
Users' Guide to NetSolveversion 1.1.b(Client and Server)Henri Casanova1 Jack Dongarra12 Keith Seymour1March 31, 1998
1Department of Computer Science, University of Tennessee, TN 379962Mathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831

AbstractThe NetSolve system, developed at the University of Tennessee, is a client-server application designed tosolve computational science problems over a network. This document is organized in four chapters. The�rst chapter presents the basic concepts of NetSolve and gives references to several publications concerningthe project. The second chapter describes the client side of NetSolve, reviewing the Matlab, C, Fortran andJava Application Programming Interfaces (APIs) as well as the Java Graphical User Interface (GUI). Thatsection also gives several illustrative examples. The third chapter describes the server side of NetSolve andgives details on each of its software components. The fourth and last chapter describes how NetSolve handlesthe user-provided function mechanism. Finally, complete reference manuals are found in appendices.

Contents1 The NetSolve System 41.1 Introduction . 41.2 Overview of the NetSolve System . 41.2.1 Architecture . 41.2.2 Problem Speci�cation . 51.2.3 Problems that can be solved with NetSolve . 52 The NetSolve Client 72.1 Getting Started . 72.1.1 Downloading the Software . 72.1.2 Setting the Architecture . 72.1.3 Compiling . 82.1.4 Setting an Agent Name . 82.1.5 Testing . 82.2 MATLAB Interface . 82.2.1 Introduction . 82.2.2 What to Do First . 92.2.3 Calling netsolve() . 112.2.4 Calling netsolve nb() . 122.2.5 What Can Go Wrong? . 142.3 C and Fortran Interfaces . 142.3.1 Introduction . 142.3.2 Knowing the Calling Sequence . 152.3.3 Blocking Call . 152.3.4 Nonblocking Call . 162.3.5 Error messages . 172.3.6 Row- or Column-major . 172.3.7 Built-in Examples . 172.4 Java API . 182.4.1 Introduction . 182.4.2 Establishing a Connection . 182.4.3 Knowing the Calling Sequence . 182.4.4 Blocking Call . 192.4.5 Nonblocking Call . 192.4.6 Retrieving the Results . 202.4.7 Error messages . 202.4.8 Row- or Column-major . 211

2.4.9 Built-in Examples . 212.5 Java GUI . 212.5.1 Introduction . 212.5.2 The Initial Screen . 222.5.3 Solving a Problem . 242.5.4 Viewing the Results . 252.6 The Server Information Screen . 272.7 The Help Screen . 272.8 Error Screens . 273 The NetSolve Agent and Server 303.1 Getting Started . 303.1.1 Downloading the Software . 303.1.2 Setting the Architecture . 303.1.3 Setting the root . 313.1.4 Compiling . 313.2 The Agent . 313.3 The Server . 323.3.1 Starting a Server . 323.3.2 The Server Con�guration File . 323.3.3 Customizing the Server . 333.4 Managing the System . 333.5 Expanding the Server . 333.5.1 Mnemonics . 343.5.2 Sections of a Problem Description . 343.5.3 Calling Sequence . 353.5.4 A Simple Example . 383.5.5 Java Applet . 394 The User-Supplied Function Feature 404.1 Motivation . 404.2 Solution . 404.3 For the Client . 404.3.1 Determining the Format of the Function to Supply . 404.3.2 From MATLAB . 414.3.3 From C or Fortran . 414.3.4 From the NetSolve Java API . 414.3.5 From the Java GUI . 414.4 For the Server . 424.5 Conclusion . 42A MATLAB Reference Manual 43B C Reference Manual 45C Fortran Reference Manual 47D Error Codes for C and Fortran 492

E NetSolve Java API Reference 50F Complete C Example 51G Complete Fortran Example 53H Complete Java Example 55

3

Chapter 1The NetSolve System1.1 IntroductionThe e�cient solution of large problems is an ongoing thread of research in scienti�c computing. Variousmechanisms have been developed to perform computations across diverse platforms. The most commonmechanism involves software libraries. Unfortunately, the use of such libraries presents several di�culties.Some software libraries are highly optimized for only certain platforms and do not provide a convenientinterface to other computer systems. Other libraries demand considerable programming e�ort from the user.While several tools have been developed to alleviate these di�culties, such tools themselves are usuallyavailable on only a limited number of computer systems. MATLAB [1] is an example of such a tool.These considerations motivated the establishment of the NetSolve project. The basic philosophy behindNetSolve is to provide a uniform, portable and e�cient way to access computational resources over a network.NetSolve is a client-server application, and a number of di�erent client interfaces have been developed tothe NetSolve software. Users of C, Fortran, MATLAB, or the World Wide Web can easily use the NetSolvesystem thanks to the di�erent client types.1.2 Overview of the NetSolve System1.2.1 ArchitectureThe NetSolve system is a set of loosely connected machines. By loosely connected, we mean that thesemachines can be on the same local network or on an international network, and administrated by di�erentinstitutions and organizations. Moreover, the NetSolve system can be running in a heterogeneous environ-ment, which means that machines with di�erent internal data representations can be in the system at thesame time.Figure 1.1 shows the global conceptual picture of the NetSolve system. In this �gure, we can see the threemajor components of the system:� The NetSolve client� The NetSolve agent� The NetSolve computational resourcesSolving a problem with NetSolve is done in three steps. The client sends a request to the agent. The agentchooses the \best" NetSolve resource according to the size and nature of the problem to be solved. Theproblem is then solved on the chosen server, and the result is sent back to the client.4

NetSolve Client NetSolve Agent

NetSolve System

Request

ChoiceReply

Resource
NetSolve

Figure 1.1: The NetSolve SystemThis system is fault tolerant, meaning that the client will receive an answer to its problem unless everyresource in the system has failed or is unavailable. The NetSolve agent is the key to the load-balancingstrategy, and details about its design can be found in [2].1.2.2 Problem Speci�cationTo keep NetSolve as general as possible, we needed a formal way of describing a problem.A problem is de�ned as a 3-tuple: < name; inputs; outputs >, where� name is a character string containing the name of the problem,� inputs is a list of input objects, and� outputs is a list of output objects.An object is itself described as follows: < object; data >, where object can be MATRIX, VECTOR, orSCALAR, and data can be any of the standard Fortran data types.This description has proved to be su�cient to interface NetSolve with numerous software packages. NetSolveis still at an early stage of development and is likely to undergo modi�cations in the future. For the timebeing, the existing interfaces use this formalism. However, we will see that the computational servers areusually set up so that the calling sequences to be used by the NetSolve APIs �t the underlying scienti�csoftware calling sequences.1.2.3 Problems that can be solved with NetSolveBefore actually using NetSolve with any interface, the user needs to know what problems are solvable. Theeasiest way is to check the NetSolve homepage: 5

http://www.cs.utk.edu/netsolveThe Available Resources page provides access to two CGI scripts. Using those scripts, one can inquire aboutwhich problems are handled by the servers and about which servers are in the system. Those scripts givecomplete details for the C and Fortran interfaces. This information is also available from the Java or theMATLAB interfaces, for which such a level of detail is not required. In the future, we plan to suppress thosescripts and replace them with a Java applet. This Java applet will look very similar to the current NetSolveJava interface and will provide information only about the C and Fortran interfaces.This early version of NetSolve has a naming scheme for problems. We can distinguish the name of a problemand its full name. The full name has a path-like structure. Let us explain this with an example. Theproblem ddot, which computes the inner product of two double-precision vectors, can have a full name like/BLAS/Level1/ddot. This full name has two purposes. First, when we display a list of problems, theyare sorted alphabetically on their full name, and the problems are grouped by \directory." Second, byconvention, the �rst element of the full name (e.g., BLAS) is the name of the numerical library the problemcomes from. This convention has proven to be useful, as seen in Section 2.3.2.

6

Chapter 2The NetSolve Client2.1 Getting Started2.1.1 Downloading the SoftwareThe client software can be downloaded from the NetSolve homepage athttp://www.cs.utk.edu/netsolve/client distribution.tar.gz.The following UNIX commands will create the Netsolve client directory:% gunzip client_distribution.tar.gz% tar -xvf client_distribution.tar2.1.2 Setting the ArchitectureThe Netsolve client directory includes a Shell script called netsolvegetarch that can be used to returna character string describing the architecture of the user's machine. Suppose, for instance, that one wishesto run the script on an IBM RS/6000:% netsolvegetarchRS6KIn that case, the NETSOLVE ARCH environment variable should be de�ned in the .cshrc �le as:setenv NETSOLVE_ARCH RS6Kor preferably, if netsolvegetarch is in the path:setenv NETSOLVE_ARCH `netsolvegetarch`To date, NetSolve has been ported to the following di�erent architectures:� SUN4: Sun 4, 4c, SPARC, etc.� SUN4SOL2: Sun 4 running Solaris 2.x� ALPHA: DEC Alpha/OSF-1� PMAX : DEC Pmax running NetBSd� NEXT : NeXT 7

� SGI5 : Silicon Graphics IRIS running OS � 5.0� SGI64 : Silicon Graphics IRIS running OS � 6.0� HPPA: HP 9000 PA-Risc� RS6K: IBM RS/60002.1.3 CompilingNow that the NETSOLVE ARCH environment variable has been set as described in Section 2.1.2, the software canbe compiled. First, one should go to the Netsolve client/conf directory and edit the $NETSOLVE ARCH.def�le (for instance RS6K.def). This �le contains a custom section in which the user can modify the compilationparameters. Here is a typical section:# ---- Custom Section ----F77 = f77CC = ccCMEX = cmexMATLAB_VERSION = 5# ---- End of Custom Section ----This custom section speci�es which compilers are going to be used. CMEX denotes the MATLAB C-compiler,in case the MATLAB interface is to be built. MATLAB VERSION can take the value 4 or 5 depending on whichversion of Matlab is to be used. These parameters can be modi�ed before compilation. However, the �le alsocontains other information that should not be modi�ed. The NetSolve clients can now be compiled. Typingmake in the Netsolve client directory will give instructions to complete the compilation.2.1.4 Setting an Agent NameAs described in Section 1.2.1, to solve a problem, a client must contact an agent. The C, Fortran, andMATLAB interfaces require the environment variable NETSOLVE AGENT to be set to contain the name of ahost running a NetSolve agent. If the user knows of some NetSolve system installed somewhere, he willhave to ask the NetSolve administrator for the name of such a host. The NetSolve homepage includes alist of registered agents on the Internet. The constantly running agent at the University of Tennessee iscomet.cs.utk.edu. If the user wishes to set his agent to be this one, he will have to modify his .cshrc asfollows:setenv NETSOLVE_AGENT comet.cs.utk.eduThe Java GUI and API do not require the NETSOLVE AGENT environment variable.2.1.5 TestingThe thing to do at this point is to test the client software by typing 'Test' in the NetSolve client directory.This test generally takes a few minutes but may take longer depending on your distance to the agent. Weadvise to test the client with the servers running at the University of Tennessee by setting the NETSOLVE AGENTenvironment variable to comet.cs.utk.edu.2.2 MATLAB Interface2.2.1 IntroductionBuilding the MATLAB interface as described in Section 2.1.3 produces the two following mex-�les :8

