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Abstract

The NetSolve system, developed at the University of Tennessee, is a client-server application designed to
solve computational science problems over a network. This document is organized in four chapters. The
first chapter presents the basic concepts of NetSolve and gives references to several publications concerning
the project. The second chapter describes the client side of NetSolve, reviewing the Matlab, C, Fortran and
Java Application Programming Interfaces (APIs) as well as the Java Graphical User Interface (GUT). That
section also gives several illustrative examples. The third chapter describes the server side of NetSolve and
gives details on each of its software components. The fourth and last chapter describes how NetSolve handles
the user-provided function mechanism. Finally, complete reference manuals are found in appendices.
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Chapter 1

The NetSolve System

1.1 Introduction

The efficient solution of large problems is an ongoing thread of research in scientific computing. Various
mechanisms have been developed to perform computations across diverse platforms. The most common
mechanism involves software libraries. Unfortunately, the use of such libraries presents several difficulties.
Some software libraries are highly optimized for only certain platforms and do not provide a convenient
interface to other computer systems. Other libraries demand considerable programming effort from the user.
While several tools have been developed to alleviate these difficulties, such tools themselves are usually
available on only a limited number of computer systems. MATLAB [1] is an example of such a tool.

These considerations motivated the establishment of the NetSolve project. The basic philosophy behind
NetSolve 1s to provide a uniform, portable and efficient way to access computational resources over a network.
NetSolve is a client-server application, and a number of different client interfaces have been developed to
the NetSolve software. Users of C, Fortran, MATLAB, or the World Wide Web can easily use the NetSolve
system thanks to the different client types.

1.2 Overview of the NetSolve System

1.2.1 Architecture

The NetSolve system is a set of loosely connected machines. By loosely connected, we mean that these
machines can be on the same local network or on an international network, and administrated by different
institutions and organizations. Moreover, the NetSolve system can be running in a heterogeneous environ-
ment, which means that machines with different internal data representations can be in the system at the
same time.

Figure 1.1 shows the global conceptual picture of the NetSolve system. In this figure, we can see the three
major components of the system:

e The NetSolve client
e The NetSolve agent

e The NetSolve computational resources

Solving a problem with NetSolve is done in three steps. The client sends a request to the agent. The agent
chooses the “best” NetSolve resource according to the size and nature of the problem to be solved. The
problem is then solved on the chosen server, and the result is sent back to the client.
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Figure 1.1: The NetSolve System

This system is fault tolerant, meaning that the client will receive an answer to its problem unless every
resource in the system has failed or is unavailable. The NetSolve agent is the key to the load-balancing
strategy, and details about its design can be found in [2].

1.2.2 Problem Specification

To keep NetSolve as general as possible, we needed a formal way of describing a problem.
A problem is defined as a 3-tuple: < name, inputs, outputs >, where

e name 1s a character string containing the name of the problem,
e inputs is a list of input objects, and
e outputs is a list of output objects.

An object is itself described as follows: < object,data >, where object can be MATRIX, VECTOR, or
SCALAR, and data can be any of the standard Fortran data types.

This description has proved to be sufficient to interface NetSolve with numerous software packages. NetSolve
is still at an early stage of development and is likely to undergo modifications in the future. For the time
being, the existing interfaces use this formalism. However, we will see that the computational servers are
usually set up so that the calling sequences to be used by the NetSolve APIs fit the underlying scientific
software calling sequences.

1.2.3 Problems that can be solved with NetSolve

Before actually using NetSolve with any interface, the user needs to know what problems are solvable. The
easiest way 1s to check the NetSolve homepage:



http://www.cs.utk.edu/netsolve

The Available Resources page provides access to two CGI scripts. Using those scripts, one can inquire about
which problems are handled by the servers and about which servers are in the system. Those scripts give
complete details for the C and Fortran interfaces. This information is also available from the Java or the
MATLAB interfaces, for which such a level of detail is not required. In the future, we plan to suppress those
scripts and replace them with a Java applet. This Java applet will look very similar to the current NetSolve
Java interface and will provide information only about the C and Fortran interfaces.

This early version of NetSolve has a naming scheme for problems. We can distinguish the name of a problem
and its full name. The full name has a path-like structure. Let us explain this with an example. The
problem ddot, which computes the inner product of two double-precision vectors, can have a full name like
/BLAS/Levell/ddot. This full name has two purposes. First, when we display a list of problems, they
are sorted alphabetically on their full name, and the problems are grouped by “directory.” Second, by
convention, the first element of the full name (e.g., BLAS) is the name of the numerical library the problem
comes from. This convention has proven to be useful, as seen in Section 2.3.2.



Chapter 2

The NetSolve Client

2.1 Getting Started

2.1.1 Downloading the Software

The client software can be downloaded from the NetSolve homepage at
http://wuw.cs.utk.edu/netsolve/client distribution.tar.gz.

The following UNIX commands will create the Netsolve _client directory:

% gunzip client_distribution.tar.gz
% tar -xvf client_distribution.tar

2.1.2 Setting the Architecture

The Netsolve client directory includes a Shell script called netsolvegetarch that can be used to return

a character string describing the architecture of the user’s machine. Suppose, for instance, that one wishes
to run the script on an IBM RS/6000:

% netsolvegetarch
RS6K

In that case, the NETSOLVE_ARCH environment variable should be defined in the .cshrc file as:
setenv NETSOLVE_ARCH RS6K
or preferably, if netsolvegetarch is in the path:
setenv NETSOLVE_ARCH ‘netsolvegetarchf
To date, NetSolve has been ported to the following different architectures:
e SUN4: Sun 4, 4c, SPARC, etc.
e SUN4SOL2: Sun 4 running Solaris 2.x
e ALPHA: DEC Alpha/OSF-1

PMAX : DEC Pmax running NetBSd
NEXT : NeXT



SGI5 : Silicon Graphics IRIS running OS > 5.0

SGI64 : Silicon Graphics IRIS running OS > 6.0
e HPPA: HP 9000 PA-Risc

RS6K: IBM RS/6000

2.1.3 Compiling

Now that the NETSOLVE_ARCH environment variable has been set as described in Section 2.1.2, the software can
be compiled. First, one should go to the Netsolve_client/conf directory and edit the $NETSOLVE_ARCH. def
file (for instance RS6K.def). This file contains a custom section in which the user can modify the compilation
parameters. Here is a typical section:

# ———— Custom Section —-—-

F77 = £77

CcC = cc

CMEX = cmex
MATLAB_VERSION =56

# ———— End of Custom Section —-—-

This custom section specifies which compilers are going to be used. CMEX denotes the MATLAB C-compiler,
in case the MATLAB interface is to be built. MATLAB VERSION can take the value 4 or 5 depending on which
version of Matlab is to be used. These parameters can be modified before compilation. However, the file also
contains other information that should not be modified. The NetSolve clients can now be compiled. Typing
make in the Netsolve_client directory will give instructions to complete the compilation.

2.1.4 Setting an Agent Name

As described in Section 1.2.1, to solve a problem, a client must contact an agent. The C, Fortran, and
MATLAB interfaces require the environment variable NETSOLVE_AGENT to be set to contain the name of a
host running a NetSolve agent. If the user knows of some NetSolve system installed somewhere, he will
have to ask the NetSolve administrator for the name of such a host. The NetSolve homepage includes a
list of registered agents on the Internet. The constantly running agent at the University of Tennessee is
comet.cs.utk.edu. If the user wishes to set his agent to be this one, he will have to modify his .cshrc as
follows:

setenv NETSOLVE_AGENT comet.cs.utk.edu

The Java GUI and API do not require the NETSOLVE_AGENT environment variable.

2.1.5 Testing

The thing to do at this point is to test the client software by typing "Test’ in the NetSolve client directory.
This test generally takes a few minutes but may take longer depending on your distance to the agent. We
advise to test the client with the servers running at the University of Tennessee by setting the NETSOLVE_AGENT
environment variable to comet.cs.utk.edu.

2.2 MATLAB Interface

2.2.1 Introduction

Building the MATLAB interface as described in Section 2.1.3 produces the two following mez-files :



e Netsolve client/bin/$NETSOLVE_ARCH/netsolve.mexii#i#
o Netsolve client/bin/$NETSOLVE_ARCH/netsolve nb.mex##i#

The ### part of the extension depends on the architecture (for instance, the extension is .mexsol for the
Solaris Operating System). These two files alone are the MATLAB interface to NetSolve. Modifying the
MATLABPATH environment variable will make these two files available from any location in MATLAB. For
more information about mex-files, the user can refer to [3]. Basically, the user will now be able to call two
new functions from MATLAB: netsolve() and netsolvenb(). The following sections will explain how to
use those two functions.

2.2.2 What to Do First

Let us now assume that the user has started a MATLAB session and is ready to try NetSolve. In this
section we describe those features of this interface that allow the user to get information about the currently
available NetSolve system.

As stated briefly in Section 1.2.3, it is possible to obtain the list of solvable problems from MATLAB. Let
us try that first:

>> netsolve

NetSolve — List of problems available -
/BLAS/Matrices/matmul

/ItPack/jsi
/LaPack/Matrices/EigenValues/eig
/LaPack/Matrices/SingularValues/svd

>>

Every line contains a full problem name. This list can be really long, and in that case it is wiser to use the
CGI scripts in Section 1.2.3. Let us now assume that the user is wondering about what kind of problem eig
1s. He can type

>> netsolve(’eig’)

This command will provide detailed information about this particular problem. Let us split the output
produced by this command into different pieces:

eig : From LAPACK -

Simplified version

Computes the eigenvalues of a double-precision real
square matrix A. Returns two double-precision real
vectors containing respectively the real parts and
the imaginary parts of the eigenvalues.

MATLAB Example : [r i] = netsolve(’eig’,a)

This is the same kind of information as that available from the CGI scripts. It gives a short description of
what the problem is. Usually it also includes an example for MATLAB, using netsolve().

#0 : Double-precision real matrix.
Matrix A



This is the description of the input the user needs to give NetSolve. This particular problem requires only
one double-precision matrix. Notice that this matrix has to be square (as stated in the description of the
problem). If the user tries to call NetSolve for this problem with a rectangular matrix, he will receive an
error message stating that the dimensions of the input are invalid.

#0 : Double-precision real vector.
Real parts of the eigenvalues

#1 : Double-precision real vector.
Imaginary parts of the eigenvalues

The outputs of the problem are described here. The problem eig will return two vectors, the real and
imaginary parts of the eigenvalues of the input matrix, respectively.

This last part does not appear for every problem and is relevant only for the MATLAB interface. Since
MATLAB provides a mechanism to manipulate complex objects, it is probable that the user would like
to have eig return one single complex vector instead of two separate real vectors. This point is further
developed in the following section.

