � phase (the actual number of updatesperformed in the � phase is random).In our model, �i(k; �) and ni!j(k) are modeled as integer RVs for each i; j; kand �. These RVs reect all the randomness in the parallel algorithm executionin the distributed environment. Every other RV that will be introduced in futuredevelopment will be in fact a function of these original RVs.Finally, we de�ne two variables that will allow us to describe the evolution ofthe algorithm throughout time: 51



De�nition 3.4.3 Time variables(i) T i(k) 2 R denotes the time of the beginning of the kth algorithm phase onprocessor i.(ii) wi(k) 2 R is the duration in seconds of the � sub-phase of the kth algorithmphase on processor i.In the next section, we derive the �rst equations from these de�nitions.3.4.2 Main Time EquationsFirst, in order to simplify notations, let us de�ne �i(k) as:�i(k)�= AiX�=1 �i(k; �)for all i and k. Let us now consider the algorithm during its kth phase on processori. The phase started at time T i(k). One of the �rst questions one might askis : "When does the (k + 1)th phase start on processor i ?" Or in other words,what is the value of T i(k + 1) knowing the value of T i(k)? The duration of thekth phase is the sum of the durations of its � and � sub-phases. By de�nition,the duration of the � sub-phase is wi(k). The duration of the � sub-phase isthe sum of all durations of the Ai solution vector updates performed during that52



sub-phase. Therefore: T i(k + 1) = T i(k) + �i�i(k) + wi(k): (3.4.1)Let us now try to �nd the value of wi(k), or the duration of the � sub-phase onprocessor i during the kth phase. Clearly, the � sub-phase starts at time �istart(k),with �istart(k) = T i(k) + �i�i(k):On the other hand, the � sub-phase ends when processor i has received all expectedp messages. Let us consider another processor, j. At the end of its � sub-phase, processor j sends a message to processor i. This message is sent at time�jstart(k), and received by processor i at time �jstart(k) + �jnj!i(k), according tode�nition 3.4.2(iii). Therefore, the last message received by processor i is receivedat time �iend(k) with:�iend(k) = maxj2f1;::;pg[�jstart(k) + �jnj!i(k)]:
53



Now, wi(k) is given bywi(k) = �iend(k)� �istart(k)= maxj2f1;::;pg[�jstart(k) + �jnj!i(k)]� �istart(k)= maxj2f1;::;pg[�jstart(k) + �jnj!i(k)� �istart(k)]= maxj2f1;::;pg[T j(k) + �i�j(k)� �jstart(k) + �jnj!i(k)]by replacing �jstart(k) with its expression. Since ni!i(k) = 0, one can rewrite theexpression of wi(k) aswi(k) =max[0; maxj2f1;::;pg�fig(T j(k) + �j�j(k)� T i(k)� �i�i(k) + �jnj!i(k))]: (3.4.2)This last equation shows that wi(k) � 0 for each i and k, which is of coursenatural, since wi(k) is a duration. Equations 3.4.1 and 3.4.2 are used as the �rstbase of our model; they will be referenced frequently in future developments. Inorder to illustrate these notations, the next section shows a simple example ofhow an algorithm phase is modeled.3.4.3 An ExampleLet us consider a distributed environment that consists of 3 processors, and thealgorithm during its kth phase. The implementation of the parallel algorithm is54



such that A1 = A2 = A3 = 3, B1 = B2 = 2 and B3 = 1.Figure 3.3 shows a diagram similar to Figure 3.1, but with all the details.The 3 processors enter their respective � sub-phase at di�erent times. They eachperform 3 updates during that sub-phase before entering their respective � sub-phase. Just before entering the � sub-phase, each processor broadcasts its currentpiece of the solution vector to every other processor. This is represented with thindotted lines on the �gure, and only for processor 2 for the sake of clarity. Thetime at which a processor receives a message is noted on that processor time axiswith a big dot. There are 2 dots on each time axis since each processor receives 2messages. Let us examine each processor's � sub-phase one by one.Processor 3 can perform one solution vector update during its � sub-phase.Before it has �nished that update, it has already received one message. Thesecond expected message arrives after the update is completed, leading processor3 to stay idle as shown on the �gure by the thick dotted line. Processor 2 is inthe same situation. It can perform at most 2 updates during its � sub-phase,and it has time to do so before the last message it expects arrives. As shownon the �gure, processor 2 stays idle between the end of its second update andthe arrival of the last message. Processor 1, however, is in a di�erent situation.Indeed, it receives its last message while it is performing its second update. Itthen interrupts its execution, and puts an end to its � sub-phase.As seen on the �gure, the processors enter their (k + 1)th phase in a di�erent55
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Figure 3.3: Example algorithm phaseorder than the one with which they entered their kth phase. For instance, processor2 is the �rst one to enter the kth phase but the last one to enter the (k + 1)thphase. This example does not reect all the possible scenarios. For instance, aprocessor can have an empty � sub-phase, or it is possible that no processor isable to perform any update of the solution vector during its � sub-phase.3.4.4 AssumptionsIn this section, we list all the assumptions made on the di�erent components ofour model. 56



Assumption 3.4.1 The original RVs have a �nite range, that is8i; k; � �i(k; �) 2 f�i ; ::; �ig � N;8i; j; k ni!j(k) 2 fni!j ; ::; ni!jg � N:From now on, the notations x and x design the smallest and largest value that canbe taken by a RV x. Assumption 3.4.1 implies that solution vector updates andnetwork communications are completed in a �nite amount of time. In other words,there is no processor failure during the run of the algorithm, and no message islost by the network.Assumption 3.4.2(i) The RVs �i(k; �) are independent and identically distributed.(ii) The RVs ni!j(k) are independent and identically distributed.This last assumption is in fact the entire basis of our stochastic model. Similarassumptions have been popular in the past for the purpose of generating tractablemodels [55, 2]. Some recent work [58] suggests that the network tra�c in a dis-tributed environment like the one that we are considering is such that it cannot beaccurately modeled by independent and identically distributed (i.i.d.) RVs. How-ever, in a model with no restrictions on the dependences and the distributions ofthe di�erent RVs, it is usually very di�cult or even impossible to obtain satisfac-tory and useful results. Without taking such an extreme approach, it would for57



instance be possible to model quantities such as the update time for a processor asa Markov-modulated random process [41] (e.g. Bernoulli or Poisson Markov Mod-ulated process) to reect processor workload uctuation patterns. Or we coulduse ON/OFF sources [43, 22, 45, 31] or Markov-modulated arrivals [1] to modelthe network tra�c and transmission rate. For now, we will consider that the i.i.d.case is a reasonably good approximation and we discuss this in more details inChapter 6.3.4.5 Model DiscussionSeverals aspects of our model raise questions about the actual implementation ofthe parallel iterative algorithm. In this section, we answer the most crucial onesand state what assumptions we are making for the implementation, if any.BroadcastingWe have already said that each processor, at the end of its � sub-phase broadcastsits piece of the solution vector to every other processor. In the model, we assumethat when such a broadcast is performed:� The sending processor spends 0 CPU time units initiating the broadcast.� All the messages of a broadcast are sent at exactly the same time.The �rst assumption is for the sake of simplicity. It would be very easy to addto the model a RV representing, for each processor and each phase, the number58



of CPU time units necessary to initiate the broadcast. However, in practice thisRV should be small, when compared to the update time, or even the networktime. We ignore it and set to 0 the number of CPU cycles spent by the sendingprocessor to initiate a broadcast. Besides, from the point of view of the receivingprocessor, this additional time spent by the sender can easily be incorporated inthe distributions of the ni!j(k) RVs.The second assumption is justi�ed basically by the same considerations. Sincethe sender spends 0 CPU time units to initiate a broadcast, it is natural to assumethat all the messages are put on the network at the same time. This is not tech-nically true, since usually a broadcast is a succession of sends at the applicationlevel. If such a subtle distinction were to be taken into account by our model, onecould always incorporate it again in the distributions of the ni!j(k) RVs.Receiving MessagesWe have already mentioned that during its � sub-phase, a processor interrupts itsexecution when it receives the last message it was expecting. This may be di�cultto implement exactly in the algorithm. A way to achieve this would be to usemechanisms like active messages [21, 20, 56]. When a message arrives at its desti-nation, the receiving processor's execution is interrupted and a handler is called.This handler processes the message. If no more messages are to be received, thenthe ongoing � sub-phase is not resumed. However, active message facilities are59



not always available to the user. Another possibility is to have each process pe-riodically check for messages received while it is in a � sub-phase. For instance,such a check can be performed each time the processor is about to update a singlecomponent of its piece of the solution vector. Or if necessary, this check can beperformed even more often, several times during a single update. No matter howoften this check is performed, a processor can not interrupt its � sub-phase exactlywhen the last message it was expecting arrives. We do not make any assumptionon the implementation regarding this point. If the implementation uses activemessaging, then the model �ts exactly what happens during the � sub-phase. Ifthe implementation performs periodical checks, then the model is an approxima-tion, and depending on the frequency of these checks, this approximation is moreor less accurate. For a \reasonable" implementation which performs \enough"checks, we expect our model to be a very good approximation.Local BlockingIf the implementation of the iterative algorithm runs on p processors, the solutionvector is generally of dimension greater than p. If the dimension of the solutionvector is much greater than the number of available processors, then each processoris in charge of a relatively big piece of the solution vector. It may be interesting,convergence-wise, to perform more network communications than in our executionmodel. For instance, each processor could send to every other processor each half60



of its updated solution vector piece as soon as it is completed. More generally,each piece could be divided into blocks. Each time a processor updates a block, itis broadcasted to every other processor. This would minimize the number of out-of-date data used in the updates, and thereby improve the algorithm convergencein number of iterations. Choosing a block size smaller than the piece size is nota real issue in a shared-memory implementation of a parallel iterative algorithm,but can be a major issue in distributed memory settings. Of course, depending onthe computational complexity of a component update, too small a block size canoverow the network and degrade the overall performance of the implementation.In this work, we take the block size equal to the piece size, for the sake ofsimplicity. Supporting di�erent block sizes would not require many modi�cationsto the model.3.5 Underlying Markov ChainNow that the base of the stochastic model is established, we de�ne a simple wayto describe the evolution of the algorithm throughout time. This is done byassociating a Markov chain to the algorithm; the current state of the Markovchain is related to the current state of the algorithm, as shown in the followingsections. 61



3.5.1 Basic De�nitions and EquationsThe main idea is to represent the state of the algorithm in a phase k by the relativetimes at which every processor entered that phase. On Figure 3.2, those timesare symbolized by points on the time axis. The processors enter the kth phaseof the algorithm at times T 1(k), T 2(k), .., T p(k), and they enter the next phaseat times T 1(k + 1), T 2(k + 1), .., T p(k + 1), according to de�nition 3.4.3(i). OnFigure 3.2, the start of a new phase is represented with a thick line joining theentry points of each processor in that phase. From now on, we call this line thewavefront and its shape for the current phase determines the current algorithmstate. More formally:De�nition 3.5.1 Wavefront de�nitionX(k) = (0; T 2(k)� T 1(k); ::; T p(k)� T 1(k)) 2 Rpis the wavefront for each algorithm phase k.In this de�nition, the �rst processor is taken as a point of reference. Thecomponents of X(k) are the times of the entrances of the other processors in thekth phase, when T 1(k) is taken as the time origin. Several questions about thiswavefront are answered in the following sections.62



3.5.2 Finite SpaceIn this section, we show that the wavefront vector, X(t), can only take a �nitenumber of values in Rp. This is done by proving the following two lemmas.Lemma 3.5.1 The vector X(k) is bounded for k � 1:9M;8k � 1 kX(k)k1 �M with M = maxh;j2f1;::;pg(�hnh!j):Proof. Recall that processor 1 is the reference processor. Consider a particularphase of the algorithm, say k, and a given processor, say i. We assume that i 6= 1,sinceX1(k) = 0 whereX1(k) denotes the �rst component of vectorX(k), and sincethe case where there is only one processor is of little interest. After performingtheir respective solution vector updates during their � sub-phases, both processors1 and i are waiting for p incoming messages. When those messages are received,then both 1 and i can proceed to phase k + 1.The times at which processors 1 and i receive a message from some processorh are apart by �hjnh!1(k) � nh!i(k)j. Indeed, recall that we assume that whena processor broadcasts its message, all the messages are sent at the exact sametime. Therefore, the times at which processors 1 and i receive the last messagesthey were waiting for are apart by at most maxh2f1;::;pg(�hjnh!1(k) � nh!i(k)j).63



Using assumption 3.4.1, one can write that:8h jnh!1(k)� nh!i(k)j � max(nh!1 � nh!i; nh!i � nh!1)� max(nh!1; nh!i)� maxj2f1;::;pg(nh!j):Therefore, the times at which processors 1 and i receive their last message areapart by at most maxh;j2f1;::;pg(�hnh!j). By de�nition 3.4.3(i), those times areapart by jT i(k + 1) � T 1(k + 1)j = jXi(k)j, implying that:jXi(k + 1)j � maxh;j2f1;::;pg(�hnh!j) = M:This is true for every processor i, and since kX(k+1)k1 � maxi2f1;::;pg jXi(k+1)j,the proof is completed.We now know that vector X(k) is in a bounded sub-set of Rp, for each k �1. The case k = 0 corresponds to the entrance of the processors in the �rstalgorithm phase. We do not impose any constraint on how this entrance is done.The processors can enter the algorithm at any time the implementation and theoperating system impose. Therefore, X(0) may very well be such that kX(0)k1 >M . The preceding lemma implies that no matter how big kX(0)k1, the followingwavefronts will all be bounded by M . 64



We now prove that this bounded subset of Rp in which X(k) resides is also�nite. Let us �rst rewrite equation 3.4.1 in terms of X(k). By subtracting fromequation 3.4.1 the special case of i = 1, one obtains:Xi(k + 1) = Xi(k) + �i�i(k) + wi(k)� w1(k)� �1�1(k):Similarly, one can rewrite equation 3.4.2 as:wi(k) =max[0; maxj2f1;::;pg�fig(Xj(k) + �j�j(k)�Xi(k)� �i�i(k) + �jnj!i(k))]:These two equations imply that for all k and i, Xi(k) can be written as a linearcombination:Xi(k) = pXl=1 �k;i;l�l + pXl=1 �k;i;lXl(0) where �k;i;l; �k;i;l 2Z: (3.5.3)To prove that X(t) is in a �nite subset of Rp, we need to following technicalassumption:Assumption 3.5.1 The durations of the CPU time units and the components of65



the initial wavefront are rational numbers, that is:8i 2 f1; ::; pg Xi(0) 2 Q;8i 2 f1; ::; pg �i 2 Q:If assumption 3.5.1 is satis�ed, then equation 3.5.3 implies that Xi(k) 2 Q for allprocessors i and all phases k. This means thatXi(k) can be written as �i;k=� where� is the common denominator of the �l's and the Xl(0)'s. Using lemma 3.5.1, onobtains 8i; k �i;k 2 N \ [��M;+�M ];which is a �nite set. Therefore, � being �xed, Xi(k) is in a �nite set. Since this istrue for all i, we have proved the following lemma:Lemma 3.5.2 The vectors X(k) for k � 1 reside in a �nite subset of Rp. Thissubset is at most of cardinality (2M + 1)p�1. We denote that subset by X =X1 � :::�Xp (X1 = f0g).This upper bound on the cardinality of the subset is immediate, since the wave-front is determined by p � 1 components, and each component can take at most2M + 1 values. This bound is not expected to be tight, and in fact experimentsin Chapter 4 we show that it can be fairly loose for some models.66



