ScaLAPACK Evaluation and Performance at the DoD MSRCs !

L. S. Blackford and R. C. Whaley
Department of Computer Science
University of Tennessee
Knoxville, Tennessee 37996-1301

Abstract

This report presents performance results for a subset of ScaLAPACK driver routines and
PBLAS routines on the Cray T3E, IBM SP, SGI Origin 2000, and SGI Power Challenge Ar-
ray platforms at the Department of Defense (DoD) CEWES, ARL, and ASC Major Shared
Resource Centers (MSRCs). Performance is analyzed using SGI MPI v3.0 versus MPICH
version 1.1.0 on the SGI platforms, and MPI versus shmem on the Cray T3E. On the Cray
T3E, correctness of the version of ScaLAPACK included in LIBSCI is tested, and perfor-
mance timings are compared against the freely available version of ScaLAPACK on netlib
using the MPIBLACS. On the IBM SP, correctness of the version of ScaLAPACK included
in PESSL is tested, and performance timings are compared against the freely available
version of ScaLAPACK on netlib using the MPIBLACS. On the SGI platforms, ScalLA-
PACK performance using distributed memory BLAS (PBLAS) is compared to LAPACK
performance using the multi-threaded MP BLAS.

'This work was partially supported by the DoD High Performance Computing Modernization Program
CEWES Major Shared Resource Center through Programming Environment and Training (PET) under Con-
tract Number DAHC 94-96-C0002, Nichols Research Corporation, subcontract no. NRC CR-96-0011; by
the National Science Foundation Grant No. ASC-9005933; by the DoD High Performance Computing Mod-
ernization Program ARIL Major Shared Resource Center through Programming Environment and Training
(PET) under Contract Number DAHC-94-96-C-0010, Raytheon E-Systems, subcontract no. AA23; by the
DoD High Performance Computing Modernization Program ASC Major Shared Resource Center through
Programming Environment and Training (PET) under Contract Number DAHC-94-96-C-0005, Nichols Re-
search Corporation, subcontract no. NRC CR-96-0011; by the Defense Advanced Research Projects Agency
under contract DAAHO04-95-1-0077, administered by the Army Research Office; by the Office of Scientific
Computing, U.S. Department of Energy, under Contract DE-AC05-840R21400; and by the National Science
Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615.

Contents

1 Introduction oL L
Overview of Machine Characteristics of DoD MSRC systems.
2.1 Discussion L L e
3 Cray T3E o e

3.1 Porting ScaLAPACK and the MPI BLACS to the Cray T3E
3.2 Testing of ScaLAPACK within LIBSCI (CrayLibs)

3.3 Parallel matrix-matrix multiply performance
3.4 Parallel LU factorization/solve performance
3.5 Discussion L L e
4 IBM SP . . e
4.1 Testing of ScaLAPACK within PESSL
4.2 Parallel matrix-matrix multiply performance
4.3 Parallel LU factorization/solve performance
4.4 Parallel Cholesky factorization/solve performance
4.5 Discussion L L e
5 SGI Origin 2000 e
5.1 Parallel matrix-matrix multiply performance
5.2 Parallel LU factorization/solve performance
5.3 Discussion L L e
6 SGI Power Challenge Array
6.1 Parallel matrix-matrix multiply performance
6.2 Parallel LU factorization/solve performance
7 Conclusions and future work o o o o oL
Bibliographyo

1 Introduction

ScaLAPACK is a library of high-performance linear algebra routines for distributed-
memory, message-passing MIMD computers and networks of workstations supporting PVM
and/or MPI. It is a continuation of the LAPACK project, which designed and produced
analogous software for workstations, vector supercomputers, and shared-memory parallel
computers. Both libraries contain routines for solving systems of linear equations, least
squares problems, and eigenvalue problems. The goals of both projects are efficiency, scal-
ability (as the problem size and number of processors grow), reliability (including error
bounds), portability, and ease of use. LAPACK will run on any machine where the BLAS
are available, and ScaLAPACK will run on any machine where both the BLAS and the
BLACS are available.

ScalLAPACK has been incorporated into several commercial packages, including the
NAG Parallel Library, IBM Parallel ESSL, and Cray LIBSCI, and is being integrated
into the VNI IMSL Numerical Library, as well as software libraries for Fujitsu, Hewlett-
Packard /Convex, Hitachi, SGI, and NEC.

This report presents performance timings for version 1.5 of ScaLAPACK [2] on the
Cray T3E, IBM SP, SGI Origin 2000, and SGI Power Challenge Array platforms at the
Department of Defense (DoD) CEWES, ARL, and ASC Major Shared Resource Centers
(MSRCs). The SGI timings were performed using SGI MPI v3.0 and MPICH version 1.1.0,
and the optimized SGI BLAS (-Iblas). Performance comparisons were also made between
ScaLAPACK using distributed memory BLAS (PBLAS) and LAPACK [1], version 2.0,
using the optimized SGI MP BLAS (-Iblas_mp). For the Cray T3E, performance timings
were obtained using Cray MPI and Cray shmem, and the optimized BLAS from LIBSCI
(CrayLibs). For the IBM SP, performance timings were obtained using the IBM POE
library, specifically MPI, and Parallel ESSL and ESSL.

The timings were conducted between October 1997 and March 1998. During that time,
vendor software upgrades for the PCA and O2K were made to correct errors detected during
testing and timing of the packages. Timings were performed in batch queue mode (via
qsub or LoadLeveler) during regular user mode and dedicated mode. Timing fluctuations
were encountered. To obtain up-to-date performance figures, users should use the timing
programs provided with LAPACK and ScalLAPACK.

The LAPACK and ScalLAPACK packages are freely available on netlib and can be
obtained via the World Wide Web or anonymous ftp.

http://www.netlib.org/lapack/
http://www.netlib.org/scalapack/

Section 2 provides an overview of the machine characteristics of the computer systems
utilized at the DoD MSRCs. Sections 3, 4, 5, and 6 present performance data for the Cray
T3E, IBM SP, SGI Origin 2000, and SGI Power Challenge Array, respectively, at the DoD
MSRCs. Section 7 summarizes our conclusions and suggestions for further study.

2 Overview of Machine Characteristics of DoD MSRC sys-
tems

In this section, we indicate the hardware and software that characterized each machine
during these timings. The two most important software components for ScaLAPACK are
its compute kernel, the serial BLAS, and its communication kernel, the BLACS. The BLACS
arein turn usually based on a system-specific message passing library such as MPI or shmem.
Therefore, in this section we preview some performance indicators for these kernels.

We have two performance indicators for the compute kernel. The Peak performance is
the theoretical peak floating point performance for one processor. We can obtain the theo-
retical peak floating point performance from the clock rate of the chip using the following
information:

e The CRAY T3E (based on the Alpha 21164 chip) and the SGI Origin 2000 (based on
SGI’s R10000 chip) have separate floating point adders and multipliers. This means
that if the instruction mix can issue one floating point add and one floating point
multiply every cycle (matrix multiply can do this), a peak megaflop rate of twice the
clock rate is obtained.

e The IBM SP (based on IBM POWER?2 chip) and the SGI Power Challenge Array
(based on the SGI R8000 chip) have two floating point units each of which can issue
a fused multiply add instruction every clock cycle. This allows these architectures to
achieve peak megaflop rates of four times the clock rate, assuming the instruction being
executed is expressed as a fused multiply/add (matrix multiply may be expressed in
this way).

Tables 1 and 2 provide a snapshot of the CEWES MSRC machines discussed in this
report, as they were configured during these timings.

Table 3 describes the ARL MSRC machines discussed in this report, as they were con-
figured during these timings.

Table 4 describes the ASC MSRC machines discussed in this report, as they were con-
figured during these timings.

Table 5 shows the compute kernel indicators, while tables 6, 7, and 8 show the perfor-
mance of various message passing libraries across the systems.

The measurement labeled Fysps is our “achievable peak” for uniprocessor floating point
performance, which we have arbitrarily chosen to be a matrix-matrix multiplication of order
500. Since many linear algebra routines derive a large part of their performance from matrix
multiply, we can get a rough idea of how well a particular routine is doing by seeing how
great a percentage of this “achievable peak” it obtains.

For the communication kernel, we measure two widely-recognized communication bench-
marks, the communication latency (denoted as t,,) and bandwidth (denoted by 1/t,). We
define the latency to be the time it takes to send a 0-byte message. Bandwidth is a mea-
surement of the maximal amount of data that can be transferred between processors per
unit of time. For each platform, we report latency and bandwidth for both the BLACS and
the message passing library it is based on (e.g., MPI).

Table 1: Characteristics of the Cray T3E (jim) and the IBM SP (osprey) at the CEWES
MSRC

Cray T3E IBM SP
Processor 64-bit Dec ALPHA processor EV5.6 POWER2 590
Clock speed (MHz) 450 135
Processors per node 1 1
Memory per node (MB) 256 1000
Operating system UNICOS/mk 2.0.2.19 AIX 4.14
BLAS LIBSCI (CrayLibs 3.0.1.2) ESSL 2.2.2.4
BLACS MPI BLACS 1.1« MPI BLACS 1.1«

and Cray BLACS
Communication Software Cray MPI (mpt.1.2.0.0.6 beta) POE (2.1.0.17)
Cray shmem

C compiler cc (3.0.1.3) mpce (3.1.4.0)
C flags -03 -03 -qarch=pwr2
Fortran compiler 90 (3.0.1.3) mpxlf (4.1.0.3)
Fortran flags -dp -X m -0O3,aggress -03 -qarch=pwr2
Precision single (64-bit) double (64-bit)

The latency values are simple measurements of the time to send a 0-byte message from
one processor to another, while the bandwidth figures are obtained by increasing message
length until message bandwidth was saturated. We use the same timing mechanism for
both the BLACS and the underlying message-passing library.