The MATLAB interface has another feature that is concerned not with the actual problem solving but with
providing information about the NetSolve configuration itself. We have just seen how to get information
about the problems handled by the NetSolve servers; it is also possible to obtain the physical locations of
these servers. Let us assume that our NETSOLVE_AGENT environment variable is set to comet.cs.utk.edu
(see Section 2.1.4). Let us try the following command:

>> netsolve(’7’)
this command produces the following output :

comet.cs.utk.edu (128.169.92.78)
NetSolve Agent
Host : Up Server : Running
maruti.CS.Berkeley.EDU (128.32.36.83)
Handles 10 problems
Host : Up Server : Running
cupid.cs.utk.edu (128.169.94.221)
Handles 29 problems
Host : Up Server : Running

We can see that there are three servers in the NetSolve system containing the machine comet at the University
of Tennessee:

1. comet itself, which is stated as being an agent
2. cupid at the same location, which is a computational server handling 29 different problems
3. maruti at U.C. Berkeley, which is also a computational server and handles 10 different problems
We can also see the status information about the servers (the processes) and the hosts (the computers).

Right now, everything is up and running.

10



2.2.3 Calling netsolve()

The first way to perform an actual numerical computation is to call the function netsolve(). With this
function, the user can send a blocking request to NetSolve. By blocking we mean that after typing the
command in the MATLAB session, the user gets back control only when the computation has been success-
fully completed on a server. The other way to perform computation is to send a nonblocking request; this
approach is described in Section 2.2.4.

Let us go on with the eig example we started to develop in the preceding section. The user now knows that
he has to provide a double-precision square matrix to NetSolve, and he knows that he is going to get two
real vectors back (or one single complex vector). He first creates a 300 x 300 matrix, for instance,

>> a = rand(300);
The call to NetSolve is now
>> [x y] = netsolve(’eig’,a)

All the calls to netsolve() will look the same. The left-hand side must contain the output arguments, in
the same order as listed in the output description (see Section 2.2.2). The first argument to netsolve() is
always the name of the problem. After this first argument the input arguments are listed, in the same order
as they are listed in the input description (see Section 2.2.2). This function does not have a fixed calling
sequence, since the number of inputs and outputs depends on the problem the user wishes to solve.

Let us see what happens when this command is typed:

>> [x y] = netsolve(’eig’,a)

Trying server cupid.cs.utk.edu
Problem accepted....sending the data
Waiting for result.....

Result received

x = y =
10.1204 0
-0.9801 0.8991
-0.9801 -0.8991
-1.0195 0
-0.6416 0.6511

As mentioned earlier, the user can decide to regroup # and y into one single complex vector. Let us make
it clear again that this possibility is a specificity of eig and is not available in general for all problems. To
merge x and y, the user just has to type

>> [x] = netsolve(’eig’,a)

Trying server cupid.cs.utk.edu
Problem accepted....sending the data
Result received

10.1204
-0.9801 + 0.89911
-0.9801 - 0.8991i
-1.0195
-0.6416 + 0.65111

11



2.2.4 Calling netsolve nb()

The obvious drawback of the function netsolve() is that while the computation i1s performed remotely,
the user must simply wait to get back the prompt. To address this drawback, we designed netsolve nb().
This second function allows the user to send nonblocking requests to NetSolve. Once the user has called
netsolvenb(), he gets back the control. He can then do some work in parallel and check for the completion
of the request later. He can even send multiple requests to NetSolve. Thanks to the load-balancing strategy
implemented in the NetSolve agent, all these requests are going to be solved on different machines, achieving
some NetlSolve-parallelism. Let us now describe this function on the eig example.

As in Section 2.2.3, the user creates a 300 x 300 matrix and calls NetSolve:

>> a = rand(300);
>> [r] = netsolve_nb(’send’,’eig’,a)

Obviously, the calling sequence to netsolvenb() is quite different from the one to netsolve(). The left-
hand side always contains one single argument. Upon completion of this call, it will contain a NetSolve
request handler. The right-hand side is composed of two parts: the action to perform and the arguments
that would be passed to netsolve(). In this example, the action to perform is ’send’, which means that
we send a request to NetSolve. Throughout this section, we will encounter all the possible actions, and they
will be summarized in Appendix A.

Let us resume our example and see what NetSolve answers to the first call to netsolvenb() :

>> [r] = netsolve_nb(’send’,’eig’,a)
Trying server cupid.cs.utk.edu
Problem accepted....sending the data

r =
0

As expected, netsolve nb() returns a request handler: here it is 0. This request handler will be used in
the subsequent calls to the function. The request is being processed on cupid, and the result will eventually
come back. The user can obtain this result in one of two ways. The first one is to call netsolve nb() with
the ’probe’ action :

>> [x y] = netsolve_nb(’probe’,r)

The left-hand side of this call is the left-hand side of the call to netsolve(). The right-hand side contains
the action, as is required for netsolve nb(), and the request handler. This call returns immediately, either
printing out a message saying that the result has not arrived yet or giving the result in x and y. Here are
the two possible scenarios:

>> [x y] = netsolve_nb(’probe’,r)
Not ready yet

>> ... Some other work ...

>> [x y] = netsolve_nb(’probe’,r)
Result received

X = y:
10.1204 0

12



-0.9801 0.8991

-0.9801 -0.8991
-1.0195 0
-0.6416 0.6511

The other way to obtain the result is to call netsolve nb() with the >wait’ action. The call then blocks
until the result arrives:

>> [x y] = netsolve_nb(’wait’,r)
Waiting for result.....
Result received

x = y =
10.1204 0
-0.9801 0.8991
-0.9801 -0.8991
-1.0195 0
-0.6416 0.6511

As for netsolve(), we can merge the real part and the imaginary part into a single complex vector. The
typical scenario is to call netsolve nb() with the action ’send’, then make repeated calls with the action
’probe’ until there is nothing more to do than wait for the result. The user then calls netsolve nb() with
the action ’*wait’.

One last action can be passed to netsolvenb(), as shown here:

>> netsolve_nb(’status’)

This command will return a description of all the pending requests. Let us see how it works on this last
complete example:

>> a = rand(800); b = rand(800);
>> [r1] = netsolve_nb(’send’,’eig’,a)
Trying server cupid.cs.utk.edu
Problem accepted....sending the data
rl =

0
>> [r2] = netsolve_nb(’send’,’eig’,b)
Trying server vw.cs.Berkeley.edu
Problem accepted....sending the data
r2 =

1

Now let us see what status does:

>> netsolve_nb(’status’)

Pending NetSolve requests

Request #0 - eig
Assigned to cupid.cs.utk.edu 12 seconds ago
Still RUNNING
Predicted execution time : 304 seconds

13



Request #1 - eig
Assigned to vw.cs.Berkeley.edu 3 seconds ago
Still RUNNING
Predicted execution time : 402 seconds

The user can check what requests he has sent so far and obtain an estimation about the completion times. By
using the status action, the user can also find out whether a request is still running or has been completed.

2.2.5 What Can Go Wrong?

During a computation, two classes of error can occur: NetSolve failures and user mistakes.

NetSolve Failures

The first class of error is caused by the NetSolve system itself, that is, the pool of agents and servers. The
netsolve() and netsolve nb() functions print out explicit and simple error messages, and we are not going
to describe them all in great detail. Let us mention just one:

>> netsolve
No agent running on demidoff.cs.utk.edu

The environment variable NETSOLVE_AGENT contains the name of a host that is not running a NetSolve agent.
All the other messages are of the same form and easily understandable.

User Mistakes

The second class of error comes from the user. If the user does not follow the calling sequences described in
Sections 2.2.3 and 2.2.4, error messages are printed out. For instance, if the user passes a problem name that
does not exist, NetSolve will indicate that this problem is unknown at this time. Again, all the messages are
explicit, and we are not going to list them all here.

More interesting errors occur when the calling sequences are respected but the user provides wrong data to
NetSolve. Here is an example of such a case:

>> a = rand(300,400)

>> [x] = netsolve(’eig’,a)

Trying server cupid.cs.utk.edu
Problem accepted....sending the data
** Dimension mismatch **

x =

l

The user tried to compute the eigenvalues of a nonsquare matrix, and NetSolve indicates that the computation
i1s impossible. The same kind of message is printed for any mistake in the input data.

2.3 C and Fortran Interfaces

2.3.1 Introduction

The C and Fortran interfaces are, in fact, one. The Fortran interface is built on top of the C interface, since
all the networking underneath NetSolve is done in C. However, we chose to design the Fortran wrappers
around the C interface as subroutines (instead of functions). The C functions all return an integer called
the NetSolve status code. The Fortran subroutine just takes it as an argument passed by reference. The list

14



of all the possible NetSolve status codes can be found in Appendix D. The reference manuals for C and
Fortran are in Appendixes B and C.

The basic concepts here are the same as the ones we have introduced in Section 2.2 for the MATLAB
interface, especially the ability to call NetSolve in a blocking or nonblocking fashion.

After compiling the C/Fortran interface as explained in Section 2.1.3, the user will find two archive files:

e Netsolve client/1ib/$NETSOLVE_ARCH/libnetsolve.a: the C library
e Netsolve client/1lib/$NETSOLVE_ARCH/libfnetsolve.a: the Fortran library

The user must link his C or Fortran program to either one of these libraries to enable it to call NetSolve.
The user must also include the following header file:

e Netsolve client/include/netsolve.hin C,
e Netsolve client/include/fnetsolve.h in Fortran.

Before describing the interface itself, we discuss the calling sequence to use for the different problems in the
next section.

2.3.2 Knowing the Calling Sequence

When we described the MATLAB interface in Section 2.2, the calling sequence of netsolve() was fairly
simple. It consisted of the input objects on the right-hand side and the output object on the left-hand side.
On each side, the objects were in the same order as the one they were listed in the problem description.
Since this problem description is available from MATLAB, the user could easily determine the proper calling
sequence. The situation i1s not that simple for C or Fortran. Indeed, MATLAB is a high-level computational
tool that provides its users with high-level objects encapsulating several pieces of data. For instance, in
MATLAB a matrix is an object that can be referenced with a single identifier, even though it contains two
integers, and a pointer to an array of double-precision elements. The two integers, of course, are the number
of rows and columns of the matrix, and the pointer points to the element of the matrix (stored columnwise
in MATLAB). Hence, when a user passes a matrix identifier to NetSolve from MATLAB, he does not have
to worry about passing the sizes of the matrix.