� Netsolve client/bin/$NETSOLVE ARCH/netsolve.mex###� Netsolve client/bin/$NETSOLVE ARCH/netsolve nb.mex###The ### part of the extension depends on the architecture (for instance, the extension is .mexsol for theSolaris Operating System). These two �les alone are the MATLAB interface to NetSolve. Modifying theMATLABPATH environment variable will make these two �les available from any location in MATLAB. Formore information about mex-�les, the user can refer to [3]. Basically, the user will now be able to call twonew functions from MATLAB: netsolve() and netsolve nb(). The following sections will explain how touse those two functions.2.2.2 What to Do FirstLet us now assume that the user has started a MATLAB session and is ready to try NetSolve. In thissection we describe those features of this interface that allow the user to get information about the currentlyavailable NetSolve system.As stated briey in Section 1.2.3, it is possible to obtain the list of solvable problems from MATLAB. Letus try that �rst:>> netsolveNetSolve - List of problems available -/BLAS/Matrices/matmul/ItPack/jsi/LaPack/Matrices/EigenValues/eig/LaPack/Matrices/SingularValues/svd>>Every line contains a full problem name. This list can be really long, and in that case it is wiser to use theCGI scripts in Section 1.2.3. Let us now assume that the user is wondering about what kind of problem eigis. He can type>> netsolve('eig')This command will provide detailed information about this particular problem. Let us split the outputproduced by this command into di�erent pieces:eig : From LAPACK -Simplified versionComputes the eigenvalues of a double-precision realsquare matrix A. Returns two double-precision realvectors containing respectively the real parts andthe imaginary parts of the eigenvalues.MATLAB Example : [r i] = netsolve('eig',a)This is the same kind of information as that available from the CGI scripts. It gives a short description ofwhat the problem is. Usually it also includes an example for MATLAB, using netsolve().---------- INPUT ----------#0 : Double-precision real matrix.Matrix A 9

This is the description of the input the user needs to give NetSolve. This particular problem requires onlyone double-precision matrix. Notice that this matrix has to be square (as stated in the description of theproblem). If the user tries to call NetSolve for this problem with a rectangular matrix, he will receive anerror message stating that the dimensions of the input are invalid.----------- OUTPUT -----------#0 : Double-precision real vector.Real parts of the eigenvalues#1 : Double-precision real vector.Imaginary parts of the eigenvaluesThe outputs of the problem are described here. The problem eig will return two vectors, the real andimaginary parts of the eigenvalues of the input matrix, respectively.---Output 0 and 1 can be merged to form a complex object---This last part does not appear for every problem and is relevant only for the MATLAB interface. SinceMATLAB provides a mechanism to manipulate complex objects, it is probable that the user would liketo have eig return one single complex vector instead of two separate real vectors. This point is furtherdeveloped in the following section.The MATLAB interface has another feature that is concerned not with the actual problem solving but withproviding information about the NetSolve con�guration itself. We have just seen how to get informationabout the problems handled by the NetSolve servers; it is also possible to obtain the physical locations ofthese servers. Let us assume that our NETSOLVE AGENT environment variable is set to comet.cs.utk.edu(see Section 2.1.4). Let us try the following command:>> netsolve('?')this command produces the following output :comet.cs.utk.edu (128.169.92.78)NetSolve AgentHost : Up Server : Runningmaruti.CS.Berkeley.EDU (128.32.36.83)Handles 10 problemsHost : Up Server : Runningcupid.cs.utk.edu (128.169.94.221)Handles 29 problemsHost : Up Server : RunningWe can see that there are three servers in the NetSolve system containing the machine comet at the Universityof Tennessee:1. comet itself, which is stated as being an agent2. cupid at the same location, which is a computational server handling 29 di�erent problems3. maruti at U.C. Berkeley, which is also a computational server and handles 10 di�erent problemsWe can also see the status information about the servers (the processes) and the hosts (the computers).Right now, everything is up and running. 10

2.2.3 Calling netsolve()The �rst way to perform an actual numerical computation is to call the function netsolve(). With thisfunction, the user can send a blocking request to NetSolve. By blocking we mean that after typing thecommand in the MATLAB session, the user gets back control only when the computation has been success-fully completed on a server. The other way to perform computation is to send a nonblocking request; thisapproach is described in Section 2.2.4.Let us go on with the eig example we started to develop in the preceding section. The user now knows thathe has to provide a double-precision square matrix to NetSolve, and he knows that he is going to get tworeal vectors back (or one single complex vector). He �rst creates a 300� 300 matrix, for instance,>> a = rand(300);The call to NetSolve is now>> [x y] = netsolve('eig',a)All the calls to netsolve() will look the same. The left-hand side must contain the output arguments, inthe same order as listed in the output description (see Section 2.2.2). The �rst argument to netsolve() isalways the name of the problem. After this �rst argument the input arguments are listed, in the same orderas they are listed in the input description (see Section 2.2.2). This function does not have a �xed callingsequence, since the number of inputs and outputs depends on the problem the user wishes to solve.Let us see what happens when this command is typed:>> [x y] = netsolve('eig',a)Trying server cupid.cs.utk.eduProblem accepted....sending the dataWaiting for result.....Result receivedx = y =10.1204 0-0.9801 0.8991-0.9801 -0.8991-1.0195 0-0.6416 0.6511...As mentioned earlier, the user can decide to regroup x and y into one single complex vector. Let us makeit clear again that this possibility is a speci�city of eig and is not available in general for all problems. Tomerge x and y, the user just has to type>> [x] = netsolve('eig',a)Trying server cupid.cs.utk.eduProblem accepted....sending the dataResult receivedx = 10.1204-0.9801 + 0.8991i-0.9801 - 0.8991i-1.0195-0.6416 + 0.6511i 11

..................2.2.4 Calling netsolve nb()The obvious drawback of the function netsolve() is that while the computation is performed remotely,the user must simply wait to get back the prompt. To address this drawback, we designed netsolve nb().This second function allows the user to send nonblocking requests to NetSolve. Once the user has callednetsolve nb(), he gets back the control. He can then do some work in parallel and check for the completionof the request later. He can even send multiple requests to NetSolve. Thanks to the load-balancing strategyimplemented in the NetSolve agent, all these requests are going to be solved on di�erent machines, achievingsome NetSolve-parallelism. Let us now describe this function on the eig example.As in Section 2.2.3, the user creates a 300� 300 matrix and calls NetSolve:>> a = rand(300);>> [r] = netsolve_nb('send','eig',a)Obviously, the calling sequence to netsolve nb() is quite di�erent from the one to netsolve(). The left-hand side always contains one single argument. Upon completion of this call, it will contain a NetSolverequest handler. The right-hand side is composed of two parts: the action to perform and the argumentsthat would be passed to netsolve(). In this example, the action to perform is 'send', which means thatwe send a request to NetSolve. Throughout this section, we will encounter all the possible actions, and theywill be summarized in Appendix A.Let us resume our example and see what NetSolve answers to the �rst call to netsolve nb() :>> [r] = netsolve_nb('send','eig',a)Trying server cupid.cs.utk.eduProblem accepted....sending the datar = 0As expected, netsolve nb() returns a request handler: here it is 0. This request handler will be used inthe subsequent calls to the function. The request is being processed on cupid, and the result will eventuallycome back. The user can obtain this result in one of two ways. The �rst one is to call netsolve nb() withthe 'probe' action :>> [x y] = netsolve_nb('probe',r)The left-hand side of this call is the left-hand side of the call to netsolve(). The right-hand side containsthe action, as is required for netsolve nb(), and the request handler. This call returns immediately, eitherprinting out a message saying that the result has not arrived yet or giving the result in x and y. Here arethe two possible scenarios:>> [x y] = netsolve_nb('probe',r)Not ready yet>> ... Some other work ...>> [x y] = netsolve_nb('probe',r)Result receivedx = y =10.1204 0 12

-0.9801 0.8991-0.9801 -0.8991-1.0195 0-0.6416 0.6511...The other way to obtain the result is to call netsolve nb() with the 'wait' action. The call then blocksuntil the result arrives:>> [x y] = netsolve_nb('wait',r)Waiting for result.....Result receivedx = y =10.1204 0-0.9801 0.8991-0.9801 -0.8991-1.0195 0-0.6416 0.6511...As for netsolve(), we can merge the real part and the imaginary part into a single complex vector. Thetypical scenario is to call netsolve nb() with the action 'send', then make repeated calls with the action'probe' until there is nothing more to do than wait for the result. The user then calls netsolve nb() withthe action 'wait'.One last action can be passed to netsolve nb(), as shown here:>> netsolve_nb('status')This command will return a description of all the pending requests. Let us see how it works on this lastcomplete example:>> a = rand(800); b = rand(800);>> [r1] = netsolve_nb('send','eig',a)Trying server cupid.cs.utk.eduProblem accepted....sending the datar1 = 0>> [r2] = netsolve_nb('send','eig',b)Trying server vw.cs.Berkeley.eduProblem accepted....sending the datar2 = 1Now let us see what status does:>> netsolve_nb('status')Pending NetSolve requests :Request #0 - eigAssigned to cupid.cs.utk.edu 12 seconds agoStill RUNNINGPredicted execution time : 304 seconds13