These numbers are actual timing numbers, not values based on hardware peaks, for
instance. Therefore, they should be considered as approximate values or indicators of
the observed performance between two nodes, as opposed to precise evaluations of the
interconnection network capabilities.

It should be noted that timings for the Cray shmem BLACS are not reported because
errors were detected during their testing. The BLACS test suite was downloaded from
netlib and run on the Cray shmem BLACS from LIBSCI (CrayLibs 3.0.1.2). The detected
errors were reported.

In addition, two bugs in Cray MPI (mpt.1.2.0.0.6 beta) were also detected and reported
to the vendor. It was possible to code around these MPI bugs so that the Cray MPI BLACS
would run correctly on the Cray T3E and pass all tests of the BLACS Test Suite. Thus,
timings for the MPI BLACS are listed in this report. These LIBSCI and Cray MPI errors
have been reported to Cray Research and we are awaiting news of their correction.

Table 2: Characteristics of the SGI Origin 2000 (pagh) and the SGI PCA (pcal) at the

CEWES MSRC
SGI 02K SGI PCA

Processor R10000 (IP27) R8000 (IP21)
Clock speed (MHz) 195 90
Processors per node 1 16
Memory per node (MB) 512 512
Operating system IRIX 6.4 IRIX 6.2
BLAS SGI BLAS SGI BLAS

SGI MP BLAS SGI MP BLAS
BLACS MPI BLACS 1.1« MPI BLACS 1.1«
Communication Software SGI MPI v3.0 SGI MPI v3.0

C compiler

cc (MIPSpro v7.10)

cc (MIPSpro v7.10)

C flags

-02 -64 -mips4 -r10000
or
-02 -64 -mips4 -r10000 -mp

-02 -64 -mips4 -r8000
or
-02 -64 -mips4 -r8000 -mp

Fortran compiler

f77 (MIPSpro v7.10)

f77 (MIPSpro v7.10)

Fortran flags

-02 -64 -mips4 -r10000
or
-02 -64 -mips4 -r10000 -mp

-02 -64 -mips4 -r8000
or
-02 -64 -mips4 -r8000 -mp

Precision

double (64-bit)

double (64-bit)

Table 3: Characteristics of the SGI PCA (cosml and cosm3) and the SGI Origin 2000

(hermanl) at the ARL MSRC

SGI PCA SGI 02K

Processor R8000 (1P21) R10000 (1P27)
Clock speed (MHz) 75 195
Processors per node 12 1
Memory per node (MB) 170 512
Operating system IRIX 6.2 IRIX 6.4
BLAS SGI BLAS SGI BLAS

SGI MP BLAS SGI MP BLAS
BLACS MPI BLACS 1.1« MPI BLACS 1.1«
Communication Software SGI MPI v3.0 SGI MPI v3.0

C compiler

cc (Mongoose v7.1)

cc (Mongoose v7.1)

C flags

-02 -64 -mips4 -r8000
or
-02 -64 -mips4 -r8000 -mp

-02 -64 -mips4 -r10000
or
-02 -64 -mips4 -r10000 -mp

Fortran compiler

£77 (Mongoose v7.1)

£77 (Mongoose v7.1)

Fortran flags

-02 -64 -mips4 -r8000
or
-02 -64 -mips4 -r8000 -mp

-02 -64 -mips4 -r10000
or
-02 -64 -mips4 -r10000 -mp

Precision

double (64-bit)

double (64-bit)

Table 4: Characteristics of the SGI O2K (hpc03) and the IBM SP (hpc02) at the ASC
MSRC

SGI O2K IBM SP
Processor R10000 (1P27) POWER2 590
Clock speed (MHz) 195 135
Processors per node 1 1
Memory per node (MB) 512 1000
Operating system IRIX 6.4 AIX 4.1.5
BLAS SGI BLAS ESSL 2.2.2.1
SGI MP BLAS
BLACS MPI BLACS 1.1« MPI BLACS 1.1«
Communication Software SGI MPI v3.0 POE (2.1.0.22)
C compiler cc (MIPSpro v7.2) mpce (3.1.4.0)
C flags -02 -64 -mips4 -r10000 -03 -qarch=pwr2
or
-02 -64 -mips4 -r10000 -mp
Fortran compiler f77 (MIPSpro v7.2) mpxlf (3.2.4.0)
Fortran flags -02 -64 -mips4 -r10000 -03 -qarch=pwr2
or
-02 -64 -mips4 -r10000 -mp
Precision double (64-bit) double (64-bit)

Table 5: Level 3 BLAS performance indicator

Mflop/s
Farm ‘ Peak
CEWES MSRC
SGI PCA 334 | 380
SGI 02K 318 390

IBM SP 500 | 540
Cray T3E 549 | 900
ARL MSRC

SGI PCA 256 | 300
SGI O2K 330 | 390

ASC MSRC
SGI O2K 335 390
IBM SP 316 | 540

Table 6: Message passing performance indicators for the Cray T3E-900

tm (11S) 1/t, (MB/s)
BLACS | Cray MPI || BLACS | Cray MPI
Cray T3E (CEWES MSRC) 30.3 17.8 115.3 170.9

Table 7: Message passing performance indicators for the IBM SP

b (ps) 1/t, (MB/s)
BLACS | Native || BLACS | Native
IBM SP (MPI) (CEWES MSRC) 57.9 [29.0 71.6 [96.1
| IBM SP (MPI) (ASCMSRC) || 66.7] 331 717] 96.0 |

Table 8: Message passing performance indicators for the SGI O2K and SGI PCA

b (115) 1/t, (MBJ/s)
BLACS | SGI MPI [BLACS | MPICH | BLACS | SGI MPI [BLACS [MPICH
CEWES MSRC
SGI O2K 20.6 13.1 41.1 27.1 94.0 130.3 58.7 77.0
SGI PCA 42.1 197 1217 65.8 70.2 78.0 50.1 54.9
ARL MSRC
SGI O2K 21.9 13.3 43.9 28.7 94.0 131.0 56.4 65.2
SGI PCA
ASC MSRC
[SGI 02K | 224 14.7 | | [841 135.2 ||

2.1 Discussion

The most important thing to note from table 5 in this section is the pressing need for ASC
to upgrade their version of ESSL. Note that ESSL version 2.2.2.1 achieves approximately
63% (316 Mflop/s versus 500 Mflop/s) of the performance obtained by the newer version
(2.2.2.4).

3 Cray T3E

We present performance data for the netlib version of ScaLAPACK and the version of
ScaLAPACK in LIBSCI on the Cray T3E-900 (jim) located at the CEWES MSRC. The
message-passing libraries used were the Cray shmem library and the Cray MPI library. For
all timings, the optimized BLAS in Cray LIBSCI were used.

3.1 Porting ScaLAPACK and the MPI BLACS to the Cray T3E

A few errors were detected in the MPI BLACS and ScaLAPACK in porting them to the
Cray T3E. A T3E patch for the MPI BLACS and ScaLAPACK is available on netlib. Details

of the “patches” can be found in the respective errata files on netlib.

http://www.netlib.org/blacs/errata.blacs
http://www.netlib.org/scalapack/errata.scalapack

Also noted in these errata files are Cray-specific modifications that are ONLY required on
the Cray T3E due to non-standard features of the T3E compilers and arithmetic.

Two bugs in Cray MPI (mpt.1.2.0.0.6 beta) were also detected and reported to the
vendor. It was possible to code around these MPI bugs so that the Cray MPI BLACS
would run correctly on the Cray T3E and pass all tests of the BLACS Test Suite. Thus,
timings for the MPI BLACS on top of Cray MPI were reported in Table 6. (Previous
versions of Cray MPI had been tried, but it was not possible to code around the bugs
that were detected. The bugs were reported to the vendor and were fixed in version (mpt
1.2.0.0.6 beta) of the library.)

3.2 Testing of ScaLAPACK within LIBSCI (CrayLibs)

An optimized version of ScaLAPACK is available in the Cray Scientific Software Library.
We tested CrayLibs version 3.0.1.2 and version 3.0.1.3, which includes a subset of routines
from ScalLAPACK, version 1.5, from netlib. Previous versions of ScaLAPACK in LIBSCI
(CrayLibs) were incompatible with the version of ScaLAPACK on netlib due to a change
to the ordering of the array descriptor. As soon as Cray’s LIBSCI was updated with
ScalLAPACK, version 1.5, this incompatibility problem was alleviated.

Timings for Cray’s native BLACS using the shmem library were not reported in Table 6
because errors were detected during their testing. The BLACS Test Suite was downloaded
from netlib and run on the Cray shmem BLACS from LIBSCI (CrayLibs 3.0.1.2). The
errors detected have been reported to the vendor.

LIBSCI (CrayLibs 3.0.1.2) lacks the following ScaLAPACK routines:

10

o psgecon.f, psdbirf.f, psdbtrs.f, psdtirf.f, psdttrs.f, psgbtrf.f, psgbtrs.f, pspocon.f, psporfs.f,
pspbtrf.f, pspbtrs.f, psptirf.f, psptirs.f, pstzrzf.f, psgels.f, pssyev.f, psgesvd.f, and psormlq.f

o pcgecon.f, pcgerfs.f, pedbirf.f, pcdbtrs.f, pcedttrf.f, pedttrs.f, pegbirf.f, pcgbtrs.f, pcpocon.f,
peporfs.f, pepbtrf.f, pepbtrs.f, peptirf.f, and pepttrs.f

In addition, the C interface to the BLACS is not provided in LIBSCI so a set of wrapper
routines had to be provided. The wall-clock and cpu timers included in the netlib version of
the BLACS are also not provided in the Cray shmem BLACS, so these had to be provided
in order to run the ScaLAPACK Test Suite.

The ScaLAPACK Test Suite was run on LIBSCI (CrayLibs 3.0.1.2), and errors were
detected in pegeqlf.f and pssyevx.f. These errors were reported to the vendor.