In C or Fortran, we do not have access to such high-level constructs. Therefore, when we pass to NetSolve
a pointer to some data, we also need to specify the size(s) of this data. This requirement, of course, implies
that the calling sequence has to be more complex than the one in MATLAB. In Section 1.2.3, we noted that
the CGI scripts were giving extensive details about the different problems. Those details are, in fact, the
descriptions of the C and Fortran calling sequences.

Our present policy with calling sequences from C or Fortran is to preserve the native calling sequences of
the numerical software. Recall that in Section 1.2.3, we said that, by convention, the first element of the full
name of a problem is the name of the numerical library the problem comes from. Therefore, the user always
knows what software a routine comes from, by consulting the NetSolve homepage.

Thus, two situations are possible. First, the user knows the numerical software and may even have a code
already written in terms of this software. Then, switching to NetSolve is immediate, and we will see examples
in the following sections. The second possibility is that the user does not know the software. Then he can
learn the calling sequences from the NetSolve homepage thanks to the CGI scripts. The NetSolve homepage
will also give access to URLs that may contain information about the different software in use.

With this understanding of how calling sequences work, we can proceed with the actual description of the
interface.

2.3.3 Blocking Call

As with MATLAB; there is a blocking call to NetSolve from C or Fortran. Specifically, one calls a single
function, nets1(). This function returns a NetSolve status code. It takes as arguments the name of a
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problem and the list of input data. These inputs are listed according to the calling sequence discussed in
Section 2.3.2 and their number of variables. The C prototype of the function is

int netsl(char *problem_name, ... < argument list > ...)
and the Fortran prototype is
SUBROUTINE FNETSL(PROBLEM_NAME, NSINFO, ... < argument list > ...)

where PROBLEM NAME is a string and NSINFO is the status code returned by NetSolve. The number of the
arguments in the calling sequence depends on the problem.

Let us consider an example that uses the LAPACK [4] routine dgesv(), which solves a linear system of
equations. In Fortran, the direct call to LAPACK looks like

call DGESV(N,1,A,MAX,IPIV,B,MAX,INFO)
The equivalent blocking call to NetSolve is

call FNETSL(’DGESV()’,NSINFO,
N,1,A,MAX,IPIV,B,MAX, INFO)

The call in C is
nsinfo = netsl(’dgesv()’,n,1,a,max,ipiv,b,max,&info)

Notice that the name of the problem is case insensitive and that it is postfixed by an opening and a closing
parenthesis. The parentheses are used by NetSolve to handle Fortran/C interoperability on certain platforms.
In Fortran, every identifier represents a pointer, but in C we actually had the choice to use pointers or not.
We chose to use integer (int) for the sizes of the matrices/vectors, but pointers for everything else.

From the user’s point of view, the call to NetSolve is exactly equivalent to a call to LAPACK. One detail,
however, needs to be mentioned. Most numerical software is written in Fortran and requires users to provide
workspace arrays as well as data, since there is no possibility for dynamic memory allocation. Because we
preserved the exact calling sequence of the numerical softwares, we require the user to pass those arrays.
But, since the computation i1s performed remotely, this workspace is useless on the client side. It will, in fact,
be dynamically created on the server side. Therefore, when the numerical software would require workspace,
the NetSolve user may provide an empty workspace!

2.3.4 Nonblocking Call

We developed this nonblocking call for the same reason we developed one for MATLAB (see Section 2.2.4): to
allow the user to have some NetSolve-parallelism. The nonblocking version of nets1() is called netslnb().
The user calls it in exactly the same way nets1() is called. The only difference between the two functions
lies in the NetSolve status code they return. If the call to netslnb() is successful, a request handler is
returned in the NetSolve status code, as in the MATLAB interface. Let us give an example in Fortran:

call FNETSLNB(’DGESV()’,REQUEST,
N,1,A,MAX,IPIV,B,MAX, INFO)

and in C :
request = netslnb(’dgesv()’,n,1,a,max,ipiv,b,max,&info)

This is exactly the same call as the one in the preceding section.

The next step is to check the status of the request. As in the MATLAB interface, the user can chose to
probe or to wait for the request. Probing is done by calling netslpr (). If the call is successful, the function
returns immediately with either a NetSolve status code telling that the result is not available yet or with
the result in the user space. Here is an example in Fortran:
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call FNETSLPR(REQUEST,NSINFO)
and in C :
nsinfo = netslpr(request);

Waiting is done by using netslwt (). This function blocks until the request is completed. Here is the Fortran
call:

call FNETSLWT(REQUEST,NSINFO)
and the C call :
nsinfo = netslwt(request);

If the call is successful, the function returns with the results in the user space.

2.3.5 Error messages

There is an additional function in the C and Fortran interface that prints out explicit error messages to the
standard error, given a NetSolve error code. The C call is :

netslerr(nsinfo);
and in Fortran

call FNETSLERR(NSINFO)

2.3.6 Row- or Column-major

To allow the NetSolve user to store her matrices either in row-wise or column-wise fashions, we also provide
the function netslmajor() in C and FNETSLMAJOR() in Fortran. This function can be called at any time in
the user’s program in C:

netslmajor('col");
netslmajor("row");

or in Fortran:

CALL FNETSLMAJOR(’col’);
CALL FNETSLMAJOR(’row’);

All the subsequent calls to NetSolve will assume the corresponding major. The default values are of course
row-wise for C and column-wise for Fortran.
2.3.7 Built-in Examples

C and Fortran and Java examples are included in the NetSolve Client Distribution in the directory Netsolve client/examples.
To build them, the user simply types make examples in the top directory. The examples use different prob-

lems that have been given servers at the University of Tennessee. They should help the user to understand

how the system works. We also have a full example in C and Fortran in Appendixes F and G.
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2.4 Java API

2.4.1 Introduction

The Java API to NetSolve is designed to give Java application programmers the ability to access NetSolve
resources from their programs. This allows access to a wide variety of numerical software that has not yet
been implemented in Java. Unfortunately we were not able to create a NetSolve API that was identical to
the C and Fortran interfaces because they rely on the ability to write functions that accept a variable number
of parameters. The Java language does not provide this ability, so we had to devise another interface. There
are a couple of ways to provide variable-length argument lists in Java. First, the user could pack all the input
items in an array of Objects and pass the array as the only argument to the NetSolve API. Alternately,
the API could provide a function that lets the programmer specify one argument at a time. We chose to
implement the second method since it requires the least effort from the user and it allows the API to perform
better error checking of argument-parameter mismatch.

Other than the method in which arguments are passed, the basic functionality of the NetSolve API matches
that of the C and Fortran interfaces, including blocking and nonblocking calls to NetSolve. See Appendix E
for the NetSolve API reference manual. Also, there is a full example of using the NetSolve API in Appendix H.
After compiling the source code that comprises the NetSolve API, the user should set the CLASSPATH envi-
ronment variable to include the directory in which the API class files reside. Typically, the CLASSPATH 1s set
as follows:

setenv CLASSPATH .:/home/user/Netsolve_client/src/java

The .cshrc file is a good place to set the CLASSPATH. For shells other than csh, the procedure may be
different.

Once the CLASSPATH has been set, the user can write and compile source code containing calls to the NetSolve
API. Keep in mind that the Java source code comprising the API is written using features of version 1.1 of
the Java Development Kit (JDK). Therefore, it will be necessary to have version 1.1 or newer installed in
order to use the NetSolve API.

2.4.2 [Establishing a Connection

The first thing that must be done in order to access NetSolve resources from a Java program is to establish
a connection to the agent using the NetsolveSession class. The user provides the name of the machine on
which the agent is running. If no name is provided, a default agent is contacted. For example,

ns = new NetsolveSession("woodstock.cs.utk.edu");
would contact the agent running on woodstock.cs.utk.edu, while
ns = new NetsolveSession();

would contact the default agent (currently set to comet.cs.utk.edu).

Contacting the agent serves two purposes. First, it ensures that the agent is currently available. Second, it
allows the API to maintain a list of all the problems that the agent can solve. Since retrieving the problem
list can be time-consuming, the same NetsolveSession can be reused without having to reload the problem
list as long as the same agent is going to be contacted. However, if the user program must switch agents,
a new NetsolveSession must be created. NetsolveSession does not maintain a persistent connection to
the agent. It is merely an encapsulation of the agent’s hostname and the list of problems.

2.4.3 Knowing the Calling Sequence

After a NetsolveSession has been established, the problem name and parameters are specified. As with
the C and Fortran interfaces, users of the NetSolve API must know the calling sequence of the problem they
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wish to solve. Information about the number and type of input parameters can be obtained through the
main screen of the Java GUI, discussed in Section 2.5.
The first step 1s to create a new Netsolve object, specifying a previously created NetsolveSession:

ns = new NetsolveSession("woodstock.cs.utk.edu");
n = new Netsolve(ns);

Passing the session to Netsolve lets the API know to which agent the data should be sent and which
problems the agent can solve.
Then, the problem name and arguments are specified:

n.setProblem("dgesv");
n.pushArg(matrixl);
n.pushArg(matrixB);

The problem name, dgesv, is specified first and then the arguments are pushed one at a time, in order. Since
Java allows the pushArg() method to be overloaded, the same method can be called regardless of data type.
Once the problem name and parameters have been specified and no errors have been detected (see Sec-
tion 2.4.7), the problem may be submitted. The NetSolve API provides for blocking and nonblocking calls,
described in the following two sections (2.4.4 and 2.4.5, respectively).

2.4.4 Blocking Call

To have the data sent to the server and begin the computation, the submitProb() method of a Netsolve
object 1s called. This begins the computation in blocking mode. That 1s, the call to submitProb() does
not return until the entire computation has finished and the results have been obtained. To continue with
the previous example, let us assume that the user has specified the problem (dgesv) and passed both input
matrices to the Netsolve object. Now, to begin the computation, all that remains is to submit the data, as
follows:

n.submitProb();

No parameters are needed since all data has already been stored in the Netsolve object. Similarly, after
the call to submitProb() returns, the results of the computation are also stored in the Netsolve object.
Section 2.4.6 discusses how to retrieve the results.

2.4.5 Nonblocking Call

As with the other NetSolve interfaces, the NetSolve API also provides a nonblocking call. The problem
specification is exactly the same as with the blocking version. The only difference is that instead of calling
submitProb(), the user calls submitProbNB(), as follows:

n.submitProbNB();

The call to submitProbNB() returns immediately, allowing the user to perform other computations while
the problem 1s being submitted and solved. Once these other computations have completed, the user may
walit for the results from a particular computation by calling the waitFor () method of the Netsolve object
that submitted it. For example:

n.submitProbNB();
n2.submitProbNB();

// do other computations

n2.waitFor(); // wait for the second computation
n.waitFor(); // wait for the first computation
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As the preceding example illustrates, it is easy to distinguish between the two submissions since they are
encapsulated in two different objects.

