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1 IntroductionIterative algorithms are widely used in di�erent areas of science and engineering, e.g., medicalimaging [21], or network ow problems that occur in electrical networks, communicationnetworks and �nancial models [4]. A broad class of iterative algorithms aims at �nding a �xedpoint of a given operator. Many well-know numerical methods use such an algorithm withlinear or non-linear operators. For problems with large dimension and/or extensive numericalcomputation for each component at each iteration (e.g. Gradient approximations or Hessiancomputations for non-linear operators), it is natural to consider a parallel implementation ofthe iterative algorithm. In this research, we are primarily interested in distributed-memoryenvironments such as clusters of processors on a network.The parallel implementations that have been investigated in the past usually fall intotwo categories: synchronous and asynchronous.1.1 MotivationAnalyzing the behavior and thus the performance of a parallelized iterative algorithm run-ning in a distributed environment is not an easy task. The environment imposes its ownconstraints on the execution. In a case when the users do not have access to a dedicatedsystem, the workloads of the processors and the network contention depend on the load ofthe system generated by other users in addition to the iterative algorithm execution itself.Therefore, the processor workloads are usually disparate and vary over time according todi�erent patterns. Furthermore, the amount of computation performed by a processor toupdate a component of the solution vector may not be known a priori: in non-linear cases, it3



may depend on the shape of the operator around the current solution vector. In some cases,convergence results indirectly support a quantitative assessment of the parallel algorithmconvergence rate. However, almost all these results are purely theoretical and do not takeinto account the nature of the distributed environment itself. The only commonly availableresults are lower bounds on the algorithm theoretical rate of convergence. It is di�cult forthe user to relate this measure of convergence to the actual performance he can expect forhis implementation on his distributed environment in terms of execution time for instance.Due to non-determinism (randomness) both in communication and in computation,stochastic methods appear to be a natural way to move towards more complex and rele-vant models . These new models should capture the uctuations of the distributed environ-ment and the algorithm, and their impact on the user's implementation, at least in terms ofaverage or \expected" characteristics.1.2 BackgroundFew attempts at using stochastic models to analyze the performance and behavior of paralleliterative algorithms appear in the literature. Indeed, stochastic approaches seem to lead tocomplicated models which present di�culties in obtaining useful performance characteriza-tions. Most di�culties come from trying to properly model the distributed environment inconnection with the algorithm. Hence, most stochastic approaches in the past used verystringent assumptions and are therefore limited in their domain of application. If somereasonable assumptions could lead to tractable models, then those models should provideinsight into the performance analysis of parallel iterative algorithms in given distributed4



environments.For instance, [7] (Section 6.3.5) provides comparisons between the synchronous and theasynchronous case, but the model is entirely non-random and therefore di�cult to apply fornon-deterministic real-world systems. In [29], it is shown that asynchronous algorithms havea \good" communication complexity as compared to synchronous ones, but here again, itis di�cult to use these results to obtain quantitative measures of the actual performance ofthe algorithm in a given distributed environment.A unique reference that proposes a real stochastic approach is �Uresin and Dubois [32].They give an analysis with expected values based on [17]. This work is of interest for shared-memory homogeneous implementations and an age scheduling strategy for which processors'execution times are described by a speci�c family of probability distributions (IncreasingFailure Rate (IFR) functions) with simulation used to approximate some parameters. Bycontrast, this paper focuses on distributed-memory systems, removes several of these re-strictions and assumes static scheduling (which simulations in [32] imply to be superior) todevelop a Markov chain model.2 Parallel Iterative AlgorithmsAs stated earlier, we focus on iterative algorithms in which an operator is applied to a setof data (usually a vector) repetitively until some convergence criteria are met. If the set ofdata constructed by the algorithm is a sequence of vectors fx(t)g in Rm, then the algorithm5