LIBSCI (CrayLibs 3.0.1.3) includes a few more routines than the previous version, but
still lacks the following ScaLAPACK routines:

o psgecon.f, psdbirf.f, psdbtrs.f, psdtirf.f, psdttrs.f, psgbtrf.f, psgbtrs.f, pspocon.f, psporfs.f,
pspbtrf.f, pspbtrs.f, psptirf.f, psptirs.f, pstzrzf.f, psgels.f, pssyev.f, psgesvd.f, and psormlq.f

o pcgerfs.f, pedbtrf.f, pcdbirs.f, pcdttrf.f, peditrs.f, pegbtrf.f, pcgbirs.f, pcpocon.f, peporfs.f,
pepbtrf.f, pepbtrs.f, peptirf.f, and pepttrs.f

Running the ScaLAPACK Test Suite on this version of LIBSCI (CrayLibs 3.0.1.3) revealed
that the bug in pegeqglf.f had been fixed. Failures in pssyevz.fstill occur and they are under
investigation.

3.3 Parallel matrix-matrix multiply performance

Asymptotically, the performance of the PBLAS will rest on the performance of the corre-
sponding BLAS routine. For smaller problem sizes, lower order costs — primarily communi-
cation — will cause performance loss. We therefore see that effects due to BLACS optimality
will be seen mostly in the smaller problem sizes. These results have been obtained for the
matrix-matrix multiply operation C' <+ C' + A B, where A, B, and ' are square matrices of
order N.

We collected performance data for the Level 3 PBLAS routine PSGEMM from the netlib
version of ScaLAPACK and the version of ScaLAPACK in LIBSCI (CrayLibs). Timings
were performed during “non-dedicated” time and “dedicated” time using batch queues via
“gsub”. We were unable to repeat all timings using both methods due to a paucity of
dedicated time.

Tables 9 and 11 show performance for non-dedicated runs, while tables 10 and 12 sum-
marize our dedicated results.

11

Table 9: Speed in Mflop/s for the two versions of PBLAS matrix-matrix multiply routine
PSGEMM, NON-DEDICATED time (Cray T3E)

Process | Block Values of N
grid size | 1000 | 2000 | 3000 | 4000 | 5000
2x2 24 - - - - -
2x2 48 1873 | 2067 | 2118 | 2126 | 2142
2x2 72 - - - - -

(NETLIB) [2x4 | 24 - - - - -
2x4 | 48 |3305| 3804 | 4027 | 4148 | 4206

2x4 | 72 - - - - -
Ix4 | 24 - - - - -
Ax4 | 48 | 5906 | 7135 | 7811 | 8073 | 8244
Axd4 | 72 - - - - -
Ix8 | 24 - - - - -

4x8 48 9332 | 12376 | 14348 | 14898 | 15646
4x8 72 8288 | 12582 | 13818 | 15853 | 15913

2x2 24 1566 | 1656 | 1659 | 1725 | 1725
2x2 48 1886 | 2099 | 2122 | 2126 | 2154
2x2 72 - - - - -
(LIBSCI) 2x4 24 2873 | 3155 | 3204 | 3330 | 3330
2x4 48 3349 | 3911 | 4081 | 4186 | 4261
2x4 72 - - - - -
4 x4 24 5286 | 6004 | 6277 | 6547 | 6547
4 x4 48 6013 | 7307 | 7922 | 8206 | 8386
4 x4 72 - - - - -
4 %8 24 9213 | 11162 | 11849 | 12616 | 12616
4x8 48 9950 | 12786 | 14892 | 15189 | 16159
4 %8 72 - - - - -

12

Table 10: Speed in Mflop/s for the two versions of PBLAS matrix-matrix multiply routine
PSGEMM, DEDICATED time (Cray T3E)

Process | Block Values of N

grid size | 1000 | 2000 | 3000 | 4000 | 5000

2x2 24 1639 | 1759 | 1802 | 1808 | 1818

2x2 48 1873 | 2067 | 2118 | 2126 | 2142
(NETLIB) 2x 4 24 2922 | 3336 | 3470 | 3542 | 3584
2 x4 48 3308 | 3807 | 4028 | 4148 | 4206
4 x4 24 5185 | 6319 | 6738 | 6915 | 7030
4 x4 48 5913 | 7134 | 7807 | 8105 | 8242
4x8 24 8478 | 11172 | 12536 | 13069 | 13437
4x8 48 9317 | 12368 | 14347 | 14886 | 15648

2x2 24 1715 1799 | 1825 | 1836 | 1847
2x2 48 1883 | 2096 | 2119 | 2124 | 2151
(LIBSCI) 2x4 24 3119 | 3473 | 3542 | 3623 | 3667
2x4 48 3343 | 3908 | 4077 | 4185 | 4106
4 x4 24 5610 | 6637 | 6927 | 7089 | 77211
4 x4 48 6022 | 7310 | 7920 | 8207 | 8384
4 %8 24 9481 | 11929 | 13054 | 13606 | 13946
4x8 48 9929 | 12805 | 14886 | 15189 | 16153

13

Table 11: Speed in Mflop/s for the two versions of PBLAS matrix-matrix multiply routine
PSGEMM, NON-DEDICATED time (Cray T3E)

Process | Block Values of N
grid size 6000 | 7000 | 8000 | 9000 | 10000
2% 2 24 - - - - -
2 X2 48 - - - - -
2% 2 72 - - - - -

(NETLIB) | 2x4 | 24 . - - - -
2x4 | 48 | 4176 | 4250 | 4272 - -

2x4 | 72 - - - - -
Ax4 | 24 - - - - -
Ax4 | 48 | 8340 | 8303 | 8403 | 8463 | 8504
Ax4 | T2 - - - - -
Ax8 | 24 - - - - -

4 %8 48 15962 | 15884 | 16285 | 16394 | 16619
4 %8 72 16337 | 15617 | 17097 | 17226 | 17261

2% 2 | 24 - - - - -
2% 2 | 48 - - - - -
2%x2 | T2 - - - - -

(LIBSCI) 2x4 24 3345 | 3351 | 3354 - -
2x4 48 4180 | 4248 | 4269 - -
2x4 72 - - - - -
4 x4 24 6618 | 6698 | 6741 | 6750 | 6833
4 x4 48 8323 | 8375 | 8433 | 8521 | 8555
4 x4 72 - - - - -
4x8 24 12803 | 13002 | 13192 | 13146 | 13233
4x8 48 16127 | 16065 | 16576 | 16523 | 16891
4 %8 72 - - - - -

14

Table 12: Speed in Mflop/s for the two versions of PBLAS matrix-matrix multiply routine
PSGEMM, DEDICATED time (Cray T3E)

Process | Block Values of N
grid size 6000 | 7000 | 8000 | 9000 | 10000
2% 2 24 - - - - -
2 X2 48 - - - - -

(NETLIB) | 2x4 24 3584 | 3613 | 3618 - -
2x4 48 4173 | 4223 | 4253 - -
4 x4 24 7104 | V183 | 7159 | 7216 | 7223
4 x4 48 8340 | 8304 | 8407 | 8474 | 8503
4 %8 24 13650 | 13895 | 13967 | 14107 | 14180
4 %8 48 15964 | 15883 | 16312 | 16392 | 16618

2% 2 24 - - - - -
2% 2 48 - - - - -
(LIBSCI) 2x4 24 3644 | 3677 | 3669 - -
2x4 48 4176 | 4250 | 4272 - -
4 x4 24 7232 7322 | V281 | 7329 | 7342
4 x4 48 8321 | 8372 | 8435 | 8522 | 8559
4x8 24 13970 | 14192 | 14325 | 14471 | 14537
4x8 48 16124 | 16052 | 16572 | 16531 | 16890

15

3.4 Parallel LU factorization/solve performance

Similarly, we collected performance data for the LU factor/solve driver routine PSGESV
from the netlib version of ScaLAPACK and the version of ScaLAPACK in LIBSCI (CrayLibs).
PSGESYV solves a square linear system of order NV by LU factorization with partial row piv-
oting of a real matrix. For all timings, 64-bit floating-point arithmetic was used. Thus,
double precision timings are reported on all computers. The distribution block size is also
used as the partitioning unit for the computation and communication phases.

Timings were performed during “non-dedicated” time and “dedicated” time using batch
queues via “qsub”.

16

Table 13: Speed in Mflop/s for the two versions of the LU factor/solve routine PSGESV

for square matrices of order N, NON-DEDICATED time (Cray T3E)