2.4.6 Retrieving the Results

After the results of the computation are received from the NetSolve server, they are stored into a Vector ob-
Ject within the Netsolve object that submitted the job. To retrieve this data, the user calls the getOutput ()
method, as follows:

Vector out;

ns = new NetsolveSession("comet.cs.utk.edu");

n = new Netsolve(ns); // Specify ’session’
n.setProblem("dgesv"); // Specify the problem to solve
n.pushirg(al); // Pass first parameter to dgesv
n.pushirg(a2); // Pass second parameter to dgesv
n.submitProb(); // Submit this problem

out = n.getOutput(); // Get the output item(s)

Notice on the last line that getOutput() returns a Vector, which we assign to a local variable out. Each
element of the Vector contains one output item. In this case, the problem (dgesv) returns four output items:

e Double-precision matrix
e Integer Vector
e Double-precision matrix
o Integer Scalar
Therefore, we first create four local variables to hold the results:

Integer outlnt;
double [J[] outMatl, outMat2;
int [] outVec;

Note that, as with all scalars, the integer scalar will be returned wrapped in an object. So, we declare
outInt to be of type Integer. Finally, to assign the output items to the local variables requires acessing
the individual element of the Vector, using the elementAt () method.

outMatl = (double [1[]) (out.elementAt(0));
outVec = (int [I) (out.elementAt(1));
outMat2 = (double [1[]) (out.elementAt(2));
outInt = (Integer) (out.elementAt(3));

Note that the return type of elementAt() is Object, which we must cast to the appropriate type in the
assignment statement. The preceding example demonstrates that the user must have detailed knowledge of
the output items returned by the problem. This information can be obtained by consulting the initial screen

of the Java GUT (as described in Section 2.5).

2.4.7 Error messages

Errors may occur at many stages of the job submission process. each method in the NetSolve API throws
a NetSolveException upon any error condition. As the following example shows, this can simplify error
handling in the user’s program by moving all error handling code to one location:
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try {
ns = new NetsolveSession("comet.cs.utk.edu");

n = new Netsolve(ns); // Specify ’session’
n.setProblem("dgesv'"); // Specify the problem to solve
n.pushArg(al); // Pass first parameter to dgesv
n.pushArg(a2); // Pass second parameter to dgesv
n.submitProb(); // Submit this problem

out = n.getOutput(); // Get the output item(s)

}catch(NetSolveException e) {
System.err.println("Error in submission:");
System.err.println(e.getMessage());
System.exit(1);

}

When the API detects an error in problem specification or job submission, it creates a description of the na-
ture of the error. This error string is accessible through the getMessage () method of the NetSolveException
object.

Of course, the user still has the option to perform error checking after each stage of the submission process
in case more specific error handling actions are necessary.

2.4.8 Row- or Column-major

While most Java programmers will store their matrices in row-major format, the NetSolve API provides
the ability to switch between row-major and column-major representations. Naturally, one of the following
functions should be called prior to submitting the data:

n.setMajor("row");
n.setMajor('"col");

By default, row-major is assumed, so the user does not need to call setMajor () unless switching to column-
major.

2.4.9 Built-in Examples

Several examples of using the NetSolve API can be found in Netsolve client/examples/JavaAPI. As with
the C and Fortran examples, the examples use problems that can be solved on servers at the University of
Tennessee. There is also a full example Java program in Appendix H.

2.5 Java GUI

2.5.1 Introduction

This section describes the Java interface to NetSolve, a user-friendly graphical tool for accessing resources in
the NetSolve system. Since the Java interface should be runnable from many WWW browsers, it also provides
users the opportunity to solve problems without downloading or compiling any source code. However,
the current Web browser versions impose very strong restrictions on the capabilities of applets. At this
time, it appears to be impossible to open sockets to a remote host that is not running the Web server.
Additionally, the latest version of the Java interface (GUI and API) were developed using version 1.1 of
the Java Development Kit (JDK). Because not all browsers support the new features in version 1.1, the
NetSolve Java interface will not be compatible with every browser. Future versions of these web browsers
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will undoubtedly alleviate these problems. For the time being, a demo applet is available on the NetSolve
homepage. It uses an agent and a server that are both running on the Web server.
To start the stand-alone application:

java NetSolveClient comet.cs.utk.edu

where comet.cs.utk.edu is the name of a machine running a NetSolve agent. The machine name is optional,
but if it 1s not specified, the client tries to contact comet.cs.utk.edu by default.

2.5.2 The Initial Screen

Let us now assume that the user has started the Java interface, either as an applet (via the Web) or as a
stand-alone application. Figure 2.1 shows the initial screen, which consists of several components:

o Agent Selection Box

e Problem List

Problem Description Box

e Input List

Input Description Box

Output List

e Output Description Box

To contact an agent, the user can enter the hostname in the Agent Selection Box and then click on the
“Contact/Update” button. In some cases, the user may have already contacted an agent, but just wants to
update the list of problems. If so, clicking on the “Contact/Update” button without changing the text in
the Agent Selection Box will reload the problem list. Once the list of available problems has been loaded it
is then displayed in the Problem List, located in the upper left region of the interface.
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Figure 2.1: The Initial Screen
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To find out more about any problem listed, the user may click on that problem and view pertinent information
displayed in the Problem Description Boz, the Input List, and the Qutput List. The Problem Description
Boz, located in the lower left region of the interface, contains a short description of the selected problem.
The Input List contains a list of the input objects required to solve the selected problem. Similarly, the
Qutput List contains a list of the output objects that are returned by the server. When the user clicks on
any item in the Input List, the interface updates the Input Description Box with text describing the selected
input object. Likewise, clicking on any item in the Qutput List updates the Qutput Description Box with
text describing the selected output object.

2.5.3 Solving a Problem

To solve an instance of some problem, the user must first select a problem from the Problem List and then
click on the “Solve” button (alternately, the user may double-click on an item in the Problem List). A new
window will appear allowing the user to input data for each input object required by the problem. Figure
2.2 shows the Data Input Window, which consists of the following components:

e Input List

Input Description Box

Filename (or URL) Selection Box

e Data Input Box

Status Box

The Input List contains a list of the input objects for which the user must supply data. The Input Description
Boz contains text describing the selected input object (this text is the same as the text displayed in the
Input Description Box of the initial screen).

For each input object, the user may choose to enter the data manually into the Data Input Box or specify
the name of a file or URL containing the data in the Filename/URL Selection Boz. Since the same input
box is used for both filenames and URLs, the user must specify whether the string in the text box should be
treated as a filename or a URL by clicking on one of the two checkboxes above the Filename/URL Selection
Boxz. Next to the Filename/URL Selection Box is a “Browse” button which allows choosing the file using a
graphical file browser. The file browser is only available when the user has selected to load the data from
a file. Just above the Data Input Boz is a “Sample Data” button which fills the box with some numbers
appropriate to the type of the input object (for example, if the input object is a vector of integers, clicking
on the “Sample Data” button will generate a vector of integers). Note that even though the interface allows
having text in both selection boxes simultaneously, only one box may be “active” at any time and anything
in the “inactive” box will be ignored. The user may easily distinguish between the two boxes since the
inactive box has a grey background and the active box has a white background. In addition, the checkbox
adjacent to the active box will appear depressed.

The title bar of the Data Input Window contains some noteworthy information: the name of the problem,
and a Request Number. The problem name listed on the title bar is the same name from the initial screen,
minus the path. For example, if the full name as shown on the initial screen is /Blah/blah/prob, then the
name on the title bar is prob. The Request Number is a number which uniquely identifies each Data Input
Window so that the user may easily relate the Output Windows (see Section 2.5.4) to the Input Windows
from which they originated.

Once all inputs have been fully specified, click on the “Compute” button, located in the lower left region
of the Data Input Window. If there are any errors in the data and/or files, an informational window will
appear describing the nature of the errors and for which input object(s) the errors apply. All errors must be
corrected before the data may be sent. Here are some of the most common errors:
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Figure 2.2: The Input Screen

e Invalid numeric format. The input does not match the expected input type (for example, the input
type is “integer” and the user enters “1.2”).

e Empty input. The user did not specify any data for some input object.

e Input not specified. This is similar to the previous error except that here, the user did not activate
one of the two input sources (file input or data input) whereas in the previous error, one of the two
input boxes was chosen, but no data was entered.

o Nonexistent file. The filename given does not exist. Using the graphical file browser may help determine
the correct path and file name.

e Rows of matrix not even. This means that one or more rows in the matrix do not have the same
number of elements.

If the data and/or files specified are acceptable, the values are sent to a computational server which performs
the computations and returns the output objects.

The Status Box provides information about the current status of the data submission. As the job progresses,
it is updated with brief messages stating, for example, that the agent is being contacted, that the data is
being sent, and so on.

2.5.4 Viewing the Results

Once the computational server sends back the results, a new window appears allowing the user to browse
the results. Figure 2.3 shows the Output Window, which consists of the following components:
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Figure 2.3: The Output Screen

The Qutput Window is arranged like the Data Input Window, with a list of objects on the left, a data box
on the right, and a description box on the bottom. When the user clicks on any item in the Quiput List, the
QOutput Description Box is updated with text describing that object and the Data Box is updated with the
results of the computation. Above the Data Box is a “Save” button which allows users of the stand-alone
application to save the text in the Data Box to a file. Note that the data saved is that for the selected output
object only, not all output objects.

Like the Data Input Window, the title bar of the Qutput Window also contains the problem name and
a Request Number. However, the Request Number is slightly different in this window. It consists of two
numbers separated by a “.” (period). The first number is the Request Number from the Data Input Window
from which this output originated. The second number uniquely identifies this window so that it can be
distinguished from other OQutput Windows. Here’s an example of how the numbers are assigned: the user
chooses a problem, “ddot” perhaps, on the initial screen and clicks “Solve”. The Data Input Window
corresponding to that problem will have Request Number “1”7. Then the user chooses a different problem,
“matmul” perhaps, and clicks “Solve”. The Request Number corresponding to that problem will be “2”7. The
number is incremented each time a new input window is opened. The user enters data into the “matmul”
window and clicks “Compute” three times to solve three instances of that problem. Soon three output
windows will appear with Request Numbers “2.17, “2.2”  and “2.3” corresponding to the first, second, and
third instance of the problem, respectively.
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2.6 The Server Information Screen

The Server Information Screen allows the user to view the current configuration of the NetSolve system.
As shown in Figure 2.4, the Server Information Screen consists of a TextArea and two buttons. The server
information displayed in the TextArea may be updated at any time by clicking on the “Update” button.
The other button is labeled “Close” and clicking on it makes the window disappear.