can be written as 8>>><>>>:x(0) 2 Rmx(t+ 1) = Op(x(t)) for all t 2 N: (1)If the algorithm converges, the sequence fx(t)g converges to a �xed point of operatorOp. Much work has been devoted to �nding useful operators for some speci�c problems or�nding operators that provide the highest convergence speeds (cf. [23]). In this research,we consider only the general case without consideration of the speci�cs of the numericalmethod. The computation, in our case updating the components of the solution vector, hasto be distributed among a collection of processors. We have already stated that we wouldconsider only static scheduling, meaning that each processor updates one piece of x(t), thatis a preassigned, �xed subset of the components of this vector.2.1 Synchronism vs. AsynchronismSynchronous implementations of iterative algorithms are generalizations of sequential im-plementations. This makes them attractive as their convergence properties are thus wellknown. Often, it is rather straightforward to convert a sequential implementation of a givenalgorithm into a synchronous parallel implementation. Let us assume that the distributedenvironment used to execute the algorithm consists of p processors. Each processor canaccess its local memory and communicate with any other processor via a network. Each pro-cessor starts each iteration with the entire current solution vector in its memory and updatesits piece of x(t) by applying part of the operator Op to the entire vector. The processors6



then perform an all-to-all communication, exchange their up-to-date pieces of the solutionvector, and proceed to the next iteration. More formally, if the components of the solutionvector x(t) are denoted by xi(t), i = 1; :::;m and if the components of Op(x(t)) are denotedby Opi(x1(t); :::; xm(t)), the synchronous iteration can be written as:8i; t xi(t+ 1) = Opi(x1(t); :::; xm(t)): (2)The most obvious performance bottleneck in synchronous implementations is the all-to-allcommunication phase. First, for slow networks, having to exchange (p�1)2 messages at eachiteration can be prohibitive [21]. However, with improvement in network technologies, thisbecomes less and less a concern if the implementation runs on a local area network. Second,and more importantly, the possible lack of synchronization among the processors [26, 18,8, 14] can lead to dramatic performance losses because relatively fast processors may beidle waiting for the slower processors. Sources of such lack of synchronization have alreadybeen identi�ed in Section 1.1 and become particularly noticeable when using a non-dedicatedcluster of workstations to run the iterative algorithm. This phenomenon is a clear motivationfor studying asynchronous implementations.The study of asynchronous implementations started as early as 1969 [11] and has beenthe object of many extensions and generalizations. As for the synchronous case, we assumethat there are p processors in the distributed environment and that the solution vector issegmented in pieces assigned to each processor (static scheduling). By contrast with thesynchronous implementation, there is no all-to-all communication phase to synchronize theprocessors. Instead, a processor is \free" to perform another update possibly using out-of-7



date data for the pieces of the other processors, or not to perform any update at all. Inaddition, a processor can decide at any time to send its most up-to-date piece to some ofthe other processors. A good formal description of the asynchronous iteration is given in [2]and is inspired by the de�nition of chaotic relaxations in [11]. The de�nition we give here isvery similar: 8i; t = 1; 2; ::: xi(t) = 8>>><>>>:xi(t� 1) if i 62 JtOpi(x1(s1(t)); :::; xm(sm(t))) if i 2 Jt; (3)where Jt is a subset of f1; ::;mg, and si(t) is an integer for all i, and t = 1; 2; :::. Baudetin [2] proposes the three additional conditions:Condition 2.1 Conditions for asynchronous iterations:(i) si(t) � t for all t = 1; 2; :::(ii) limt!1(si(t)) =1.(iii) i occurs in�nitely often in the sets Jt, t = 1; 2; :::Condition (i) states that when a processor updates a component of the solution vector it canonly make use of past components. Condition (ii) states that the same value for a componentcannot be used inde�nitely when computing updates. Condition (iii) says that a processordoes not abandon a component for ever. In the formal de�nition of asynchronous iterationsthat we have given so far, there is no limit on the amount by which a component used in anupdate can be out-of-date. If there is no upper bound to this amount, the implementation is8



referred to as a totally asynchronous implementation in [7]. Otherwise, the implementationis said partially asynchronous. Actual implementations are often partially asynchronoussince it is often practical to �x some kind of bound on the asynchronism for implementationpurposes.2.2 ConvergenceThe de�nition of the asynchronous iteration shows clearly that the algorithm can be as\asynchronous as needed" to take advantage of the very phenomena that were performancebottlenecks for a synchronous implementation. However, the convergence of the algorithmis no longer implied by the same conditions as for the sequential case and its convergencerate must be reexamined.Work devoted to proving and analyzing the convergence of asynchronous parallel iter-ative algorithms includes [7, 6, 11, 20, 19, 2, 5, 3, 28, 13, 30, 31]. Some of the earliestfocused on speci�c iterative algorithms or on speci�c implementations. A su�cient condi-tion for convergence for linear operators is available in [11], only for partially asynchronousimplementations. In [20, 19], this su�cient condition is generalized to the case of certainnon-linear operators, still in a partially asynchronous setting. A recent and general theoremin [7] su�cient condition for convergence of asynchronous iterative algorithms based on asequence of subsets of Rm (a \box condition"). However, applications given in [7] are allcontractions or pseudo-contractions with respect to a weighted maximumnorm, a \Lipschitz-like" condition, as it is di�cult to fully exploit the generality of the theorem. A lower boundon rate of convergence is obtained under additional assumptions.9