Process | Block Values of N
Grid Size | 1000 | 2000 | 3000 | 4000 | 5000 | 7500 | 10000 | 12500 | 15000
1x4 24 678 | 1050 | 1251 | 1348 | 1426 | 1539 | 1598 - -
1x4 32 664 | 1042 | 1259 | 1377 | 1467 | 1608 | 1678 - -
1x4 48 598 | 995 | 1232 | 1376 | 1483 | 1660 | 1761 - -
1x4 72 509 | 886 | 1133 | 1294 | 1414 | 1623 | 1751 - -
2 x4 24 677 | 1409 | 1917 | 2239 | 2459 | 2802 | 2997 | 3126 -
2 x4 32 638 | 1402 | 1907 | 2242 | 2513 | 2906 | 3131 | 3287 -
2 x4 48 628 | 1336 | 1881 | 2226 | 2527 | 2991 | 3273 | 3462 -
(NETLIB) 2 x4 72 561 | 1217 | 1744 | 2097 | 2441 | 2920 | 3237 | 3479 -
2x%x8 24 808 | 1984 | 2944 | 3645 | 4112 | 5037 | 5483 | 5818 | 6046
2 x8 32 767 | 1927 | 2849 | 3533 | 4098 | 5107 | 5621 | 6016 | 6273
2 x8 48 726 | 1772 | 2699 | 3355 | 3953 | 5048 | 5680 | 6160 | 6493
2 x8 72 632 | 1545 | 2387 | 3012 | 3671 | 4712 | 5417 | 5995 | 6339
4x8 24 780 | 2318 | 3793 | 5233 | 6206 | 8287 | 9544 | 10459 | 11037
4x8 32 754 | 2182 | 3703 | 4852 | 6166 | 8295 | 9729 | 10726 | 11425
4x8 48 737 | 2096 | 3460 | 4929 | 5940 | 8264 | 9765 | 10965 | 11736
4x8 72 682 | 1917 | 3201 | 4491 | 5594 | 7749 | 9406 | 10557 | 11443
1x4 24 742 | 1089 | 1279 | 1368 | 1449 | 1558 - - -
1x4 32 709 | 1075 | 1284 | 1394 | 1485 | 1623 - - -
1x4 48 637 | 1019 | 1253 | 1393 | 1504 | 1680 - - -
1x4 72 526 | 903 | 1145 | 1307 | 1426 | 1637 - - -
2 x4 24 881 | 1623 | 2089 | 2370 | 2562 | 2870 | 3042 | 3164 -
2 x4 32 820 | 1609 | 2072 | 2359 | 2615 | 2972 | 3169 | 3321 -
2 x4 48 785 | 1512 | 2031 | 2341 | 2627 | 3060 | 3320 | 3500 -
(LIBSCI) 2 x4 72 676 | 1360 | 1865 | 2196 | 2523 | 2979 | 3279 | 3512 -
2x%x8 24 1107 | 2362 | 3286 | 3936 | 4395 | 5225 | 5625 | 5937 | 6137
2x%x8 32 1022 | 2282 | 3184 | 3820 | 4364 | 5290 | 5760 | 6146 | 6376
2 x8 48 936 | 2043 | 2961 | 3598 | 4191 | 5223 | 5820 | 6276 | 6585
2 x8 72 786 | 1732 | 2563 | 3207 | 3826 | 4857 | 5523 | 6087 | 6415
4x8 24 1170 | 2987 | 4612 | 5966 | 6991 | 8849 | 9953 | 10760 | 11273
4x8 32 1128 | 2891 | 4505 | 5670 | 6912 | 8855 | 10130 | 11031 | 11642
4x8 48 1051 | 2648 | 4173 | 5523 | 6627 | 8762 | 10147 | 11249 | 11971
4x8 72 920 | 2304 | 3680 | 4968 | 6035 | 8170 | 9675 | 10787 | 11632

17

Table 14: Speed in Mflop/s for the two versions of the LU factor/solve routine PSGESV

for square matrices of order N, DEDICATED time (Cray T3E)

Process | Block Values of N
Grid Size | 1000 | 2000 | 3000 | 4000 | 5000 | 7500 | 10000 | 12500 | 15000
(NETLIB) 1x4 24 - - - - - - - - -
2 x4 24 - - - - - - - - -
2 x8 24 - - - - - - - - -
4x8 24 784 | 2275 | 3657 | 4997 | 6255 | 8333 | 9661 | 10500 | 11115
1x4 24 743 | 1088 | 1278 | 1369 | 1449 | 1559 - - -
1x4 32 709 | 1074 | 1281 | 1393 | 1489 | 1626 - - -
1x4 48 637 | 1019 | 1252 | 1395 | 1504 | 1682 - - -
(LIBSCI) 2 x4 24 883 | 1628 | 2091 | 2375 | 2566 | 2874 | 3045 | 3167 -
2 x4 32 819 | 1610 | 2076 | 2360 | 2615 | 2974 | 3169 | 3325 -
2 x4 48 785 | 1512 | 2037 | 2343 | 2632 | 3066 | 3323 | 3505 -
2 x8 24 1107 | 2359 | 3290 | 3937 | 4397 | 5228 | 5627 | 5939 | 6138
2x%x8 32 1023 | 2282 | 3187 | 3817 | 4365 | 5288 | 5767 | 6134 | 6367
2 x8 48 935 | 2045 | 2962 | 3602 | 4193 | 5223 | 5824 | 6280 | 6588
4x8 24 1162 | 2992 | 4617 | 5972 | 6999 | 8853 | 9954 | 10764 | 11278
4x8 32 1134 | 2894 | 4509 | 5673 | 6922 | 8866 | 10127 | 11038 | 11629
4x8 48 1054 | 2647 | 4179 | 5526 | 6634 | 8769 | 10147 | 11250 | 11974

18

3.5 Discussion

For these timings, we note that the performance of PSGEMM for large problem sizes is
very close to our “achievable peak”. Asymptotically, this will be true of any system (as
the O(N?) computation dominates the O(NN?) communication costs). However, due to the
speed of its communication, the T3E was the only system to reach this peak with the
selected problem sizes.

For both matrix multiply and LU, dedicated and non-dedicated runs showed little vari-
ation. This seems to indicate that the T3E’s queuing system does a good job of isolating
the different jobs.

From these timings, it appears LIBSCI’s use of shmem (as opposed to the netlib’s use
if MPI) pays off. What we see is that LIBSCI routines get better performance than their
netlib equivalents, but that the difference narrows as we increase the problem size, or in the
case of PSGEMM, increase block size. We draw the conclusion that this performance win is
mainly in communication since both of these changes tend to minimize the communication
costs.

In a related note, it is easily seen that the performance of PSGEMM increases as we
increase the block size; this is not true for LU. This is because large block sizes increase load
imbalance for LU; PSGEMM, where the operation may be almost arbitrarily reordered, does
not become load-imbalanced as the block size is increased. With large blocking factors, there
is more work done per BLAS invocation, thus allowing a greater portion of the asymptotic
peak to be reached. Despite this, we still restrain our PSGEMM timings to blocking factors
that are roughly the same as for our LU timings, since few applications use PSGEMM in
isolation.

19

4 IBM SP

We present performance data on the IBM SP (osprey) for the netlib version of ScaLAPACK
and the version of ScaLAPACK in PESSL on the IBM SP (osprey) located at the CEWES
MSRC and the IBM SP (hpc02) located at the ASC MSRC. The message-passing library
used was the IBM POE library, specifically MPI, and the optimized BLAS library used was
the ESSL BLAS.

4.1 Testing of ScaLAPACK within PESSL

An optimized version of ScaLAPACK is available in the IBM Parallel Scientific Software
Library (PESSL). We tested PESSL version 2.2.2.4 on the IBM SP (osprey) at the CEWES
MSRC. At the time of this report, PESSL was not available on the IBM SP (hpc02) at the
ASC MSRC.

Parallel ESSL (version 2.2.2.4) lacks the following ScaLAPACK routines:

o pslamch.f, pslange.f, pslacpy.f, pslaset.f, pslapiv.f, psgecon.f, psgerfs.f, psdbtrf.f, psdb-
trs.f, psgbtrf.f, psqgbtrs.f, pslansy.f, pspocon.f, psporfs.f, psgeqrf.f, psgeqlf.f, psgerqf.f,
psgeqpf.f, pstzrzf.f, psgeqlf.f, psgels.f

and their dependent auxiliary subroutines. The following PBLAS routines were also missing
or replaced with slightly different functionality:

e ptopset.c, ptopget.c, and pbdtran.f.

In addition, the C interface to the BLACS is not provided in PESSL. The wall-clock and
cpu timers included in the netlib version of the BLACS are also not provided in the IBM
BLACS, so these had to be provided in order to run the ScaLAPACK Test Suite.

The ScaLAPACK Test Suite was run on PESSL (version 2.2.2.4).

4.2 Parallel matrix-matrix multiply performance

Asymptotically, the performance of the PBLAS will rest on the performance of the corre-
sponding BLAS routine. For smaller problem sizes, lower order costs, primarily communi-
cation, will cause performance loss. We therefore see that effects due to BLACS optimality
will be seen mostly in the smaller problem sizes. These results have been obtained for the
matrix-matrix multiply operation C' <+ C' + A B, where A, B, and ' are square matrices of
order N.

We collected performance data for the Level 3 PBLAS routine PDGEMM from the
netlib version of ScaLAPACK and the version of ScaLAPACK in PESSL (version 2.2.2.4).
Timings were performed during “non-dedicated” time and “dedicated” time using batch
queues via “qsub”. Dedicated time on this machine was not truly dedicated, as other
people could still log in to the machine. With this caveat, we can state that dedicated and
non-dedicated runs are within clock resolution of each other. Both would occasionally show
large, non-repeatable performance drops, probably due to system interference.

We present in tables 15 and 16 performance timings for the netlib version of PDGEMM
versus the PESSL version of PDGEMM. These timings were obtained during “non-dedicated”

20

time over two days. Two sets of timings are included to illustrate the variation in timings
that were encountered.

Comparing the data in Tables 5, 15, and 16, we can see that the PBLAS routine
PDGEMM achieves 74-89% of the per processor DGEMM performance on the IBM SP.
PESSL PDGEMM performance timings are very similar.