J_'L| Server Information ]
Machine MName IF addressz Host Status  Server Status Problens ﬂ
infiniti.CS5,Berkeley ETOL 128,32.32.56 LR RUMHING 24
maruti LS, Berkeley EDU 123,32.36.83 P RUMHIMHG 24
v L5, Berkeley  EDU 128,32.36.84 LF RUMHIMG 24
deuxcheyvaux LS, Berkeley ETL 128,32 ,37.36 P RUMMING 24
dancer .cs,utk edu 128,169 ,92,77 P RUMHIMHG 51
conet s ,utk  edu 128,169 ,92.78 LF RUNMHIHG 51
comet o= ,utk , edu 128,189 ,92,78 P RUMMING Azent
prancer . cs,utk edu 128,159 ,92,101 P RUMMIHG 51
cuplid.cs,utk . edu 128,169,954, 221 LF RUMHIMG a1
donher .c=,utk edu 128,165,594 222 LF RUNMHIMG 51
azk—20.,ii uib.no 129,177 .,20.,100 P RUMHIMHG 2
azk—20,ii ,uib.no 129,177 .20, 100 LF RUMHIMG Azent
unichen uni-c,dk 130,225,249 ,34 LR RUMHING 2
unichem uni-c.dk 130,225,249,34 P RUMHIMHG Agent
=alma 130,237 ,232.58 LF RUMHIMG Agzent
v
=l 1.4
Update | [Close|
[ L

Figure 2.4: The Server Information Screen

2.7 The Help Screen

The Help Screen, as shown in Figure 2.5, is designed to provide users with information about using the
graphical interface. On the left, a List contains several topics that the user may choose from by clicking on
the list item. On the right, a TextArea displays helpful information on the topics, which range from viewing
problem information to quitting the program. Since the Help Screen does not interfere with the operation
of the main screen, the user may keep both screens open simultaneously. This allows the user to read the
help text and then perform the suggested actions without having to close either window. The Help Screen
may be dismissed when no longer needed by clicking on the “Close” button.

2.8 Error Screens

There are two types of error screens used in the Java interface. The first, as shown in Figure 2.6, is designed
to display very short, but important, messages. To help capture the user’s attention, the window background
uses a prominent color and the text is displayed in a large font. Further, to ensure that the user acknowledges
the error message, the parent window is disabled until the user clicks the “OK” button in the error message
window. The second type of error screen is designed to display much more text than the first type, so it
contains a TextArea with a smaller font. As shown in Figure 2.7, this screen is primarily used to provide
users a report of the errors found in their data. The second type of error screen does not disable the parent
window, though, because it helps the user correct problems with the input data if the error messages can be
displayed in one window while the input data is edited in the Data Input Window.

27



Figure 2.5: The Help Screen

Figure 2.6: The Error Dialog Box
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Figure 2.7: The Error Report Screen
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Chapter 3

The NetSolve Agent and Server

3.1 Getting Started

3.1.1 Downloading the Software

The server software can be downloaded from the NetSolve homepage at
http://wuw.cs.utk.edu/netsolve/server distribution.tar.gz.

The following UNIX commands will create the Netsolve_server directory:

% gunzip server_distribution.tar.gz
% tar -xvf server_distribution.tar

3.1.2 Setting the Architecture

The Netsolve_server directory includes a Shell script called netsolvegetarch that can be used to return

a character string describing the architecture of the machine of the user. Suppose, for instance, that one
wishes to run the script on an IBM RS/6000:

% netsolvegetarch
RS6K

In that case, the NETSOLVE_ARCH environment variable should be defined in the .cshrc file as:
setenv NETSOLVE_ARCH RS6K
or preferably, if netsolvegetarch is in the path:
setenv NETSOLVE_ARCH ‘netsolvegetarchf
To date, NetSolve has been ported to the following different architectures:
e SUN4: Sun 4, 4c, SPARC, etc.
e SUN4SOL2: Sun 4 running Solaris 2.x
e ALPHA: DEC Alpha/OSF-1

PMAX : DEC Pmax running NetBSd
NEXT : NeXT
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SGI5 : Silicon Graphics IRIS running OS > 5.0
e SGI64 : Silicon Graphics IRIS running OS > 6.0

HPPA: HP 9000 PA-Risc

RS6K: IBM RS/6000

3.1.3 Setting the root

In addition to the NETSOLVE_ARCH environment variable it is necessary to set an environment variable that
contains the path to the Netsolve_server directory. It should be defined in the .cshrc as:

setenv NETSOLVE_SERVER_ROOT /home/me/Netsolve_server

for instance.

3.1.4 Compiling

Now that the NETSOLVE_ARCH and NETSOLVE_SERVER _ROOT environment variables have been set as described
in Section 3.1.2; the software can be compiled. First, one should go to the Netsolve_server/conf directory
and edit the $NETSOLVE_ARCH.def file (for instance RS6K.def). This file contains a custom section in which
the user can modify the compilation parameters. Here is a typical section:

# ———— Custom Section —-—-

F77 = £77

CcC = cc

LINKER = £f77

# ———— End of Custom Section —-—-

This custom section specifies which compilers are going to be used. These parameters can be modified before
compilation. However, the file also contains other information that should not be modified. Typing make in
the Netsolve_server directory will give instructions to complete the compilation.

3.2 The Agent

The executable of the NetSolve agent is located in:
$NETSOLVE_SERVER_ROOT/bin/$NETSOLVE_ARCH/agent.
This executable can be called with no argument as

% agent &

and this starts a stand-alone agent. This agent will be available for NetSolve servers to participate in a
new NetSolve system. The executable can also take one single argument that is the name of a host already
running a NetSolve agent:

% agent comet.cs.utk.edu

for instance. This starts a NetSolve agent on the local hosts and connects it to an existing NetSolve system
that can consist of multiple agents and servers. The local agent becomes then a new client entry-point to
that system.
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3.3 The Server

3.3.1 Starting a Server

The executable of the NetSolve server is located in:

$NETSOLVE_SERVER_ROOT/bin/$NETSOLVE_ARCH/server.

This executable uses a configuration file for initializing the NetSolve server. It can be called with no argument

as:

% server &

in which case the default configuration file located in $NETSOLVE_SERVER ROOT/server config is used. This
is the file that should be used for first experiments and for testing the system. However, 1t is possible to
specify another configuration file by calling the executable as:

% server /home/me/my_config &

for instance. In the following section, we explain the structure of a server configuration file.

3.3.2 The Server Configuration File

The configuration file is organized in lines. A line can start with a *#° in which case the line is ignored and
can be used for comments. A line can also start with a keyword that is prefixed by a ’@°. Such a line is
said to start a section of the configuration file. A section can consist of only the line with the keyword. Let
us review all the possible keywords and how they can be used to precisely define a NetSolve server as it is
done in the default configuration file.

’QAGENT : <hostname>’ [*] specifies the agent that the NetSolve server must contact to register into a
NetSolve system. The agent is identified by the name of the host on which it is running and there can
be only one such line in the configuration file. If the "*’ is present, then the server will broadcast its
existence to all NetSolve agents known to the one running on <hosname>. Otherwise, the server will
only be known to the agent on <hosname>.

> @PROCS : <number>’ specifies the number of processors that can be used by the server to perform
simultaneous computations on the local hosts. There can only be one such line in the configuration

file.

»@SCRATCH: <path>’ specifies where the NetSolve server can put temporary directories and file. The
default is /tmp/.

’@CONDOR: <path>’ specifies that the NetSolve server is using a Condor [5, 6] pool as a computing
resource. The path to the Condor base directory must be provided. There can be only one such line
in the configuration file.

> @PROBLEMS: > marks the beginning of the list of description file names. The problems from these
description files must be added to the server. Details on description files are given in Section 3.5.

>@RESTRICTIONS:’ marks the beginning of the list of access restrictions that are applicable to the
NetSolve server. The list consists of lines formatted as:

<domain name> <number of pending requests allowed>

The symbol ’*’ 1s used as a wildcard in the domain name. For instance, the line:
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*¥.edu 10

means that only 10 requests from clients residing on a .edu machine can be serviced simultaneously.
When the server receives a request from some machine, it determines which line in the list must be
used to accept or reject the request by taking the most refined domain name. For instance, if the list
of the restrictions is:

*¥.edu 5
*¥.utk.edu 10

then the server accepts at most 5 simultaneous requests coming from . edu machines that are not in the
.utk.edu sub-domain, and at most 10 requests that come from machines in the .utk.edu sub-domain
for a total of 15 possible simultaneous requests.

The default configuration file in $NETSOLVE_SERVER ROOT/server _config should be used as a template to
create new configuration files.

3.3.3 Customizing the Server

The default server configuration file contains several lines that specify description files. These files are located

in the $NETSOLVE_SERVER ROOT/problems directory. This directory contains many description files that are

not used by the default NetSolve server. These files correspond to problems that are solved with numerical

software that is not distributed with NetSolve. If these files are to be used, one must add the corresponding

lines to the configuration file. It is also necessary to update the file $NETSOLVE _SERVER ROOT/conf/$NETSOLVE_ARCH. def
by adding to the variable NUMLIB the path to the required numerical libraries. The server can then be re-

compiled by typing

% make server

in the $NETSOLVE_SERVER_ROOT directory. Section 3.5 gives details on the creation of new problem description
files.

3.4 Managing the System

It may become difficult to keep track of the agents and servers that take part in a NetSolve system. It is always
necessary to know the name of an host running one agent in the system to find out information on that system.
It 1s then possible to use the CGI scripts on the NetSolve homepage to obtain a list of participating hosts. The
directory $NETSOLVE_SERVER ROOT/bin/$NETSOLVE_ARCH contains two executables called destroy_agent and
destroy_server that can both be called with a hostname as an argument to terminate a NetSolve agent or
server on that host. It also contains the two executables is_there_agent and is_there_server that tak a
hostname as argument and print out the agent/server status on the corresponding host.

3.5 Expanding the Server

As already indicated in Section 3.3.3, 1t is possible to add new functionalities to a NetSolve computation server
by specifying additional description files in the server configuration file. Some description files are located in
the directory $NETSOLVE_SERVER ROOT/problems. In what follows we describe how a description file can be
created. It is strongly advised to use the existing files as templates. The rationale behind everything that is
explained in what follows comes from [7]. Each description file is composed of several problem descriptions.
Before explaining how to create a problem description, we define the concept of mnemonics.
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3.5.1 Mnemonics

We have already seen that a NetSolve problem takes some objects in input and produces some objects as
output. Generally, the objects are scalars, vectors or matrices of Fortran data-types. To be able to relate
high-level and low-level descriptions of the input and output objects of a given problem, we need to develop
some kind of syntax. We decided to call the member of this syntax mnemonics. A mnemonic is just a
character string (typically 2 or 3 characters long) that is used to access low level details of the different
input and output objects. We index the list of objects, starting at 0. Therefore, the first object in input to
a problem is the input object number 0 and the third object in output to a problem is the output object
number 2, for instance. We use an I or an 0 to specify whether an object is in input or output. Here are
the four types of mnemonics for an object indexed z:

e Pointer to the data : [I]0]x,

e Number of rows : m[I10]z (only for matrices and vectors),
e Number of columns : n[I|0]x (only for matrices),

e Leading dimensions : 1[I|0]z (only for matrices).