Request #1 - eigAssigned to vw.cs.Berkeley.edu 3 seconds agoStill RUNNINGPredicted execution time : 402 secondsThe user can check what requests he has sent so far and obtain an estimation about the completion times. Byusing the status action, the user can also �nd out whether a request is still running or has been completed.2.2.5 What Can Go Wrong?During a computation, two classes of error can occur: NetSolve failures and user mistakes.NetSolve FailuresThe �rst class of error is caused by the NetSolve system itself, that is, the pool of agents and servers. Thenetsolve() and netsolve nb() functions print out explicit and simple error messages, and we are not goingto describe them all in great detail. Let us mention just one:>> netsolveNo agent running on demidoff.cs.utk.eduThe environment variable NETSOLVE AGENT contains the name of a host that is not running a NetSolve agent.All the other messages are of the same form and easily understandable.User MistakesThe second class of error comes from the user. If the user does not follow the calling sequences described inSections 2.2.3 and 2.2.4, error messages are printed out. For instance, if the user passes a problem name thatdoes not exist, NetSolve will indicate that this problem is unknown at this time. Again, all the messages areexplicit, and we are not going to list them all here.More interesting errors occur when the calling sequences are respected but the user provides wrong data toNetSolve. Here is an example of such a case:>> a = rand(300,400)>> [x] = netsolve('eig',a)Trying server cupid.cs.utk.eduProblem accepted....sending the data** Dimension mismatch **x = []The user tried to compute the eigenvalues of a nonsquare matrix, and NetSolve indicates that the computationis impossible. The same kind of message is printed for any mistake in the input data.2.3 C and Fortran Interfaces2.3.1 IntroductionThe C and Fortran interfaces are, in fact, one. The Fortran interface is built on top of the C interface, sinceall the networking underneath NetSolve is done in C. However, we chose to design the Fortran wrappersaround the C interface as subroutines (instead of functions). The C functions all return an integer calledthe NetSolve status code. The Fortran subroutine just takes it as an argument passed by reference. The list14

of all the possible NetSolve status codes can be found in Appendix D. The reference manuals for C andFortran are in Appendixes B and C.The basic concepts here are the same as the ones we have introduced in Section 2.2 for the MATLABinterface, especially the ability to call NetSolve in a blocking or nonblocking fashion.After compiling the C/Fortran interface as explained in Section 2.1.3, the user will �nd two archive �les:� Netsolve client/lib/$NETSOLVE ARCH/libnetsolve.a : the C library� Netsolve client/lib/$NETSOLVE ARCH/libfnetsolve.a : the Fortran libraryThe user must link his C or Fortran program to either one of these libraries to enable it to call NetSolve.The user must also include the following header �le:� Netsolve client/include/netsolve.h in C,� Netsolve client/include/fnetsolve.h in Fortran.Before describing the interface itself, we discuss the calling sequence to use for the di�erent problems in thenext section.2.3.2 Knowing the Calling SequenceWhen we described the MATLAB interface in Section 2.2, the calling sequence of netsolve() was fairlysimple. It consisted of the input objects on the right-hand side and the output object on the left-hand side.On each side, the objects were in the same order as the one they were listed in the problem description.Since this problem description is available from MATLAB, the user could easily determine the proper callingsequence. The situation is not that simple for C or Fortran. Indeed, MATLAB is a high-level computationaltool that provides its users with high-level objects encapsulating several pieces of data. For instance, inMATLAB a matrix is an object that can be referenced with a single identi�er, even though it contains twointegers, and a pointer to an array of double-precision elements. The two integers, of course, are the numberof rows and columns of the matrix, and the pointer points to the element of the matrix (stored columnwisein MATLAB). Hence, when a user passes a matrix identi�er to NetSolve from MATLAB, he does not haveto worry about passing the sizes of the matrix.In C or Fortran, we do not have access to such high-level constructs. Therefore, when we pass to NetSolvea pointer to some data, we also need to specify the size(s) of this data. This requirement, of course, impliesthat the calling sequence has to be more complex than the one in MATLAB. In Section 1.2.3, we noted thatthe CGI scripts were giving extensive details about the di�erent problems. Those details are, in fact, thedescriptions of the C and Fortran calling sequences.Our present policy with calling sequences from C or Fortran is to preserve the native calling sequences ofthe numerical software. Recall that in Section 1.2.3, we said that, by convention, the �rst element of the fullname of a problem is the name of the numerical library the problem comes from. Therefore, the user alwaysknows what software a routine comes from, by consulting the NetSolve homepage.Thus, two situations are possible. First, the user knows the numerical software and may even have a codealready written in terms of this software. Then, switching to NetSolve is immediate, and we will see examplesin the following sections. The second possibility is that the user does not know the software. Then he canlearn the calling sequences from the NetSolve homepage thanks to the CGI scripts. The NetSolve homepagewill also give access to URLs that may contain information about the di�erent software in use.With this understanding of how calling sequences work, we can proceed with the actual description of theinterface.2.3.3 Blocking CallAs with MATLAB, there is a blocking call to NetSolve from C or Fortran. Speci�cally, one calls a singlefunction, netsl(). This function returns a NetSolve status code. It takes as arguments the name of a15

problem and the list of input data. These inputs are listed according to the calling sequence discussed inSection 2.3.2 and their number of variables. The C prototype of the function isint netsl(char *problem_name, ... < argument list > ...)and the Fortran prototype isSUBROUTINE FNETSL(PROBLEM_NAME, NSINFO, ... < argument list > ...)where PROBLEM NAME is a string and NSINFO is the status code returned by NetSolve. The number of thearguments in the calling sequence depends on the problem.Let us consider an example that uses the LAPACK [4] routine dgesv(), which solves a linear system ofequations. In Fortran, the direct call to LAPACK looks likecall DGESV(N,1,A,MAX,IPIV,B,MAX,INFO)The equivalent blocking call to NetSolve iscall FNETSL('DGESV()',NSINFO,N,1,A,MAX,IPIV,B,MAX,INFO)The call in C isnsinfo = netsl('dgesv()',n,1,a,max,ipiv,b,max,&info)Notice that the name of the problem is case insensitive and that it is post�xed by an opening and a closingparenthesis. The parentheses are used by NetSolve to handle Fortran/C interoperability on certain platforms.In Fortran, every identi�er represents a pointer, but in C we actually had the choice to use pointers or not.We chose to use integer (int) for the sizes of the matrices/vectors, but pointers for everything else.From the user's point of view, the call to NetSolve is exactly equivalent to a call to LAPACK. One detail,however, needs to be mentioned. Most numerical software is written in Fortran and requires users to provideworkspace arrays as well as data, since there is no possibility for dynamic memory allocation. Because wepreserved the exact calling sequence of the numerical softwares, we require the user to pass those arrays.But, since the computation is performed remotely, this workspace is useless on the client side. It will, in fact,be dynamically created on the server side. Therefore, when the numerical software would require workspace,the NetSolve user may provide an empty workspace!2.3.4 Nonblocking CallWe developed this nonblocking call for the same reason we developed one for MATLAB (see Section 2.2.4): toallow the user to have some NetSolve-parallelism. The nonblocking version of netsl() is called netslnb().The user calls it in exactly the same way netsl() is called. The only di�erence between the two functionslies in the NetSolve status code they return. If the call to netslnb() is successful, a request handler isreturned in the NetSolve status code, as in the MATLAB interface. Let us give an example in Fortran:call FNETSLNB('DGESV()',REQUEST,N,1,A,MAX,IPIV,B,MAX,INFO)and in C :request = netslnb('dgesv()',n,1,a,max,ipiv,b,max,&info)This is exactly the same call as the one in the preceding section.The next step is to check the status of the request. As in the MATLAB interface, the user can chose toprobe or to wait for the request. Probing is done by calling netslpr(). If the call is successful, the functionreturns immediately with either a NetSolve status code telling that the result is not available yet or withthe result in the user space. Here is an example in Fortran:16

call FNETSLPR(REQUEST,NSINFO)and in C :nsinfo = netslpr(request);Waiting is done by using netslwt(). This function blocks until the request is completed. Here is the Fortrancall: call FNETSLWT(REQUEST,NSINFO)and the C call :nsinfo = netslwt(request);If the call is successful, the function returns with the results in the user space.2.3.5 Error messagesThere is an additional function in the C and Fortran interface that prints out explicit error messages to thestandard error, given a NetSolve error code. The C call is :netslerr(nsinfo);and in Fortrancall FNETSLERR(NSINFO)2.3.6 Row- or Column-majorTo allow the NetSolve user to store her matrices either in row-wise or column-wise fashions, we also providethe function netslmajor() in C and FNETSLMAJOR() in Fortran. This function can be called at any time inthe user's program in C:netslmajor("col");netslmajor("row");or in Fortran:CALL FNETSLMAJOR('col');CALL FNETSLMAJOR('row');All the subsequent calls to NetSolve will assume the corresponding major. The default values are of courserow-wise for C and column-wise for Fortran.2.3.7 Built-in ExamplesC and Fortran and Java examples are included in the NetSolve Client Distribution in the directory Netsolve client/examples.To build them, the user simply types make examples in the top directory. The examples use di�erent prob-lems that have been given servers at the University of Tennessee. They should help the user to understandhow the system works. We also have a full example in C and Fortran in Appendixes F and G.17

2.4 Java API2.4.1 IntroductionThe Java API to NetSolve is designed to give Java application programmers the ability to access NetSolveresources from their programs. This allows access to a wide variety of numerical software that has not yetbeen implemented in Java. Unfortunately we were not able to create a NetSolve API that was identical tothe C and Fortran interfaces because they rely on the ability to write functions that accept a variable numberof parameters. The Java language does not provide this ability, so we had to devise another interface. Thereare a couple of ways to provide variable-length argument lists in Java. First, the user could pack all the inputitems in an array of Objects and pass the array as the only argument to the NetSolve API. Alternately,the API could provide a function that lets the programmer specify one argument at a time. We chose toimplement the second method since it requires the least e�ort from the user and it allows the API to performbetter error checking of argument-parameter mismatch.Other than the method in which arguments are passed, the basic functionality of the NetSolve API matchesthat of the C and Fortran interfaces, including blocking and nonblocking calls to NetSolve. See Appendix Efor the NetSolve API reference manual. Also, there is a full example of using the NetSolve API in Appendix H.After compiling the source code that comprises the NetSolve API, the user should set the CLASSPATH envi-ronment variable to include the directory in which the API class �les reside. Typically, the CLASSPATH is setas follows:setenv CLASSPATH .:/home/user/Netsolve_client/src/javaThe .cshrc �le is a good place to set the CLASSPATH. For shells other than csh, the procedure may bedi�erent.Once the CLASSPATH has been set, the user can write and compile source code containing calls to the NetSolveAPI. Keep in mind that the Java source code comprising the API is written using features of version 1.1 ofthe Java Development Kit (JDK). Therefore, it will be necessary to have version 1.1 or newer installed inorder to use the NetSolve API.2.4.2 Establishing a ConnectionThe �rst thing that must be done in order to access NetSolve resources from a Java program is to establisha connection to the agent using the NetsolveSession class. The user provides the name of the machine onwhich the agent is running. If no name is provided, a default agent is contacted. For example,ns = new NetsolveSession("woodstock.cs.utk.edu");would contact the agent running on woodstock.cs.utk.edu, whilens = new NetsolveSession();would contact the default agent (currently set to comet.cs.utk.edu).Contacting the agent serves two purposes. First, it ensures that the agent is currently available. Second, itallows the API to maintain a list of all the problems that the agent can solve. Since retrieving the problemlist can be time-consuming, the same NetsolveSession can be reused without having to reload the problemlist as long as the same agent is going to be contacted. However, if the user program must switch agents,a new NetsolveSession must be created. NetsolveSession does not maintain a persistent connection tothe agent. It is merely an encapsulation of the agent's hostname and the list of problems.2.4.3 Knowing the Calling SequenceAfter a NetsolveSession has been established, the problem name and parameters are speci�ed. As withthe C and Fortran interfaces, users of the NetSolve API must know the calling sequence of the problem they18