A fundamental reference on which to develop a stochastic approach is Baudet's work [2].That work contains a theorem establishing the convergence of asynchronous iterations forcontracting operators de�ned by the following \\Lipschitz-like" condition:De�nition 2.1 An operator Op from Rm to Rm is a contracting operator on a subset D ofRm if there exists a nonnegative m�m matrix A such that8x; y 2 D jOp(x) �Op(y)j � Ajx� yj; component-wiseand �(A) � 1 where �(A) denotes the spectral radius of A.Furthermore, Baudet provides a lower bound on the convergence rate of the algorithm de�nedtraditionally as: R�= lim inft!1 [(� log kx(t)� �k)=t]: (4)where k:k denotes a norm of Rn and � the �xed point of the operator. This de�nition of therate of convergence has an immediate interpretation. If the logarithm is in base 10, then1=R measures the asymptotic number of iterations required to divide the initial error by afactor of 10 where an iteration is the computation described by Equ. (3) for all i. Withoutany additional assumptions, Baudet states that:R � �[lim inft!1 (kt=t)] log �(A): (5)where fktg is a sequence of integers de�ned in [2]. Due to space constraints, we will just10



say that this sequence is increasing and the more asynchronous the implementation, the lessrapidly it increases.The main limitation of those convergence results is that, even if they were more in touchwith what the end-user needs to make design decisions, they still provide only lower boundson the rate of convergence. Experiments in [2] indicate that the bounds are very conservative,and the possibility for stochastic approaches is mentioned. In the next section, we presentstochastic models to extend the convergence results.3 Application-level ModelsIn this work, we are interested in providing the end-user with useful insight into the perfor-mance of di�erent implementation strategies for parallel iterative algorithms in some user-de�ned distributed environment. Some of the low-level elements of the computer systemmust be ignored or at least approximated to perform an application-level analysis.3.1 Modeling the Distributed EnvironmentWe assume that the distributed environment is a computer network of p nodes connected by acommunication facility. A node is composed of a processor, memory and a network interface.Each node has its own memory accessed only by its processor. In this distributed memorysetting, nodes can exchange data via the communication facility, thanks to their networkinterfaces. We do not require that all the nodes be identical and are therefore supporting aheterogeneous environment. The communication facility is seen as an abstract device thatallows reliable point-to-point communication between any two nodes of the network and we11



do not make any assumptions about the network topology. Our model is therefore applicablefor diverse computer networks, from a Massively Parallel System (MPP) to an Internet-widecollection of machines. The performance of the network in terms of transmission speedis modeled by a Random Variable (RV) for each point-to-point data path (for a total ofp(p � 1) RVs). Similarly, the performance of each node in terms of computation is modeledby an RV that describes the time that node spends to perform one update of its piece of thesolution vector (for a total of p RVs). The distributions of all these RVs describe the behaviorof the algorithm execution in the distributed environment. An important element here isthat these discrete probability distributions may be empirically estimated or analyticallyspeci�ed. They are assumed stationary during the run of the iterative algorithm.3.2 Modeling the AlgorithmIn order to make our stochastic models tractable, we segment the algorithm in phases.Figure 1 depicts one phase. Each phase is composed of two sub-phases. During the �rstsub-phase, called the � sub-phase, each processor performs successive updates on its piece ofthe solution vector. If a processor performs more than one update during the � sub-phase,then it begins to use out-of-date data for the components of the solution vector that it is notupdating. At the end of the � sub-phase, each processor broadcasts its piece of the currentsolution vector to all the other processors. Just after this broadcast, starts the � sub-phase.During the � sub-phase each processor is waiting to receive p � 1 messages from the otherprocessors. Each processor also has the possibility to perform additional updates on itspiece of the solution vector, using more out-of-date data. A processor �nishes its � sub-12