Assumption 3.5.1 is really purely technical. It is always valid in a real-lifeexperiment, where all the data being manipulated is in Q since it is processed bycomputers with �nite arithmetic.3.5.3 The Wavefront as a Markov ChainLet us recall thatXi(k + 1) = Xi(k) + �i�i(k) + wi(k)� w1(k)� �1�1(k);and wi(k) =max[0; maxj2f1;::;pg�fig(Xj(k) + �j�j(k)�Xi(k)� �i�i(k) + �jnj!i(k))]:Using the facts that X1(k) = 0 and that8x; y 2 R max(0; x� y) + y = max(x; y);one can then writeXi(k + 1) =max[Xi(k) + �i�i(k); maxj2f1;::;pg�fig(Xj(k) + �j�j(k) + �jnj!i(k))]�max[X1(k) + �1�1(k); maxj2f1;::;pg�f1g(Xj(k) + �j�j(k) + �jnj!1(k))]:67



Since ni!i(k) = 0 for all i, the equation above can be rewritten as8i Xi(k + 1) = maxj2f1;::;pg[Xj(k) + �j�j(k) + �jnj!i(k)]�maxj2f1;::;pg[Xj(k) + �j�j(k) + �jnj!1(k)]: (3.5.4)This last equation is fundamental. We call it the wavefront equation. It shows thatthe wavefront at the entrance of the kth phase depends only on the wavefront atthe entrance of the previous phase and on the realizations of the RVs �i(k; �) andni!j(k) for all i,j and �. Thanks to assumption 3.4.2, we can now state that X(k)is a Markov variable. Equation 3.5.4 can be used to compute the transitionprobabilities of the �nite-state, time-homogeneous Markov chain associated toX(k).3.6 Random Variables of InterestNow that we have extracted the Markov variable X(k) as the driving RV for thealgorithm execution, we can further de�ne other RVs of interest that will help usquantify the overall performance of the implementation.3.6.1 The Waiting TimeThis RV is wi(k). It measures the durations of the � sub-phases of processor i inseconds. We call it waiting time since it corresponds to the time a processor has68



to wait for all the messages coming from the other processors. We recall here theexpression for the waiting time:wi(k) =max[0; maxj2f1;::;pg�fig(Xj(k) + �j�j(k)�Xi(k)� �i�i(k) + �jnj!i(k))]: (3.6.5)Thanks to this equation, one can compute the conditional distribution of wi(k),conditioned on the current wavefront, X(k). In this section, we compute boundson the value that can be taken by the waiting time. From the equation above,clearly, wi(k) � 0. Let us now �nd an upper bound. Let j be another processor,and let us compute the maximum time that processor i can wait for the messagefrom processor j. Processor j can enter the kth phase at most 2M seconds afterprocessor i, where M is from lemma 3.5.1. Then, processor i can �nish its �sub-phase in Ai�i�i seconds at the least, whereas processor j can spend up toAj�j�j in its � sub-phase. Finally, the message from processor j can take at most�jnj!i seconds. Therefore, the maximum amount of time that processor i in its� sub-phase can wait for a message from processor j, is given by wj!i with:wj!i = 2M �Ai�i�i +Aj�j�j + �jnj!i:69



Therefore, wi(k) is bounded above as:wi(k) � maxj2f1;::;pg(2M �Ai�i�i +Aj�j�j + �jnj!i)= 2M �Ai�i�i + maxj2f1;::;pg(Aj�j�j + �jnj!i)= 2 maxh;j2f1;::;pg(�hnh!j)�Ai�i�i + maxj2f1;::;pg(Aj�j�j + �jnj!i):We have therefore proved the following lemma:Lemma 3.6.1 Bounds on the waiting time:8i; k 0 � wi(k) � wi;with wi = 2 maxh;j2f1;::;pg(�hnh!j)�Ai�i�i + maxj2f1;::;pg(Aj�j�j + �jnj!i):3.6.2 The Phase TimeAnother interesting RV for the analysis of the performance of the algorithm isthe phase time, the duration of an algorithm phase for a processor i in seconds.Let �i(k) denote the duration of the kth algorithm phase on processor i. �i(k) is70



given by the following equation:�i(k) = �i�i(k) + wi(k): (3.6.6)Thanks to equation 3.6.6 and 3.6.5, one can compute the conditional probabilitydistribution of �i(k), conditioned on the current wavefront, X(k). The followinglemma, giving lower and upper bounds on the phase time, is immediate fromlemma 3.6.1:Lemma 3.6.2 Bounds on the phase time:8i; k Ai�i � �i(k) � Ai�i + wi:3.6.3 The Number of Additional UpdatesThe last RV introduced here is the number of updates performed during a � sub-phase on a processor i. Let N i(k) denote the number of solution vector updatesperformed by processor i during the � sub-phase of the kth algorithm phase.Given the conditional distribution of the waiting time, one can also compute theconditional distribution of N i(k) conditioned on the current wavefront.71



We already know, by de�nition of Bi that:8k; i 0 � N i(k) � Bi:On the other hand, the maximumnumber of updates that can be performed duringthe � sub-phase of the kth algorithm phase on processor i is equal to wi(k)=(�i�i ),since an update takes at least �i CPU time units of processor i. ThereforeN i(k) � min(Bi; wi(k)�i�i ):Using the de�nition of wi, we have thus proved the following lemma:Lemma 3.6.3 Bounds on the number of additional updates:8i; k 0 � N i(k) � min(Bi; wi�i�i ):3.7 ConclusionIn this chapter, we have designed our stochastic model and we have described howwe model the distributed environment and the algorithm implementation in thatenvironment. After stating our assumptions, we were able to extract a Markov72



chain from the model: the wavefront. This Markov chain has and will be usedto describe the evolution of the algorithm throughout time. We then introducedthree other RVs, the waiting time, the phase time and the additional number ofupdates. The conditional distributions of these RVs, conditioned on the currentwavefront, can be computed thanks to the equations we have given. The nextchapter describes how to e�ectively compute these distributions and use them toobtain stochastic performance measures of the algorithm implementation.
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Chapter 4New Performance EstimatesThis chapter explains how Baudet's theory described in Section 2.3.1 and themodel de�ned in Chapter 3 can be combined to obtain performance results aboutthe convergence of parallel iterative algorithms in distributed environments. First,we show how it is possible to compute the wavefront Markov chain de�ned in Sec-tion 3.5 and give a few illustrative examples. Second, we extend Baudet's resultsto obtain new estimates of the convergence rate of the algorithm (in terms ofnumber of iterations to convergence). Third, we propose an estimate of the im-plementation speed (in terms of number of iterations performed per second). Wethen introduce the Large Deviation Theory and explain how it can be used to gaineven more insight into the estimation of the implementation speed. Finally, wesummarize the results of the chapter in describing the general method of perfor-mance characterization and conclude with an example.74



4.1 Computing the WavefrontAs we have already stated in Chapter 3, the wavefront Markov chain is the drivingrandom process behind the iterative algorithm execution. In this section, wecompute the transition probability matrix of that chain, as well as its stationarydistribution.4.1.1 Transition Matrix and Stationary DistributionTo compute the transition matrix PX of the wavefront, one needs to compute thefollowing probabilities:PX(x; y) = PfX(k + 1) = yjX(k) = xg 8x; y 2 X ;where X is the subset of Rp de�ned in lemma 3.5.2 and P is the probabilitymeasure. Thanks to equation 3.5.4, one can compute the probability:PfXi(k + 1) = zjX(k) = xg 8i 2 f1; ::; pg; z 2 Xi; x 2 X ;where Xi, i = 1; :::; p, is also de�ned in lemma 3.5.2. There are two ways toexploit equation 3.5.4 to compute the conditional probabilities. One can try toformally derive from that equation the conditional probabilities PX (x; y) by usingstandard results on independent and identically distributed RVs. Once these75



distributions are derived, a program can be written to compute actual numericalvalues. There are two major drawbacks to such an approach. First, the actualformal derivation of the distributions leads to very intricate discrete computations,and the resulting expressions are extremely complicated due to RV dependences.Second, an actual implementation of those equations is very ine�cient and leadsto prohibitive execution times as shown by some of our early attempts. Anotherpossibility is to write a program that exhaustively enumerates all the possibleobservations of the original RVs in equation 3.5.4. Maybe surprisingly, such animplementation is reasonably e�cient provided the distributions of the originalRVs are of reasonable sizes.In order to compute the matrix PX we have written a parallel program inC using an implementation of the Message Passing Interface (MPI) [49]. Thedesign of the program is relatively simple in terms of parallelism and involvesvery few inter-process communications. It is therefore extremely scalable andwe have been able to distribute the computation of the transition matrix PX onmany workstations, when necessary, to obtain quick results. Once PX is available,it is possible to compute the stationary distribution of the Markov chain. Thisdistribution is represented by the left eigenvector � associated to eigenvalue 1 ofmatrix PX : �PX = � (see [30, 12, 4] for instance). The stationary distribution of aMarkov chain is interpreted as the long term state occupancy rates of that chain.In the experiments that we have conducted, the size of PX is not extremely large.76



In fact, we were able to use direct methods for dense matrices to compute the �vector. Our implementation used the LAPACK [3] package. For larger modelsleading to larger transition matrices, one might have to use parallel numericallibraries [13]. As we will see on a few examples in the next section, the structureand properties of PX depend on the actual model.4.1.2 Examples of the Wavefront BehaviorWe give here three examples of wavefront Markov chains for three di�erent dis-tributed environments. In all these cases, Ai = 1 for all i = 1; ::; p (see de�ni-tion 3.4.1).Example 1: Homogeneous CaseWe consider here a distributed environment consisting of 5 identical processors.Furthermore, we assume that the workload distributions on those processors areidentical with small variance. This distribution is plotted on Figure 4.1. The CPUtime unit of each processor is taken to be equal to 1. The network is assumedto deliver constant performance of 1 CPU time unit for each message from anyprocessor to any other. This model is very idealistic but has the advantage ofproducing results that can be easily interpreted.With the notation of lemma 3.5.1, M = maxh;j2f1;::;pg(�hnh!j) = 1, meaningthat the wavefront X(k) is in a subset of Rm of cardinality (2 � 1 + 1)5�1 =77
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Figure 4.1: Workload distribution for example 181 (see lemma 3.5.2). In other words, there are at most 81 di�erent shapes ofthe wavefront that can be observed. This does not mean that each of these81 possibilities will occur with zero probability, especially in such a simplisticmodel. In our state numbering scheme, state #41 is called the middle state andit corresponds to a \at" wavefront, the one for which X(k) = (0; :::; 0).Figure 4.2 shows the portrait of matrix PX . The non-null entries of the matrixare represented by black dots. One can immediately see that PX is extremelysparse: most of its columns are empty, meaning that most of the 81 states areunreachable. The Markov chain is reduced by removing those unreachable statesto obtain a smaller recurrent chain with a much less sparse transition matrix P �X .There are only 6 non-empty columns in PX , implying that P �X is a 6�6 matrix. In78
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 Figure 4.2: Portrait of the wavefront transition matrix PX for the �rst examplethis example, the states that are part of the reduced Markov chain are the statesnumbered 14, 32, 38, 40, 41 and 81.The stationary distribution of the wavefront, computed from the matrix P �Xthanks to dense eigensolvers, is depicted in Figure 4.3. The top part of the �gureshows the actual distribution (or � vector). One can see that the middle state(#41) is the one with the highest �-value, with �41 � 0:91. The remaining 5 stateshave much lower �-values: all equal and � 0:02. One can then conclude that inthe long run, the wavefront is found with high probability to be at. The bottompart of Figure 4.3 shows the actual shape of the wavefront corresponding to eachof the 6 states. The line thickness indicates the magnitude of the corresponding�-value. On can see that, as explained above, state #41 corresponds to a at79
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Figure 4.3: Stationary distribution and corresponding wavefront shapes for example 1wavefront and it is shown with a very thick line since this state dominates all theothers. The other �ve states are also represented on the bottom part of the �gure(in thin lines).There are many observations that can be made about Figure 4.3. First, thewavefront is \usually" in state #41 throughout the algorithm execution. This wasexpected in such an homogeneous environment where the processors are identicaland with identical low-variance workload distributions. Second, besides state #41,every state corresponds to one processor entering an algorithm phase before all theothers. The fact that these 5 states have the same �-values is easily understoodbecause of the homogeneity of the system. The fact that these states correspond tobasically the same situation can also be explained. Let us consider the 5 processors80



in the kth algorithm phase. Let us assume that one processor, say i, �nishes its� sub-phase after all the others. Because of the model assumptions, processor ihas already received all the messages it was expecting (all the CPU time units aretaken to be 1); it can start its (k + 1)th phase immediately after the end of its �sub-phase and never enter a � sub-phase. All the other processors have to waitfor 1 CPU time unit for the message from processor i. The �ve states numbered14, 32, 38, 40 and 81 correspond to the cases where i = 4; 3; 2; 1; 5 as seen onFigure 4.3. Those states have small �-values because the workload distributionsare identical and with small-variance so that a processor is \rarely" slower thanall the others during a particular algorithm phase. One can compute the entropy,H, of the stationary distribution as an uncertainty measure (see [4]):0 � H = � Xl2f14;32;38;40;41;81g�l log2(�l) � 0:6494 � log2 6 � 2:5850:Example 2: Mildly Heterogeneous CaseWe now perturb the system of example 1 by making processor 1 slower on averagethan the other four. The workload distributions are represented on Figure 4.4.The matrix Px has roughly the same structure as before, and the wavefront canbe reduced to a 6 � 6 chain in the same way. Figure 4.5 is similar in intent toFigure 4.3 and shows the stationary distribution. Let us examine the di�erencesbetween the two �gures. 81
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Figure 4.5: Stationary distribution and corresponding wavefront shapes for example 282



First, instead of one state dominating the other 5, there are two states thatdominate the � distribution. The most likely state corresponds to processor 1entering an algorithm phase �rst (state #40 with �40 � 0:71). This is consistentwith the model since processor 1 is slower on average than every other one (cf.explanation in example 1). The other state that has a relatively large value isstate #41 (with �41 � 0:26): this is the middle state. The other four states havevery low �-values, all approximatively equal to 0:006.The fact that state #41 still has a relatively high �-value is due to the workloaddistributions. Indeed, in this example, even though processor 1 is slower than allthe others on average, there is still a fairly high probability that it is not sloweron a particular observation, causing all the processors to be synchronized andthe wavefront to be in state #41. If we had chosen the workload distributionof processor 1 such that it would have been always slower than the other, thenFigure 4.5 would have been similar to Figure 4.3 with state #40 playing the roleof state #41.As mentioned earlier, our model generates the matrix P �X , allowing us to drawthe diagram on Figure 4.6. On that diagram, one can observe how the wavefrontbehaves. The transitions between the states are represented with arrowed arcs andthe thicker the arc, the larger the transition probability. One can see that all arcsleading to state #40 are corresponding to transition probabilities � 0:94. This, ofcourse, explains why �40 is large. Once the chain is in state #40, it stays in that83
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Figure 4.6: Wavefront Markov chain diagram for example 2state with probability � 0:62, goes to state #41 with probability � 0:35 or goesto another state with probability � 0:03. This causes �41 to have a relatively highvalue. Here again, one can compute the entropy, H, of the stationary distributionas an uncertainty measure:0 � H = � Xl2f14;32;38;40;41;81g�l log2(�l) � 1:0371 � log2 6 � 2:5850This number reects the fact that, in the long run, the state of the Markov chainis more uncertain than in example 1. 84