21

Table 15: Speed in Mflop/s for the two versions of the matrix-matrix multiply routine

PDGEMM, NON-DEDICATED time (IBM SP)

Process | Block Values of N
grid size | 1000 | 2000 [3000 | 4000 | 5000
CEWES MSRC

2x2 50 1703 | 1818 | 1848 | 1873 | 1865
2x2 50 1726 | 1829 | 1858 | 1520 | 1881
(NETLIB) | 2x4 50 2940 | 3395 | 3496 | 3605 | 3622
2x4 50 2998 | 3271 | 3559 | 3628 | 3647
4x4 50 5046 | 6175 | 6714 | 6904 | 6992
4 x4 50 4884 | 6106 | 6795 | 6912 | 7003
4x8 50 6813 | 10659 | 11278 | 12583 | 12561
4x8 50 5865 | 10410 | 11202 | 12401 | 12401
2x2 50 1699 | 1828 | 1842 | 1862 | 1870
2x2 50 1725 | 1846 | 1861 | 1881 | 1888
(PESSL) 2x4 50 2790 | 3269 | 3448 | 3535 | 3585
2x4 50 2847 | 3330 | 3479 | 3570 | 3613
4x4 50 4638 | 5957 | 6421 | 6763 | 6841
4x4 50 4703 | 5901 | 6501 | 6770 | 6899
4x8 50 6325 | 9733 | 10803 | 11940 | 12312
4x8 50 5742 | 9287 | 10728 | 11995 | 12472

ASC MSRC
2x2 50 1102 | 1152 | 1125 | 1057 -
2x2 64 943 | 1040 | 1044 | 1068 -
(NETLIB) | 2x4 50 1976 | 2058 | 2221 | 1999 | 2096
2x4 64 1657 | 1841 | 2034 | 2061 | 2013
4 x4 50 5221 | 3603 | 4173 | 4244 | 3988
4 x4 64 3302 | 3868 | 4035 | 3961 | 3885
4x8 50 4675 | 6583 | 7622 | T798 | 7223
4 %8 64 6442 | 6756 | 6961 | 7045 | 7487

22

Table 16: Speed in Mflop/s for the two versions of the matrix-matrix multiply routine

PDGEMM, NON-DEDICATED time (IBM SP)

Process | Block Values of N

grid size | 6000 [7000 | 8000 | 9000 | 10000
CEWES MSRC

2% 2 50 - - - - -

2 X 2 50 - - - - -

(NETLIB) | 2x4 50 3670 | 3683 | 3215 - -
2x4 50 3693 | 3723 | 3686 - -
4 x4 50 7130 | 7245 | 7296 | 7299 | 7326
4 x4 50 7165 | 7282 | 7331 | 7342 | 7373
4x8 50 13422 | 13442 | 13905 | 13731 | 14053
4 %8 50 13350 | 13445 | 13927 | 13738 | 14049
2% 2 50 - - - - -
2% 2 50 - - - - -
(PESSL) 2x4 50 2564 | 3675 | 3603 - -
2x4 50 3659 | 3701 | 3638 - -
4 x4 50 6996 | 7126 | T188 | 7217 | 7266
4 x4 50 7064 | 7152 | 7220 | 6248 | 6819
4 %8 50 12958 | 13195 | 13508 | 13569 | 13766
4 %8 50 12965 | 13249 | 13545 | 13598 | 13832

ASC MSRC
2x2 | 50 - - - - -
2x2 | 64 - - - - -
(NETLIB) [2x4 | 50 - - - - -
2x4 | 64 - - - - -

4 x4 50 4311 | 4183 | 3966 - -
4 x4 64 4034 | 4135 - - -
4 %8 50 7911 | 7859 | 777l | 8057 | 7901
4 %8 64 TT79 | 7884 | TY1T | TV68 | 7665

23

4.3 Parallel LU factorization/solve performance

Tables 17 and 18 illustrate the speed of the ScaLAPACK driver routine PDGESV for solving
a square linear system of order N by LU factorization with partial row pivoting of a real
matrix. For all timings, 64-bit floating-point arithmetic was used. Thus, double precision
timings are reported. The data distribution block size is also used as the partitioning unit
for the computation and communication phases.

We collected performance data for the LU factor/solve routine PDGESV from the netlib
version of ScaLAPACK and from PESSL.

We present in tables 17 and 18 performance timings for the netlib version of PDGESV
versus the PESSL version of PDGESV. These timings were obtained during “non-dedicated”
time over two days via the “qsub” queuing system at the CEWES MSRC and the LoadLeveler
queuing system at the ASC MSRC. Two sets of timings (for CEWES MSRC) are included
to illustrate the variation in timings that were encountered.

One obvious inconsistency is the poor PDGESV performance for small problem sizes
when we used two dimensional grids (eg. the 2 x4, 2x 8 and 4 x 8 grid sizes). This is easily
explained: two dimensional grids are required for scalability. However, they perform poorly
for small problem sizes due to increased latency-bound communication along the columns
of the process grid. This is a particular problem on the SP, which has a very fast compute
kernel and a very high communication latency. To demonstrate that this was the problem,
table 17 shows the timings for small problem sizes on the appropriate one dimensional grid.
Notice that, as predicted, they have superior performance for small problem sizes. These
timings indicate that a 1 X 8 grid is probably superior to a 2 x 4 grid for reasonable problem
sizes; for this modest number of processors, very large problems are required for the superior
scalability of the two dimensional grids to offset their weakness of increased alpha-bound
communication.

24

Table 17: Speed in Mflop/s for the two versions of the LU factor/solve routine PDGESV
for square matrices of order N, NON-DEDICATED time (IBM SP)

Process | Block Values of N

Grid | Size | 1000 | 2000 | 3000 | 4000 [5000 | 7500 | 10000 | 12500 | 15000

CEWES MSRC

1x4 40 703 | 979 | 1152 | 1251 | 1373 | 1516 - - -
1x4 50 633 | 884 | 1067 | 1172 | 1300 | 1453 - - -
1x4 50 676 | 954 | 1137 | 1243 | 1366 | 1511 - - -

(NETLIB) | 2x4 40 533 | 1106 | 1510 | 1821 | 2051 | 2475 | 2742 | 2858 -
2x4 50 543 | 1055 | 1455 | 1728 | 1962 | 2385 | 2671 | 2476 -
2x4 50 555 | 1106 | 1482 | 1807 | 2025 | 2471 | 2747 | 2919 -

1x8 40 944 | 1498 | 1853 | 20565 | 2343 | 2688 | 2413 | 3029 -
1x8 50 868 | 1425 | 1776 | 2011 | 2280 | 2643 | 2889 | 3029 -

2x8 40 662 | 1629 | 2350 | 2957 | 3475 | 4363 | 4970 | 5263 | 5613
2x8 50 632 | 1581 | 2228 | 2748 | 3209 | 4111 | 4744 | 5164 | 5506
2x8 50 597 | 1526 | 2288 | 2846 | 3308 | 4226 | 4836 | 5253 | 4954

1x16 40 1080 | 2084 | 2723 | 3126 | 3653 | 4434 | 4972 | 5300 | 5669
1x16 50 1006 | 1881 | 2501 | 2904 | 3446 | 4213 | 4785 | 5157 | 5503

4 %8 40 485 | 1648 | 2753 | 3701 | 4505 | 6140 | 7451 | 8451 | 9285
4 %8 50 566 | 1633 | 2643 | 3500 | 4261 | 5925 | 7115 | 8188 | 8980
4 %8 50 574 | 1662 | 2634 | 3521 | 4249 | 5948 | 7200 | 8261 | 9029

1 x 32 40 1169 | 2423 | 3389 | 4186 | 5110 | 6551 | 7663 | 8439 | 7228
1 x 32 50 1056 | 2105 | 3062 | 3682 | 4628 | 5938 | 7002 | 7878 | 8598

1x4 40 959 | 1321 | 1469 | 1515 | 1605 | 1688 - - -
1x4 50 1027 | 1365 | 1508 | 1549 | 1639 | 1714 - - -
1x4 50 154 | 1253 | 1490 | 1546 | 1231 | 1711 - - -

(PESSL) 2x4 40 891 | 1897 | 2288 | 2598 | 2759 | 3047 | 3212 | 3249 -
2x4 50 1079 | 1911 | 2333 | 2625 | 2809 | 3088 | 3253 | 3336 -
2x4 50 1082 | 1897 | 2342 | 2609 | 2811 | 3083 | 3244 | 3331 -

1x8 40 1139 | 2029 | 2448 | 2648 | 2864 | 3142 | 3247 | 3322 -
1x8 50 1160 | 2005 | 2443 | 2663 | 2892 | 3161 | 3287 | 3367 -

2x8 40 759 | 2683 | 3770 | 4399 | 4871 | 5624 | 6022 | 5228 | 5893
2x8 50 1098 | 2600 | 3671 | 4473 | 4929 | 5704 | 6115 | 6358 | 6580
2x8 50 1086 | 2611 | 3763 | 4437 | 4922 | 5681 | 6109 | 6349 | 6575

1 x 16 40 793 | 2219 | 3066 | 3634 | 4216 | 5027 | 5517 | 5856 | 6125
1x16 50 1037 | 2432 | 3413 | 3716 | 4516 | 5322 | 5774 | 6077 | 6339

4 %8 40 645 | 2670 | 4580 | 6054 | 7177 | 9106 | 10367 | 11119 | 11678
4 %8 50 1103 | 2579 | 4404 | 6065 | 7407 | 9319 | 10514 | 11311 | 11936
4 %8 50 1095 | 2505 | 4415 | 6159 | 7366 | 9297 | 6327 | 7907 | 11905

1 x 32 40 628 | 1971 | 3331 | 4334 | 5338 | 7198 | 8449 | 9318 | 10111
1 x 32 50 936 | 2020 | 3682 | 4815 | 6019 | 7879 | 9146 | 10024 | 10686

25

Table 18: Speed in Mflop/s for the two versions of the LU factor/solve routine PDGESV
for square matrices of order N, NON-DEDICATED time (IBM SP)

Process | Block Values of N

Grid Size | 1000 | 2000 | 3000 | 4000 | 5000 | 7500 | 10000 | 12500 | 15000
ASC MSRC

1x4 50 - - - - - - - - -
1x4 64 399 | 611 | 730 | 782 | 834 | 903 - - -
(NETLIB) 2 x4 50 - - - - - - - - -
2 x4 64 413 | 834 | 1081 | 1225 | 1358 | 1456 | 1525 | 1682 -
1x8 50 - - - - - - - - -
1x8 64 636 | 932 | 1162 | 1274 | 1431 | 1594 | 1710 - -
2 x8 50 - - - - - - - - -
2 x8 64 352 | 1206 | 1646 | 2016 | 2299 | 2645 | 3053 | 3269 | 3425
1x16 50 - - - - - - - - -
1x16 64 697 | 1308 | 1673 | 1832 | 2217 | 2644 | 2935 | 3137 | 3287
4x8 50 - - - - - - - - -
4x8 64 281 | 1344 | 2169 | 2856 | 3375 | 4365 | 4956 | 5565 | 5949
1x 32 50 - - - - - - - - -
1x 32 64 758 | 1542 | 2098 | 2617 | 3099 | 3928 | 4570 | 5050 | 5426

26

4.4 Parallel Cholesky factorization/solve performance

Since LU is often heavily optimized for benchmarking purposes, a performance comparison
of the Cholesky factorization was also conducted. Table 19 illustrates the speed of the
ScalLAPACK driver routine PDPOSYV for solving a symmetric positive definite linear system
of order N by Cholesky factorization. For all timings, 64-bit floating-point arithmetic was
used. Thus, double precision timings are reported. The data distribution block size is also
used as the partitioning unit for the computation and communication phases.