wish to solve. Information about the number and type of input parameters can be obtained through themain screen of the Java GUI, discussed in Section 2.5.The �rst step is to create a new Netsolve object, specifying a previously created NetsolveSession:ns = new NetsolveSession("woodstock.cs.utk.edu");n = new Netsolve(ns);Passing the session to Netsolve lets the API know to which agent the data should be sent and whichproblems the agent can solve.Then, the problem name and arguments are speci�ed:n.setProblem("dgesv");n.pushArg(matrixA);n.pushArg(matrixB);The problem name, dgesv, is speci�ed �rst and then the arguments are pushed one at a time, in order. SinceJava allows the pushArg()method to be overloaded, the same method can be called regardless of data type.Once the problem name and parameters have been speci�ed and no errors have been detected (see Sec-tion 2.4.7), the problem may be submitted. The NetSolve API provides for blocking and nonblocking calls,described in the following two sections (2.4.4 and 2.4.5, respectively).2.4.4 Blocking CallTo have the data sent to the server and begin the computation, the submitProb() method of a Netsolveobject is called. This begins the computation in blocking mode. That is, the call to submitProb() doesnot return until the entire computation has �nished and the results have been obtained. To continue withthe previous example, let us assume that the user has speci�ed the problem (dgesv) and passed both inputmatrices to the Netsolve object. Now, to begin the computation, all that remains is to submit the data, asfollows:n.submitProb();No parameters are needed since all data has already been stored in the Netsolve object. Similarly, afterthe call to submitProb() returns, the results of the computation are also stored in the Netsolve object.Section 2.4.6 discusses how to retrieve the results.2.4.5 Nonblocking CallAs with the other NetSolve interfaces, the NetSolve API also provides a nonblocking call. The problemspeci�cation is exactly the same as with the blocking version. The only di�erence is that instead of callingsubmitProb(), the user calls submitProbNB(), as follows:n.submitProbNB();The call to submitProbNB() returns immediately, allowing the user to perform other computations whilethe problem is being submitted and solved. Once these other computations have completed, the user maywait for the results from a particular computation by calling the waitFor() method of the Netsolve objectthat submitted it. For example:n.submitProbNB();n2.submitProbNB();// do other computationsn2.waitFor(); // wait for the second computationn.waitFor(); // wait for the first computation19

As the preceding example illustrates, it is easy to distinguish between the two submissions since they areencapsulated in two di�erent objects.2.4.6 Retrieving the ResultsAfter the results of the computation are received from the NetSolve server, they are stored into a Vector ob-ject within the Netsolve object that submitted the job. To retrieve this data, the user calls the getOutput()method, as follows:Vector out;ns = new NetsolveSession("comet.cs.utk.edu");n = new Netsolve(ns); // Specify 'session'n.setProblem("dgesv"); // Specify the problem to solven.pushArg(a1); // Pass first parameter to dgesvn.pushArg(a2); // Pass second parameter to dgesvn.submitProb(); // Submit this problemout = n.getOutput(); // Get the output item(s)Notice on the last line that getOutput() returns a Vector, which we assign to a local variable out. Eachelement of the Vector contains one output item. In this case, the problem (dgesv) returns four output items:� Double-precision matrix� Integer Vector� Double-precision matrix� Integer ScalarTherefore, we �rst create four local variables to hold the results:Integer outInt;double [][] outMat1, outMat2;int [] outVec;Note that, as with all scalars, the integer scalar will be returned wrapped in an object. So, we declareoutInt to be of type Integer. Finally, to assign the output items to the local variables requires acessingthe individual element of the Vector, using the elementAt() method.outMat1 = (double [][]) (out.elementAt(0));outVec = (int []) (out.elementAt(1));outMat2 = (double [][]) (out.elementAt(2));outInt = (Integer) (out.elementAt(3));Note that the return type of elementAt() is Object, which we must cast to the appropriate type in theassignment statement. The preceding example demonstrates that the user must have detailed knowledge ofthe output items returned by the problem. This information can be obtained by consulting the initial screenof the Java GUI (as described in Section 2.5).2.4.7 Error messagesErrors may occur at many stages of the job submission process. each method in the NetSolve API throwsa NetSolveException upon any error condition. As the following example shows, this can simplify errorhandling in the user's program by moving all error handling code to one location:20

try {ns = new NetsolveSession("comet.cs.utk.edu");n = new Netsolve(ns); // Specify 'session'n.setProblem("dgesv"); // Specify the problem to solven.pushArg(a1); // Pass first parameter to dgesvn.pushArg(a2); // Pass second parameter to dgesvn.submitProb(); // Submit this problemout = n.getOutput(); // Get the output item(s)}catch(NetSolveException e) {System.err.println("Error in submission:");System.err.println(e.getMessage());System.exit(1);}When the API detects an error in problem speci�cation or job submission, it creates a description of the na-ture of the error. This error string is accessible through the getMessage()method of the NetSolveExceptionobject.Of course, the user still has the option to perform error checking after each stage of the submission processin case more speci�c error handling actions are necessary.2.4.8 Row- or Column-majorWhile most Java programmers will store their matrices in row-major format, the NetSolve API providesthe ability to switch between row-major and column-major representations. Naturally, one of the followingfunctions should be called prior to submitting the data:n.setMajor("row");n.setMajor("col");By default, row-major is assumed, so the user does not need to call setMajor() unless switching to column-major.2.4.9 Built-in ExamplesSeveral examples of using the NetSolve API can be found in Netsolve client/examples/JavaAPI. As withthe C and Fortran examples, the examples use problems that can be solved on servers at the University ofTennessee. There is also a full example Java program in Appendix H.2.5 Java GUI2.5.1 IntroductionThis section describes the Java interface to NetSolve, a user-friendly graphical tool for accessing resources inthe NetSolve system. Since the Java interface should be runnable frommanyWWWbrowsers, it also providesusers the opportunity to solve problems without downloading or compiling any source code. However,the current Web browser versions impose very strong restrictions on the capabilities of applets. At thistime, it appears to be impossible to open sockets to a remote host that is not running the Web server.Additionally, the latest version of the Java interface (GUI and API) were developed using version 1.1 ofthe Java Development Kit (JDK). Because not all browsers support the new features in version 1.1, theNetSolve Java interface will not be compatible with every browser. Future versions of these web browsers21

will undoubtedly alleviate these problems. For the time being, a demo applet is available on the NetSolvehomepage. It uses an agent and a server that are both running on the Web server.To start the stand-alone application:java NetSolveClient comet.cs.utk.eduwhere comet.cs.utk.edu is the name of a machine running a NetSolve agent. The machine name is optional,but if it is not speci�ed, the client tries to contact comet.cs.utk.edu by default.2.5.2 The Initial ScreenLet us now assume that the user has started the Java interface, either as an applet (via the Web) or as astand-alone application. Figure 2.1 shows the initial screen, which consists of several components:� Agent Selection Box� Problem List� Problem Description Box� Input List� Input Description Box� Output List� Output Description BoxTo contact an agent, the user can enter the hostname in the Agent Selection Box and then click on the\Contact/Update" button. In some cases, the user may have already contacted an agent, but just wants toupdate the list of problems. If so, clicking on the \Contact/Update" button without changing the text inthe Agent Selection Box will reload the problem list. Once the list of available problems has been loaded itis then displayed in the Problem List, located in the upper left region of the interface.
22

Figure 2.1: The Initial Screen23

To �nd out more about any problem listed, the user may click on that problem and view pertinent informationdisplayed in the Problem Description Box, the Input List, and the Output List. The Problem DescriptionBox, located in the lower left region of the interface, contains a short description of the selected problem.The Input List contains a list of the input objects required to solve the selected problem. Similarly, theOutput List contains a list of the output objects that are returned by the server. When the user clicks onany item in the Input List, the interface updates the Input Description Box with text describing the selectedinput object. Likewise, clicking on any item in the Output List updates the Output Description Box withtext describing the selected output object.2.5.3 Solving a ProblemTo solve an instance of some problem, the user must �rst select a problem from the Problem List and thenclick on the \Solve" button (alternately, the user may double-click on an item in the Problem List). A newwindow will appear allowing the user to input data for each input object required by the problem. Figure2.2 shows the Data Input Window, which consists of the following components:� Input List� Input Description Box� Filename (or URL) Selection Box� Data Input Box� Status BoxThe Input List contains a list of the input objects for which the user must supply data. The Input DescriptionBox contains text describing the selected input object (this text is the same as the text displayed in theInput Description Box of the initial screen).For each input object, the user may choose to enter the data manually into the Data Input Box or specifythe name of a �le or URL containing the data in the Filename/URL Selection Box. Since the same inputbox is used for both �lenames and URLs, the user must specify whether the string in the text box should betreated as a �lename or a URL by clicking on one of the two checkboxes above the Filename/URL SelectionBox. Next to the Filename/URL Selection Box is a \Browse" button which allows choosing the �le using agraphical �le browser. The �le browser is only available when the user has selected to load the data froma �le. Just above the Data Input Box is a \Sample Data" button which �lls the box with some numbersappropriate to the type of the input object (for example, if the input object is a vector of integers, clickingon the \Sample Data" button will generate a vector of integers). Note that even though the interface allowshaving text in both selection boxes simultaneously, only one box may be \active" at any time and anythingin the \inactive" box will be ignored. The user may easily distinguish between the two boxes since theinactive box has a grey background and the active box has a white background. In addition, the checkboxadjacent to the active box will appear depressed.The title bar of the Data Input Window contains some noteworthy information: the name of the problem,and a Request Number. The problem name listed on the title bar is the same name from the initial screen,minus the path. For example, if the full name as shown on the initial screen is /Blah/blah/prob, then thename on the title bar is prob. The Request Number is a number which uniquely identi�es each Data InputWindow so that the user may easily relate the Output Windows (see Section 2.5.4) to the Input Windowsfrom which they originated.Once all inputs have been fully speci�ed, click on the \Compute" button, located in the lower left regionof the Data Input Window. If there are any errors in the data and/or �les, an informational window willappear describing the nature of the errors and for which input object(s) the errors apply. All errors must becorrected before the data may be sent. Here are some of the most common errors:24

Figure 2.2: The Input Screen� Invalid numeric format. The input does not match the expected input type (for example, the inputtype is \integer" and the user enters \1.2").� Empty input. The user did not specify any data for some input object.� Input not speci�ed. This is similar to the previous error except that here, the user did not activateone of the two input sources (�le input or data input) whereas in the previous error, one of the twoinput boxes was chosen, but no data was entered.� Nonexistent �le. The �lename given does not exist. Using the graphical �le browser may help determinethe correct path and �le name.� Rows of matrix not even. This means that one or more rows in the matrix do not have the samenumber of elements.If the data and/or �les speci�ed are acceptable, the values are sent to a computational server which performsthe computations and returns the output objects.The Status Box provides information about the current status of the data submission. As the job progresses,it is updated with brief messages stating, for example, that the agent is being contacted, that the data isbeing sent, and so on.2.5.4 Viewing the ResultsOnce the computational server sends back the results, a new window appears allowing the user to browsethe results. Figure 2.3 shows the Output Window, which consists of the following components:25