Example 3: Heavily Heterogeneous CaseOur third example is a heterogeneous system consisting of only 3 processors, tokeep the �gures simple. All the processors have di�erent workload distributions.The network has the same distribution for every communication but, by con-trast with the previous two examples, this distribution has a non-null variance.Figure 4.7 shows the di�erent probability distributions.Figure 4.8 shows the stationary distribution of the wavefront with the corre-sponding wavefront shapes. For this example, matrix PX was 49�49, and matrixP �X is 34 � 34. By contrast with examples 1 and 2, no state strongly dominatesthe others in the stationary distribution. In fact, it is fairly di�cult to interpretthe �gure in terms of a typical behavior of the wavefront.4.1.3 DiscussionWe give here some general directions in interpreting the structure and propertiesof PX with reference to the experiments we have conducted.The main observation is that the size of the wavefront Markov chain dependson the network model. We have already seen that the size of matrix PX dependson the number of processors in the system and on the maximum time delay tosend a message. But as stated in Chapter 3 and illustrated by the three previousexamples, PX can often be reduced to a smaller matrix P �X by eliminating all theunreachable states. 85
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Figure 4.7: Workload and Network distributions for example 386
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Figure 4.8: Stationary distribution and corresponding wavefront shapes for example 3The relative sizes of those two matrices seem to depend on the variance of thenetwork time distributions. This phenomenon can be seen already in the examples.In example 1, where the network times are distributed with zero variance, the sizesof the two matrices are such that dim(P �X)=dim(PX ) = 0:0741 where dim(A) isthe number of lines (or columns) of a square matrix A. In example 3, however,dim(P �X)=dim(PX) = 0:6939. Our other experiments seem to show that this ratiotends to 1 when the variance of the network times increases, meaning that PXtends to being dense. Quantifying such a result could be an interesting thread tofollow. The distribution of the actual shapes of the states in the reduced Markovchain depends on the workload distribution on the processors. This is seen inexamples 1 and 2. The only di�erence between the models in those two examples87



is the workload distributions (explaining that the dim(P �X)=dim(PX) ratios are thesame in the two examples). The impact of the di�erences in workload distributionshas been illustrated on Figures 4.3 and 4.5 as di�erences in �-values, and similarobservations have been possible in other experiments.A reasonable hypothesis is that the structure of the Markov chain dependsmostly on the network model, whereas the actual stationary distribution is mostlydriven by the processor model. There are however strong interactions between thetwo models and the hypothesis may be di�cult to con�rm analytically. In ourwork, we are focused on designing new performance characterization techniquesfor parallel iterative algorithms in distributed environments. Even though thewavefront is the driving random process behind our stochastic model, it is tooearly here to try to completely analyze its behavior. In the rest of this research,we will use our implementation of the model to obtain the wavefront matrix PX ,and use that matrix to compute stochastic performance measures. Rather than anextremely precise analysis of the wavefront behavior, measuring the performanceof the algorithm requires estimations of the time (in seconds) between two obser-vations of the wavefront. Obtaining such estimations is the goal of the followingsections.
88



4.2 Estimating the Convergence RateIn this section, we estimate the convergence rate of the algorithm in terms ofnumber of iterations to convergence by extending Baudet's work [5]. Then, weestimate the speed of the implementation of that algorithm in a given distributedenvironment in terms of number of iterations performed per time unit.4.2.1 Preliminary RemarkBefore using and extending Baudet's work, we need to give a strict de�nition ofan algorithm iteration. We recall that in the formal de�nition of asynchronousimplementation given by equation 2.2.3, a processor can choose not to performan update during an iteration. In our model, a processor i performs Ai + N i(k)updates during the kth algorithm phase. It is therefore possible (and most likely)that the p processors do not perform the same number of updates of the solutionvector during a phase. According to our de�nition of asynchronism, the p proces-sors all perform N(k) = maxi2f1;::;pg(Ai +N i(k)) iterations during a phase of thealgorithm. Some processors might not perform any update during some of theseiterations and this can be formalized by removing elements from the Jt sets ofequation 2.2.3. 89



4.2.2 Three Estimates of the Convergence RateTo estimate the convergence rate of the iterative algorithm, we use the part ofBaudet's work that has been described in detail in 2.3.1. We recall that one ofBaudet's main theorems states that:R � �[lim inft!1 (kt=t)] log �(A);where �(A) is the spectral radius of the matrix associated with the contractingoperator Op, and fktg is the sequence de�ned by equations 2.3.4 and 2.3.5. Equa-tion 2.3.4 is a recursive de�nition of another integer sequence, ftkg, in terms ofak and bk from de�nition 2.3.3. Let us compute the ftkg sequence in connectionwith our stochastic model.In the previous section, we have seen that the processors perform N(k) itera-tions per algorithm phase. According to our execution model, the components ofthe solution vector used in the updates corresponding to these iterations can notbe out-of-date by more than N(k) iterations. The �rst iteration following thoseN(k) iterations updates all the components of the solution vector since Ai 6= 0 forall i = 1; ::; p. Therefore, in terms of de�nition 2.3.3,8k = 0; 1; :::8>>><>>>:ak = N(k)bk = 0:90



One can now write the expression of kt as:kt = supfkja0 + b0 + :::+ ak�1 + bk�1 � tg= supfkjN(0) + :::+N(k � 1) � tg;leading to: kt = supfkj k�1Xl=0 maxi2f1;::;pg(Ai +N i(l)) � tg; (4.2.1)which is a RV. The problem is now to compute a new lower bound on the asymp-totic rate of convergence, R�, given by Baudet as:R��=� [lim inft!1 (kt=t)] log �(A):The term kt=t in the expression for R� is a RV and, as such, makes it di�cultto computeR� directly. However, the implementation of our stochastic model canbe used to compute the conditional probability PfN(k) = xjX(k) = y) where x isan integer and y is in Rp (see Section 3.6.3); additionally, Section 4.1.1 explainedhow the stationary distribution of the wavefront, X(k), can be computed. We arehere interested in the asymptotic rate of convergence of the algorithm, and cantherefore use the stationary distribution of the wavefront to compute a reasonable91



approximation of the unconditional probability PfN(k) = xg as:PfN(k) = xg = dim(P �X)Xl=1 �lPfN(k) = xjX(k) = Xlg; (4.2.2)where:� P �X is the transition matrix of the reduced wavefront as de�ned in Sec-tion 4.1.2.� �l is the �-value of the lth state of the reduced wavefront.� Xl 2 Rp is the actual wavefront shape corresponding to the lth state of thereduced wavefront.Equation 4.2.2 is only an approximation since it uses the stationary distribu-tion of the wavefront to convert a conditional probability into an unconditionalone. Possibly better ways to estimate this rate of convergence are described inChapter 6. At this point, we have access to an approximation of the actual dis-tribution of the RV N(k), and it does not depend on k. It is now possible tocompute the distribution of kt since:kt = supfkjN(0) + :::+N(k � 1) � tg:Our implementation of the model performs this computation and can generatethe distribution for all t = 0; 1; :::. 92



We have now reduced the problem to somehow computinglim inft!1 (kt=t);where the distribution of each kt is known. One might argue that this limit hasno meaning in the strict sense of the de�nition of convergence for a real sequence,so we look here at asymptotic averages and bounds in order to compute R�. Foreach value of t, one can compute the minimum value that can be taken by kt.Let kt denote that value. One can also compute the maximum value that can betaken by kt and we denote it by kt . Finally, one can compute the expectation ofkt and we denote it by bkt. It is then possible to compute three di�erent estimatesof R�: 8>>>>>>>><>>>>>>>>:R� �=� [lim inft!1(kt=t)] log �(A)cR� �=� [lim inft!1(bkt=t)] log �(A)R� �=� [lim inft!1(kt =t)] log �(A): (4.2.3)Those three estimates have di�erent interpretations. R� is a worst case estimateand it is close, in concept, to Baudet's estimate. In fact, Baudet's estimate cor-responds to an even worse case than our model because he does not account forany improvement due to long-run \averaging" over random events. In general,Baudet's worst case is not realistic, and our model shows that it happens with93



probability 0. In other words, Baudet gives a theoretical worst convergence rategiven the Ai and Bi sequences whereas our worst case estimate takes also intoaccount the distributed environment's behavior. R� is obviously a best case es-timate. We call cR� an average estimate. At this point, the usefulness of suchestimates is still unclear. It is even unclear that the limits in their expressionsexist. In fact, the existence of R� is proven by Baudet's work. Proving the exis-tence of the limits in R� and cR� is much more di�cult and we leave it for futureresearch. In all the experiments we have conducted however, the three estimatesconverge and we assume this convergence in all that follows.4.2.3 An ExampleFigure 4.9 shows the computation of our three estimates for a given distributedenvironment, a given algorithm and for di�erent implementations. The distributedenvironment is the one of example 3 in Section 4.1.2. The algorithm correspondsto a contracting operator whose contracting matrix has a spectral radius � = 0:9.The di�erent implementations are for di�erent values of Ai and Bi for i = 1; :::; p.To make the �gure simpler, we assume that those values are the same for all threeprocessors. The �gure shows six di�erent graphs ((a) through (f)), correspondingto all the possible cases where Ai = 1; 2 and Bi = 0; 1; 2 for all i. Each graphcontains four curves and these curves show di�erent convergence rate estimatesfor increasing values of t (as in equation 4.2.3).94
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Figure 4.9: Convergence rate estimates computation95



The \Baudet" curve show the estimated convergence rate as computed withBaudet's corollary of theorem 3 in [5]. This curve is at, since Baudet's estimate isnot computed as the limit of a sequence, but rather as a �xed lower bound on thatsequence. The \min" curve corresponds to the computation of R� for increasingvalues of t. The \max" curve corresponds to R� and the \average" curve to cR�.The values of these three estimates come directly from equation 4.2.3. Let usbriey comment on these six graphs.Graph (a) corresponds to a synchronous implementation of the parallel itera-tive algorithm. All the estimates in that case are identical since the computationis deterministic (the number of iterations performed during an algorithm phaseis not random). Graph (b) is for Ai = 1 and Bi = 1 for all i. The implementa-tion is therefore asynchronous. The �rst immediate observation is that Baudet'sestimate is below our three estimates. The second immediate observation is thatR�, cR� and R� all three seem to converge to �nite values. And according to thegraph, R� � cR� � R�, which of course is consistent with equation 4.2.3. Thisobservation can be made on all the graphs of Figure 4.9 that correspond to non-deterministic implementations (ones with random number of iterations performedat each phase). The fact that our worst-case estimate (R�) is still higher thanBaudet's is easily explained. Baudet's estimate ignores the underlying distributedenvironment, and therefore takes into account situations that might in fact notbe possible. R�, however, is a re�nement of Baudet's estimate and considers only96



situations that occur with a non-null probability.Graph (c) is for Ai = 1 and Bi = 2 for all i. In other words, graph (c)corresponds to a more asynchronous implementation than graph (b). The sameobservations can be made here, however, one can notice that the gaps betweenour estimates are bigger than for graph (b). This can be explained as follows.The implementation described by graph (c) has the possibility to perform moreadditional updates during the processors' � sub-phases than the one in graph(b), leading to more possible observations of the RVs N i(k) for all i. Therefore,according to equation 4.2.1, the RV kt can take more values: it has a largervariance. This leads to bigger gaps between \min", \max" and \average".The implementation described in graph (d) is asynchronous but with deter-ministic computations (Ai = 2 and Bi = 0 for all i). Here again, our estimatesall equal Baudet's, even though their convergence is not as fast as in graph (a).This is due to the fact that this implementation is asynchronous and allows use ofout-of-date data. Graph (e) introduces more asynchronism in the implementationof graph (d) and one can now observe that our estimates are all above Baudet's.The gaps between our three estimates are much smaller than the ones on graph(c) for instance. This shows that the RV kt takes fewer values. Graph (f) if similarto graph (e) but shows wider gaps between our estimates than graph (d). Thiscan be explained by the same argument as for graphs (b) and (c).97



4.2.4 ConclusionThe main conclusion to draw from Figure 4.2.1 is that our three estimates appearto converge to �nite values. R�, our worst-case estimate, is always equal or largerthan Baudet's because we take into account the distributed environment in whichwe run the application. The gaps between our estimates depend on the degree ofasynchronism of the implementation. For implementations that have deterministiccomputations, our three estimates are all equal to Baudet's. Again, a formal proofof those results seems to be rather di�cult, and will be reserved for future work.Finally, one can notice that for this algorithm in this distributed environment,a synchronous implementation seems preferable, in terms of number of iterationsto convergence, to any asynchronous implementation. This is true, no matterwhich estimate is used. This result was of course expected, since asynchronismslows down the convergence of the algorithm because of the use of out-of-datedata. However, this does not mean that an asynchronous implementation can-not yield better performance to the end-user, in terms of time to convergence:an asynchronous implementation may perform more iterations in total, but itsexpected number of iterations per time unit may be larger - the net result beingthat convergence is achieved in less wall-clock time. In the next section, we areestimating the actual speed of a given implementation of the parallel iterativealgorithm. 98



4.3 Estimating the Implementation Execution Speed4.3.1 De�ning a Speed MeasureIn the previous section, we have computed di�erent estimates for the rate ofconvergence of an implementation of a parallel iterative algorithm in a speci�cdistributed environment. The rate of convergence is immediately connected tothe number of algorithm iterations, as de�ned in Section 4.2.1, to divide theinitial error on the solution by some factor (see Section 2.3.1). In order to providesomething directly useful to the user, one now needs to estimate the speed of theimplementation in terms of number of iterations performed per time unit. This isthe purpose of this section.We have already seen that the processors perform N(k) = maxi2f1;::;pg(Ai +N i(k)) algorithm iterations during the kth algorithm phase. The speed of thealgorithm during the kth phase in terms of number of iterations per time unit isthen given by N(k) divided by the duration of that phase. The duration of thekth phase might be slightly di�erent on each processor and is denoted by �i(k) onprocessor i (see Section 3.6.2). Since the p processors are partially resynchronizedat the beginning of each algorithm phase, a reasonable and applicable de�nition isthat the speed of the implementation during the kth phase as s(k)�=N(k)=�1(k).Let us see how our model can help us estimate this speed.99



Our implementation of the stochastic model computes the probability:Pf �N(k)�1(k)� = �xy�jX(k) = zg for x 2 N; y 2 R; z 2 Rp;where �ab� denotes the vector of R2 with components a and b. Similar to Sec-tion 4.2.2, one can replace this conditional probability by an unconditional one.This is done thanks to the �-values of the wavefront Markov chain. Here again,we are interested in long-run behavior of the algorithm and use the followingapproximation:Pf �N(k)�1(k)� = �xy�g = dim(P �X)Xl=1 �lPf�N(k)�1(k)� = �xy�jX(k) = Xlg; (4.3.4)with the notation of equation 4.2.2. This approximation is performed by ourimplementation of the model. Note that with this approximation, the probabilityPf �N(k)�1(k)� = �xy�g does not depend on k any longer. Therefore, this approximationimplies that the S(k) RVs are i.i.d., which is consistent with a long-run observationof the Markov chain.From now on, S(k) will denote the vector �N(k)�1(k)� in N�R. Since the distributionof S(k) is known, one can easily compute E[S(k)] where E denotes the expectationof a RV. One can write E[S(k)] = S that does not depend on k.100