We collected performance data for the Cholesky factor/solve routine PDPOSV from the
netlib version of ScaLAPACK and from PESSL. The PESSL Cholesky factorization also
consistently outperformed the netlib implementation, but not to the extent of LU.

Table 19: Speed in Mflop/s for the two versions of the Cholesky factor/solve routine
PDPOSV for matrices of order N, NON-DEDICATED time (IBM SP)

Process | Block Values of N

Grid | Size | 1000 | 2000 | 3000 | 4000 | 5000 | 7500 | 10000 | 12500 | 15000

CEWES MSRC

2% 2 40 856 | 1197 | 1262 | 1440 | 1490 | 1570 - - -
2% 2 50 838 | 1190 | 1232 | 1446 | 1502 | 1598 - - -
2% 2 64 791 | 1135 | 1305 | 1436 | 1507 | 1598 - - -

(NETLIB) | 2x4 40 1071 | 1746 | 2108 | 2353 | 2558 | 2721 | 2331 | 3016 -
2x4 50 1043 | 1728 | 2110 | 2396 | 2567 | 2860 | 3036 | 3123 -
2x4 64 954 | 1520 | 2063 | 2307 | 2516 | 1655 | 3019 | 3141 -

4 x4 40 1455 | 2870 | 3575 | 4267 | 4591 | 5302 | 5642 | 5849 | 5070
4 x4 50 1479 | 2792 | 3663 | 4189 | 4573 | 5330 | 5619 | 5838 | 6161
4 x4 64 1387 | 2547 | 3380 | 4038 | 4530 | 5248 | 5676 | 4377 | 6185

4 %8 40 1088 | 3849 | 5195 | 6171 | 7288 | 8817 | 9613 | 10468 | 10916
4 %8 50 1758 | 3726 | 5046 | 6178 | 7216 | 8740 | 9851 | 10623 | 10410
4 %8 64 1587 | 3297 | 4852 | 5895 | 6900 | 8581 | 9708 | 11110 | 10919

2% 2 40 811 | 1143 | 1268 | 1344 | 1381 | 1461 - - -
2% 2 50 925 | 1223 | 1338 | 1430 | 1474 | 1544 - - -
2% 2 64 970 | 1287 | 1422 | 1485 | 1530 | 1605 - - -

(PESSL) 2x4 40 1100 | 1943 | 2271 | 2486 | 2583 | 2801 | 2912 | 2914 -
2x4 50 1298 | 2057 | 2396 | 2600 | 2753 | 2952 | 3063 | 3093 -
2x4 64 1012 | 2106 | 2463 | 2681 | 2833 | 3050 | 3126 | 3246 -

4 x4 40 1229 | 2717 | 3442 | 3909 | 4254 | 4894 | 5138 | 5391 | 5553
4 x4 50 1618 | 2934 | 3630 | 4203 | 4535 | 5186 | 5528 | 5758 | 5832
4 x4 64 1617 | 3042 | 3802 | 4471 | 4785 | 5365 | 5753 | 5959 | 6142

4 %8 40 859 | 3841 | 5388 | 6468 | 7176 | 8601 | 9427 | 9990 | 10429
4 %8 50 1680 | 3986 | 5312 | 6649 | 7690 | 9100 | 10025 | 10616 | 11010
4 %8 64 1501 | 3840 | 5512 | 6826 | 7790 | 9328 | 10339 | 10920 | 11410

27

4.5 Discussion

One surprising result is how well the one dimensional process grids perform. Due to the
high latency for communication, and the speed of the compute node, one dimensional grids
are competitive for these problem sizes even up to 32 nodes.

Comparing PESSL and netlib PDGEMM shows that they are within clock resolution of
each other. For PDGESV, the difference is remarkable. PESSL significantly outperforms its
netlib equivalent for all cases. Obviously, this routine has been heavily optimized by IBM.
The only difference apparent to the user is that PESSL does not apply the pivots to the L
portion of the LU factorization. This means that if a user wishes to utilize the factorization
itself (as opposed to using it only in the solve), the pivot vector must be applied manually.
The long and short of this is that users would be well-advised to use the PESSL LU, unless
they have a specific need for the actual factorizations.

5 SGI Origin 2000

We present performance data on the SGI Origin 2000 for the netlib version of ScaLAPACK
using the distributed-memory BLAS (PBLAS), and the netlib version of LAPACK using
the SGI multi-threaded BLAS (-Iblas_mp). The message-passing library used was the SGI
MPI v3.0 library. The optimized SGI BLAS (in -lIblas) were used for the ScaLAPACK
timings and the SGI MP BLAS (in -lblas_mp) were used for the LAPACK timings.

5.1 Parallel matrix-matrix multiply performance

We perform comparison timings of the distributed-memory PBLAS matrix-matrix multiply
routine PDGEMM using the SGI BLAS (-Iblas) versus the multi-threaded DGEMM in SGI
BLAS MP (-Iblas_mp).

Asymptotically, the performance of the PBLAS will rest on the performance of the cor-
responding BLAS routine. For smaller problem sizes, lower order costs, primarily communi-
cation, will cause performance loss. We therefore see that effects due to BLACS optimality
will be seen mostly in the smaller problem sizes.

Timings were performed during “dedicated” time when we were alone on the machine,
and if available, in “non-dedicated” time using batch queues via “gsub”. Variances in
timings were encountered in both “dedicated” and “non-dedicated” time.

Tables 20 and 21 shows the performance results obtained by the general matrix-matrix
multiply PBLAS routine PDGEMM on the SGI Origin 2000. These results have been
obtained for the matrix-matrix multiply operation C' « C' + A B, where A, B, and C' are
square matrices of order N.

You can control the number of threads to which the MP BLAS are spawned by setting the
environment variable MP_SET_NUMTHREADS. Otherwise, libblas_mp uses all processors
on the machine.

Comparing the data in Tables 5, 20, and 21, we can see that the PBLAS routine
PDGEMM achieves 80-90% of the per processor DGEMM performance on the SGI O2K.

We then repeated these same timings during “non-dedicated” time via batch queues and
“gsub” at ARL. These results are contained in tables 22 and 23.

28

Table 20: Speed in Mflop/s for matrix-matrix multiply, DEDICATED time (SGI O2K)

Process | Block Values of N

grid | size [1000 | 2000 | 3000 | 4000 | 5000
CEWES MSRC

Message- | 2x2 | 64 | 1018] 1044 | 1140 | 1142 | 1118
Passing 2x4 | 64 | 1924 | 1963 | 2091 | 2187 | 2127
4x4 | 64 | 3209 | 3941 | 3999 | 3989 | 3929
4x8 | 64 | 6306|7249 | 7752 | 7798 | 7585

Threaded 4 64 1174 | 1172 | 1202 | 1185 | 1229
8 64 2097 | 2298 | 2407 | 2343 -
16 64 2775 | 4143 | 4493 | 4421 -
32 64 5671 | 5666 | 6935 | 7840 | 7726
ARL MSRC

Message- 2% 2 64 1122 | 1091 | 1068 | 1148 | 1118
Passing 2x4 64 1989 | 2017 | 2127 | 2229 | 2171
4 x4 64 3583 | 3954 | 4029 | 4042 | 3907
4x8 64 3085 | 7302 | 7747 | 7847 | 7498

Threaded 4 64 1201 | 1165 | 1200 | 1206 -
8 64 2183 | 2119 | 2346 | 2325 -
16 64 3074 | 4224 | 4545 | 4510 -
32 64 1266 | 4188 | 7033 | 8022 | 7618

We show timing numbers for message-passing (i.e. ScaLAPACK) and threaded (i.e.
blas_mp) matrix multiplication. Here we see that ScaLAPACK is slightly slower than the
threaded implementation for large problems and/or small numbers of processors. This is
to be expected. As previously mentioned, two factors govern parallel matrix multiplication
speed: communication and computation. Communication effects will be seen primarily in
the case where the work per processor is low (i.e., a small problem size, or a fixed problem
size with many processors), whereas computation speed will affect all problem sizes and
dictate the asymptotic performance.

Let us briefly summarize the advantages/drawbacks of each technique. The commu-
nication inherent in the threaded BLAS will likely be controlled by the hardware. This
allows for more efficient communication, as the latencies inherit in software communication
(eg., MPI interface) are not added to each communication. This implies threaded matrix
multiply will have a slight advantage over message passing for small problem sizes, as its
communication will be faster.

The main difference in the algorithms, however, is the data decomposition. Without
access to the source code for the threaded BLAS, we can at best guess what matrix decom-
position is being employed there. Our understanding is that all matrices start out on one
processor. Then, the most probable case is that the threaded BLAS simply partition the
columns of the result matrix €' among the processors, and then farm out the corresponding
sections of B and the entire matrix A to all processors.