For example, mI4 designates the number of rows of the input object number 4, whereas 01 designates the
pointer to the element(s) of output object number 1. In the next section, we describe the different sections
that are necessary to build a problem description and will see how the mnemonics are used.

3.5.2 Sections of a Problem Description

The structure of a problem description file is very similar to the one of a server configuration file. The lines
starting with a ’#° are considered comments. Keywords are prefixed by a *@’ and mark the beginning of
sub-sections. In what follows, we describe each section separately as well as each keyword and sub-sections
within each section. Keep in mind to look at one existing problem description file as a template when reading
this section.

Problem ID and General Information

’@PROBLEM <name>’ specifies the name of a problem as it will be visible to the NetSolve users (clients).

e ’QINCLUDE <name>’ specifies a C header file to include (See the example in Section 3.5.4). There can
be several such lines as a problem can call several functions.

e ’QFUNCTION <name>’ specifies the name of a function from the underlying numerical software library

that is being called to solve the problem. There can be several such lines as a problem can call several
functions.

e ’QLANGUAGE [C|FORTRAN]’ specifies whether the underlying numerical library is written in C or in
Fortran. This is used in conjunction with the function names specified with *@FUNCTION’ to handle
multi-language interoperability.

e ’QMAJOR [COL|ROW]’ specifies what major should be used to store the input matrices before calling
the underlying numerical software. For instance, if the numerical library is LAPACK [4], the major
has to be *COL’.

e ’QPATH <path>’ specifies a URL-like name for the problems. This path is only a naming convention
and is used for presentation purposes for interactive interfaces (Matlab and the Java GUI).

e ’QDESCRIPTION’ marks the beginning of the textual description of the problem. This sub-section is
mandatory as it allows NetSolve users (clients) to find out what a problem can do.
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Input Specification

e ’QINPUT <number>’ specifies the number of objects in input to the problem. This line is followed by
a corresponding number of object descriptions (see below).

e ’QOBJECT <object type> <data type>’ specifies an object type and data type. This line is followed
by a textual description of the object. The currently available object types are:

— MATRIX,
— VECTOR,
— SCALAR,
— UPF (User-provided function (see Section 4).

and the possible data types are

— CHAR : character,
: byte (character that is never XDR encoded),

— I :integer,
: single precision real,
: double precision real,

: single precision complex,

\
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: double precision complex,

— EXTERNAL : User-provided function (see Section 4).

Output Specification

e ’QOUTPUT <number>’ specifies the number of objects in output to the problem. This line is followed
by a corresponding number of object descriptions (see below).

e ’QOBJECT <object type> <data type>’ specifies an object type (scalar, vector and matrix) and data
type (one of the Fortran data type). This line is followed by a textual description of the object.

Additional Information

e ’OMATLAB MERGE <numberi> <number2>’ specifies that the output objects number < numberl > and
< number2 > can be merged as a complex object upon reception of the numerical results from the
Matlab client interface (see Section 2.2.2).

e ’QCOMPLEXITY <number1>,<number2>’ specifies that given the size of the problem, say n, the asymp-
totic complexity, say C', of the problem in number of floating point operations is

C' = numberl x p?umber?

3.5.3 Calling Sequence

The calling sequence for the problem must be defined here so that the NetSolve client using the C or Fortran
interfaces can call the problem. The material described 1n this section is ignored by NetSolve when the client
is Matlab or Java. Indeed, when using a high-level interface like Matlab, the objects in input and output
to the problem are self-contained. This means that a single identifier described entirely the object. From C
and Fortran, such a data encapsulation is not possible and the calling sequence needs then to be precisely
defined. To clarify, let us take an example. Let us say that the problem ’foto’ takes a matrix in input and
returns a matrix in output. The call from the Matlab interface looks like:
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>> [b] = netsolve(’toto’,a)

for instance. However, there can be several possible calling sequences from C or Fortran. Assuming the
following declarations in Fortran:

DOUBLE PRECISION A(M,N)
DOUBLE PRECISION B(K,L)

the following calling sequences are all possible:

CALL FNETSL(’toto()’,A,B,M,N,K,L)
CALL FNETSL(’toto()’,A,M,N,B,K,L)
CALL FNETSL(’toto()’,M,N,A,K,L,B)

The Calling sequence sub-section in the problem description is used to specify which calling sequence is to
be used thanks to mnemonics. Indeed, still with the same example, the integer N can be represented by the
mnemonic nI0, and the pointer B can be represented by the mnemonic 00.

e ’QFORMATS <number>’ specifies how many different calling sequences are available for the problem.
this feature is not activated yet in the current version of the software and this line should always be:

OFORMATS 1

> @FORMAT’ marks the beginning of a calling sequence description. This description consists of a list of
argument specifications (see below).

’@ARG <comma-separated list of mnemonics>’ specifies an argument of the calling sequence. For
instance the line

QARG IO

specifies that the current argument in the calling sequence is the pointer to the data of the first object
in input. The line

©ARG mIO,1I0

specifies that the current argument in the calling sequence is the number of rows and the leading
dimension of the first object in input (which in this case is a matrix). The line

QARG 7

specifies that the current argument in the calling sequence should be ignored by NetSolve (useful in
some cases). Note that no argument description contains mnemonics of the form [m|n]0*.

e ’QCONST <mnemonic>=<number>’ specifies that the number of rows or columns or the leading dimension
of an input object is constant and can not be found in the calling sequence. For instance, the line

OCONST mI4=12

means that the number of rows of the fifth object in input is always 12 and is not passed in by the
NetSolve user.

e ’QCOMP <mnemonic>=<number>’ specifies that the number of rows or columns or the leading dimension
of an input object can be computed from the calling sequence but can not be found in the calling
sequence. Here are some examples:
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QCOMP mIi=mIO

QCOMP mIO=op(+,mI3,1) // performs an addition

QCOMP mI3=array(I2,0) // performs an indirection

Q@COMP mIl=op(-,array(I0,op(-,mI0,1)),1)

QCOMP mI2=op(+,op(+,array(I1,0),1),op(*,array(10,0),2))

QCOMP mI2=if (array(I0,0)="N’,mI1,if(array(I0,0)="T’,nI1,0p(-,0,1)))
// conditionals

Things can get quite complex. However, our experience proves that this feature is used only rarely.
Therefore, we have not yet concentrated our efforts on making this particular process easier.

Pseudo-Code
e ’QCODE’ marks the beginning of the pseudo-code section.

e ’QEND _CODE’ marks the end of the pseudo-code section.

The pseudo-code is, in fact, C code that uses the mnemonics described in Section 3.5.1. This code contains
call(s) to the numerical library function(s) that the problem is supposed to use as part of its algorithm. The
arguments in the calling sequences of these library routines will be primarily the different mnemonics. In
the pseudo-code, the mnemonics are pre- and post-fixed by a @’ to facilitate the parsing. Let us review
again the meaning of some possible mnemonics in the pseudo-code:

e ’QI0Q’: pointer to the elements of the first object in input.
e ’0mI0Q@’: pointer to integer that is number of rows of the first object in input.
e ’0n01@’: pointer to integer that is number of columns of the second object in output.

Usually, the pseudo-code is organized in three parts. First, the preparation of the input (if necessary).
Second, the call the numerical library function(s). Third, the update of the output (pointer and sizes). At
this point, it is best to give an example. Let us assume that we have access to a hypothetical numerical C
library that possesses a function matvec() that performs a matrix-vector multiply for square matrices. The
prototype of the function is

void matvec(float *a, float *b, int n, int 1),

where a is a pointer to the matrix, b is a pointer to the vector, n is the dimension of the matrix, 1 is the
leading dimension of the matrix and the result is stored in b (overwriting the input). We may define the
problem such that the matrix is the first object in the input, the vector the second object in the input, and
the result the only object in output. Possible preparations could be for instance the creation of workspace,
test of input values to detect mistakes, test of matching dimensions. In this case, we may want to check that
the dimension of vector b agrees with the number of columns (for instance) of matrix a. This can be done
as follows:

Q@CODE
if (*@mIi1@ != *@nI0Q)
return BAD_DIMENSION;

The macro BAD DIMENSION is defined by NetSolve. Other macros available are BAD_VALUES (for invalid input
parameters), FAILURE (for a malfunction of the numerical software) or NO_SOLUTION (sometimes useful if no
numerical solution has been found). Notice the use of **? for accessing the integers at addresses @mI1@ and
onIOe.

The second part of the pseudo-code consists in calling the function matvec and is:
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matvec(@I00,0I1Q,*OmI0Q,*OmI0Q) ;

A few things can be said on this call. First, we use the **’ to access integers via the pointers. Second, the
leading dimension is taken to be equal to the dimension. This code is executed at the server level where
the matrix (or sub-matrix) has been received from the client over the network. As such, it has been stored
contiguously in memory and has a leading dimension equal to its number of rows. As a general rule, the
mnemonics 1[I |0]*@ never appear in the pseudo-code. The last thing to do at this point is to update the
output:

0000 = @I10Q;
*0m00Q@ = *OmI10Q;
OEND_CODE

The first line expresses the fact that the input has been overwritten by the output. The second line sets the
number of rows of the output. The following section gives a complete example, with all the sections of the
problem description.