4.3.2 An ExampleFigure 4.10 shows the probability distributions of s(k)�=N(k)=�1(k) for a givendistributed environment, a given algorithm and for di�erent implementations. Aswe have seen earlier, N(k)=�1(k) can be interpreted as the implementation speedduring an algorithm phase. The distributed environment is the one of example3 in Section 4.1.2. The algorithm corresponds to a contracting operator whosecontracting matrix has a spectral radius � = 0:9. The di�erent implementationsare for di�erent values of Ai and Bi for i = 1; :::; p. As in Section 4.2.2, we as-sume that those values are the same for all three processors. The �gure shows sixdi�erent graphs ((a) through (f)), corresponding to all the possible cases whereAi = 1; 2 and Bi = 0; 1; 2 for all i as in Figure 4.9. On each graph, the meanvalue of N(k)=�1(k) is indicated by a vertical line, and the standard deviationis represented on each side of the mean value as a horizontal solid line segment.On graph (a), one can see that the distribution of s(k) has a relatively smoothshape and a mean value of 0:1655. This means that, on average, a synchronousimplementation performs 0:1655 algorithm iterations per second. Graph (b) cor-responds to an asynchronous implementation, and the distribution of s(k) is muchless regular. This is due to the fact that number of iterations performed duringan algorithm phase is random. 101
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The mean value here is of 0:2262, making the implementation approximatively37% faster than for the synchronous case. This is due to the use of otherwisewasted CPU cycles by performing additional updates during the � sub-phases.Such an increase in implementation speed can make an asynchronous implementa-tion worthwhile. Even though it might require more iterations than a synchronousimplementation in order to converge, it performs them faster. The mean valueon graph (c) is fairly similar to the one on graph (b), because there are few casesin which a processor has the time to perform two additional updates during its �sub-phases. The same observations can be made on graphs (e), (d) and (f).A fundamental question that the end-user wants to answer is : \How longbefore convergence (in seconds) ?" Let us assume that the asymptotic convergencerate of the algorithm is R as de�ned in de�nition 2.3.2. Let us also assumethat the algorithm runs for enough iterations so that we can use R as a goodapproximation. Additionally, let ! 2 N be the user's convergence requirement:convergence is reached when the initial error is divided by a factor of 10!. This isa standard de�nition of user-de�ned convergence and is used by Baudet in [5] forinstance. Let � be the answer to the user's question, that is, a time in seconds.We are going to see how � can be estimated.
103



4.3.3 A Mean EstimateThe idea here is to �nd the asymptotic speed of the implementation. Let us con-sider the algorithm after it has completed n phases. At that time, the implemen-tation has been running for Pnk=1 �1(k) seconds and has performed Pnk=1N(k)iterations. Let us consider the vector Sn de�ned as:Sn�=� nXk=1N(k)nXk=1�1(k)� = nXk=1 S(k):The Strong Law of Large Numbers states that:Pf limn!1 1nSn = Sg = 1;where S = E [S(k)]. Let us write S as �N��. Then:Sn � �n�Nn� �� with probability 1:The speed achieved so far by the implementation after phase n can clearly beseen as the ratio of the �rst and second components of Sn. Let sn denote thatspeed; the equation above then shows that:sn �1 n �Nn� � � N� with probability 1:104



This gives us our asymptotic implementation speed. Indeed, our model imple-mentation, among other things, computes the vector S. It is then easy to �nd anestimate of �. Assuming that the implementation performs N=� iterations persecond and that the algorithm must run for !=R iterations to meet the user'sconvergence criterion, we have the following estimate:� = � � !N �R :4.3.4 Re�ning this EstimateAfter �nding this asymptotic measure of the implementation speed, it is naturalto compute some certainty measure on that estimate; namely a variance. Since weare considering here RVs in R2, we can compute a covariance matrix because theentire distribution of S(k) is known. Using that covariance matrix, it is natural toconstruct the covariance matrix of Sn for any value of n. As it will be seen in whatfollows, this covariance matrix can in turn be used to compute an approximationof the standard deviation of the algorithm execution time. One can also try touse Chebyshev's inequality to estimate the deviations of the sample average fromthe mean. Such a deviation analysis can provide answers to meaningful questionslike: \What is the probability that a run of the implementation is particularly slowor particular fast?". In fact, the analysis of the deviations of the sample average ofi.i.d. observations of a RV from its mean can be answered extremely precisely for105



large deviations, much more precisely than by applying Chebyshev's inequality.The estimation of the probability of rare events such as deviations from the meanby a signi�cant amount can be performed thanks to the Large Deviation Theory.4.4 Large Deviations ResultsIn this section, we present a brief outline of the Large Deviation Theory (LDT),identify how it can be used in our analysis, and give an example.4.4.1 Large Deviations TheoryLDT is a branch of probability concerned with quantifying and explaining thebehavior of rare events. It is a very active �eld of research at the moment, andseveral reference books are available, as well as introductory papers. The materialwe present in this section comes from [15, 48, 57]. Let xi for i = 0; 1; ::: be i.i.d.real RVs of expectations E [xi] = E[x1]. The simplest large deviation question is:what is Pfx1 + :::+ xnn � ag where a > E[x1] ?The Strong Law of Large Numbers tells us that the sample average convergesto E[x1] with probability 1. The event where the sample average deviates fromthe mean is a rare event as n goes to 1. Estimating the probability of such a106



rare event is answered by Cherno�'s theorem for i.i.d. RVs (also called Cramer'stheorem) [17, 19]. Let us de�ne:M(�)�=E[e�x1 ] 8� 2 R;l(a)�=sup� (�a� logM(�)) 8a 2 R: (4.4.5)M(�) is called the moment generating function of x1. Note that the function lis non-negative (M(0) = 0) and convex (as the supremum of a family of convexfunctions). It is called the rate function of x1. Cherno�'s theorem can be writtenas:Theorem 4.4.1 Consider the sequence x1; x2; ::: of i.i.d. RVs. For every a >E[x1] and positive integer n,Pfx1 + :::+ xn � nag � e�nl(a): (4.4.6)Assume that M(�) <1 for � in some neighborhood of 0 and that the supremumin equation 4.4.5 is attained in that neighborhood. Then for every � > 0 thereexists an integer n0 such that whenever n > n0,Pfx1 + :::+ xn � nag � e�n(l(a)+�): (4.4.7)107



Equations 4.4.6 and 4.4.7 imply thatPfx1 + :::+ xn � nag = e�nl(a)+o(n): (4.4.8)A proof of this theorem can be found in [48]. It is valid for discrete, continuous,or mixed RVs. This result can be stated in a more general theorem:Theorem 4.4.2 Let x1; x2; ::: be i.i.d. RVs. The function l de�ned in equa-tion 4.4.5 is convex and lower semi-continuous. For any closed set F ,lim supn!1 1n logPfx1 + :::+ xnn 2 Fg � � infa2F l(a); (4.4.9)and for any open set G,lim infn!1 1n logPfx1 + :::+ xnn 2 G g � � infa2G l(a): (4.4.10)This theorem just states that the sample average of i.i.d. RVs satis�es a LargeDeviation Principle (LDP) according to De�nition 2.2 in [48]. In [48] one can also�nd the following de�nition:De�nition 4.4.1 A set S is called an l-continuity set for a rate function l ifinfx2So l(x) = infx2S l(x);108



where So denotes the interior of S and S its closure.The following theorem is given as an exercise in [48], but its proof is immediate:Theorem 4.4.3 If S is an l-continuity set, thenlimn!1 1n logPfx1 + :::+ xnn 2 Sg = � infa2S l(a):These results can be extended to the case where the RVs xi are vectors of Rd.The de�nition of the rate function in such a case is:8>>><>>>:M(�) �=E[eh�;x1i] 8� 2 Rdl(a) �=sup�(h�; ai � logM(�)) 8a 2 Rd; (4.4.11)where h:; :i denotes the Euclidean inner product in Rd. Under the same assump-tions as in the one-dimensional case, the average mean of i.i.d. random vectorssatis�es a LDP with that rate function.All these versions of Cherno�'s Theorem are useful in telling us how oftenspeci�c rare events occur. Another theorem by Sanov [47] tells how these eventsoccur when they do. Sanov's theorem indicates that rare events, with overwhelm-ing probability, happen only one way: by a \conspiracy". This means that when arare event occurs, the observations of the RVs behave as if they were samples froma di�erent distribution, often referred to as the \tilted" distribution. This kindof consideration is part of what is called \level 2 large deviations" in [48]. LDT109



contains many more fascinating results, but is noted for being mathematicallyvery demanding, involving solving di�cult problems in the calculus of variationsfor instance. The fundamental results we have already stated will be su�cient forour purpose in this dissertation.4.4.2 Rate Function in our ModelThe rare events we consider here concern the speed of the implementation. Thatspeed has already been quanti�ed as the sample average of observations of thevector S(k) throughout time. The distribution function of that vector is providedby our implementation of the model. We know from LDT that this sample average,denoted 1nSn, satis�es a LDP. The problem is to compute its rate function. Letus proceed step by step.Let � = ��1�2� be a vector in R2. We recall that the moment generating functionof S(k) is de�ned as: M(�) = E[eh�;S(k)i]:At this point, we need to describe the distribution of S(k) formally (it is computedby our implementation of the model). Let us call D the subset of R2 such that:D�=f�xy� 2 R2jPf(S(k) = �xy�g 6= 0g:110



In other words, D is the set of possibles values for S(k) and is �nite. Let also px;ydenote Pf(S(k) = �xy�g for �xy� in D. The moment generating function of S(k)can then be written as: M(��1�2�) = X(xy)2D px;ye�1x+�2y:This makes it clear thatM(�) <1 for all � <1, and therefore in a neighborhoodof 0. The rate function for the sequence S(k) can now be written as:8a = �a1a2� 2 R2 l(a) = sup�1 ;�22R[�1a1 + �2a2 � log( X(xy)2D px;ye�1x+�2y)]:(4.4.12)The rate function is therefore, at each point, the supremum overR2 of an in�nitelycontinuously di�erentiable real function. Let us call this function f so thatl(a) = sup�1;�22Rf(�1; �2):One can rewrite f(�1; �2) as:f(�1; �2) = � log( X(xy)2D px;ye�1(x�a1)+�2(y�a2)):Let us see under which conditions the supremum in 4.4.12 is attained. If this111



supremum is attained for �1 = ��1 and �2 = ��2, then:8>>><>>>: @f@�1 (��1; ��2) = 0@f@�2 (��2; ��2) = 0;which can be rewritten as:8>>>>>>>>>>>>><>>>>>>>>>>>>>:�
X(xy)2Dpx;y(x� a1)e�1(x�a1)+�2(y�a2)X(xy)2Dpx;ye�1(x�a1)+�2(y�a2) = 0� X(xy)2Dpx;y(y � a2)e�1(x�a1)+�2(y�a2)X(xy)2Dpx;ye�1(x�a1)+�2(y�a2) = 0()8>>>>>><>>>>>>: X(xy)2Dpx;y(x� a1)e�1(x�a1)+�2(y�a2) = 0X(xy)2Dpx;y(y � a2)e�1(x�a1)+�2(y�a2) = 0:

112



Let us de�ne x, x, y and y as:8>>>>>>>>>>>><>>>>>>>>>>>>:x�=minfxj�xy� 2 Dgx�=maxfxj�xy� 2 Dgy�=minfyj�xy� 2 Dgy�=maxfyj�xy� 2 Dg:We are going to prove that the rate function, l, can take �nite values onlyinside a rectangle of the 2-D plane. This rectangle is denoted by 	 and de�nedby: a = �a1a2� 2 	()8>>><>>>:x � a1 � xy � a2 � y:The rectangle is shown on Figure 4.11. Let a = �a1a2� be an arbitrary vectorof R2 outside of the rectangle 	. To prove that l(a) = +1, we are going toconstruct a sequence of vectors in R2, say f�(n) = ��1(n)�2(n)�g for n 2 N, such thatlimn!1f(�1(n); �2(n)) = +1. Let us assume for instance that a1 < x. The casesa1 > x, a2 < y and a2 > y can be treated similarly. One can write that:8�xy� 2 D; x� a1 > 0:113
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Figure 4.11: Rectangle 	If we de�ne 8>>><>>>:�1(n)�=� n�2(n)�=0;then f(�1(n); �2(n)) = � log( X(xy)2D px;ye�n(x�a1)) ���!n!1 +1;since x� a1 > 0 for all �xy� in D.This proves that l(a) = +1 outside of 	. This result is fairly intuitive. Indeed,the sample average Sn of observations of S(k) is outside of 	 with probability 0,114



since 1n�n� xn� y� � 1nSn � 1n�n� xn� y�:The fact that the rate function outside of 	 is in�nite can be interpreted as follows:The probability that the sample average stays outside 	 decays with an in�niteexponential rate.However, depending on the probability distributions generated by our model,the rate function might also take in�nite values inside 	. It seems di�cult to �nda general analytical expression for the rate function inside 	, but it is possibleto use numerical software to compute the supremum in equation 4.4.12. For thisresearch, we have used Matlab [28] because it is very straightforward, providesvisualization capabilities and seems to give reasonably accurate numerical results.The next section gives examples of rate functions for a given iterative algorithmin a given distributed environment, and shows how they can be used to estimateprobabilities of deviation of the implementation speed from its mean.4.4.3 An Example of Large Deviation ComputationWe �rst show three examples of rate functions for di�erent models. We thenexplain how the rate function can be used in practice to compute deviation prob-abilities. Finally, we perform such computations on one of the examples.115



Sample Rate FunctionsThe rate function is computed be means of a series of Matlab scripts. Thosescripts input the distribution of the RV S(k) and produce a discretized versionof the rate function. Once again, we use the distributed environment of example3 in Section 4.1.2. The algorithm corresponds to a contracting operator whosecontracting matrix has a spectral radius � = 0:9. The di�erent implementationsare for the cases where Ai = 1 and Bi = 0; 1; 2 for all i = 1; 2; 3. Let us describethe three rate functions generated by our stochastic model.Figure 4.12 shows the rate function l for Ai = 1 and Bi = 0. This is a syn-chronous implementation and exactly 1 iteration is performed at each algorithmphase. On the �gure, the mean vector S is represented as a vertical line and therectangle 	 is represented on the horizontal plane with a thick line. First, let usidentify 	. One recalls that 	 is de�ned by x, x, y and y (see Section 4.4.2). Inthis case, our implementation of the model gives us x = x = 1, y = 7 and y = 21.The rectangle 	 is therefore reduced to a segment. One can also observe that therate function attains its minimum of 0 at S. This is a property of the rate func-tion (see [48]). It is very intuitive; since the Strong Law of Large Numbers statesthat the probability that the sample average converges to the mean is 1, it shouldtherefore decay with an exponential rate equal to 0. As a general rule, every pointwhere the function is not represented is a point where l takes an in�nite value.116
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Figure 4.12: Rate function for Ai = 1 and Bi = 0Figure 4.13 shows the rate function l for the asynchronous implementationcorresponding to Ai = 1 and Bi = 1. Here, 	 is not reduced to a segment andit is represented on the horizontal plane. The mean vector S is represented as avertical line and one again has l(S) = 0. The ragged aspect of the edge of thecurve is due to the Matlab discretization. Figure 4.14 shows another view of therate function, from \above". On this �gure, one can see more clearly on whatsubset of 	 the rate function takes �nite values. Again, the staircase shape of theedges is due to the Matlab discretization. The mean vector is shown with a whitecross. 117
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Figure 4.13: Rate function for Ai = 1 and Bi = 1
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Figure 4.14: Overview of the rate function for Ai = 1 and Bi = 1118