phase when it has received all the p� 1 messages and it then moves onto the next algorithmphase. For each processor, the user can chose the number of updates to be performed duringthat processor's � sub-phase and the maximum number of updates to be performed duringthe � sub-phase.Note that the model can also describe a synchronous implementation, that is, for eachprocessor, one single update during its � sub-phase and no update during its � sub-phase.In the next section, we give a few de�nitions, make one assumption, and exhibit a Markovchain (cf. [15]) of interest.3.3 Underlying Markov chainLet us de�ne the following constants and RVs:De�nition 3.1(i) Ai > 0 denotes the number of updates performed by processor i during the � sub-phaseof each algorithm phase (implementation dependent).(ii) Bi denotes the maximum number of updates that processor i is allowed to performduring the � sub-phase of each algorithm phase (implementation dependent).(iii) �i(k) 2 R is the duration in seconds of the � sub-phase of the kth algorithm phase onprocessor i (RV).(iv) ni!j(k) 2 R is the duration in seconds of the message transfer from processor i toprocessor j during the kth algorithm phase (RV). By convention, processor i sends amessage to itself at each phase and ni!i(k) = 0 for all i and k.13



(v) T i(k) 2 R denotes the time of the beginning of the kth algorithm phase on processor i(RV).We assume that for each given i, the RV �i(k) are independent and identically distributed(i.i.d) for each k. Similarly, for each given i and j, the RV ni!j(k) are i.i.d for each k. Thisassumption is fundamental and has been popular in the past for the purpose of generatingtractable models [32, 1]. The experimental results presented in Section 6 will illuminate itsvalidity and limitations. In Section 7 we propose ideas to relax the i.i.d assumption, butwe leave them for future work. We also make minor assumptions, such as bounded networktimes, messages being sent at exactly the same time during a broadcast, and free messagesends in terms of CPU cycles on the sending processor.We de�ne the wavefront, X(k) asX(k) = (0; T 2(k)� T 1(k); ::; T p(k)� T 1(k)) 2 Rp; (6)which describes the shape of the line joining the entry points of each processor in the kthphase, taking arbitrarily processor 1 as reference. It is represented on �gure 1 as a thickline, and one can show that (See Appendix A):8i Xi(k + 1) = maxj2f1;::;pg[Xj(k) + �j(k) + nj!i(k)]�maxj2f1;::;pg[Xj(k) + �j(k) + nj!1(k)]: (7)Thanks to our i.i.d assumption, equation 7 is a Markov equation, and the wavefrontappears as a time-homogeneous Markov chain. It is shown in Appendix B that, with a14



few technical assumptions, the Markov chain is also �nite-state. Equation 7 can be used tocompute the transition probability matrix of the Markov chain. Examples of computationsof the Markov chain transition matrix and of its stationary distribution can be found in [10].4 Performance CharacterizationThe wavefront Markov chain is exploited to obtain performance results for the parallel itera-tive algorithm. The goal is to obtain as much information as possible on the execution time.The execution time can be computed as the ratio of the number of iterations to perform overthe number of iterations performed by time unit. The number of iterations to perform canbe approximated with the asymptotic convergence rate of the algorithm which is the objectof the next section.4.1 Asymptotic Rate of ConvergenceThe challenge here is to extend Baudet's work in [2] and replace his lower bound on theasymptotic rate of convergence by modi�ed estimates that take into account the random-ness in the algorithm implementation. One can compute three estimates (see Appendix D)respectively called worst-, average-, and best-case estimates (and denoted by R, bR, and R)At this point, the meaning of the average- and best-case estimates is unclear. The worst-caseestimate however is a clear improvement over Baudet's lower bound as (i) it is higher thanBaudet's and (ii) we guarantee that it is still a lower bound on the asymptotic convergencerate.Let R� denote one of the three estimates for this rate. Then, if the user wants the initial15