29

Table 21: Speed in Mflop/s for the PBLAS matrix-matrix multiply routine PDGEMM,
DEDICATED time (SGI O2K)

Process | Block Values of N
grid size | 6000 | 7000 | 8000 | 9000 | 10000
CEWES MSRC

Message-passing | 2 X 2 64 1161 | 1121 | 1160 - -
2x4 64 2254 | 2186 | 2260 | 2211 | 2300
4 x4 64 | 4018 | 4012 | 4068 | 4276 | 4494
4 %8 64 T783 | 7644 | 7834 | 8290 | 8482
ARL MSRC
Message-passing | 2 X 2 64 1171 | 1133
2x4 64 2263 | 2188 | 2295 | 2237 | 2295
4 x4 64 | 4119 | 4129 | 4134 | 4317 | 4571
4 %8 64 7841 | 7778 | 7860 | 8405 | 8612

ScalLAPACK, on the other hand, starts with all three matrices distributed and then
uses an outer-product based algorithm, where column panels of A and row panels of B are
sent among the processes, which then do a series of rank-K updates to produce C.

This may give the threaded BLAS a slight advantage in computation speed, since an
outer-product multiply (ScalLAPACK) requires more memory writes than an inner-product
multiply (probably what blas_mp uses). This would explain why the threaded BLAS are
slightly faster for large problem sizes.

The outer product multiply has two advantages, due to the way it performs the commu-
nication. First, it will have better load balance because the messages being sent are smaller
(less time waiting until computation may begin). More importantly, its communication is
pipelined, which significantly reduces communication costs. This effect should increase with
the number of nodes. Therefore, we see ScaLAPACK being faster than the blas_mp for the
cases where the number of nodes is large and the problem size is not large enough for the
computation term to dominate.

The above analysis holds true for the block sizes that we use in LU. As we increase the
blocking factor, the distribution used in ScaLAPACK becomes more like that proposed for
the threaded BLAS. To confirm this idea, we ran a few cases with larger blocking factors
and, as shown above, performance was indeed improved. As before, however, these large
blocking factors are usually not used in applications (such as LU), so we do not concentrate
on them here.

30

Table 22: Speed in Mflop/s for matrix-matrix multiply on SGI O2K, NON-DEDICATED
time (SGI O2K)

Process | Block Values of N
grid | size [1000 | 2000 | 3000 | 4000 | 5000
ARL MSRC

Message- 2% 2 64 1096 | 1062 | 1101 | 1157 | 1137
Passing 2% 2 128 | 1175 | 1162 | 1158 | 812 | 1183
2% 2 256 | 1186 | 941 | 1160 | 1132 | 1195
2x4 64 1967 | 1985 | 2127 | 2228 | 2185
4 x4 64 3605 | 3879 | 4045 | 4061 | 3959
4 x4 128 | 3845 | 4194 | 4193 | 4280 | 4244
4 x8 64 6138 | 7289 | 7865 | 7897 | 7826

Threaded 4 64 - - - - -
8 64 - - - - -
16 64 - - - - -
32 64 3290 | 4882 | 7343 | 7645 | 7813
ASC MSRC

Message- 2% 2 64 1059 | 980 | 1035 | 1022 | 1062
Passing 2x4 64 1857 | 1883 | 1719 | 2022 | 1519

4 x4 64 830 | 1390 | 2018 | 2213 | 2241
4 x8 64 - - - - -

31

Table 23: Speed in Mflop/s for matrix-matrix multiply, NON-DEDICATED time (SGI
02K)

Process | Block Values of N
grid | size | 6000 | 7000 | 8000 | 9000 | 10000
ARL MSRC

Message-passing | 2 X 2 64 1120 | 736 - - -
2x2 128 | 1198 | 1209 - - -
2x2 256 | 1201 | 1187 - - -
2x4 64 2162 | 1425 | 1011 | 2300 | 2323
4 x4 64 | 4125 | 4110 | 3927 | 4485 | 4562
4 x4 128 | 4311 | 3358 | 2928 | 4798 | 4780
4 %8 64 7980 | 7915 | 7635 | 8606 | 8674

Threaded 4 64 1181 | 1235 | 1116 | 867 -
8 64 2362 | 2251 | 2220 | 2183 -

16 64 3237 | 3227 | 4060 | 4326 -

32 64 8409 | 8909 | 8498 | 8017 | 8465

ASC MSRC

Message- 2% 2 64 - - - - -
Passing 2x4 64 1799 | 1590 | 1545 - -
4 x4 64 2385 | 1359 | 1414 | 2707 | 1879

4 %8 64 - - - - -

32

5.2 Parallel LU factorization/solve performance

Table 24 illustrates the speed of the ScaLAPACK driver routine PDGESV using distributed-
memory BLAS (PBLAS) versus the LAPACK routine DGESV using the multi-threaded
BLAS. PDGESV or DGESYV solves a square linear system of order NV by LU factorization
with partial row pivoting of a real matrix. For all timings, 64-bit floating-point arithmetic
was used. Thus, double precision timings are reported. The distribution block size is also
used as the partitioning unit for the computation and communication phases. These timings
were performed during dedicated time, and yet variances were still encountered.

One obvious inconsistency is the poor PDGESV performance for small problem sizes
when we used two dimensional grids (eg. the 2 x 8 and 4 x 8 grid sizes). This is easily
explained: two dimensional grids are required for scalability. However, they perform poorly
for small problem sizes due to increased latency-bound communication along the columns of
the process grid. To demonstrate that this was the problem, table 26 shows the timings for
small problem sizes on the appropriate 1D grid. Notice that even though these timings were
done during non-dedicated time and executed interactively, they have superior performance
for small problem sizes.

Table 24: Speed in Mflop/s of LU factor/solve for square matrices of order N, DEDICATED
time (SGI O2K)

Process | Block Values of N

Grid | Size | 1000 | 2000 | 3000 | 4000 | 5000 | 7500 | 10000 | 12500 | 15000

CEWES MSRC

Message- 1x4 64 532 705 | 773 | 821 | 859 | 917 970 966

Passing 1x8 64 709 | 1113 | 1280 | 1379 | 1451 | 1581 | 1743 | 1752 | 1818
2x8 64 541 | 891 | 2074 | 2313 | 2575 | 2938 | 3229 | 3339 | 3373

4 x8 64 623 | 1485 | 2888 | 2541 | 4190 | 5011 | 5571 | 5902 | 6096

Threaded 4 64 759 | 810 | 895 | 923 | 937 - - - -
8 64 1024 | 1145 | 1349 | 1456 - - - - -

16 64 1234 | 1500 | 1805 | 1956 - - - - -

32 64 1132 | 1453 | 1948 | 1990 | 2273 - - - -

ARL MSRC

Message- 1x4 64 567 | 747 | 804 | 865 | 888 | 936 | 1016 | 1004 -
Passing 1x8 64 681 | 1169 | 1333 | 1409 | 1467 | 1637 | 1824 | 1811 | 1889
2X8 64 368 | 904 | 2113 | 2379 | 2613 | 3013 | 3317 | 3436 | 3584

4 x8 64 561 | 1559 | 3140 | 2592 | 4323 | 5071 | 5691 | 6051 | 6345

Threaded 4 64 758 | 814 | 897 | 932 - - - - -
8 64 1058 | 1176 | 1377 | 1464 - - - - -

16 64 1249 | 1518 | 1840 | 1988 - - - - -

32 64 1176 | 1488 | 2008 | 2077 | 2283 - - - -

The main thing to note in these timings is that ScaLAPACK maintains scalability as

33

Table 25: Speed in Mflop/s of LU factor/solve for square matrices of order N, NON-
DEDICATED time (SGI O2K)

Process | Block Values of N

Grid | Size | 1000 [2000 | 3000 | 4000 | 5000 | 7500 | 10000 | 12500 | 15000

ARL MSRC

Message- 1x4 64 585 | 741 | 816 | 699 | 774 | 922 | 1012 | 1036 -
Passing 2x4 64 472 1 708 | 1315 | 1442 | 1561 | 1514 | 1567 | 1738 | 1839
1x8 64 - - - - - - - - -
2X8 64 554 | 907 | 2127 | 2382 | 2669 | 2744 | 2890 | 3292 | 3487
4 x8 64 818 | 1554 | 3101 | 2601 | 4327 | 5240 | 5786 | 6152 | 5751

Threaded 4 64 — — — — — — —
8 64 - - - - — | 1480 | 1719 | 1680 | 1789
16 64 - - - - - - - - -
32 64 1091 | 1446 | 1965 | 2096 | 2426 - | 3316 - -

ASC MSRC

Message- 1x4 64 532 | 730 | 793 | 833 | 873 | 963 - - -
Passing 2x4 64 579 | 732 | 1356 | 1458 | 1555 | 1701 | 1826 | 1883 -
1x8 64 751 | 1174 | 1352 | 1475 | 1568 | 1734 | 1878 | 1912 -
2X8 64 705 | 948 | 2232 | 2506 | 2750 | 3139 | 3427 | 3601 | 3701
1x 16 64 877 | 1595 | 1974 | 2225 | 2434 | 2825 | 3154 | 3264 | 3503
4x8 64 820 | 1872 | 3129 | 2667 | 4369 | 5257 | 5844 | 6213 | 6469

the problem size and number of processors is increased, while the threaded code does not.
This is because ScaLAPACK knows precisely what operation is being performed, and is
thus better able to schedule communication (i.e., make use of pipelining, avoid unnecessary
communication, etc).