Figure 4.15 and 4.16 are similar to the two previous ones, but are for Ai = 1and Bi = 2. The rectangle 	 is wider since the implementation of the iterativealgorithm can now perform up to three iterations per phase.Example Use of the Rate FunctionLet us see how the rate function can be used to compute a useful result concerningthe implementation speed. The mean algorithm speed in terms of number ofiterations performed per second is s = N� ;where N and � are the components of the mean vector S.Let us compute, for instance, the asymptotic probability that the observedimplementation speed after n phases is lower than the mean, meaning that:sn < s� � where � > 0:This can only happen if the sample average vector Sn lies in R�� , the subset of R2de�ned as: R�� �=f�xy� 2 R2jxy � s� �g:119
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Figure 4.15: Rate function for Ai = 1 and Bi = 2
8 10 12 14 16 18 20

0.5

1

1.5

2

2.5

3

3.5

Phase duration

n
u

m
b

e
r 

o
f 
it
e

ra
ti
o

n
s

Figure 4.16: Overview of the rate function for Ai = 1 and Bi = 2120



R�� is an open 2-D half plane above the line D� of equationD�� : y = 1s� �x:Let 	� denote a closed subset of 	 where the rate function takes �nite valuesand is continuous. The existence of 	� is far from being obvious and dependson the rate function properties. We do not perform here an in-depth analysis ofthe rate function as it depends on the probability distributions in the stochasticmodel. Experience shows that the rate function takes �nite values in closed subsetsof 	 and appears to be continuous on those subsets. Furthermore, those subsetsseem to be convex, and one can chose 	� to be the \largest" one, meaning thatit contains all subsets where the rate function is continuous and �nite. On theprevious rate function examples, we have seen that the set 	� can be clearlyidenti�ed. In all that follows, we will see assume that such a 	� always exists, butwe do not provide a formal proof of its existence. Such a proof seems to be veryinvolved and we leave it for future work. It is now easy to see that the set 	�\R��is an l-continuity set according to de�nition 4.4.1. One can now use theorem 4.4.3and state that: limn!1 1n logPfsn 2 	� \R�� g = � infa2	�\R�� l(a):The same kind of computation can also be performed to compute the asymp-121



totic probability that the implementation speed observed after n algorithm phasesis larger than the mean. The only di�erence is in the de�nition of the half-plane.In this case, we call it R+� and it is the half-plane below the line D+� de�ned as:D+� : y = 1s+ �x:Figure 4.17 shows the intersection of the two half planes R�� and R+� with 	�.In order to perform actual numerical computations, we are going to use thethird example rate function that we have considered at the beginning of thissection, that is, corresponding to the case where Ai = 1 and Bi = 2 for i =1; 2; 3. The components of the mean vector S are respectively N = 1:8631 and� = 12:3754. The asymptotic algorithm speed is therefore s = N=� = 0:1505in iterations per second. Let us compute the asymptotic probabilities that thespeed observed after n algorithm phases, sn, deviates from the mean s by at least� = 0:025 or � = �0:025. LDT tells us that those probabilities decay exponentially,and that they respectively decay with rates r+� and r�� with:8>>>><>>>>:r+� �= infa2	�\R+� l(a);r�� �= infa2	�\R�� l(a): (4.4.13)
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Figure 4.18: Example of Large Deviation Computationso that: 8>>><>>>:Pfsn � 0:1755g = e�0:2917�n+o(n)Pfsn � 0:1255g = e�0:2508�n+o(n):Such a computation can be performed for any value of �. Figure 4.19 shows agraph of r+� for positive values of � and of r��� for negative values of �. Therefore,the part of the graph for negative values of � corresponds to implementations ofthe iterative algorithm that are slower than the mean, and the part of the graph124
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Figure 4.19: Exponential decay rate for various � valuesfor positive values of � is for implementations that are faster than the mean. Therate of exponential decay is in�nite wherever it is not represented on the graph.With such a graph, it is now possible to compute all the rates of exponential decaythat we are need for quantifying the behavior of the observed average speed of animplementation of an iterative algorithm.
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4.5 Performance CharacterizationIn this section, we summarize the results presented in this chapter as well as thesteps that are followed by our implementation of the stochastic model. We thenexplain how these results can be used to obtain di�erent levels of performancecharacterization. Finally, we present a complete example.4.5.1 Putting Things TogetherFigure 4.20 shows a diagram that summarizes our performance characterizationprocess. Let us describe this diagram step by step. As symbolized by the topmostbox in the diagram, the input to our performance characterization mechanismsconsists of:� The number of processors in the distributed environment (p),� The probability distributions of the processor update times (�i(k; �)),� The probability distributions of the network communications (ni!j(k)),� The spectral radius of the matrix associated with the contracting operator(Op),� The Ai and Bi values for i = 1; :::; p.The diagram contains three boxes drawn with dashed lines. The middle boxcorresponds to Section 4.1, the right box to Section 4.2, and the left box to126
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Figure 4.20: Performance Characterization methodSection 4.3. We are going to describe each box step by step.We start with the middle box since it impacts the other two. The �rst thingthat our model computes is the wavefront transition matrix. As seen in Sec-tion 4.1.1, this is done with a parallel program in C using MPI. Once the transitionmatrix is available, the state-space of the Markov chain is reduced to eliminateunreachable states. The stationary distribution of the wavefront can then be com-127



puted with a classic eigensolver (from the LAPACK numerical library). Examplesof such computations were given in Section 4.1.2.Let us now have a look at the right box. It corresponds to the computationof convergence speed estimates (in terms of number of iterations to convergence).Our implementation of the stochastic model �rst computes the conditional prob-abilities PfN(k) = xjX(k)g where N(k) is the number of iterations performedby the implementation of the iterative algorithm during the kth algorithm phaseand X(k) is the wavefront state at the beginning of that phase. Using the wave-front stationary distribution, an approximation of the unconditional probabilityPfN(k) = xg is computed. This approximation is justi�ed in Section 4.2.2. Thesequence fktg for t = 0; 1; ::: can then be constructed as a sequence of RVs ofknown probability distributions. Giving three di�erent senses to the limit of thatsequence yields the three estimates R�, cR� and R� (those estimates are actuallycomputed as limits of the sequence). We have at this point computed three esti-mates of algorithm speed -worse, average and best cases- in terms of number ofiterations to convergence.The third box corresponds to the computation of the algorithm speed in termsof number of iterations performed per second. From its input, our implementationof the stochastic model computes the conditional probability PfS(k) = �xy�jX(k)gwhere S(k) is the vector of N�Rwhose �rst component if the number of iterationsperformed during algorithm phase k, and whose second component is the duration128



in seconds of that phase. Similarly to the computation of the convergence speed inthe right box, the stationary distribution of the wavefront can be used to obtainan approximation of the unconditional probability PfS(k) = �xy�g. Once thisdistribution is known, one can easily compute the mean vector S = �N��. Thisvector can be used to compute the asymptotic algorithm speed in terms of numberof iterations performed per second. This speed is denoted by s and is s = N=�(see Section 4.3). As shown in the next section, one can compute the covariancematrix of S(k).Detailed information about probabilities that the observed algorithm speeddeviates from this asymptotic speed (leading to particularly short or long execu-tion times) can be obtained with the Large Deviation Theory (see Section 4.4),which is much more precise for rare events than a computation based on variancealone. We can de�ne a rate function for the sequence S(k) as in Section 4.4.2.Computed numerically, this rate function gives precise values for the exponentialrate of decay for the probabilities of speci�c rare events. The rare events that weare considering, since we want to analyze the algorithm performance, correspondto the deviations aforementioned. Example of such computations were given inSection 4.4.3.One can distinguish two parts in the performance characterization scheme: es-timating the convergence rate of the algorithm and estimating the speed of theimplementation. For the latter, we additionally have access to Large Deviation129



results. It is clear that the most di�cult part is the �rst one. Indeed, preciselyestimating the convergence rate of the algorithm requires knowledge of the shapeof the operator Op, and therefore of the shape of the cost function. The threeestimates for the rate of convergence are guidelines, and only experience will showwhich ones are most useful in practice (see Chapter 5). In what follows, we em-phasize characterizing the implementation speed, assuming that the convergencerate is known precisely enough, hopefully thanks to one of our three estimates.4.5.2 Characterizing the Execution TimeAs already mentioned in Section 4.2.3, the end-user is interested in knowing howlong the parallel algorithm will run until convergence is attained. Convergence isattained when the initial error has been divided by a factor of 10! where ! 2 N isspeci�ed by the user. In Section 4.2, we proposed three estimates of the asymptoticrate of convergence for the algorithm. In what follows, each of those estimatescan be used. Let R be the chosen estimate of the asymptotic convergence rateand let N be an estimate of the number of iterations that are to be performed bythe algorithm before convergence. We will assume that:N = !R :130



This estimate of the required number of iterations is asymptotic and is valid onlywhen the number of iterations is large. Let � be the time to convergence for arun of the parallel iterative algorithm. In the next four sections, we describe howour performance characterization scheme can be used to obtain several levels ofestimations for �. These levels are called 1, 2 and 3 and o�er di�erent informationon the probability distribution of �.4.5.3 Level 1 Performance CharacterizationLevel 1 performance characterization has been done in Section 4.3.3. It uses themean vector S = �N�� shown in the left dashed box in Figure 4.20. It says that �can be estimated by �1 �1�=Ns ; (4.5.14)where again s = N� . In this case, our performance characterization consists of onesingle expected value.4.5.4 Level 2 Performance CharacterizationLevel 1 provides an estimate of the mean of �. Level 2 is concerned with ap-proximating its standard deviation. Our implementation of the model gives usthe probability distribution of the RV S(k). Let Scov denote the 2� 2 covariancematrix of S(k). Scov is of course easy to compute since the entire distribution131



function is known. Let us recall that we are assuming the observations of S(k) tobe i.i.d. The covariance matrix of Sn, denoted by Scovn , is given for each n by:Scovn = n� Scov:One can now compute the standard deviation of the execution time as fol-lows. Convergence is attained when some number of iterations, N , have beenperformed. We are therefore interested in computing the variance of the execu-tion time knowing that N iterations have been performed. The execution timeafter n algorithm phases is given by the �rst component of Sn, whereas its secondcomponent gives the number of iterations performed so far. If we assume that onaverage and in the long run N iterations are performed at each algorithm phase,then convergence is attained after N=N algorithm phases. Our goal is then tocompute the standard deviation of the conditional distribution of the �rst com-ponent of SN=N knowing its second component. Due to the \large number" andi.i.d. assumptions, we approximate the distribution of SN=N by a Normal (Gaus-sian) multivariate distribution with covariance matrix ScovN=N . This is of courseinspired by the Central Limit Theorem [30]. It is well known that the conditionaldistribution of the second component of SN=N conditioned on its �rst componentis Normal. Furthermore, its standard deviation does not depend on the value of132



the second component. If the covariance matrix is written as:ScovN=N = 2664 �2X �XY�XY �2Y 3775 ;then the standard deviation that we need to compute is given by:� = �Yr1 � ( �XY�X�Y )2: (4.5.15)This result is available in [30] for instance. � is our estimate for the standarddeviation of �.4.5.5 Level 3 Performance CharacterizationNow that we have estimates for the mean and the standard deviation of �, onemay wonder about the tails of �'s distribution. Similarly to Section 4.4.3, we useLDT to obtain estimates of rare events corresponding to extreme behaviors of thealgorithm (particularly fast or particularly slow). If we assume that on averageand in the long run N iterations are performed at each algorithm phase, thenconvergence is attained after NN algorithm phases. The computation in 4.4.3 gives
133



us an asymptotic estimate of the following probabilities as:Pfsn � s+ �g = e�n�r+� +o(n)Pfsn � s� �g = e�n�r�� +o(n);where sn is the algorithm speed observed after n algorithm phases, and r+� andr�� are de�ned in equation 4.4.13. But � can be approximated as:� = NsNN ;where N is the number of iterations to be performed to achieve convergence. Onecan then write that: 8>>><>>>:PfsNN � s+ �g = e�r+� NN +o(N )PfsNN � s� �g = e�r�� NN +o(N );leading to: 8>>><>>>:PfN� � s+ �g = e�r+� NN +o(N )PfN� � s� �g = e�r�� NN +o(N );
134



and �nally: 8>>><>>>:Pf� � Ns+�g = e�r+� NN+o(N )Pf� � Ns��g = e�r�� NN +o(N ): (4.5.16)Equation 4.5.16 is an easy way to compute the tails of the probability distributionof �.Note that the 3 level of characterizations are related to each other as they alldepend on N . In the next section, we give an example and characterize the per-formance of some implementations of an iterative algorithm in a given distributedenvironment.4.5.6 A Complete ExampleOnce again, we consider the distributed environment of example 3 in Section 4.1.2.We assume that the matrix associated to the contracting operator Op has a spec-tral radius � = 0:9 and we consider the performance of implementations of thisalgorithm for A1 = A2 = A3 = 1 and Bi = 0; 1; 2 for i = 1; 2; 3. We assume thatthe user de�nes convergence with a single integer !: convergence is obtained whenthe initial error has been divided by a factor of 10!. In this example, we chose! = 4. 135



Convergence RateThe characterization for the convergence rate comes from the computation de-picted in Figure 4.9. The values of our three estimates as well as Baudet's for thethree di�erent implementations are shown in Table 4.1. We recall that R� is aworst case estimate, cR� can be interpreted as a mean estimate and R� is an idealestimate.Level 1 CharacterizationLevel 1 characterization is very easy to perform. It provides an estimate of �, themean time in seconds to convergence. This estimate is denoted �1 and computedaccording to equation 4.5.14. Table 4.2 shows the numerical value of �1 foreach convergence rate estimate and each implementation. If the mean estimatecR� is taken to be the most informative one, then it seems that a synchronousimplementation will be more e�cient than an asynchronous one.Table 4.1: Convergence rate estimates for each implementationAi Bi R� cR� R� Baudet1 0 0.045757 0.045757 0.045757 0.0457571 1 0.021964 0.025079 0.045757 0.0152521 2 0.014532 0.023804 0.045757 0.009151136



Table 4.2: Level 1 characterization : Mean of � (in seconds) for various convergencerates Ai Bi R� cR� R� Baudet1 0 1081 1081 1081 10811 1 1272 1141 610 18321 2 1828 1116 580 2903Level 2 CharacterizationTable 4.3 shows the numerical results provided by Level 2 characterization.Level 3 CharacterizationLet us compute, for instance, the probabilities that the observed execution timedeviates from �1 by 2, 5, 10 or 20 percent. One can use equation 4.5.16 to thisend, with � = s=99; s=9; 2 � s=8; 3 � s=7 for the cases where � is 2%,5%, 10% or20% bigger than �1. Similarly, the values � = s=101; s=11; 2 � s=12; 3 � s=13 arefor the cases when � is 2%,5%, 10% or 20% smaller than �1. This is due to somealgebra and the fact that �1 = N=s. Notice that a deviation of 2% is not strictlyspeaking a rare event. Equation 4.5.16 gives the content of Table 4.4, with r+� andTable 4.3: Level 2 characterization : standard deviation of �Ai Bi R� cR� R�1 0 17.54 17.54 17.541 1 15.97 14.95 11.061 2 17.67 13.80 9.96137