error on the solution vector to be divided by a factor of 10!, we approximate the necessarynumber of iterations to be performed by !=R� assuming that ! is reasonably large. Ofcourse, the choice of R� is crucial, and we expect that our three estimates will provide goodguidance for this choice.4.2 Implementation speedWe can use R� to estimate the speed of the implementation in terms of number of iterationsperformed per time unit. Let �(k) denote the duration in seconds of the kth algorithm phaseon processor 1. Let N(k) denote the number of iterations performed during that phase.Both �(k) and N(k) are RVs and their probability distributions can be approximated bymaking use of the wavefront �-values. The speed of the implementation is therefore entirelydescribed by sums of the random vector �N(k)�(k)�. This vector can be used in di�erent ways,as described in the next section.4.3 Performance Characterization LevelsLevel 1 : Using the Strong Law of Large Numbers [15], it is possible to compute theasymptotic algorithm speed as the ratio of the expected values of N(k) and �(k). CallingS this ratio, one obtains �1, an asymptotic estimate for the execution time expected value:�1 = !SR� :Level 2 : It is possible to compute an asymptotic estimate of the standard deviation ofthe execution time distribution (See Appendix C).16



Level 3 : The third level, based on Large Deviation Theory [9, 27, 33], will be presentedin a subsequent paper.5 SimulationIn order to validate our approach, we performed a series of simulations. The results arerelated in Section 5.1 of [10] and are excellent as none of our basic assumptions is violated.We simulated a Gradient algorithm for a real multi-polynomial cost function with thirtyvariables. The simulated distributed environment consisted of three processors with di�erentarbitrary (non standard) workload distributions (depicted in Figure 2), interconnected by anetwork that delivers constant performance (see [10], p.143, for details).The simulation provides relevant information about the accuracy and sensitivity of ourdi�erent characterization levels. First, we observe that our new asymptotic convergence rateestimates provide much better results than Baudet's estimate. Table D shows the relativeerrors between the di�erent estimates and the observed convergence rate for di�erent imple-mentations in our simulated distributed environment, for which our average-case estimateprovides a better guess for the convergence rate than Baudet's estimate. The gaps betweenthe four estimates increases with asynchronicity. It is to be noted that no estimate exactlypredicts the observed convergence rate. A primary reason is that the estimates dependonly on the spectral radius of the matrix associated to the contracting operator, but not onthe actual shape of that operator. Therefore, the same convergence rate estimates will becomputed for di�erent operators that happen to have the same contracting matrix.The simulation also shows that level 2 characterization is rather sensitive. Indeed, as it17



is based on a binomial Gaussian approximation, it requires a large number of samples to beaccurate. It was shown in [10] that the error between level 2 characterization and the observestandard deviation decreases for increasing values of !, the user's convergence criterion.Figure 3 shows the simulation versus our characterization for an asynchronous imple-mentation in our simulated heterogeneous distributed environment. On each graph, theempirical distribution of the execution time is shown as a bar diagram. The empirical meanis shown as a vertical solid line and the empirical standard deviation is represented as a hor-izontal line segment on each side of the empirical mean. Level 1 characterization is shownas a dashed vertical line. Level 2 characterization is shown as two horizontal dashed linesegments on each side of level 1. We show four characterizations, each corresponding to adi�erent asymptotic convergence rate estimate. One observes the errors on level 1 charac-terizations quanti�ed in the third line of Table D. The error on level 2 is only about 20% ifthe average-case estimate is chosen, and this error decreases when ! increases. The error isless than 1% for the synchronous implementation which is not shown here.6 ExperimentThis section presents experimental results [10] with a Gradient algorithm for a real multi-polynomial cost function with thirty variables on three Sun Sparc Ultra 1 workstationsinterconnected by a standard 10 Mbps Ethernet. Those workstations are being used bystudents for course-work as well as for personal research. Measurements were obtainedthroughout one week (Nov. 17-24, 1997). 18



6.1 Preliminary RemarksFigure 4 shows the execution times observed throughout the whole week for the synchronousimplementation and for our �rst asynchronous implementation (mildly asynchronous: at mostone update performed in � sub-phase for each processor). This corresponds to 862 consecu-tive observations for each implementation. The measurements for our second asynchronousimplementation (fairly asynchronous: at most two update performed in � sub-phase for eachprocessor) are not shown because they would be di�cult to distinguish from the ones of the�rst asynchronous implementation on that time scale.The �rst observation to make is that the asynchronous implementations are generallymore e�cient than the synchronous one. The �rst asynchronous implementation is up to150 seconds faster than the synchronous implementation, and 30 seconds faster on average.On average the second implementation is faster than the �rst one by about 1.9 seconds.But in only 15% of the observations is the absolute di�erence between between the twoimplementations more than 10 seconds.It seems that, in this environment, a good choice is to use an asynchronous implemen-tation as opposed to a synchronous one. However, a mild asynchronicity is su�cient toobtain improvement over a synchronous implementation. This can be explained both by thenature of the distributed environment and by the nature of the iterative algorithm. Severalother research works include examples for which asynchronous implementations outperformsynchronous ones [2, 4, 21].A fundamental observation on Figure 4 is that the execution time is bursty. In fact,the distributed environment, and therefore the algorithm, behaves very di�erently at dif-19