� Output List� Output Description Box� Data Box

Figure 2.3: The Output ScreenThe Output Window is arranged like the Data Input Window, with a list of objects on the left, a data boxon the right, and a description box on the bottom. When the user clicks on any item in the Output List, theOutput Description Box is updated with text describing that object and the Data Box is updated with theresults of the computation. Above the Data Box is a \Save" button which allows users of the stand-aloneapplication to save the text in the Data Box to a �le. Note that the data saved is that for the selected outputobject only, not all output objects.Like the Data Input Window, the title bar of the Output Window also contains the problem name anda Request Number. However, the Request Number is slightly di�erent in this window. It consists of twonumbers separated by a \." (period). The �rst number is the Request Number from the Data Input Windowfrom which this output originated. The second number uniquely identi�es this window so that it can bedistinguished from other Output Windows. Here's an example of how the numbers are assigned: the userchooses a problem, \ddot" perhaps, on the initial screen and clicks \Solve". The Data Input Windowcorresponding to that problem will have Request Number \1". Then the user chooses a di�erent problem,\matmul" perhaps, and clicks \Solve". The Request Number corresponding to that problem will be \2". Thenumber is incremented each time a new input window is opened. The user enters data into the \matmul"window and clicks \Compute" three times to solve three instances of that problem. Soon three outputwindows will appear with Request Numbers \2.1", \2.2", and \2.3" corresponding to the �rst, second, andthird instance of the problem, respectively. 26

2.6 The Server Information ScreenThe Server Information Screen allows the user to view the current con�guration of the NetSolve system.As shown in Figure 2.4, the Server Information Screen consists of a TextArea and two buttons. The serverinformation displayed in the TextArea may be updated at any time by clicking on the \Update" button.The other button is labeled \Close" and clicking on it makes the window disappear.
Figure 2.4: The Server Information Screen2.7 The Help ScreenThe Help Screen, as shown in Figure 2.5, is designed to provide users with information about using thegraphical interface. On the left, a List contains several topics that the user may choose from by clicking onthe list item. On the right, a TextArea displays helpful information on the topics, which range from viewingproblem information to quitting the program. Since the Help Screen does not interfere with the operationof the main screen, the user may keep both screens open simultaneously. This allows the user to read thehelp text and then perform the suggested actions without having to close either window. The Help Screenmay be dismissed when no longer needed by clicking on the \Close" button.2.8 Error ScreensThere are two types of error screens used in the Java interface. The �rst, as shown in Figure 2.6, is designedto display very short, but important, messages. To help capture the user's attention, the window backgrounduses a prominent color and the text is displayed in a large font. Further, to ensure that the user acknowledgesthe error message, the parent window is disabled until the user clicks the \OK" button in the error messagewindow. The second type of error screen is designed to display much more text than the �rst type, so itcontains a TextArea with a smaller font. As shown in Figure 2.7, this screen is primarily used to provideusers a report of the errors found in their data. The second type of error screen does not disable the parentwindow, though, because it helps the user correct problems with the input data if the error messages can bedisplayed in one window while the input data is edited in the Data Input Window.27

Figure 2.5: The Help Screen
Figure 2.6: The Error Dialog Box28

Figure 2.7: The Error Report Screen
29

Chapter 3The NetSolve Agent and Server3.1 Getting Started3.1.1 Downloading the SoftwareThe server software can be downloaded from the NetSolve homepage athttp://www.cs.utk.edu/netsolve/server distribution.tar.gz.The following UNIX commands will create the Netsolve server directory:% gunzip server_distribution.tar.gz% tar -xvf server_distribution.tar3.1.2 Setting the ArchitectureThe Netsolve server directory includes a Shell script called netsolvegetarch that can be used to returna character string describing the architecture of the machine of the user. Suppose, for instance, that onewishes to run the script on an IBM RS/6000:% netsolvegetarchRS6KIn that case, the NETSOLVE ARCH environment variable should be de�ned in the .cshrc �le as:setenv NETSOLVE_ARCH RS6Kor preferably, if netsolvegetarch is in the path:setenv NETSOLVE_ARCH `netsolvegetarch`To date, NetSolve has been ported to the following di�erent architectures:� SUN4: Sun 4, 4c, SPARC, etc.� SUN4SOL2: Sun 4 running Solaris 2.x� ALPHA: DEC Alpha/OSF-1� PMAX : DEC Pmax running NetBSd� NEXT : NeXT 30

� SGI5 : Silicon Graphics IRIS running OS � 5.0� SGI64 : Silicon Graphics IRIS running OS � 6.0� HPPA: HP 9000 PA-Risc� RS6K: IBM RS/60003.1.3 Setting the rootIn addition to the NETSOLVE ARCH environment variable it is necessary to set an environment variable thatcontains the path to the Netsolve server directory. It should be de�ned in the .cshrc as:setenv NETSOLVE_SERVER_ROOT /home/me/Netsolve_serverfor instance.3.1.4 CompilingNow that the NETSOLVE ARCH and NETSOLVE SERVER ROOT environment variables have been set as describedin Section 3.1.2, the software can be compiled. First, one should go to the Netsolve server/conf directoryand edit the $NETSOLVE ARCH.def �le (for instance RS6K.def). This �le contains a custom section in whichthe user can modify the compilation parameters. Here is a typical section:# ---- Custom Section ----F77 = f77CC = ccLINKER = f77# ---- End of Custom Section ----This custom section speci�es which compilers are going to be used. These parameters can be modi�ed beforecompilation. However, the �le also contains other information that should not be modi�ed. Typing make inthe Netsolve server directory will give instructions to complete the compilation.3.2 The AgentThe executable of the NetSolve agent is located in:$NETSOLVE_SERVER_ROOT/bin/$NETSOLVE_ARCH/agent.This executable can be called with no argument as% agent &and this starts a stand-alone agent. This agent will be available for NetSolve servers to participate in anew NetSolve system. The executable can also take one single argument that is the name of a host alreadyrunning a NetSolve agent:% agent comet.cs.utk.edufor instance. This starts a NetSolve agent on the local hosts and connects it to an existing NetSolve systemthat can consist of multiple agents and servers. The local agent becomes then a new client entry-point tothat system. 31

3.3 The Server3.3.1 Starting a ServerThe executable of the NetSolve server is located in:$NETSOLVE_SERVER_ROOT/bin/$NETSOLVE_ARCH/server.This executable uses a con�guration �le for initializing the NetSolve server. It can be called with no argumentas:% server &in which case the default con�guration �le located in $NETSOLVE SERVER ROOT/server config is used. Thisis the �le that should be used for �rst experiments and for testing the system. However, it is possible tospecify another con�guration �le by calling the executable as:% server /home/me/my_config &for instance. In the following section, we explain the structure of a server con�guration �le.3.3.2 The Server Con�guration FileThe con�guration �le is organized in lines. A line can start with a '#' in which case the line is ignored andcan be used for comments. A line can also start with a keyword that is pre�xed by a '@'. Such a line issaid to start a section of the con�guration �le. A section can consist of only the line with the keyword. Letus review all the possible keywords and how they can be used to precisely de�ne a NetSolve server as it isdone in the default con�guration �le.� '@AGENT:<hostname>'[*] speci�es the agent that the NetSolve server must contact to register into aNetSolve system. The agent is identi�ed by the name of the host on which it is running and there canbe only one such line in the con�guration �le. If the '*' is present, then the server will broadcast itsexistence to all NetSolve agents known to the one running on <hosname>. Otherwise, the server willonly be known to the agent on <hosname>.� '@PROCS:<number>' speci�es the number of processors that can be used by the server to performsimultaneous computations on the local hosts. There can only be one such line in the con�guration�le.� '@SCRATCH:<path>' speci�es where the NetSolve server can put temporary directories and �le. Thedefault is /tmp/.� '@CONDOR:<path>' speci�es that the NetSolve server is using a Condor [5, 6] pool as a computingresource. The path to the Condor base directory must be provided. There can be only one such linein the con�guration �le.� '@PROBLEMS:' marks the beginning of the list of description �le names. The problems from thesedescription �les must be added to the server. Details on description �les are given in Section 3.5.� '@RESTRICTIONS:' marks the beginning of the list of access restrictions that are applicable to theNetSolve server. The list consists of lines formatted as:<domain name> <number of pending requests allowed>The symbol '*' is used as a wildcard in the domain name. For instance, the line:32

.edu 10means that only 10 requests from clients residing on a .edu machine can be serviced simultaneously.When the server receives a request from some machine, it determines which line in the list must beused to accept or reject the request by taking the most re�ned domain name. For instance, if the listof the restrictions is:.edu 5*.utk.edu 10then the server accepts at most 5 simultaneous requests coming from .edumachines that are not in the.utk.edu sub-domain, and at most 10 requests that come from machines in the .utk.edu sub-domainfor a total of 15 possible simultaneous requests.The default con�guration �le in $NETSOLVE SERVER ROOT/server config should be used as a template tocreate new con�guration �les.3.3.3 Customizing the ServerThe default server con�guration �le contains several lines that specify description �les. These �les are locatedin the $NETSOLVE SERVER ROOT/problems directory. This directory contains many description �les that arenot used by the default NetSolve server. These �les correspond to problems that are solved with numericalsoftware that is not distributed with NetSolve. If these �les are to be used, one must add the correspondinglines to the con�guration �le. It is also necessary to update the �le $NETSOLVE SERVER ROOT/conf/$NETSOLVE ARCH.defby adding to the variable NUMLIB the path to the required numerical libraries. The server can then be re-compiled by typing% make serverin the $NETSOLVE SERVER ROOT directory. Section 3.5 gives details on the creation of new problem description�les.3.4 Managing the SystemIt may become di�cult to keep track of the agents and servers that take part in a NetSolve system. It is alwaysnecessary to know the name of an host running one agent in the system to �nd out information on that system.It is then possible to use the CGI scripts on the NetSolve homepage to obtain a list of participating hosts. Thedirectory $NETSOLVE SERVER ROOT/bin/$NETSOLVE ARCH contains two executables called destroy agent anddestroy server that can both be called with a hostname as an argument to terminate a NetSolve agent orserver on that host. It also contains the two executables is there agent and is there server that tak ahostname as argument and print out the agent/server status on the corresponding host.3.5 Expanding the ServerAs already indicated in Section 3.3.3, it is possible to add new functionalities to a NetSolve computation serverby specifying additional description �les in the server con�guration �le. Some description �les are located inthe directory $NETSOLVE SERVER ROOT/problems. In what follows we describe how a description �le can becreated. It is strongly advised to use the existing �les as templates. The rationale behind everything that isexplained in what follows comes from [7]. Each description �le is composed of several problem descriptions.Before explaining how to create a problem description, we de�ne the concept of mnemonics.33