Table 4.4: Asymptotic deviation probabilities.Pf� � 0:98� �1g � e�r+2�s=98 NN Pf� � 1:02��1g � e�r�2�s=102 NNPf� � 0:95� �1g � e�r+5�s=95 NN Pf� � 1:05��1g � e�r�5�s=105 NNPf� � 0:9� �1g � e�r+s=9 NN Pf� � 1:1��1g � e�r�s=11NNPf� � 0:8� �1g � e�r+2�s=8 NN Pf� � 1:2��1g � e�r�2�s=12 NNr�� de�ned in equation 4.4.13.Computing the right-hand sides in Table 4.5 is possible thanks to our knowl-edge of the rate function. Table 4.5 shows the values (computed with Matlab) ofthese asymptotic probabilities for each implementation and each convergence rateestimate. The table shows that the probabilities are obviously over-estimated forsmall deviations. Let us consider the values in the table for deviations of 2% and�2% from the mean. It is easy to see that, according to the table:Pf� � 0:98��1g+ Pf� � 1:02 ��1g > 1!This is due to the fact that a deviation from the mean by 2% is not a rare event fora number of sample as small as N=N . More formally, when � is small, then r+� andr�� are also small. In our approximation, we �xed the number of algorithm phases(to N=N). Therefore, the term o(n) in the Large Deviation asymptotic estimate isnot negligible and causes Table 4.5 to give incoherent probability values for smalldeviations. In fact, LDT tells us that e�r�� �n, for instance, is an upper bound on138



Table 4.5: Level 2 deviations from �1 by �2%,�5%, �10% and �20%.Impl. R� cR� R�Ai Bi -2% +2% -2% +2% -2% +2%1 0 0.4652 0.4690 0.4652 0.4690 0.4652 0.46901 1 0.5650 0.6133 0.6066 0.6517 0.7603 0.79081 2 0.5606 0.5585 0.7023 0.7008 0.8321 0.8311Impl. R� cR� R�Ai Bi -5% +5% -5% +5% -5% +5%1 0 0.0079 0.0090 0.0079 0.0090 0.0079 0.00901 1 0.0256 0.0588 0.0404 0.0837 0.1723 0.25671 2 0.0207 0.0444 0.0936 0.1493 0.2916 0.3718Impl. R� cR� R�Ai Bi -10% +10% -10% +10% -10% +10%1 0 2.3808e-09 7.0465e-09 2.3808e-09 7.0465e-09 2.3808e-09 7.0465e-091 1 6.3040e-08 4.2623e-05 4.9426e-07 1.4875e-04 3.4972e-04 0.00801 2 2.7317e-08 1.2820e-05 2.4130e-05 0.0010 0.0040 0.0279Impl. R� cR� R�Ai Bi -20% +20% -20% +20% -20% +30%1 0 2.8013e-38 1.0457e-33 2.8013e-38 1.0457e-33 2.8013e-38 1.0457e-331 1 6.2358e-38 8.2600e-15 2.6064e-33 4.6366e-13 1.3837e-18 1.7376e-071 2 1.0324e-39 6.2265e-17 1.5831e-24 1.2783e-10 4.1529e-13 7.1319e-06the probability of deviation from the mean after n observations. The values inthe table are therefore upper bounds on the deviation probabilities and we expectthem to be fairly tight for large deviations. According to the table, the tail of�'s distribution on the left side (corresponding to particularly slow executions) isheavier than on the right side (particularly fast executions). This implies that thedistribution function of � is not symmetric. Chapter 5 will present some tentativeresults that aim at quantifying this dissymmetry.139



Figure 4.21 summarizes what elements of the probability distribution of � canbe approximated by our di�erent characterization levels.4.6 ConclusionIn this chapter, we have isolated the components of our model that are used toperform a performance analysis of parallel iterative algorithms. The analysis of thewavefront Markov chain (see Section 4.1) is the basis of the performance analysis.Once the wavefront behavior is quanti�ed, it is possible to obtain estimates for thealgorithm rate of convergence (see Section 4.2) and the implementation speed (seeSection 4.3). The analysis of the implementation speed can bene�t from the use ofLarge Deviation Theory, as explained in Section 4.4. Finally, we have summarizedour characterization techniques in Section 4.5 and given an example. There aremany ways in which the material presented in this chapter can be improved orextended. Such developments are left for future work and are described in detailin Chapter 6.
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Chapter 5Model ValidationIn the preceding chapter, we have seen how the model described in Chapter 3 canbe used to obtain performance characterizations for parallel iterative algorithmsin distributed environments. In this chapter, we examine these characterizationsand draw conclusions about their validity. First, we present simulation resultsfor a given distributed environment and iterative algorithm. Second, we presentexperimental results for a real distributed environment and real runs of an iterativealgorithm.5.1 Simulation ResultsThe �rst step when trying to validate our performance characterizations is toperform simulations. We can make those simulations satisfy our basic assumptionsexactly and thereby verify that our models yield coherent results.142



5.1.1 The ExperimentWe implemented a simulation program that simulates any iterative algorithm inany distributed environment. The program can be used to easily simulate a largenumber of the algorithm runs. For each of these runs, the program produces theexecution time, the number of iterations to convergence and the error reduction ofthe solution vector. Let us give more details about the speci�cs of the simulationthat we performed to obtain numerical results.The Simulated Distributed EnvironmentThe simulated distributed environment consists of three processors. Those pro-cessors are identical but with di�erent workload distributions. Figure 5.1 showsthe three distributions of the solution vector update times. The processors are in-terconnected with a network that delivers constant performance of 0.001 secondsper message. This environment is fairly simple, in order to make the results easierto interpret.The Iterative AlgorithmWe chose to simulate a Gradient algorithm (see Section 2.1.2). The cost functionis multi-polynomial, from R30 to R, and the step-size, , is equal to 0.005. Theoperator of the iterative algorithm is then a contracting operator according to def-inition 2.3.1. The matrix A associated to this contracting operator has a spectral143
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justi�cation is left for future investigation. Most graphs in this chapter will besimilar to Figure 5.2.Figure 5.3 shows the same data as Figure 5.2, but the level 1 characteriza-tion has been made equal to the empirical mean, so that it is easy to observethe level 2 and level 3 characterization versus the shape of the empirical distribu-tion. Thorough comments on these curves will be given in Sections 5.1.4, 5.1.5,and 5.1.6.5.1.3 Asynchronous ImplementationsLet us now turn to the simulation results for asynchronous implementations. Weconsider two such implementations as in the examples of Chapter 4: �rst, an imple-mentation for which Ai = 1 and Bi = 1 for i = 1; 2; 3 in terms of de�nition 3.4.1;second, an implementation for which Ai = 1 and Bi = 2 for i = 1; 2; 3. Thissecond implementation can be seen as \more asynchronous" than the �rst one.Figure 5.4 shows the empirical distribution, mean and standard deviation ofthe algorithm execution time (it is similar to Figure 5.2). However, four set ofperformance characterizations are shown. Indeed, the three estimates of the rateof convergence de�ned by equation 4.2.3 have here three di�erent values. Thesevalues have been computed as in Section 4.2.3 (see Figure 4.9). On Figure 5.4, wealso show the performance characterization based on Baudet's convergence rateestimate. 146
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Figure 5.3: Adjusted curve for a synchronous implementation
150 200 250 300 350 400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Execution time in seconds

Pr
ob

ab
ilit

y

Best case Simulation Average case Worst case Baudet

Empirical distrib.     
Empirical mean         
Empirical stddev       
Level 1                
Level 2                
Level 3                
Norm. level 3          

Figure 5.4: Simulation vs. characterizations for the �rst asynchronous implementation147



Figure 5.5 is similar to Figure 5.3: level 1 characterization has been madeequal to the empirical mean so that it is easier to observe the level 2 and level3 characterizations. This adjusted curve can be seen as the characterization fora perfectly accurate convergence rate estimate. In the following sections, we willcompare the empirical distribution to characterizations for our three convergencerate estimates, Baudet's estimate and for the perfectly accurate estimate afore-mentioned.
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Figure 5.5: Adjusted curve for the �rst asynchronous implementation
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Figure 5.6 shows the same results as Figure 5.4, but for the second asyn-chronous implementation. Figure 5.7, also for the second implementation, is simi-lar to Figure 5.5 with the adjusted level 1 characterization. In the following threesections, we discuss each characterization level in detail using the graphs for thesynchronous and asynchronous implementations.5.1.4 Discussion of the Level 1 CharacterizationLevel 1 characterization is an estimate of the mean execution time for the itera-tive algorithm in a given distributed environment. In the case of the synchronousimplementation, our three estimates of the algorithm convergence rate are allequal to Baudet's estimate. As seen on Figure 5.2, level 1 characterization pre-dicts a mean execution time of approximatively 210 seconds whereas the observedmean execution time is around 194 seconds. This means that there is around8% error between observed and predicted mean. This di�erence can be explainedrather easily. Indeed, our estimate of the rate of convergence, in terms of numberof iterations to convergence, depends only on the spectral radius of the matrixassociated to the contracting operator for a synchronous implementation. Thisspectral radius does not describe the entire shape of the operator, which dependsitself on the shape of the cost function. In fact, two contracting operators withmatrices of identical spectral radius can lead to di�erent (but hopefully close)rates of convergence. 149
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Figure 5.6: Simulation vs. characterizations for the second asynchronous implementa-tion
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Figure 5.7: Adjusted curve for the second asynchronous implementation150



Our estimate of the rate of convergence is a lower-bound on the actual conver-gence rate for all contracting operators with matrices of spectral radius 0:7. Thisexplains why the level 1 mean execution time is larger than the observed one. Thisphenomenon occurs for any implementation, but it is especially easy to observe fora synchronous implementation since all the convergence rate estimates are equal.For the asynchronous implementations, we already explained that we haveobtained a set of four di�erent characterizations. Each characterization yieldsa di�erent level 1, depending on the convergence rate estimates. The values ofthese estimates are shown in Table 5.1 for all three implementations. As noted inSection 4.2.3, R� � cR� � R� � RBaudet:Let us recall from Section 4.5.3 that for a convergence rate estimate R, the level1 characterization is computed as: �1 = !Rs;Table 5.1: Convergence rate estimates and observed convergence rateAi Bi R� cR� R� Baudet Observed1 0 0.0132 0.0132 0.0132 0.0132 0.01431 1 0.0.0066 0.0080 0.0132 0.0044 0.00971 2 0.0038 0.0069 0.0132 0.0026 0.0084151



where ! is the user's convergence criterion and s the average speed of the imple-mentation in terms of number of iterations per seconds, as computed thanks toour stochastic model. As explained in Section 4.2.3, the gaps between the fourconvergence rate estimates depend on the variances of the RVs N i for i = 1; 2; 3.This variance depends itself on the asynchronicity of the implementation and onthe distributed environment. The gaps increase when the asynchronicity of theimplementation increases. This comes directly from the de�nition of N i. For asynchronous implementation, we have seen that the gaps are reduced to zero. Foran asynchronous implementation, if the probability distribution of the solutionvector update times on the di�erent processors are small, then the gaps betweenthe di�erent level 1 characterizations are small. Conversely, if those variances arelarge then the gaps are also large (as for the synchronous implementations in oursimulation). More intuitively, the gaps between the di�erent level 1 character-izations increase with the number of additional updates that can be performedduring the � sub-phases of the algorithm run.The absolute positions of the level 1 characterizations depend on the operatorof the iterative algorithm, the initial guess on the solution vector, the shape ofthe cost function, the distributed environment and the end-user's convergencecriterion. The implementation of our model produces those four estimates for anyimplementation.In this simulation, it appears that the observed execution times lie between152



the characterizations for our \best case" and \average case" estimates. As men-tioned in Section 4.2.2, it is fairly di�cult to generalize this result to any iterativealgorithm in any distributed environment. Indeed, the inuence of the shape ofthe cost function is di�cult to quantify. It is clearly possible to contrive di�erentcases where the cost functions, even though still leading to contracting operators,can have di�erent inuences on the execution time empirical distribution. Thisissue is part of the theoretical study of iterative methods and is outside the scopeof this work.However, for classes of cost functions, it is likely that the observed executiontimes will behave similarly for each function in a class. If several runs of aniterative algorithm are to be performed for functions in the same class, in thesame distributed environment, then one can assume that the empirical mean ofthe execution times will be located at some �xed position, relatively to our fourlevel 1 characterizations. For example, according to this simulation, using our\average case" estimate, cR�, leads to 18% error on the mean execution time.Let us make a last observation on Figures 5.4 and 5.6. One can observe thatour level 1 characterizations for the \average" convergence rate estimate for thetwo asynchronous implementations are very similar: 212.03 seconds and 213.24seconds respectively. This can be easily interpreted. In fact, due to the charac-teristics of the distributed environment, the second asynchronous implementationrarely has the opportunity to perform more than one additional update of the153



solution vector during the � sub-phases. It is in general fairly equivalent to the�rst asynchronous implementation, and this can be seen easily on the empiricaldistributions. Our stochastic model reects this behavior when generating thelevel 1 characterizations. However, one can see on the two �gures that the level 1characterizations for the \best" and \worst" case convergence rate estimates aredi�erent for the two implementations. The second implementation exhibits muchlarger gaps between the di�erent level 1 characterizations. This can be easilyexplained. Those two convergence rate estimates correspond to extreme cases.With non-null probability, but rarely in this simulation, the second asynchronousimplementation can perform many more iterations on out-of-date data than the�rst implementation, depending on the distributed environment. Therefore, thesecond implementation can exhibit more extreme behaviors than the �rst imple-mentation, explaining the larger gaps in Figure 5.6. We had already stated thisfact by saying that the gaps increase with asynchronicity.5.1.5 Discussion of the Level 2 CharacterizationLevel 2 characterization provides an estimate of the standard deviation of thealgorithm execution time. Table 5.2 shows the four level 2 characterizations,the level 2 characterization for the adjusted level 1, and the empirical standarddeviations, all for our three implementations.The �rst obvious observation to make on Table 5.2 is that the level 2 characteriza-154



Table 5.2: Level 2 characterizations and observed standard deviationAi Bi R� cR� R� Baudet Adjusted Observed1 0 2.57 2.57 2.57 2.57 2.47 2.551 1 2.75 2.50 1.94 3.37 2.27 3.161 2 3.31 2.47 1.94 3.37 2.23 3.25tion increases for decreasing values of the convergence rate estimate. This is easyto explain from the de�nition of the level 2 characterization given in Section 4.5.4.Level 2 is in fact the standard deviation of a bi-variate Normal distribution whosecovariance matrix is computed as n � Scov, where n is the number of algorithmphases to convergence and Scov a �xed matrix. Therefore, according to equa-tion 4.5.15, level 2 characterization grows linearly with the predicted number ofalgorithm phases. The number of phases of course decreases when the convergencerate estimate increases, which agrees with our observation.Table 5.3 shows the error percentages between the level 2 characterizationsand the observed standard deviations for all three implementations. Those errorsare caused by two factors. First, since the convergence rate estimates are notequal to the actual convergence rate, the number of algorithm phases predictedand used to compute level 2 characterization is not equal to the actual numberof algorithm phases. This is closely related to our earlier comment about thelinear growth in equation 4.5.15. Furthermore, the level 2 characterization usesthe \average" number of iterations performed per algorithm phase to compute155