34

Table 26: Speed in Mflop/s of ScaLAPACK PDGESV for square matrices of order N, 1D

process grids, NON-DEDICATED time (SGI O2K)

Process | Block Values of N
Grid | Size [1000 | 2000 | 3000 | 4000 | 5000 | 7500 | 10000 | 12500 | 15000
CEWES MSRC
Message passing | 1x8 | 64 | 560 | 768 | 1316 | 1564 | 1784 | 2174 | 2444 | 2644 B
1x16 | 64 | 566 | 876 | 1676 | 2098 | 2455 | 3192 | 3745 | 4192 | 4504
1x32 | 64 | 555 | 919 | 1858 | 2445 | 2970 | 4020 | 5041 | 4173 | 6539

35

5.3 Discussion

The SGI Cray Scientific Library (SCSL) has recently become available. SCSL is tuned
for the R10000 Origin systems and will be the replacement for SGI’s CompLib and Cray’s
LIBSCI. As future work, we would like to conduct performance evaluations of this library

as it would contain a machine-specific optimized version of ScalLAPACK for the SGI Origin
2000.

6 SGI Power Challenge Array

We present performance data on the SGI Power Challenge Array for the netlib version
of ScaLAPACK using the distributed-memory BLAS (PBLAS), and the netlib version of
LAPACK using the SGI multi-threaded BLAS (-Iblas_mp). The message-passing library
used was the SGI MPI v3.0 library. The optimized SGI BLAS in (-Iblas) were used for the
ScaLAPACK timings and the SGI MP BLAS in (-lblas_mp) were used for the LAPACK

timings.

6.1 Parallel matrix-matrix multiply performance

We perform comparison timings of the distributed-memory PBLAS matrix matrix multiply
routine PDGEMM using the SGI BLAS (-Iblas) versus the multi-threaded DGEMM in SGI
BLAS MP (-Iblas_mp).

Asymptotically, the performance of the PBLAS will rest on the performance of the cor-
responding BLAS routine. For smaller problem sizes, lower order costs, primarily communi-
cation, will cause performance loss. We therefore see that effects due to BLACS optimality
will be seen mostly in the smaller problem sizes.

Timings were performed during “dedicated” time. Variances in timings were encoun-
tered.

Tables 27 and 28 show the performance results obtained by the general matrix-matrix
multiply PBLAS routine PDGEMM and the multi-threaded SGI MP BLAS routine DGEMM
on the SGI Power Challenge Array. These results have been obtained for the matrix-matrix
multiply operation C' < C' 4+ A B, where A, B, and (' are square matrices of order N.

You can control the number of threads to which the MP BLAS are spawned by setting the
environment variable MP_SET_NUMTHREADS. Otherwise, libblas_mp uses all processors
on the machine.

Comparing the data in Tables 5, 27, and 28, we can see that the PBLAS routine
PDGEMM achieves 67-81% of the per processor DGEMM performance on the SGI PCA.

The overall analysis of threaded versus message passing should be the same for the Power
Challenge Array as it was for Origin 2000. However, the number of processors available to
us is less, so the lack of scalability is not as evident for these problem sizes.

36

Table 27: Speed in Mflop/s for matrix-matrix multiply, DEDICATED time (SGI PCA)

Process | Block Values of N
grid | size [1000 | 2000 | 3000 | 4000 | 5000
CEWES MSRC

Message-passing | 2 x 2 64 1087 | 1005 | 1016 | 1037 | 1027
2x4 64 2033 | 2025 | 1926 | 1852 | 1888
4 x4 64 2700 | 3708 | 3208 | 3350 | 3367

Threaded 4 64 1239 | 1236 | 1236 | 1236 | 1274
8 64 2389 | 2469 | 2422 | 2441 -
16 64 4194 | 4559 | 4326 | 4924 -

ARL MSRC

Message-passing | 2 x 2 64 931 | 883 | 893 | 914 -
2x4 64 1752 | 1711 | 1719 | 1750 | 1731

Ax4 | 64 - - - -
Threaded 1 64 | 1001 | 1027 | 1017 | 1015 | 1042
8 64 | 269 | 254 | 267 | 266 | -
16 64 - - - -

Table 28: Speed in Mflop/s for matrix-matrix multiply, DEDICATED time (SGI PCA)

Process | Block Values of N
grid | size | 6000 | 7000 | 8000 | 9000 | 10000
CEWES MSRC

Message-passing | 2 X 2 64 1030 | 1014 | 949 - -
2x4 64 1951 | 1910 | 1806 | 1919 | 1896
4 x4 64 3511 | 3533 | 3315 | 3602 | 3543
ARL MSRC
Message-passing | 2 X 2 64 - - - - -
2x4 64 1752 - - - -
4 x4 64 - - - - -

37

6.2 Parallel LU factorization/solve performance

Table 29 illustrates the speed of the ScaLAPACK driver routine PDGESV using distributed-
memory BLAS (PBLAS) versus the LAPACK routine DGESV using the multi-threaded
BLAS. PDGESV/DGESV solves a square linear system of order N by LU factorization
with partial row pivoting of a real matrix. For all timings, 64-bit floating-point arithmetic
was used. Thus, double precision timings are reported. The distribution block size is also
used as the partitioning unit for the computation and communication phases.

Timings were performed during “dedicated” time. Variances in timings were encoun-
tered.

The overall analysis of threaded versus message passing should be the same for the power
challenge array as it was for origin 2000. However, the number of processors available to us
is less, so the lack of scalability is not as evident for these problem sizes.

Table 29: Speed in Mflop/s of LU factor/solve for square matrices of order N, DEDICATED
time (SGI PCA)

Process | Block Values of N

Grid | Size [1000 | 2000 | 3000 | 4000 [5000 | 7500 | 10000 | 12500 | 15000

CEWES MSRC

Message- 1x4 64 535 | 643 | 684 | 721 | 745 | T75 - -

Passing 1x8 64 660 | 671 | 900 | 1166 | 1248 | 1281 | 1415 | 1360 | 1379
2X8 64 335 | 1247 | 1537 | 1705 | 1943 | 2319 | 2504 | 2567 | 2608
Threaded 4 64 696 | 707 | 831 | 870 | 890 - - - -
8 64 951 | 978 | 1241 | 1342 - - - - -
16 64 800 | 1116 | 1585 | 1745 - - - - -

ARL MSRC

Message- 1x4 64 528 | 622 | 640 | 665 | 681 | 710 - -
Passing 1x8 64 701 | 1105 | 1108 | 1145 | 1187 | 1271 | 1290 -

2x8 | 64 - - - - - - - -
Threaded | 4 64 | 592 | 604 | 710 | 746 | 764 | - - - -
8 64 | 225| 224 | 234 | 237 | | ~ - - -
16 64 - - - - | - - - -

38

7 Conclusions and future work

Of all the machines, the Cray T3E appeared to have the most repeatable timings, both
for dedicated and non-dedicated runs. The IBM SP also did not seem strongly affected
by whether the machine was dedicated or not; however, timings were never more than
roughly repeatable on this platform. Also, the IBM SP would occasionally show large dips
in performance.

The SGI Origin 2000 timings were probably the least repeatable. The timings reported
in this paper for a particular grid size were always obtained in one run, but often that run
was selected as the best out of several runs (by best, we mean the run with the smoothest
(i.e., steadily increasing) performance curve). Even so, these runs are far from smooth.

On the Cray T3E, the routines present in LIBSCI were always slightly faster than the
equivalent from netlib ScalLAPACK. Because this performance win decreased with problem
size, it is probably due to a lower order term such as communication. In particular, LIBSCI’s
use of shmem probably allows for faster communication than the publicly available MPI-
based implementation.

On the IBM SP, there was no noticeable difference between the matrix multiply supplied
by PESSL and that supplied by the netlib version of ScaLAPACK. PESSL had a much faster
version of LU. The only difference between the two routines as far as the user is concerned is
the form of the factorization, which is more complex in the PESSL implementation. Since
LU is often heavily optimized for benchmarking purposes, a performance comparison of
the Cholesky factorization was also conducted. The PESSL Cholesky factorization also
consistently outperformed the netlib implementation, but not to the extent of LU.

On the SGI Origin 2000 and the SGI Power Challenge Array, threaded codes showed a
slight advantage over ScaLAPACK for the matrix multiply. For LU, threaded codes did well
for small problem sizes and/or small numbers of nodes, but were not as scalable as their
ScalLAPACK equivalents. Due to time constraints, we have not presented threaded results
for many of the larger problem sizes for the LU factorization. Future work should extend
the threaded timings to these larger problem sizes to ensure that the general tendencies we
have seen so far continue throughout the performance curve.

39

Bibliography

[1]

E. AnNDERSON, 7. Bai, C. BiscHor, J. DEMMEL, J. DoNGARRA, J. Du Croz,
A. GREENBAUM, S. HAMMARLING, A. McKENNEY, S. OSTROUCHOV, AND
D. SORENSEN, LAPACK Users’ Gluide, Society for Industrial and Applied Mathematics,
Philadelphia, PA, second ed., 1995.

L. S. BLackrorD, J. CHol, A. CLEARY, E. D’AzZEVEDO, J. DEMMEL, 1. DHILLON,
J. DONGARRA, S. HAMMARLING, G. HENRY, A. PETITET, K. STANLEY, D. WALKER,
AND R. C. WHALEY, ScaLAPACK Users’ Guide, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1997.

J. DONGARRA AND R. C. WHALEY, A user’s guide to the BLACS vi.1, Computer
Science Dept. Technical Report CS-95-281, University of Tennessee, Knoxville, TN,
1995. (Also LAPACK Working Note #94).

J. J. DoNGARRA, J. DU CroZ, I. S. DUFF, AND S. HAMMARLING, A set of Level 3
Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 16 (1990), pp. 1-17.

J. J. DoNcaRRA, J. DU Croz, S. HAMMARLING, AND R. J. HANSON, An extended
set of FORTRAN basic linear algebra subroutines, ACM Trans. Math. Soft., 14 (1988),
pp- 1-17.

C. L. Lawson, R. J. HansoN, D. Kincaip, aND F. T. KrRoGH, Basic linear algebra
subprograms for Fortran usage, ACM Trans. Math. Soft., 5 (1979), pp. 308-323.

40