3.5.4 A Simple Example

Let us imagine that we have access to a Fortran numerical library that contains a function, say LINSOL, to
solve a linear system according to the following prototype:

SUBROUTINE LINSOL(A,B,N,NRHS,LDA,LDB)

DOUBLE PRECISION A(LDA,*) // Left-hand side (NxN)
DOUBLE PRECISION B(LDB,*) // Right-hand side (NxNRHS),
// overwritten with the solution

INTEGER N

INTEGER NRHS

INTEGER LDA // Leading Dimension of A
INTEGER LDB // Leading Dimension of B

Then, an appropriate description for a problem that solves a linear system using LINSOL and that expects
from the client the same calling sequence as the one for LINSOL is:

OPROBLEM linsol

QINCLUDE <math.h>

QINCLUDE "/home/me/my_header.h"

QFUNCTION linsol

OLANGUAGE FORTRAN

O@MAJOR COL

QPATH LinearAlgebra/LinearSystems/
ODESCRIPTION

Solves the square linear system A*X = B. Where:
A is a double-precision matrix of dimension NxN
B is a double-precision matrix of dimension NxNRHS
X is the solution

QINPUT 2

QOBJECT MATRIX D

Matrix A (NxN)

QOBJECT MATRIX D

Matrix B (NxNRHS)
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QOUTPUT 1
QOBJECT MATRIX D
Solution X (NxNRHS)
QCOMPLEXITY 3,3
QFORMATS 1
QFORMAT

QARG IO

QARG I1,00

@ARG nIO,mIO,mI1
QARG nI1i

QARG 1IO0

QARG 1I1,100
QCODE

1insol(@I0@,@I1Q,0mI00,0nI1@,01I00,01I10);

@000@ =@I1Q; /* Pointing to the overwritten input */
*@m00@ = *@mI1Q; /* Setting the number of rows */
*@n00@ = *@nIi1Q@; /* Setting the number of columns */
OEND_CODE

3.5.5 Java Applet

It appears that the process of creating new problem descriptions can be very difficult, especially for a first
time user. It is true that after writing a few files, it becomes rather routine and several NetSolve users have
already generated a good number of working description files for a variety of purposes (including Linear
Algebra, Optimization, Image processing, etc.). However, we have designed a graphical Java Applet that
helps users in creating problem description files. This applet is not yet available from the Web at the time
this document is being written but should be added to the NetSolve homepage as soon as the last tests and
conversion to Javal.l have been completed.
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Chapter 4

The User-Supplied Function Feature

4.1 Motivation

In the preceding sections, we described all the client interfaces to NetSolve. In these descriptions we assumed
that the only input the user had to supply to NetSolve was numerical data, that is, matrices, vectors, or
scalars. This assumption is valid for a lot of numerical software. However, for some software that we would
like to include in NetSolve via NetSolve servers, we need an additional feature. Indeed, numerous scientific
packages require the user to provide numerical data as well as a function. Typically, nonlinear software
requires the user to pass a pointer to a subroutine that computes the nonlinear function. This is a problem
in NetSolve because the computation is performed remotely and the user cannot provide NetSolve with a
pointer to one of his linked-in subroutines. The only solution is to send code over the network to the server.
This approach raises a lot of issues, including security.

4.2 Solution

Let us describe here the solution we have adopted. This is really a first attempt, and there is definitely
room for improvement. However, we believe that it provides reasonable capabilities for now, considering
that NetSolve is still at an early stage of development. As we noted, we need to ship code over to the
computational server. Since NetSolve works in a heterogeneous environment, it is not possible to migrate
compiled code. Thus, we require that the user have his subroutine or function in a separate file, written
either in C or Fortran. We send this file to the computational server. The server compiles it and is then
able to use this user-supplied function.

The security implementation is quite simple. When compiling the user’s function, we use the nm UNIX
command to disallow any system call. The approach is very restrictive for the user, but typically the
subroutine that has to be passed needs only to perform computations. If course, there are a lot of hacker
ways to go around this problem, and our system currently does not pretend to be a real security manager.
We are investigating Java to deal with this user-supplied function issue.

4.3 For the Client

4.3.1 Determining the Format of the Function to Supply

We now understand that the user has to write a Fortran subroutine or a C function to call a problem that
requires a user-supplied function. For now, the prototype of this subroutine/function can be found in the
description of the problem, available from MATLAB or the CGI scripts of the NetSolve homepage (see
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Section 1.2.3). Following the usual philosophy of NetSolve, the prototype of the user-supplied function is
exactly the same as if the user were using the numerical software directly. Some softwares require the user
to provide more than one function. When that is the case, the description of the problem mentions it and
gives all the prototypes for all the functions to supply.

4.3.2 From MATLAB

From MATLAB, when the user consults the list of available problems, he can determine whether any given
problem requires one or more user-supplied functions. If the problem does indeed require such functions,
then these functions have to be written in files. These files have to be in the working directory and their
names are passed to the call to NetSolve. The problem is then called as described in Section 2.2. If something
i1s wrong with the user-supplied function, netsolve() and netsolvenb() print out special error messages.

4.3.3 From C or Fortran

The situation from C or Fortran is almost the same as from MATLAB. The user-supplied functions have to
be in files in the UPF working directory. However, we introduce here a new function, called netsldir(),
that sets the default directory in which to look for the function file. The names of the files are then passed
to the call to NetSolve. A typical call to netsldir() in C is

netsldir("/homes/me/my_functions");
and in Fortran is
NETSLDIR(’ /homes/me/my_functions’)

Here, netsl() and netsldir() return special NetSolve status codes concerning the user-supplied function.

4.3.4 From the NetSolve Java API

Users of the NetSolve API may specify a UPF input item as they would any other input item, using the
pushArg() method. However, an extra argument is required when pushing a UPF item: the language that
the UPF is written in. For example:

n.pushArg(new String(upf0,0),GlobalDefs.LANG_FORTRAN) ;
n.pushArg(new String(upfi,0),GlobalDefs.LANG_C);

Currently, the user must pass the UPF as a String. Therefore, if the UPF is stored in a file, it is up to the
user to read the file into a String. Future versions of the API will allow the user to simply pass the name of

the file.

4.3.5 From the Java GUI

Entering a user-supplied function via the Java interface is very much similar to entering any other kind
of data. If the problem requires a user-supplied function, there will be an entry in the Input List called
“User Provided Function” for which data must be specified, just like any other input object. The user may
choose to enter the user-supplied function manually into the Data Input Box or from a file specified in the
Filename Selection Boz. If the user enters the function manually, the language must also be specified by
choosing either C or FORTRAN from an “option menu” that appears just above the Data Input Boz. If the

user-supplied function comes from a file, the file must end with either “.c” or “.f” (with names ending in

“.c” interpreted as C functions and names ending in “.f” interpreted as FORTRAN functions).
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4.4 For the Server

The problem description of a problem that requires one or more user-supplied functions must contain a line:
QOBJECT UPF EXTERNAL

for each function as an input object so that mnemonics can be used in the description of the calling sequence
(after the *@FORMAT’ clause). In the pseudo-code section, the functions should be declared as extern like:

extern int upf0();
extern double upfi();
etc....

for instance. The identifiers upf0, upfi, ... can be used in the rest of the pseudo code to designate the
user-supplied functions. This is not very natural. It would be better to be able to use mnemonics as for
classic objects, but it makes compilation close to impossible on some platforms.

4.5 Conclusion

This new feature of NetSolve is still under investigation. We are aware that security is an important issue
here. For now, NetSolve is still a research project developed to allow experimentations with this relatively
new type of software. In the future, more attention will be given to the user-supplied mechanism in order
to make it as safe as possible. As mentioned earlier, we may use Java in order to set up a viable security
manager. Using Java currently appears to be the best solution for security, but it has obvious drawbacks.
First, the user would have to write his function in Java: the typical NetSolve user is a scientist who does
not have the time or inclination to learn new languages, especially object-oriented ones. Second, with the
current implementations of Java, efficiency would also be a problem.
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Appendix A

MATLAB Reference Manual

We describe here all the possible calls to NetSolve from MATLAB. In these descriptions we assume correct-
ness. In case of errors, all these calls print out very simple and explicit messages.

>> netsolve

Prints out on the screen the list of all the problems that are available in the NetSolve system.

>> netsolve(’ <problem name>’)

Prints out all the information available from MATLAB about a specific problem.

>> netsolve(’?’)

Prints out the list of all the agents and servers in the NetSolve system, that is, the NetSolve system contain-
ing the host whose name is in the environment variable NETSOLVE_AGENT.

>> [ ... 1 = netsolve(’<problem name>’, ...)

Sends a blocking request to NetSolve. The left-hand side contains the output arguments. The right-hand
side contains the problem name and the input arguments. The arguments are listed according to the problem
description. Upon completion of this call, the output arguments contain the result of the computation.

>> [r] = netsolvenb(’send’,’<problem name>’, ...)

Sends a non-blocking request to NetSolve. The right-hand side contains the keyword send, the problem
name, and the list of input arguments. These arguments are listed according to the problem description.
The left-hand side will contain a request handler upon completion of the call.

>> [ ... ] = netsolvenb(’wait’,r)
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Waits for a requests completion. The right-hand side contains the keyword wait and the request handler.
The left-hand side contains the output arguments. These arguments are listed according to the problem
description. The right-hand side contains the keyword wait and the request handler. Upon completion of
this call, the output arguments contain the result of the computation.

>> [ ... ] = netsolvenb(’probe’,r)

Probes for a request completion. The right-hand side contains the keyword probe and the request handler.
The left-hand side contains the output arguments. These arguments are listed according to the problem
description. The right-hand side contains the keyword probe and the request handler. Upon completion of
this call, the output arguments contain the result of the computation.

>> netsolvenb(’status’)

Prints out the list of all the pending requests. This list contains estimated time of completion, the compu-
tational servers handling the requests and the current status. The status can be COMPLETED or RUNNING.
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Appendix B

C Reference Manual

We describe here all the possible calls to NetSolve from C. All these calls return a NetSolve code status. The
list of the possible code status is given in Appendix D.

status = netsl("<problem name()>QO", ...)

Sends a blocking request to NetSolve. nets1() takes as argument the name of the problem and the list of
arguments in the calling sequence. See Section 2.3.2 for a discussion about this calling sequence. It returns
the NetSolve status code (integer status). If the call is successful, the result of the computation is stored
in the output arguments. The output arguments are specified in the calling sequence.

status = netslnb("<problem name()>QO", ...)

Sends a nonblocking request to NetSolve. netslnb() takes as argument the name of the problem, and
the list of arguments in the calling sequence. See Section 2.3.2 for a discussion about this calling sequence.
It returns the NetSolve status code (integer status). If the call is successful, status contains the request

handler.

status = netslwt(<request handler>)

Waits for a request completion. netslwt() takes as argument a request handler (an integer). If the call
is successful, the result of the computation is stored in the output arguments. The output arguments are
specified in the calling sequence during the call to netslnb().

status = netslpr(<request handler>)

Probes for a request completion. netslpr() takes as argument a request handler (an integer). If the call
is successful, the result of the computation is stored in the output arguments. The output arguments are
specified in the calling sequence during the call to netslnb().

netsldir("<directory name>")
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Sets the default directory where the user-supplied functions are located.

netslerr(<error code>)

Displays an explicit error message given a NetSolve error code.

netslmajor("<major>")

Sets the way the user has stored her matrices (row- or column-wise). The argument can be "col" or "row".
It is case-insensitive and in fact only the first character is used by NetSolve.
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Appendix C

Fortran Reference Manual

We describe here all the possible calls to NetSolve from Fortran. All these calls return a NetSolve code
status. The list of the possible code status is given in Appendix D.