Table 5.3: Error between level 2 characterization and observed standard deviationAi Bi R� cR� R� Baudet Adjusted1 0 0.8% 0.8% 0.8% 0.8% 3.1%1 1 12.97% 20.89% 38.61% 6.65% 28.16%1 2 1.85% 24.00% 40.31% 3.69% 31.38%the number of phases to convergence. This approximation certainly contributesto the errors reported in Table 5.3. But, as we can see in that table, there are stillerrors for the adjusted characterization. As we said in Section 5.1.4, the adjustedcharacterization can be seen as one for the actual convergence rate. It does notseem reasonable to attribute all the errors only to the use of the \average" numberof iterations performed per algorithm phases. Therefore, there has to be anotherphenomenon other than the error in predicting the number of algorithm phases.As we have already seen, the level 2 characterization is computed from a bi-variate Normal approximation. This approximation is motivated by the introduc-tion of the sample average of i.i.d. observation of a RV, S(k), of known distribution(see Section 4.5.4). If the number of samples is not large enough, then the dis-tribution of the sample average might be far from the Normal approximation.Furthermore, the more asynchronous the implementation, the more values can betaken by S(k). In the case of a synchronous implementation, this RV is actuallymono-variate and this explains why there is a small error for the correspondinglevel 2 characterization in Table 5.3. Table 5.4 shows the level 2 characterization156



error for our �rst asynchronous implementation (Ai = 1 and Bi = 1 for i = 1; 2; 3)and for decreasing values of �, the achieved error between the �nal solution vectorand the real solution. It appears clearly that the level 2 characterization errordecreases with �. Decreasing � corresponds to increasing the number of algorithmphases performed, and therefore getting closer to the bi-variate Normal distribu-tion (as the number of samples of S(k) increases). It seems di�cult to preciselyquantify the di�erent factor contributions to the errors in Table 5.4.5.1.6 Discussion of the Level 3 CharacterizationLevel 3 characterization is shown on the graphs as a dash-dot line. First, let usnote that the graphical representation of level 3 in the �gures in the beginning onthis chapter is not complete. We have not plotted the level 3 curve for all pointsat which it is non-zero. This curve however is only non-zero on a bounded subsetof R. This subset is easily determined by our stochastic model to obtain valuesfor the maximum and minimum observable implementation speeds in terms ofTable 5.4: Level 2 error for increasing values of �� Level 2 Observed Error10�5 2.45 3.52 30.4%5� 10�6 2.68 3.79 29.3%10�6 2.97 4.07 27.0%5� 10�7 3.14 4.06 22.7%10�7 3.93 4.86 19.1%5� 10�8 4.43 4.98 11.0%157



number of iterations performed per algorithm phase.The LDT allows us to estimate such probabilities as:Pf� � �1 � �g and Pf� � �1 + �g:Such estimations are explained in detail in Section 4.5.5. It is then possible to usethose estimates to approximate such probabilities as:Pfx � � � yg 8x; y;2 R:This is how the dash-dot curve has been computed. According to LDT, thiscurve should be an upper bound of the empirical distribution. And this is exactlywhat can be observed on all the Figures 5.2 to 5.7. This upper bound is veryloose for small deviations, as explained in Section 4.5.6, but should be a goodapproximation of the actual probabilities of large deviations of the execution timefrom its mean: �1.Furthermore, one can see on Figure 5.4 that the peak of the the level 3 char-acterization decreases as the estimate of the rate of convergence decreases. It isnotably much lower for the rightmost characterization (corresponding to Baudet'sconvergence rate estimate) than for the leftmost one (our best case estimate). Thisis due to the fact that, as noted in Section 4.5.5, the Large Deviations computa-tion depends on N , which increases when the convergence rate estimate decreases.158



This phenomenon will be observed in all following graphs that show performancecharacterizations for di�erent convergence rate estimates.5.1.7 ConclusionOur di�erent levels of characterizations give very satisfactory results for this sim-ulation. The major issue is the accuracy of the convergence rate estimate. Thiswas discussed in Section 5.1.4 as it is very noticeable for level 1. The level 2characterization seems to provide a reasonable order of magnitude of the empir-ical standard deviation. The errors in level 2 were identi�ed and explained inSection 5.1.5. Finally, level 3 characterization seems to be very easy to inter-pret, if not to compute. However, it is fairly di�cult to check its validity forrare events. Indeed, rare events are very unlikely to occur in a simulation andtheir empirical probability will almost always be zero. Furthermore, if one rareevent occurs during a simulation, its empirical probability is bound to be muchhigher than its actual probability due to a too small sample size. The simulationof rare event is in fact an active �eld of research and is outside the scope of thisdissertation. (An important technique to obtain valid simulation results aboutthe probability of occurrence of rare events is Importance Sampling. One can �ndfurther development and references on this subject in [26, 29].)159



5.2 Experimental ResultsThis section presents actual experimental results obtained for a real implementa-tion of an iterative algorithm running on a real network of workstations. Afterdescribing the setting of the experiment, we give results for the algorithm execu-tion as observed during a time period of a week and a time period of 24 hours.5.2.1 The ExperimentWe implemented a parallel iterative algorithm in C using MPI [49] for inter-process communications. This implementation can be used on any number ofprocessors, and its degree of asynchronism can be easily modi�ed. Indeed, ittakes as parameters the Ai and Bi values for i = 1; ::; p (see de�nition 3.4.1).It also takes as parameters the user's convergence criterion and other variablesdescribing the iterative algorithm itself. Let us start with a description of thedistributed environment.The Distributed EnvironmentAs for the simulation, we used three workstations. Those workstations are partof one of the laboratories available to students at the Department of ComputerScience of the University of Tennessee. The workstations are Sun Sparc Ultra1 interconnected by a standard 10 Mbps Ethernet network. Those workstationsare being used by students for course-work as well as for personal research. The160



load of each of the processors and of the network therefore varies considerablythroughout the day.Figure 5.8 shows the empirical distributions of the solution vector update timesas measured throughout our time period of a week (Nov. 17-24, 1997). One cansee that the �rst processor is on average slower than the other two.Figure 5.9 shows those empirical distribution as computed from measurementsfor a time period of only 24 hours (Nov. 26, 1997). The distributions are dif-ferent from the ones on Figure 5.8. The �rst two processors have fairly similardistributions and are on average slower than the third one.One can also see on the �gure that we have discretized the distribution. Thisdiscretization will lead to approximations in our computations but is necessaryin order to use our stochastic model. Increasing the level of re�nement for thediscretization leads to more accurate results as the discrete distribution approachesthe real distribution. The level of re�nement shown in the �gure seems to besu�cient here to obtain interesting results. The messages exchanged among theprocessors are small (80 bytes) and the machines are on the same local areanetwork, so it is not surprising that our measurement of the network tra�c showsthat the communication time distributions have almost a null variance, meaningthat the communication times are hardly random. This is due to the fact that nouser was saturating the network during our time period. We therefore used ourmodel assuming that the network delivers constant performance.161
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Figure 5.8: Measured update time distributions over a week
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Figure 5.9: Measured update time distributions over 24 hours162



Since the network communication times are 2 orders of magnitude smaller thanthe solution vector update times, this approximation should lead to no observableerror.The Iterative AlgorithmThe iterative algorithm is the same as for the simulation: a Gradient descent withstep-size 0.005 for a multi-polynomial function from R30 to R. Here also, theinitial guess on the solution vector is the same for each run of the algorithm. Wemeasured the execution times for the same three implementations of the paralleliterative algorithm as for the simulation performed in Section 5.1. The di�erentimplementations were executed alternatively on the same three processors. Itis therefore meaningful to compare their execution times throughout the timeperiods.The following section o�ers fundamental observations on the raw measure-ments that we have collected and draws conclusions about the current limitationsand domain of application of our stochastic model.5.2.2 General Observations on the MeasurementsImmediate Comparisons of the Di�erent ImplementationsFigure 5.10 shows the execution times observed throughout the one week timeperiod for the synchronous implementation and for the �rst asynchronous imple-163
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Figure 5.10: Execution time measurements over a weekmentation. This corresponds to 862 consecutive observations for each implemen-tation. The measurements for the second asynchronous implementation are notshown because they would be di�cult to distinguish from the ones of the �rstasynchronous implementation on that time scale. Instead, Figure 5.11 shows thedi�erences in execution times throughout the time period between the �rst asyn-chronous implementation and the synchronous implementation, and between the�rst and the second asynchronous implementation.The �rst observation to make is that the asynchronous implementations aregenerally more e�cient than the synchronous one. According to the top graphin Figure 5.11, the �rst asynchronous implementation is up to 150 seconds fasterthan the synchronous implementation, and 30 seconds faster on average. Out of164



0 100 200 300 400 500 600 700 800 900
−100

−50

0

50

100

150

D
iff

er
en

ce
 o

f e
xe

cu
tio

n 
tim

e

Observation number

Synch. Impl. − 1st Asynch. Impl.

0 100 200 300 400 500 600 700 800 900
−100

−50

0

50

100

150

D
iff

er
en

ce
 o

f e
xe

cu
tio

n 
tim

e

Observation number

1st Asynch. Impl. − 2nd Asynch. Impl.Figure 5.11: Di�erences in execution timesthe 862 observations, only 13 are such that the synchronous implementation isactually faster than the asynchronous ones. This represents roughly 1.5% of theobservations. In fact, since the experiment runs the implementations one afterthe other in a round-robin fashion, it is therefore highly likely that a quick changein the distributed environment will lead to a few incoherent comparisons betweenthe di�erent implementations.The second observation concerns the two asynchronous implementations. Ana-lyzing the data in the bottom graph of Figure 5.11, we compute that, \on average"the second implementation is faster than the �rst one by about 1.9 seconds. How-ever, one can observe cases where the �rst implementation is 100 seconds slowerthan the second one, as well as cases where the second implementation is slower165



than the �rst one by up to 85 seconds. However, in only 15% of the observationsis the absolute di�erence between between the two implementations more than 10seconds.It seems that, in this experiment, a good choice is to use an asynchronousimplementation as opposed to a synchronous one. This is explained both by thenature of the distributed environment and by the nature of the iterative algorithm.Table 5.5 shows the observed mean and standard deviations of the execution timesin seconds for each implementation: it seems that the mean and the standarddeviation decrease with the asynchronicity, and in fact the operator of our iter-ative algorithm is smooth enough that the use of moderately out-of-date data israrely detrimental to convergence. Several other research works include examplesfor which asynchronous implementations outperform synchronous ones [5, 7, 40].Therefore, asynchronicity allows an implementation not only to achieve fasterconvergence, but also to adapt to the uctuations of the distributed environment.This explains the decrease in mean and standard deviations witnessed in Table 5.5.Table 5.5: Observed mean and standard deviations of the execution timeAi Bi Mean Std. Dev.1 0 142.88 38.081 1 113.14 26.261 2 111.18 25.47166



Burstiness of the Workload DistributionsConcerning the shape of the curves in Figure 5.10, a fundamental observationis that: the execution time is bursty. In fact, the distributed environment, andtherefore the algorithm, behaves very di�erently at di�erent times in our timeperiod, for the system is in use for a variety purposes during the experimentalruns.In order to illustrate these di�erent behaviors, Figures 5.12(a), (b) and (c)show three close-ups of the execution times for each implementation during shortsub-periods of the one week time period. Table 5.6 shows the means and standarddeviations for each implementation corresponding to the three sub-periods thatwe will call sub-periods (a), (b) and (c). Each of them is about two hours long.The standard deviations for the small sub-periods are much lower than those forthe whole week shown in Table 5.5. Let us analyze the three sub-periods.During sub-period (a), the gaps between the three implementations are largeand the execution time of the synchronous implementation is high. This tendsto suggest that the processors were heavily loaded, with a great load imbalanceamong them. The more asynchronous the implementation, the more resistant itis to this imbalance. During sub-period (b), the three implementations performcomparably. This suggests that the processor loads were uniform during the sub-period since the asynchronous implementations were not able to take advantage of167



100 105 110
50

100

150

200

250

300

Ex
ec

uti
on

 tim
e

Observation number

(a)

Synch.      
1st Asynch. 
2nd Asynch. 

130 135 140
50

100

150

200

250

300

Ex
ec

uti
on

 tim
e

Observation number

(b)

Synch.      
1st Asynch. 
2nd Asynch. 

185 190 195
50

100

150

200

250

300

Ex
ec

uti
on

 tim
e

Observation number

(c)

Synch.      
1st Asynch. 
2nd Asynch. Figure 5.12: Di�erent experimental behaviors throughout one weekTable 5.6: Observed means and standard deviations of the execution timeImpl. sub-period (a) sub-period (b) sub-period (c)Ai Bi Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.1 0 260.51 3.30 194.73 4.68 195.80 6.701 1 141.99 2.77 183.01 7.47 115.44 3.881 2 105.67 2.76 186.12 7.16 104.02 2.79wasted CPU cycles. Sub-period (c) seems to be more \typical". The asynchronousimplementations are close in performance and both faster than the synchronousone. The load imbalance among the processors was not as extreme as duringsub-period (a) but more important than during sub-period (c). It is interestingto note that the performance of the synchronous implementation stays the sameduring sub-periods (b) and (c), wasting a lot of CPU cycles during sub-period (c).It is clear that the distribution depicted in Figure 5.8 does not characterize the168



workload of the processors during the whole week. The processor workload isbursty, causing the execution times to be bursty as well. It would be interestingto characterize precisely the burstiness of the workload. In [58, 34] it is shown thatthe Ethernet tra�c exhibits a self-similar behavior [36, 39]. In [43], it is shownthat the superposition of network tra�cs generated by Markov-modulated burstysources generates self-similar tra�c. If the workload on the di�erent processors ismodeled as such Markov-modulated sources, then it is possible that some elementsin our model could be seen as self-similar random processes, meaning that theywould be bursty on every time scale (or at least a great number of them asan approximation). Such a study is outside the scope of this dissertation andwould require a much larger and detailed sample of measurements for a muchlonger time period. Such extensive data-sets are used in [58, 34]. Furthermore,precise measurements of the processor workloads uctuations are needed in orderto construct the Markov-modulated random process. These considerations are leftfor future work.In what follows, we present results obtained with our model. We use the modelto characterize the performance of the di�erent implementations for the two timeperiods: �rst for the whole week, using the distribution shown in Figure 5.8;and second,, a time period of 24 hours during which the distributed environmentexhibits more stable behavior, using the distribution shown in Figure 5.9. Forreasons explained earlier, we expect the model to be fairly inaccurate for the �rst169



time period, whereas the second time period should lead to more satisfactoryresults. In the following sections, we present and comment on some of the resultsfor both time periods. Many observations on the results are identical to the oneswe have already made on the simulation results in Section 5.1. We will onlydescribe here new phenomena not observed in the simulation.5.2.3 The One Week Time PeriodThe ResultsFigure 5.13(a) shows our characterization for the synchronous implementationversus the experimental distribution of the execution time. Figure 5.13(b) showsthe same characterization when its convergence rate estimate is exactly equalto the observed convergence rate. The experimental distribution, shown as abar diagram, is composed of three parts. Each of these parts corresponds to adi�erent typical mean execution time. Such typical behaviors were seen clearlyon Figure 5.10. Let us analyze each characterization level for those two �gures.The level 1 characterization on Figure 5.13(a) is around 119 seconds, whereasthe observed mean is 143 seconds. This is a an error of approximatively 17%.This is explained by the burstiness of the workload distributions. Indeed, if thedistributed environment were behaving as assumed by our model, meaning thatthe solution vector update times are i.i.d. with the distribution depicted in Fig-ure 5.8, then the mean execution time for the parallel iterative algorithm would170
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Figure 5.13: Experiment vs. Characterization for the synchronous implementationbe smaller than the observed one. Due to the workload burstiness, the algorithmcan run extremely slowly for a large number of observations (see Figure 5.12(a)),contributing to increasing the mean execution time over the one week time period.The level 2 characterization, as seen on Figure 5.13(b) is most striking. It ismuch smaller than the observed standard deviations, by a factor of 50! This wasalso expected since level 2 is very sensitive to our assumption about the distributedenvironment. Let us recall that level 2 is in fact the standard deviation of a bi-variate Normal distribution of known covariance matrix (see Section 4.5.4). Wehave already seen in Table 5.4 that some of the errors in level 2 characterizationsare due to too small a number of samples of the RV S(k). In other words, thealgorithm needs to go through \enough" phases for level 2 characterization to be171