ferent times in our time period, for the system is in use for a variety purposes during theexperimental runs. In order to illustrate these di�erent behaviors, Figures 5(a), (b) and(c) show three close-ups of the execution times for each implementation during three shortsub-periods about two hour long. Without going into details, one can immediately see thatthe distributed environment behaved according to distinct modes during the week.Figure 7 shows the execution times for the parallel iterative algorithm throughout a 24hour time period at the end of the week. The distributed environment exhibited a fairly stablebehavior, leading to relatively smoother observations. We expect our stochastic models toyield better results for the 24-hour time period than for the entire week as burstiness indicatesviolation of our i.i.d assumption. In the following sections, we present and comment on someof the results for both time periods.6.2 Applying the Model6.2.1 The One Week Time PeriodThe workload distributions of the three processors where sampled throughout the week andare shown in �gure 6. Figure 8 shows the results for the synchronous implementation. Theempirical distribution is clearly multi-modal as already seen in Section 6.1. The level 1characterization makes an error of about 17% in predicting the mean of the execution time.The level 2 characterization is the most striking as it is smaller than the observed standarddeviation by a factor of 50! In fact, level 2 is very sensitive to the violation of the i.i.dassumption as a Gaussian approximation is involved.The workload distributions were sampled and are shown on Figure 10. Figure 9 shows the20



results for the mildly asynchronous implementation. Four characterizations are shown, oneof each estimate of the asymptotic convergence rate. If one uses our average-case estimate(see Section 4.1), then the error on the mean prediction is only 4% (as opposed to 116% withBaudet's estimate). The observations made on Figure 8 about level 2 are still valid. Theresults for the second asynchronous implementation are not shown here as they are fairlysimilar to the results for the �rst asynchronous implementation. The next section reducesthe time period to 24 hours and should lead to improvements, especially for the level 2characterization as the i.i.d assumption should be less violated.6.2.2 The 24 Hours Time PeriodFigure 11, for a synchronous implementation, demonstrates that the level 2 characterizationbecomes much more accurate for this shorter time period. One can easily observe that itserror is about 27% whereas it was a factor of 50 for the whole week. The same kind of im-provements were observed for all implementations. Furthermore, the level 1 characterizationis more informative than for the one week time period. Indeed, the use of our models statesclearly that an asynchronous implementation will on average outperform a synchronous oneby about 40 seconds which perfectly agrees with Figure 7.7 Conclusion and Future WorkParallelizing iterative algorithms for the solution of large or complex optimization problemsis a crucial issue. Indeed, the amount of computation required to solve such problems canbe prohibitive for a sequential implementation, especially in non-linear cases. We examined21



di�erent popular parallelization strategies as well as the corresponding theoretical resultsavailable in the literature and came to the conclusion that there is a gap between thoseresults and what the end-user needs to know about the execution of his parallel iterativealgorithm. This work showed that this gap can be �lled using stochastic models that takeinto account the distributed environment used to run the algorithm. Such models have beendeveloped and used to obtain a variety of performance characterizations that are directlymeaningful to the end-user.An additional level of performance characterization based on Large Deviation The-ory will be covered in a future paper. Additional research may also extend the currentmodels to Markov-modulated random processes to model bursty behaviors in more de-tails [22, 24, 12, 25, 16].APPENDIXA Wavefront EquationLet �i(k) 2 R be the the duration in seconds of the � sub-phase of the kth algorithm phaseon processor i. �i(k) is a RV and it can be computed as follows. The � sub-phase of thekth algorithm phase on processor i clearly starts at time �istart(k) = T i(k) + �i(k). It endswhen the last expected message has been received by processor i. The message expected
22