3.5.1 MnemonicsWe have already seen that a NetSolve problem takes some objects in input and produces some objects asoutput. Generally, the objects are scalars, vectors or matrices of Fortran data-types. To be able to relatehigh-level and low-level descriptions of the input and output objects of a given problem, we need to developsome kind of syntax. We decided to call the member of this syntax mnemonics. A mnemonic is just acharacter string (typically 2 or 3 characters long) that is used to access low level details of the di�erentinput and output objects. We index the list of objects, starting at 0. Therefore, the �rst object in input toa problem is the input object number 0 and the third object in output to a problem is the output objectnumber 2, for instance. We use an I or an O to specify whether an object is in input or output. Here arethe four types of mnemonics for an object indexed x:� Pointer to the data : [I|O]x,� Number of rows : m[I|O]x (only for matrices and vectors),� Number of columns : n[I|O]x (only for matrices),� Leading dimensions : l[I|O]x (only for matrices).For example, mI4 designates the number of rows of the input object number 4, whereas O1 designates thepointer to the element(s) of output object number 1. In the next section, we describe the di�erent sectionsthat are necessary to build a problem description and will see how the mnemonics are used.3.5.2 Sections of a Problem DescriptionThe structure of a problem description �le is very similar to the one of a server con�guration �le. The linesstarting with a '#' are considered comments. Keywords are pre�xed by a '@' and mark the beginning ofsub-sections. In what follows, we describe each section separately as well as each keyword and sub-sectionswithin each section. Keep in mind to look at one existing problem description �le as a template when readingthis section.Problem ID and General Information� '@PROBLEM <name>' speci�es the name of a problem as it will be visible to the NetSolve users (clients).� '@INCLUDE <name>' speci�es a C header �le to include (See the example in Section 3.5.4). There canbe several such lines as a problem can call several functions.� '@FUNCTION <name>' speci�es the name of a function from the underlying numerical software librarythat is being called to solve the problem. There can be several such lines as a problem can call severalfunctions.� '@LANGUAGE [C|FORTRAN]' speci�es whether the underlying numerical library is written in C or inFortran. This is used in conjunction with the function names speci�ed with '@FUNCTION' to handlemulti-language interoperability.� '@MAJOR [COL|ROW]' speci�es what major should be used to store the input matrices before callingthe underlying numerical software. For instance, if the numerical library is LAPACK [4], the majorhas to be 'COL'.� '@PATH <path>' speci�es a URL-like name for the problems. This path is only a naming conventionand is used for presentation purposes for interactive interfaces (Matlab and the Java GUI).� '@DESCRIPTION' marks the beginning of the textual description of the problem. This sub-section ismandatory as it allows NetSolve users (clients) to �nd out what a problem can do.34

Input Speci�cation� '@INPUT <number>' speci�es the number of objects in input to the problem. This line is followed bya corresponding number of object descriptions (see below).� '@OBJECT <object type> <data type>' speci�es an object type and data type. This line is followedby a textual description of the object. The currently available object types are:{ MATRIX,{ VECTOR,{ SCALAR,{ UPF (User-provided function (see Section 4).and the possible data types are{ CHAR : character,{ B : byte (character that is never XDR encoded),{ I : integer,{ S : single precision real,{ D : double precision real,{ C : single precision complex,{ Z : double precision complex,{ EXTERNAL : User-provided function (see Section 4).Output Speci�cation� '@OUTPUT <number>' speci�es the number of objects in output to the problem. This line is followedby a corresponding number of object descriptions (see below).� '@OBJECT <object type> <data type>' speci�es an object type (scalar, vector and matrix) and datatype (one of the Fortran data type). This line is followed by a textual description of the object.Additional Information� '@MATLAB MERGE <number1> <number2>' speci�es that the output objects number < number1 > and< number2 > can be merged as a complex object upon reception of the numerical results from theMatlab client interface (see Section 2.2.2).� '@COMPLEXITY <number1>,<number2>' speci�es that given the size of the problem, say n, the asymp-totic complexity, say C, of the problem in number of oating point operations isC = number1 � nnumber2:3.5.3 Calling SequenceThe calling sequence for the problem must be de�ned here so that the NetSolve client using the C or Fortraninterfaces can call the problem. The material described in this section is ignored by NetSolve when the clientis Matlab or Java. Indeed, when using a high-level interface like Matlab, the objects in input and outputto the problem are self-contained. This means that a single identi�er described entirely the object. From Cand Fortran, such a data encapsulation is not possible and the calling sequence needs then to be preciselyde�ned. To clarify, let us take an example. Let us say that the problem 'toto' takes a matrix in input andreturns a matrix in output. The call from the Matlab interface looks like:35

>> [b] = netsolve('toto',a)for instance. However, there can be several possible calling sequences from C or Fortran. Assuming thefollowing declarations in Fortran:DOUBLE PRECISION A(M,N)DOUBLE PRECISION B(K,L)the following calling sequences are all possible:CALL FNETSL('toto()',A,B,M,N,K,L)CALL FNETSL('toto()',A,M,N,B,K,L)CALL FNETSL('toto()',M,N,A,K,L,B)etc.....The Calling sequence sub-section in the problem description is used to specify which calling sequence is tobe used thanks to mnemonics. Indeed, still with the same example, the integer N can be represented by themnemonic nI0, and the pointer B can be represented by the mnemonic O0.� '@FORMATS <number>' speci�es how many di�erent calling sequences are available for the problem.this feature is not activated yet in the current version of the software and this line should always be:@FORMATS 1'@FORMAT' marks the beginning of a calling sequence description. This description consists of a list ofargument speci�cations (see below).'@ARG <comma-separated list of mnemonics>' speci�es an argument of the calling sequence. Forinstance the line@ARG I0speci�es that the current argument in the calling sequence is the pointer to the data of the �rst objectin input. The line@ARG mI0,lI0speci�es that the current argument in the calling sequence is the number of rows and the leadingdimension of the �rst object in input (which in this case is a matrix). The line@ARG ?speci�es that the current argument in the calling sequence should be ignored by NetSolve (useful insome cases). Note that no argument description contains mnemonics of the form [m|n]O*.� '@CONST <mnemonic>=<number>' speci�es that the number of rows or columns or the leading dimensionof an input object is constant and can not be found in the calling sequence. For instance, the line@CONST mI4=12means that the number of rows of the �fth object in input is always 12 and is not passed in by theNetSolve user.� '@COMP <mnemonic>=<number>' speci�es that the number of rows or columns or the leading dimensionof an input object can be computed from the calling sequence but can not be found in the callingsequence. Here are some examples: 36

@COMP mI1=mI0@COMP mI0=op(+,mI3,1) // performs an addition@COMP mI3=array(I2,0) // performs an indirection@COMP mI1=op(-,array(I0,op(-,mI0,1)),1)@COMP mI2=op(+,op(+,array(I1,0),1),op(*,array(I0,0),2))@COMP mI2=if(array(I0,0)='N',mI1,if(array(I0,0)='T',nI1,op(-,0,1)))// conditionalsThings can get quite complex. However, our experience proves that this feature is used only rarely.Therefore, we have not yet concentrated our e�orts on making this particular process easier.Pseudo-Code� '@CODE' marks the beginning of the pseudo-code section.� '@END CODE' marks the end of the pseudo-code section.The pseudo-code is, in fact, C code that uses the mnemonics described in Section 3.5.1. This code containscall(s) to the numerical library function(s) that the problem is supposed to use as part of its algorithm. Thearguments in the calling sequences of these library routines will be primarily the di�erent mnemonics. Inthe pseudo-code, the mnemonics are pre- and post-�xed by a '@' to facilitate the parsing. Let us reviewagain the meaning of some possible mnemonics in the pseudo-code:� '@I0@': pointer to the elements of the �rst object in input.� '@mI0@': pointer to integer that is number of rows of the �rst object in input.� '@nO1@': pointer to integer that is number of columns of the second object in output.Usually, the pseudo-code is organized in three parts. First, the preparation of the input (if necessary).Second, the call the numerical library function(s). Third, the update of the output (pointer and sizes). Atthis point, it is best to give an example. Let us assume that we have access to a hypothetical numerical Clibrary that possesses a function matvec() that performs a matrix-vector multiply for square matrices. Theprototype of the function isvoid matvec(float *a, float *b, int n, int l),where a is a pointer to the matrix, b is a pointer to the vector, n is the dimension of the matrix, l is theleading dimension of the matrix and the result is stored in b (overwriting the input). We may de�ne theproblem such that the matrix is the �rst object in the input, the vector the second object in the input, andthe result the only object in output. Possible preparations could be for instance the creation of workspace,test of input values to detect mistakes, test of matching dimensions. In this case, we may want to check thatthe dimension of vector b agrees with the number of columns (for instance) of matrix a. This can be doneas follows:@CODEif (*@mI1@ != *@nI0@)return BAD_DIMENSION;The macro BAD DIMENSION is de�ned by NetSolve. Other macros available are BAD VALUES (for invalid inputparameters), FAILURE (for a malfunction of the numerical software) or NO SOLUTION (sometimes useful if nonumerical solution has been found). Notice the use of '*' for accessing the integers at addresses @mI1@ and@nI0@.The second part of the pseudo-code consists in calling the function matvec and is:37

matvec(@I0@,@I1@,*@mI0@,*@mI0@);A few things can be said on this call. First, we use the '*' to access integers via the pointers. Second, theleading dimension is taken to be equal to the dimension. This code is executed at the server level wherethe matrix (or sub-matrix) has been received from the client over the network. As such, it has been storedcontiguously in memory and has a leading dimension equal to its number of rows. As a general rule, themnemonics @l[I|O]*@ never appear in the pseudo-code. The last thing to do at this point is to update theoutput:@O0@ = @I1@;*@mO0@ = *@mI1@;@END_CODEThe �rst line expresses the fact that the input has been overwritten by the output. The second line sets thenumber of rows of the output. The following section gives a complete example, with all the sections of theproblem description.3.5.4 A Simple ExampleLet us imagine that we have access to a Fortran numerical library that contains a function, say LINSOL, tosolve a linear system according to the following prototype:SUBROUTINE LINSOL(A,B,N,NRHS,LDA,LDB)DOUBLE PRECISION A(LDA,*) // Left-hand side (NxN)DOUBLE PRECISION B(LDB,*) // Right-hand side (NxNRHS),// overwritten with the solutionINTEGER NINTEGER NRHSINTEGER LDA // Leading Dimension of AINTEGER LDB // Leading Dimension of BThen, an appropriate description for a problem that solves a linear system using LINSOL and that expectsfrom the client the same calling sequence as the one for LINSOL is:@PROBLEM linsol@INCLUDE <math.h>@INCLUDE "/home/me/my_header.h"@FUNCTION linsol@LANGUAGE FORTRAN@MAJOR COL@PATH LinearAlgebra/LinearSystems/@DESCRIPTIONSolves the square linear system A*X = B. Where:A is a double-precision matrix of dimension NxNB is a double-precision matrix of dimension NxNRHSX is the solution@INPUT 2@OBJECT MATRIX DMatrix A (NxN)@OBJECT MATRIX DMatrix B (NxNRHS) 38