accurate. Furthermore, level 2 assumes that the samples of S(k) are independentso that the Central Limit Theorem is applicable. In this experiment, due again tothe burstiness of the workloads, the samples of S(k) are also bursty and thereforehardly independent.Level 3 characterization seems to yield more satisfactory results than level 2.The upper bound on the distribution suggested by the dash-dot curve in Fig-ure 5.13(b) is non-symmetric. It suggests that the distribution should have aheavier tail towards +1, meaning that extreme observations of the executiontime correspond to slow executions. The experimental distribution appears to beroughly under the level 3 characterization, but it is di�cult to interpret this ob-servation due to the shape of that distribution. Here, the normalized level 3 curve(dotted line) does not �t the data as well as for the simulation in Section 5.1. Itseems di�cult to really assess the accuracy of level 3 from this experiment becauseof the extremely unstable distributed environment behavior throughout one week.Figure 5.14 is similar to Figure 5.4. It shows the four characterizations of theperformance of the �rst asynchronous implementation for each convergence rateestimate. As in the simulation, the experimentalmean is located between the level1 characterizations for our \best case" and \average case" convergence rate esti-mates. Figure 5.15 shows the adjusted characterization for the �rst asynchronousimplementation where the level 1 characterization is equal to the observed meanexecution time. As for the synchronous implementation, and for the same reasons,172
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Figure 5.14: Experiment vs. Characterization for the �rst asynchronous implementation
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Figure 5.15: Adjusted curve for the �rst asynchronous implementation173



level 2 characterization is much smaller than the observed standard deviation.The level 3 characterization exhibits the same dissymmetry as for the synchronousimplementation. We can observe that the experimental distribution has a muchheavier tail than predicted by the level 3 characterization due again to the burstyworkloads of the processors.The results for the second asynchronous implementation are not shown here.They are fairly similar to the results for the �rst asynchronous implementation.The only interesting observation has already been made in Section 5.1: the gapsbetween the level 1 characterizations for the di�erent convergence rate estimatesincrease with asynchronicity.ConclusionThe burstiness in workload for the one week time period is responsible for mostof the phenomena that di�erentiate this experiment from the simulation. Level 2characterization is most sensitive to this violation of our fundamental assumptionsof stochastic independence. In the next section, we describe results obtained fora 24 hour time period where the burstiness of the workload is less dramatic.
174



5.2.4 The 24 Hour Time PeriodThe ResultsFigure 5.16 shows the execution times for the parallel iterative algorithm through-out our 24 hour time period. The distributed environment exhibited a fairly stablebehavior similar to the one shown in Figure 5.12(c), leading to much smoothermeasurements than the ones presented in Figure 5.10. Our model should yieldmore accurate results than for the one week time period.Figure 5.17(a) shows the results of our model for the synchronous implemen-tation. Figure (b) is the usual adjusted curve where the level 1 characterization isequal to the observed mean execution time. One can make three new observationson these �gures.First, the level 1 characterization in Figure (a) is larger than the observedmean. This can be explained by a comparison with the simulation results ofSection 5.1 and the experimental results for the one week time period. For thesimulation our independence assumption was completely satis�ed and the level 1was larger than the observed mean by 8%. For the one week time period, ourindependence assumption was largely violated, and the level 1 characterizationwas smaller than the observed mean by 16%. Here, the independence assumptionis not satis�ed since the workload is still bursty (but not so bursty as for the entireweek). This explains why the level 1 characterization can be here larger (by 4%)175
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Figure 5.16: Measurements during 24 hours for the three implementations
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Figure 5.17: Experiment vs. Characterization for the synchronous implementation176



than the observed mean. This statement is valid because the iterative algorithmis the same in all the simulations and experiments. Second, the level 2 error ismuch smaller than for the one week time period (about 27%) for the adjustedcurve. This improvement is due to the decreased workload burstiness during thisshorter time period. Third, level 3 characterization seems to be fairly accurate.The tail of the experimental distribution is a little heavier than suggested by level3. Once again, this is to be attributed to workload burstiness and this explainswhy the level 3 error is much less important than for the one week time period.Figure 5.18 shows our model's results for the �rst asynchronous implemen-tation and can be analyzed exactly like Figure 5.14. Notice that the observedmean execution time is closer to our level 1 characterization for the \best" caseconvergence rate estimate than to the one for the \average" case estimate. Thisdi�ers from both the simulation and the one week time period. It is di�cult toquantify this behavior since it depends on the workload patterns of the processorsin the distributed environment. Figure 5.19 shows the adjusted characterizationfor the �rst asynchronous implementation. One can observe that the error in level2 characterization is here much smaller than for the one week time period (\only"58%). As for the synchronous implementation, this is due to less extreme viola-tions of our stochastic independence assumptions. Level 3 characterization is alsomore accurate than for the one week time period for the same reason.177
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Figure 5.18: Experiment vs. Characterization for the �rst asynchronous implementation
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Figure 5.19: Adjusted curve for the �rst asynchronous implementation178



However, the tails of the experimental distributions are still heavier than the onessuggested by LDT. This is still due to violations of the stochastic independenceassumptions.ConclusionThe experiments conducted over the 24 hour time period con�rm some of ourinterpretations of the simulation and of the experiment over one week. The resultsgiven by our model for the 24 hour period can be considered between the ones forthe simulation and the one week experiment. The level 1 characterization was\pessimistic" for the simulation, for the same reason that Baudet's convergencerate estimate is pessimistic: there is no precise control over the shape of the costfunction. By contrast, level 1 was \optimistic" for the one week time periodbecause our model is based on fundamental assumptions on the independence ofthe solution vector update times. This assumption was violated since the processorworkloads exhibit bursty distributions. The level 2 characterization was uselessfor the one week time period as it was several orders of magnitude smaller thanthe observed standard deviations for the execution time. For the 24 hour timeperiod it yields much more acceptable results. However, it su�ers from the sameerrors identi�ed during the simulation (see Section 5.1.6), in addition to the stillpresent (but reduced) workload burstiness. Finally, level 3 is not as accurate forthe 24 hour period as it was for the simulation. This is due to violations of the179



independence assumption. As we have already noted, it is di�cult to interpretlevel 3 for the one week time period.5.3 ConclusionIn this chapter we have presented three validations of the stochastic model pre-sented in Chapter 3 and of the performance characterization described in Chap-ter 4. First, in Section 5.1, we conducted a simulation which has the advantage ofmatching our main assumptions exactly. The results were very conclusive and wediscussed their interpretations in detail. In particular, we identi�ed the sources oferror in our performance characterizations. This simulation supports the hypoth-esis that our stochastic approach is reasonable and that it produces useful resultswhen the necessary assumptions are satis�ed.In Section 5.2, we showed experimental results. The experiment was conductedon a real network of workstations used by students at the University of Tennessee.Three implementations( one synchronous and two asynchronous) of a paralleliterative algorithm were run on this network during a time period of a week,and then during an additional 24 hour period. The main di�erences between theexperiment and the simulation are explained by bursty processor workloads. Thisburstiness is in violation of our stochastic independence assumption and impactson our performance characterization. The level 2 characterization seems to be180



the most sensitive one. This impact was clear for the one week time period asthe distributed environment exhibits di�erent general behaviors throughout theweek (see Figure 5.12). Our performance characterization gives very acceptableresults for the 24 hour time period as the distributed environment behaves moreconsistently. Nevertheless, some workload burstiness can still be observed, leadingto heavier than expected distribution tails for the experimental execution timedistribution.
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Chapter 6ConclusionThe research described in this document contributes theoretical tools, techniques,and interpretations in quantitative performance analysis of di�erent parallel im-plementations of some iterative algorithms. A broad class of algorithms has beenconsidered: those that can be reduced to solving a �xed point problem for a linearor non-linear operator.In Chapter 2, we described popular strategies that have been used for im-plementing a parallel version of these iterative algorithms. The two schemes ofinterest are the synchronous implementation and the partially asynchronous im-plementation. These schemes have been studied in the past, and several theoreticalresults concerning their conditions for convergence and their rates of convergencehave become available. However, these results are still a step removed from aperformance analysis of the algorithms in a given distributed environment. As182



explained in Section 2.4, stochastic models appear to be natural tools to use inconjunction with the convergence results to extend the study of these iterativealgorithms. We examined some earlier stochastic approaches to such a study andilluminated their shortcomings.In Chapter 3, we showed how to produce a stochastic model for the distributedenvironment that can be easily used to analyze the execution of a parallel itera-tive algorithm in that environment. Our model is based on an underlying Markovchain. This Markov chain, the wavefront, has been clearly identi�ed and describedin Section 3.5: it depends on the distributed environment and on the implementa-tion of the algorithm, and can be easily computed. The wavefront can be exploitedto obtain a variety of results concerning the behavior of the algorithm implemen-tation in the distributed environment.In Chapter 4, we �rst presented three examples of actual wavefront computa-tions and made several remarks on its structure and properties. We then proposedthree new estimates of the convergence rate of the algorithm. These new estimatesare stochastic extensions of Baudet's estimate [5]. By contrast with Baudet's es-timate, our estimates take into account the random behavior of the algorithm'sexecution in a distributed environment. Baudet's estimate has been replaced byour own \worst case" convergence rate estimates, and we introduced \average"and \best" case estimates.Next, we then characterized the speed of the implementation in the distributed183



environment in terms of the number of iterations it performs per time unit. Thisnumber is computed thanks to the wavefront Markov chain. Large DeviationTheory appeared as a natural tool to perform a more in-depth analysis of the im-plementation speed. Basic concepts of this theory were given in Section 4.4 alongwith examples in connection with our stochastic model. Finally, we summarizedthe results of Chapter 3 in Section 4.5 and thereby extracted our three level perfor-mance characterization. Level 1 is a characterization of the mean execution timeof an implementation of an iterative algorithm in a given environment. Level 2is a characterization of the standard deviation of that execution time. It is basedon a bi-variate Normal approximation to the sample average of a random vector.Level 3, thanks to Large Deviation Theory, characterizes the extreme behaviorsof the execution time and, as such, proposes estimates of the tail of the executiontime distribution.The next step was to validate our performance model. This was done inChapter 5 in the form of simulations and experiments. Section 5.1 describeda simulation and obtained conclusive results about the validity of our stochas-tic performance modeling. This simulation was designed to comply with all ourmodel requirements, especially stochastic independence assumptions for the so-lution vector update times. The accuracy of each level of characterization wasstudied and the sources of errors were identi�ed. We also presented experimentalresults obtained for a real implementation of an iterative algorithm on a real dis-184



tributed system at the University of Tennessee. Two separate experiments wereconducted for two di�erent time periods: (i) one week and (ii) 24 hours. Themost instructive observation to draw from these experiments is that our model issensitive to the processor workload burstiness because it violates the stochasticindependence assumption. This is very observable for the one week time periodwhere the algorithm execution times exhibit various behaviors throughout theweek (see Section 5.2.2). The level 2 characterization is the most sensitive to thisburstiness for reasons explained in Sections 5.1.5 and 5.2.3. The distributed envi-ronment behaves much more consistently during our 24 hour time period, and ourperformance characterization gives more accurate results than for the one weektime period. Intuitively, the results for the 24 our time period are between thesimulation results and the one week results.6.1 Contribution of this DissertationParallelizing iterative algorithms for the solution of large or complex optimizationproblems is a crucial issue. Indeed, the amount of computation required to solvesuch problems can be prohibitive for a sequential implementation, especially innon-linear cases. We examined di�erent popular parallelization strategies as wellas the corresponding theoretical results available in the literature and came to theconclusion that there is a gap between those results and what the end-user needs185



to know about the execution of his parallel iterative algorithm. This dissertationshowed that this gap can be �lled using stochastic models that take into accountthe distributed environment used to run the algorithm. Such models have beendeveloped and used to obtain a variety of performance characterizations that aredirectly meaningful to the end-user. Our results can be used to make informedchoices about what combinations of distributed environment and implementationstyle should lead to the shortest execution times.6.2 Future Research DirectionsThere are multiple ways in which our research can be further expanded and im-proved. Some important research directions are suggested here.In Chapter 4, we have given examples of \wavefront" computations. The studyof the structure and properties of the wavefront transition matrix, PX , seems to bevery interesting and should lead to general results concerning the way processorslose and recover synchronization throughout the execution of the algorithm. Wehave given a few guidelines for such a study, but did not pursue it further as PXis systematically computed by the implementation of our model.Throughout Chapter 4, we have used several times an approximation to replaceconditional probabilities by unconditional ones. The conditional distribution of aRV,A, conditioned on the observed state of the wavefront Markov chain can be re-186



placed by an unconditional distribution, as seen in Section 4.2.2 for instance. Thisapproximation is only valid for long-run observations of A as it uses the steadystate distribution of the wavefront Markov chain. However, it is possible to usemore sophisticated approximation techniques that should lead to better results.For instance, one can use one level of Hidden Markov Model(HMM) [23, 44] to ap-proximate the RV A as the state of a new Markov chain. This approximation stilluses the steady state distribution of the wavefront, but includes more informationabout the evolution of A than a simple distribution function. In fact, there is nolimit to the number of levels that can be used and each additional level shouldprovide a more accurate description of A, still as a Markov chain. Such Markovchains can be generated for all the RVs that we have introduced at the end ofChapter 3 and used in the computations that we have described in Chapter 4.In Section 4.2, we have described how we used Baudet's convergence rateestimate to generate three new estimates that take into account the behavior ofthe distributed environment. Our \worst case" estimate is very easy to computeand is a clear extension of Baudet's work. The computation of our other twoestimates is an attempt at giving a meaning to the limit lim inft!1(kt=t) where ktis a random variable. The experience proved that those two estimates are usefulin analyzing the behavior of the parallel iterative algorithm. However, there arecertainly many ways of improving the estimation of the algorithm convergencerate. Such improvement will require a better understanding of the behavior of the187



RV kt and of its impact on the algorithm execution.Finally, and maybe most importantly, our work can be extended to take intoaccount the bursty workload patterns described in Chapter 5. In Section 5.2.2we showed experimental results obtained over a one week time period. Thoseresults suggest that the solution vector update times are not i.i.d., violating oneof our model's assumptions. Better suited for the update times would be the useof Markov-modulated random processes [41] rather than simple i.i.d. observationsof a single RV. A popular and simple Markov-modulated process is one driven bya two-state Markov chain and is often called an ON/OFF or zero/one source [43,22, 45, 31]. Markov-modulated random processes are generally used to modelbursty behaviors. The idea would then be to model the processor workloads(and thereby the solution vector update times) as bursty sources. This wouldcertainly lead to more accurate results than the current version of our model,but will require many changes to the performance characterization described andderived in Chapter 4. Furthermore, the statistical inference necessary to generatesuitable Markov-modulated processes for a given distributed environment willbe much more complicated than the one we have performed to generate simpledistributions. One possibility is to limit the bursty sources to be ON/OFF, butthis hardly seems a good choice since several processes can contribute to increasethe load of one processor simultaneously. Computing the appropriate number188



of states of the underlying Markov chain for each bursty source, as well as itstransition probabilities, will be one of the challenges of this new approach.
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