CALL FNETSL(’ <problem name()>()’ ,NSINFO, ...)

Sends a blocking request to NetSolve. FNETSL() takes as argument the name of the problem, an integer, and
the list of arguments in the calling sequence. See Section 2.3.2 for a discussion about this calling sequence.
When the call returns, the integer NSINFO contains the NetSolve status code. If the call is successful, the
result of the computation is stored in the output arguments. The output arguments are specified in the
calling sequence.

CALL FNETSLNB(’<problem name()>()’ ,NSINFO, ...)

Sends a nonblocking request to NetSolve. FNETSLNB() takes as argument the name of the problem, an
integer, and the list of arguments in the calling sequence. See Section 2.3.2 for a discussion about this calling
sequence. It returns the NetSolve status code (integer status). If the call is successful, status contains the
request handler.

CALL FNETSLWT (<request handler> ,NSINFO)

Waits for a request completion. FNETSLWT () takes as argument a request handler and an integer. When the
call returns, NSINFO contains the NetSolve status code. If the call is successful, the result of the computa-
tion is stored in the output arguments. The output arguments are specified in the calling sequence during
the call to FNETSLNB().

CALL FNETSLPR(<request handler> ,NSINFO)

Probes for a request completion. FNETSLPR() takes as argument a request handler and an integer. When
the call returns, NSINFO contains the NetSolve status code. If the call is successful, the result of the compu-
tation 1s stored in the output arguments. The output arguments are specified in the calling sequence during
the call to FNETSLNB().
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CALL FNETSLDIR(’ <directory name>")

Sets the default directory where the user-supplied functions are located.

CALL FFNETSLERR(<error code>)

Displays an explicit error message given a NetSolve error code.

CALL FNETSLMAJOR(’<major>")

Sets the way the user has stored her matrices (row- or column-wise). The argument can be ’col’ or *row’.
It is case-insensitive and in fact only the first character is used by NetSolve.
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Appendix D

Error Codes for C and Fortran

ERROR CODE VALUE | MEANING

NetSolveSuccess 1 Successful call to a routine

NetSolveNotReady 0 Request not yet completed

NetSolveFailure -1 Failure of the NetSolve system

NetSolveBadCode -2 Badly formatted problem name
NetSolveUnknownProblem -3 Unknown problem in the system

NetSolveBadInput -4 Wrong number/type of input

NetSolveBadOutput -5 Wrong number /type of output

NetSolveAgentFailure -6 Failure of the NetSolve Agent

NetSolveNoServers -7 No computational resource available
NetSolveBadDimension -8 Incorrect dimensions of non scalar input data
NetSolveNoSolution -9 No solution for this problem given the input data
NetSolveRequestFull -10 No more requests possible
NetSolveInvalidRequestNumber -11 Unknown request handler

NetSolveSetArch -12 Environment variable NETSOLVE_ARCH should be set
NetSolveSetAgent -13 Environment variable NETSOLVE_AGENT should be set
NetSolveNoAgent -14 No agent running on $NETSOLVE_AGENT
NetSolveBadValues -15 Incorrect numerical values of the input
NetSolveFileNotFound -16 No file containing a user-supplied function
NetSolveFileReadError -17 Impossible to read file containing the user-supplied function
NetSolveUPFFailed -18 Compilation error of the user-provided function
NetSolveUPFUnsafe -19 Unsafe user-provided function
NetSolveBadCallingSequence -20 Erroneous calling sequence
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Appendix E

NetSolve Java API Reference

For current documentation of the entire NetSolve API, please consult the following Web page:

http://www.cs.utk.edu/netsolve/JavaAPI/index.html
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Appendix F

Complete C Example

#include "netsolve.h"
tdefine SIZE 100

main ()
{
double a[SIZE*SIZE];
double x1[SIZE],y1[SIZE],x2[SIZE],y2[SIZE];
int info,status;
int i,init = 1325;

for (i=0;i<SIZE+SIZE;i++) {

init = 2315*init % 65536;

ali] = (double) ((double)init - 32768.0) / 16384.0;
¥

/* Setting the major */
netslmajor ("Col");
/* NetSolve blocking */

info = netsl("Eig()",a,SIZE,SIZE,x1,y1);
if (info <0)
{
fprintf (stderr,"netsl() : %d\n",info);
exit (0);
¥

/* NetSolve Non-blocking */
info = netslnb("Eig()",a,SIZE,SIZE,x2,y2);

if (info < 0)

{
fprintf (stderr,"netslnb : %d\n",info);
fprintf (stderr,"** NetSolve Abort **\n'");
exit (0);

¥

status = netslwt (info);
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if (status <0)

{
fprintf (stderr,"netslut () : %d\n",status);
fprintf (stderr,"** NetSolve Abort **\n'");
exit (0);

¥
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Appendix G

Complete Fortran Example

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok ok 3K 3K 3K ok 5k 3K 3K 3 3k 3k 3k ok ok 3K 3K 3K ok %k 3K K 3k 3k 3k ok ok Kk K K K ok kK

* *
* TEST of the FORTRAN INTERFACE to NETSOLVEx*
* *

oKk oK K oK K ok ok ok K o oK ok K 3 3K KoK K KoK KK ok ok KK o ok ok K ok ok ok
PROGRAM TEST
INCLUDE ’fnsolve.h’

PARAMETER (SIZE = 2000)
INTEGER N

DOUBLE PRECISION A(SIZE,SIZE)
DOUBLE PRECISION X1(SIZE)
DOUBLE PRECISION Y1(SIZE)
DOUBLE PRECISION X2(SIZE)
DOUBLE PRECISION Y2(SIZE)
INTEGER REQUEST

INTEGER INFO

INTEGER INIT,I,J

INIT = 1325
DO 10 I = 1,N
DO 11 J = 1,N
INIT = MOD(2315%INIT,65536)
A(J,I) = (DBLE(INIT) - 32768.D0)/16384.D0
11 CONTINUE
10 CONTINUE

CALL FNETSL(’Eig()’,INFO_NS,
$ A,MAX,MAX,X1,Y1)

IF(INFO_NS.LT.0) THEN
CALL FNETSLERR (INFO_NS)
STOP

ENDIF

CALL FNETSLNB(’Eig()’,REQUEST,
$ A,MAX,MAX,X2,Y2)
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IF(REQUEST.LT.0) THEN
CALL FNETSLERR (REQUEST)
STOP

ENDIF

CALL FNETSLWT (REQUEST,INFO_NS)
IF(INFO_NS.LT.0) THEN

CALL FNETSLERR (INFO_NS)

STOP

ENDIF

STOP
END
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Appendix H

Complete Java Example

/%%
DgesvExample

This class illustrates a simple example of using the
NetSolve Java API. Two linear systems are solved (dgesv)
using blocking calls. Then the results are printed out.

@version 1.0, 22 Jan 1998
Qauthor Keith Seymour (seymour@cs.utk.edu)

*
*
*
*
*
*
*
*
*
* Q@see Netsolve

* 0sece NetsolveSession
*%/

import java.util.Vector;

public class DgesvExample extends Example {
public static void main (String [] args) {
DgesvExample mm = new DgesvExample();
NetgolveSessgion ns;
Netsolve n;
Netsolve n2;

double [I[] a1l = { // Initialize the data
{1.0, 2.0, 3.0, 4.0},
{5.0, 6.0, 7.0, 8.0},
{9.0, 10.0, 11.0, 12.0},
{13.0, 14.0, 15.0, 16.0}
}s
double []I[] a2 = { // Initialize the data
{1.0, 2.0, 3.0, 4.0},
{13.0, 14.0, 15.0, 16.0},
{9.0, 10.0, 11.0, 12.0},
{5.0, 6.0, 7.0, 8.0}
}s

Vector out;

Integer outlnt;

double [J[] outMati, outMat?2;
int [] outVec;
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// Since these variables are all set within the ’try’

// block, the compiler can’t confirm that they are

// initialized. To avoid the subsequent complaints from
// the compiler, we initialize them to null here.

n = null;

n2 = null;
ng = null;
out = null;

// Almost all of the methods in Netsolve and NetsolveSession
// throw NetSolveException upon some error condition, so it’s
// easier to just enclose the whole transaction in a try-catch
// block than to try each one individually (although that is
// possible, too).

try {
ns = new NetsolveSession("woodstock.cs.utk.edu");

n = new Netsolve(ns); // Specify ’session’
n.setProblem("dgesv") ; // Specify the problem to solve
n.pushArg(al); // Pass first parameter to dgesv
n.pushArg(al); // Pass second parameter to dgesv
n.submitProb(); // Submit this problem

out = n.getOutput (); // Get the output item(s)

}catch(NetSolveException e) {
System.err.println("Error in first submission:");
System.err.println(e.getMessage());
System.exit(1);

}

// Print results from first submission.
System.out.println("Results from first submission:");

outMatl = (double [J[]) (out.elementAt(0));

outVec = (int [1) (out.elementAt(1));
outMat2 = (double [J[]) (out.elementAt(2));
outInt = (Integer) (out.elementAt(3));

mn.printMat ( outMatl );
mn.printVec( outVec );
mn.printMat ( outMat2 );
System.out.println( outInt.intValue() );

// The second submission is enclosed in a separate try-catch

// so that we may distinguish between error messages generated

// during the first and second submissions. Notice that in

// initializing this Netsolve object, we reuse the NetsolveSession
// from the previous submission. This saves time by only

// retrieving the problem list once. However, if you wanted

// to submit the second problem to a different agent, you

// would have to instantiate a new NetsolveSession, specifying

// that agent.
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try {

n2 = new Netsolve(ns); // Specify ’session’
n2.setProblem("dgesv"); // Specify the problem to solve
n2.pushirg(al); // Pass first parameter to dgesv
n2.pushirg(a2) ; // Pass second parameter to dgesv
n2.subnitProb(); // Subnit this problem

out = n2.getOutput(); // Get the output item(s)

}catch(NetSolveException e) {
System.err.println("Error in second submission:");
System.err.println(e.getMessage());
System.exit(1);

}

// Print results from first submission.
System.out.println("Results from second submission:'");

outMat1 (double [1[]) (out.elementAt(0));
outVec = (int [1) (out.elementAt(1));
outMat?2 (double [1[]) (out.elementAt(2));
outInt (Integer) (out.elementAt(3));

mn.printMat ( outMatl );
mn.printVec( outVec );
mn.printMat ( outMat2 );
System.out.println( outInt.intValue() );
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