@OUTPUT 1@OBJECT MATRIX DSolution X (NxNRHS)@COMPLEXITY 3,3@FORMATS 1@FORMAT@ARG I0@ARG I1,O0@ARG nI0,mI0,mI1@ARG nI1@ARG lI0@ARG lI1,lO0@CODElinsol(@I0@,@I1@,@mI0@,@nI1@,@lI0@,@lI1@);@O0@ =@I1@; /* Pointing to the overwritten input */*@mO0@ = *@mI1@; /* Setting the number of rows */*@nO0@ = *@nI1@; /* Setting the number of columns */@END_CODE3.5.5 Java AppletIt appears that the process of creating new problem descriptions can be very di�cult, especially for a �rsttime user. It is true that after writing a few �les, it becomes rather routine and several NetSolve users havealready generated a good number of working description �les for a variety of purposes (including LinearAlgebra, Optimization, Image processing, etc.). However, we have designed a graphical Java Applet thathelps users in creating problem description �les. This applet is not yet available from the Web at the timethis document is being written but should be added to the NetSolve homepage as soon as the last tests andconversion to Java1.1 have been completed.
39

Chapter 4The User-Supplied Function Feature4.1 MotivationIn the preceding sections, we described all the client interfaces to NetSolve. In these descriptions we assumedthat the only input the user had to supply to NetSolve was numerical data, that is, matrices, vectors, orscalars. This assumption is valid for a lot of numerical software. However, for some software that we wouldlike to include in NetSolve via NetSolve servers, we need an additional feature. Indeed, numerous scienti�cpackages require the user to provide numerical data as well as a function. Typically, nonlinear softwarerequires the user to pass a pointer to a subroutine that computes the nonlinear function. This is a problemin NetSolve because the computation is performed remotely and the user cannot provide NetSolve with apointer to one of his linked-in subroutines. The only solution is to send code over the network to the server.This approach raises a lot of issues, including security.4.2 SolutionLet us describe here the solution we have adopted. This is really a �rst attempt, and there is de�nitelyroom for improvement. However, we believe that it provides reasonable capabilities for now, consideringthat NetSolve is still at an early stage of development. As we noted, we need to ship code over to thecomputational server. Since NetSolve works in a heterogeneous environment, it is not possible to migratecompiled code. Thus, we require that the user have his subroutine or function in a separate �le, writteneither in C or Fortran. We send this �le to the computational server. The server compiles it and is thenable to use this user-supplied function.The security implementation is quite simple. When compiling the user's function, we use the nm UNIXcommand to disallow any system call. The approach is very restrictive for the user, but typically thesubroutine that has to be passed needs only to perform computations. If course, there are a lot of hackerways to go around this problem, and our system currently does not pretend to be a real security manager.We are investigating Java to deal with this user-supplied function issue.4.3 For the Client4.3.1 Determining the Format of the Function to SupplyWe now understand that the user has to write a Fortran subroutine or a C function to call a problem thatrequires a user-supplied function. For now, the prototype of this subroutine/function can be found in thedescription of the problem, available from MATLAB or the CGI scripts of the NetSolve homepage (see40

Section 1.2.3). Following the usual philosophy of NetSolve, the prototype of the user-supplied function isexactly the same as if the user were using the numerical software directly. Some softwares require the userto provide more than one function. When that is the case, the description of the problem mentions it andgives all the prototypes for all the functions to supply.4.3.2 From MATLABFrom MATLAB, when the user consults the list of available problems, he can determine whether any givenproblem requires one or more user-supplied functions. If the problem does indeed require such functions,then these functions have to be written in �les. These �les have to be in the working directory and theirnames are passed to the call to NetSolve. The problem is then called as described in Section 2.2. If somethingis wrong with the user-supplied function, netsolve() and netsolve nb() print out special error messages.4.3.3 From C or FortranThe situation from C or Fortran is almost the same as from MATLAB. The user-supplied functions have tobe in �les in the UPF working directory. However, we introduce here a new function, called netsldir(),that sets the default directory in which to look for the function �le. The names of the �les are then passedto the call to NetSolve. A typical call to netsldir() in C isnetsldir("/homes/me/my_functions");and in Fortran isNETSLDIR('/homes/me/my_functions')Here, netsl() and netsldir() return special NetSolve status codes concerning the user-supplied function.4.3.4 From the NetSolve Java APIUsers of the NetSolve API may specify a UPF input item as they would any other input item, using thepushArg() method. However, an extra argument is required when pushing a UPF item: the language thatthe UPF is written in. For example:n.pushArg(new String(upf0,0),GlobalDefs.LANG_FORTRAN);n.pushArg(new String(upf1,0),GlobalDefs.LANG_C);Currently, the user must pass the UPF as a String. Therefore, if the UPF is stored in a �le, it is up to theuser to read the �le into a String. Future versions of the API will allow the user to simply pass the name ofthe �le.4.3.5 From the Java GUIEntering a user-supplied function via the Java interface is very much similar to entering any other kindof data. If the problem requires a user-supplied function, there will be an entry in the Input List called\User Provided Function" for which data must be speci�ed, just like any other input object. The user maychoose to enter the user-supplied function manually into the Data Input Box or from a �le speci�ed in theFilename Selection Box. If the user enters the function manually, the language must also be speci�ed bychoosing either C or FORTRAN from an \option menu" that appears just above the Data Input Box. If theuser-supplied function comes from a �le, the �le must end with either \.c" or \.f" (with names ending in\.c" interpreted as C functions and names ending in \.f" interpreted as FORTRAN functions).41

4.4 For the ServerThe problem description of a problem that requires one or more user-supplied functions must contain a line:@OBJECT UPF EXTERNALfor each function as an input object so that mnemonics can be used in the description of the calling sequence(after the '@FORMAT' clause). In the pseudo-code section, the functions should be declared as extern like:extern int upf0();extern double upf1();etc....for instance. The identi�ers upf0, upf1, ... can be used in the rest of the pseudo code to designate theuser-supplied functions. This is not very natural. It would be better to be able to use mnemonics as forclassic objects, but it makes compilation close to impossible on some platforms.4.5 ConclusionThis new feature of NetSolve is still under investigation. We are aware that security is an important issuehere. For now, NetSolve is still a research project developed to allow experimentations with this relativelynew type of software. In the future, more attention will be given to the user-supplied mechanism in orderto make it as safe as possible. As mentioned earlier, we may use Java in order to set up a viable securitymanager. Using Java currently appears to be the best solution for security, but it has obvious drawbacks.First, the user would have to write his function in Java: the typical NetSolve user is a scientist who doesnot have the time or inclination to learn new languages, especially object-oriented ones. Second, with thecurrent implementations of Java, e�ciency would also be a problem.

42

Appendix AMATLAB Reference ManualWe describe here all the possible calls to NetSolve from MATLAB. In these descriptions we assume correct-ness. In case of errors, all these calls print out very simple and explicit messages.>> netsolvePrints out on the screen the list of all the problems that are available in the NetSolve system.>> netsolve('<problem name>')Prints out all the information available from MATLAB about a speci�c problem.>> netsolve('?')Prints out the list of all the agents and servers in the NetSolve system, that is, the NetSolve system contain-ing the host whose name is in the environment variable NETSOLVE AGENT.>> [...] = netsolve('<problem name>', ...)Sends a blocking request to NetSolve. The left-hand side contains the output arguments. The right-handside contains the problem name and the input arguments. The arguments are listed according to the problemdescription. Upon completion of this call, the output arguments contain the result of the computation.>> [r] = netsolve nb('send','<problem name>', ...)Sends a non-blocking request to NetSolve. The right-hand side contains the keyword send, the problemname, and the list of input arguments. These arguments are listed according to the problem description.The left-hand side will contain a request handler upon completion of the call.>> [...] = netsolve nb('wait',r) 43

Waits for a requests completion. The right-hand side contains the keyword wait and the request handler.The left-hand side contains the output arguments. These arguments are listed according to the problemdescription. The right-hand side contains the keyword wait and the request handler. Upon completion ofthis call, the output arguments contain the result of the computation.>> [...] = netsolve nb('probe',r)Probes for a request completion. The right-hand side contains the keyword probe and the request handler.The left-hand side contains the output arguments. These arguments are listed according to the problemdescription. The right-hand side contains the keyword probe and the request handler. Upon completion ofthis call, the output arguments contain the result of the computation.>> netsolve nb('status')Prints out the list of all the pending requests. This list contains estimated time of completion, the compu-tational servers handling the requests and the current status. The status can be COMPLETED or RUNNING.

44

Appendix BC Reference ManualWe describe here all the possible calls to NetSolve from C. All these calls return a NetSolve code status. Thelist of the possible code status is given in Appendix D.status = netsl("<problem name()>()", ...)Sends a blocking request to NetSolve. netsl() takes as argument the name of the problem and the list ofarguments in the calling sequence. See Section 2.3.2 for a discussion about this calling sequence. It returnsthe NetSolve status code (integer status). If the call is successful, the result of the computation is storedin the output arguments. The output arguments are speci�ed in the calling sequence.status = netslnb("<problem name()>()", ...)Sends a nonblocking request to NetSolve. netslnb() takes as argument the name of the problem, andthe list of arguments in the calling sequence. See Section 2.3.2 for a discussion about this calling sequence.It returns the NetSolve status code (integer status). If the call is successful, status contains the requesthandler.status = netslwt(<request handler>)Waits for a request completion. netslwt() takes as argument a request handler (an integer). If the callis successful, the result of the computation is stored in the output arguments. The output arguments arespeci�ed in the calling sequence during the call to netslnb().status = netslpr(<request handler>)Probes for a request completion. netslpr() takes as argument a request handler (an integer). If the callis successful, the result of the computation is stored in the output arguments. The output arguments arespeci�ed in the calling sequence during the call to netslnb().netsldir("<directory name>") 45

Sets the default directory where the user-supplied functions are located.netslerr(<error code>)Displays an explicit error message given a NetSolve error code.netslmajor("<major>")Sets the way the user has stored her matrices (row- or column-wise). The argument can be "col" or "row".It is case-insensitive and in fact only the �rst character is used by NetSolve.