from processor j is received by processor i at time �jstart(k) + nj!i(k). Therefore,�i(k) = maxj2f1;::;pg[�jstart(k) + nj!i(k)]� �istart(k)= maxj2f1;::;pg[�jstart(k) + nj!i(k)� �istart(k)]:Since ni!i(k) = 0, one obtains:�i(k) = max[0; maxj2f1;::;pg�fig(T j(k) + �j � T i(k)� �i(k) + nj!i(k))]:By de�nition 3.1(v) and Equ. 6:X i(k + 1) = X i(k) + �i(k) + �i(k)� �1(k)� �1(k):Replacing �i(k) and �j(k) by their expression and using the fact that8x; y 2 R max(0; x� y) + y = max(x; y);one obtains Equ. 7.B Wavefront State-SpaceLemma B.1 9M;8k � 1 kX(k)k1 �M:Proof. Let us consider processor 1 and processor i 6= 1 during the kth algorithm phase.The times at which these two processors receive a message from a processor h are apart by23



jnh!1(k)�nh!i(k)j seconds since we assume that processor h sends all messages at the exactsame time. Therefore, the times at which processors 1 and i receive the last messages theywere expecting are apart by at most maxh2f1;::;pg(jnh!1(k)� nh!i(k)j). The communicationtimes are assumed to be bounded above and below as:8s; d 9ns!d; ns!d; 8k ns!d � ns!d(k) � ns!d:On can then write that:8h jnh!1(k)� nh!i(k)j � max(nh!1 � nh!i; nh!i � nh!1)� max(nh!1; nh!i)� maxj2f1;::;pg(nh!j):implying that the times at which processors 1 and i receive the last message they wereexpecting are apart by at most maxh;j2f1;::;pg(nh!j). But those times are also apart by Xi(k)according to de�nitions 3.1(v) and Equ. 6. Since kX(k + 1)k1 � maxi2f1;::;pg jXi(k + 1)j,the proof is complete.The wavefront vector is now in a closed ball of Rp. If one assumes that the RVs �i(k),ni!j(k), and the components of X(0) are rational (in Q), then for each k, X(k) is in a �nitesubset of Rp that does not depend on k. Those assumptions are really purely technical andthe data being manipulated is in Q since it is processed by computers with �nite arithmetic.The size of the state-space of the wavefront depends on the distributions of �i(k) and ni!j(k)(see [10]). 24



C Level 2 CharacterizationOne can make a binomial Gaussian approximation for the distribution of the random vector�N(k)�(k)� (with covariance matrix C). The covariance matrix of the sum of those vectors foreach algorithm phase until convergence, C 0, can then be estimated asC 0 = !EfN(k)gR�C;where EfN(k)g denotes the expected value of N(k) (this expected value does not dependon k). Using C 0 , it is then easy to obtain an estimate of the standard deviation of theexecution time. Indeed, if C 0 = 2664 �2X �XY�XY �2Y 3775 ;then the standard deviation estimate is computed as:� = �Yr1 � ( �XY�X�Y )2:This result is available in [15] for instance.
25



D Asymptotic Convergence Rate EstimatesTo compute estimates of the algorithm asymptotic rate of convergence, we need to extendEqu. 5. In [2], the sequence ftkg is de�ned as:8>>><>>>:t0 = 0tk = tk + ak + bk;where fakg and fbkg de�ned as:(i) starting with the (tk + ak)-th iteration, no solution vector update makes use of valuesof components corresponding to iterates with indices smaller than tk.(ii) all solution vector components are updated at least once between the (tk + ak)-th andthe (tk + ak + bk)-th iterations.The sequence fktg of Equ. 5 is then de�ned as:kt�= supfk 2 Nja0 + b0 + :::+ ak�1 + bk�1 � tg:In our setting, one has: 8k = 0; 1; :::8>>><>>>:ak = N(k)bk = 0;26
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Table 1: Convergence rate errors.Impl. R bR R RBaudetSync. 7.69% 7.69% 7.69% 7.69%Async. 1 31.96% 17.53% 36.08% 54.64%Async. 2 9.55% 17.86% 57.14% 69.05%
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Figure 8: Experiment vs. Characterization for the synchronous implementation
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Figure 9: Experiment vs. characterization for the �rst asynchronous implementation36
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