46

Appendix CFortran Reference ManualWe describe here all the possible calls to NetSolve from Fortran. All these calls return a NetSolve codestatus. The list of the possible code status is given in Appendix D.CALL FNETSL('<problem name()>()',NSINFO, ...)Sends a blocking request to NetSolve. FNETSL() takes as argument the name of the problem, an integer, andthe list of arguments in the calling sequence. See Section 2.3.2 for a discussion about this calling sequence.When the call returns, the integer NSINFO contains the NetSolve status code. If the call is successful, theresult of the computation is stored in the output arguments. The output arguments are speci�ed in thecalling sequence.CALL FNETSLNB('<problem name()>()',NSINFO, ...)Sends a nonblocking request to NetSolve. FNETSLNB() takes as argument the name of the problem, aninteger, and the list of arguments in the calling sequence. See Section 2.3.2 for a discussion about this callingsequence. It returns the NetSolve status code (integer status). If the call is successful, status contains therequest handler.CALL FNETSLWT(<request handler>,NSINFO)Waits for a request completion. FNETSLWT() takes as argument a request handler and an integer. When thecall returns, NSINFO contains the NetSolve status code. If the call is successful, the result of the computa-tion is stored in the output arguments. The output arguments are speci�ed in the calling sequence duringthe call to FNETSLNB().CALL FNETSLPR(<request handler>,NSINFO)Probes for a request completion. FNETSLPR() takes as argument a request handler and an integer. Whenthe call returns, NSINFO contains the NetSolve status code. If the call is successful, the result of the compu-tation is stored in the output arguments. The output arguments are speci�ed in the calling sequence duringthe call to FNETSLNB(). 47

CALL FNETSLDIR('<directory name>')Sets the default directory where the user-supplied functions are located.CALL FFNETSLERR(<error code>)Displays an explicit error message given a NetSolve error code.CALL FNETSLMAJOR('<major>')Sets the way the user has stored her matrices (row- or column-wise). The argument can be 'col' or 'row'.It is case-insensitive and in fact only the �rst character is used by NetSolve.

48

Appendix DError Codes for C and Fortran
ERROR CODE VALUE MEANINGNetSolveSuccess 1 Successful call to a routineNetSolveNotReady 0 Request not yet completedNetSolveFailure -1 Failure of the NetSolve systemNetSolveBadCode -2 Badly formatted problem nameNetSolveUnknownProblem -3 Unknown problem in the systemNetSolveBadInput -4 Wrong number/type of inputNetSolveBadOutput -5 Wrong number/type of outputNetSolveAgentFailure -6 Failure of the NetSolve AgentNetSolveNoServers -7 No computational resource availableNetSolveBadDimension -8 Incorrect dimensions of non scalar input dataNetSolveNoSolution -9 No solution for this problem given the input dataNetSolveRequestFull -10 No more requests possibleNetSolveInvalidRequestNumber -11 Unknown request handlerNetSolveSetArch -12 Environment variable NETSOLVE ARCH should be setNetSolveSetAgent -13 Environment variable NETSOLVE AGENT should be setNetSolveNoAgent -14 No agent running on $NETSOLVE AGENTNetSolveBadValues -15 Incorrect numerical values of the inputNetSolveFileNotFound -16 No �le containing a user-supplied functionNetSolveFileReadError -17 Impossible to read �le containing the user-supplied functionNetSolveUPFFailed -18 Compilation error of the user-provided functionNetSolveUPFUnsafe -19 Unsafe user-provided functionNetSolveBadCallingSequence -20 Erroneous calling sequence49

Appendix ENetSolve Java API ReferenceFor current documentation of the entire NetSolve API, please consult the following Web page:http://www.cs.utk.edu/netsolve/JavaAPI/index.html

50

Appendix FComplete C Example#include "netsolve.h"#define SIZE 100main(){ double a[SIZE*SIZE];double x1[SIZE],y1[SIZE],x2[SIZE],y2[SIZE];int info,status;int i,init = 1325;for (i=0;i<SIZE*SIZE;i++) {init = 2315*init % 65536;a[i] = (double)((double)init - 32768.0) / 16384.0;}/* Setting the major */netslmajor("Col");/* NetSolve blocking */info = netsl("Eig()",a,SIZE,SIZE,x1,y1);if (info <0){ fprintf(stderr,"netsl() : %d\n",info);exit(0);}/* NetSolve Non-blocking */info = netslnb("Eig()",a,SIZE,SIZE,x2,y2);if (info < 0){ fprintf(stderr,"netslnb : %d\n",info);fprintf(stderr,"** NetSolve Abort **\n");exit(0);}status = netslwt(info); 51

if (status <0){ fprintf(stderr,"netslwt() : %d\n",status);fprintf(stderr,"** NetSolve Abort **\n");exit(0);}}

52

Appendix GComplete Fortran Example*** ** TEST of the FORTRAN INTERFACE to NETSOLVE** ***PROGRAM TESTINCLUDE 'fnsolve.h'PARAMETER (SIZE = 2000)INTEGER NDOUBLE PRECISION A(SIZE,SIZE)DOUBLE PRECISION X1(SIZE)DOUBLE PRECISION Y1(SIZE)DOUBLE PRECISION X2(SIZE)DOUBLE PRECISION Y2(SIZE)INTEGER REQUESTINTEGER INFOINTEGER INIT,I,JINIT = 1325DO 10 I = 1,NDO 11 J = 1,NINIT = MOD(2315*INIT,65536)A(J,I) = (DBLE(INIT) - 32768.D0)/16384.D011 CONTINUE10 CONTINUECALL FNETSL('Eig()',INFO_NS,$ A,MAX,MAX,X1,Y1)IF(INFO_NS.LT.0) THENCALL FNETSLERR(INFO_NS)STOPENDIFCALL FNETSLNB('Eig()',REQUEST,$ A,MAX,MAX,X2,Y2) 53

IF(REQUEST.LT.0) THENCALL FNETSLERR(REQUEST)STOPENDIFCALL FNETSLWT(REQUEST,INFO_NS)IF(INFO_NS.LT.0) THENCALL FNETSLERR(INFO_NS)STOPENDIFSTOPEND

54

Appendix HComplete Java Example/*** DgesvExample** This class illustrates a simple example of using the* NetSolve Java API. Two linear systems are solved (dgesv)* using blocking calls. Then the results are printed out.** @version 1.0, 22 Jan 1998* @author Keith Seymour (seymour@cs.utk.edu)** @see Netsolve* @see NetsolveSession**/import java.util.Vector;public class DgesvExample extends Example {public static void main (String [] args) {DgesvExample mm = new DgesvExample();NetsolveSession ns;Netsolve n;Netsolve n2;double [][] a1 = { // Initialize the data{1.0, 2.0, 3.0, 4.0},{5.0, 6.0, 7.0, 8.0},{9.0, 10.0, 11.0, 12.0},{13.0, 14.0, 15.0, 16.0}};double [][] a2 = { // Initialize the data{1.0, 2.0, 3.0, 4.0},{13.0, 14.0, 15.0, 16.0},{9.0, 10.0, 11.0, 12.0},{5.0, 6.0, 7.0, 8.0}};Vector out;Integer outInt;double [][] outMat1, outMat2;int [] outVec; 55

// Since these variables are all set within the 'try'// block, the compiler can't confirm that they are// initialized. To avoid the subsequent complaints from// the compiler, we initialize them to null here.n = null;n2 = null;ns = null;out = null;// Almost all of the methods in Netsolve and NetsolveSession// throw NetSolveException upon some error condition, so it's// easier to just enclose the whole transaction in a try-catch// block than to try each one individually (although that is// possible, too).try {ns = new NetsolveSession("woodstock.cs.utk.edu");n = new Netsolve(ns); // Specify 'session'n.setProblem("dgesv"); // Specify the problem to solven.pushArg(a1); // Pass first parameter to dgesvn.pushArg(a1); // Pass second parameter to dgesvn.submitProb(); // Submit this problemout = n.getOutput(); // Get the output item(s)}catch(NetSolveException e) {System.err.println("Error in first submission:");System.err.println(e.getMessage());System.exit(1);}// Print results from first submission.System.out.println("Results from first submission:");outMat1 = (double [][]) (out.elementAt(0));outVec = (int []) (out.elementAt(1));outMat2 = (double [][]) (out.elementAt(2));outInt = (Integer) (out.elementAt(3));mm.printMat(outMat1);mm.printVec(outVec);mm.printMat(outMat2);System.out.println(outInt.intValue());// The second submission is enclosed in a separate try-catch// so that we may distinguish between error messages generated// during the first and second submissions. Notice that in// initializing this Netsolve object, we reuse the NetsolveSession// from the previous submission. This saves time by only// retrieving the problem list once. However, if you wanted// to submit the second problem to a different agent, you// would have to instantiate a new NetsolveSession, specifying// that agent. 56

try {n2 = new Netsolve(ns); // Specify 'session'n2.setProblem("dgesv"); // Specify the problem to solven2.pushArg(a1); // Pass first parameter to dgesvn2.pushArg(a2); // Pass second parameter to dgesvn2.submitProb(); // Submit this problemout = n2.getOutput(); // Get the output item(s)}catch(NetSolveException e) {System.err.println("Error in second submission:");System.err.println(e.getMessage());System.exit(1);}// Print results from first submission.System.out.println("Results from second submission:");outMat1 = (double [][]) (out.elementAt(0));outVec = (int []) (out.elementAt(1));outMat2 = (double [][]) (out.elementAt(2));outInt = (Integer) (out.elementAt(3));mm.printMat(outMat1);mm.printVec(outVec);mm.printMat(outMat2);System.out.println(outInt.intValue());}}

57

Bibliography[1] Inc The Math Works. MATLAB Reference Guide. The Math Works, Inc, 1992.[2] H Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational Science Problems. TheInternational Journal of Supercomputer Applications and High Performance Computing, 11(3):212{223, 1997.[3] Inc The Math Works. MATLAB External Interface Guide. The Math Works, Inc, 1992.[4] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKen-ney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide. SIAM Philadelphia, Pennsylvania, 2 edition, 1995.[5] M. Litzkow, M. Livny, and M.W. Mutka. Condor - A Hunter of Idle Workstations. In Proc. of the 8th InternationalConference of Distributed Computing Systems, pages 104{111. Department of Computer Science, University ofWinsconsin, Madison, June 1988.[6] M. Litzkow and M. Livny. Experience with the Condor Distributed Batch System. In Proc. of IEEE Workshop onExperimental Distributed Systems. Department of Computer Science, University of Winsconsin, Madison, 1990.[7] H. Casanova and J. Dongarra. Providing uniform access to numerical software. In IMA Volume on Algorithmsfor Parallel Processing. To appear in proceedings, 1996.

58

