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of large numerical problems. Several theoretical results concerning the sufficient conditions
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teristics of the algorithmic execution time such as mean values and standard deviations.
It is shown how this approach can fill the aforementioned gap thanks to stochastic models
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periods. The results of this research provide information about the impact of of distributed
environment and implementation style on execution time characteristics.
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1 Introduction

[terative algorithms are widely used in different areas of science and engineering, e.g., medical
imaging [21], or network flow problems that occur in electrical networks, communication
networks and financial models [4]. A broad class of iterative algorithms aims at finding a fixed
point of a given operator. Many well-know numerical methods use such an algorithm with
linear or non-linear operators. For problems with large dimension and/or extensive numerical
computation for each component at each iteration (e.g. Gradient approximations or Hessian
computations for non-linear operators), it is natural to consider a parallel implementation of
the iterative algorithm. In this research, we are primarily interested in distributed-memory
environments such as clusters of processors on a network.

The parallel implementations that have been investigated in the past usually fall into

two categories: synchronous and asynchronous.

1.1 Motivation

Analyzing the behavior and thus the performance of a parallelized iterative algorithm run-
ning in a distributed environment is not an easy task. The environment imposes its own
constraints on the execution. In a case when the users do not have access to a dedicated
system, the workloads of the processors and the network contention depend on the load of
the system generated by other users in addition to the iterative algorithm execution itself.
Therefore, the processor workloads are usually disparate and vary over time according to
different patterns. Furthermore, the amount of computation performed by a processor to

update a component of the solution vector may not be known a priori: in non-linear cases, it



may depend on the shape of the operator around the current solution vector. In some cases,
convergence results indirectly support a quantitative assessment of the parallel algorithm
convergence rate. However, almost all these results are purely theoretical and do not take
into account the nature of the distributed environment itself. The only commonly available
results are lower bounds on the algorithm theoretical rate of convergence. It is difficult for
the user to relate this measure of convergence to the actual performance he can expect for
his implementation on his distributed environment in terms of execution time for instance.

Due to non-determinism (randomness) both in communication and in computation,
stochastic methods appear to be a natural way to move towards more complex and rele-
vant models . These new models should capture the fluctuations of the distributed environ-
ment and the algorithm, and their impact on the user’s implementation, at least in terms of

average or “expected” characteristics.

1.2 Background

Few attempts at using stochastic models to analyze the performance and behavior of parallel
iterative algorithms appear in the literature. Indeed, stochastic approaches seem to lead to
complicated models which present difficulties in obtaining useful performance characteriza-
tions. Most difficulties come from trying to properly model the distributed environment in
connection with the algorithm. Hence, most stochastic approaches in the past used very
stringent assumptions and are therefore limited in their domain of application. If some
reasonable assumptions could lead to tractable models, then those models should provide

insight into the performance analysis of parallel iterative algorithms in given distributed



environments.

For instance, [7] (Section 6.3.5) provides comparisons between the synchronous and the
asynchronous case, but the model is entirely non-random and therefore difficult to apply for
non-deterministic real-world systems. In [29], it is shown that asynchronous algorithms have
a “good” communication complexity as compared to synchronous ones, but here again, it
is difficult to use these results to obtain quantitative measures of the actual performance of
the algorithm in a given distributed environment.

A unique reference that proposes a real stochastic approach is Uresin and Dubois [32].
They give an analysis with expected values based on [17]. This work is of interest for shared-
memory homogeneous implementations and an age scheduling strategy for which processors’
execution times are described by a specific family of probability distributions (Increasing
Failure Rate (IFR) functions) with simulation used to approximate some parameters. By
contrast, this paper focuses on distributed-memory systems, removes several of these re-
strictions and assumes static scheduling (which simulations in [32] imply to be superior) to

develop a Markov chain model.

2 Parallel Iterative Algorithms

As stated earlier, we focus on iterative algorithms in which an operator is applied to a set
of data (usually a vector) repetitively until some convergence criteria are met. If the set of

data constructed by the algorithm is a sequence of vectors {(?)} in R™, then the algorithm



can be written as

z(0) e R™

x(t+1) = Op(a(t)) forallt e N.

If the algorithm converges, the sequence {x(¢)} converges to a fixed point of operator
Op. Much work has been devoted to finding useful operators for some specific problems or
finding operators that provide the highest convergence speeds (cf. [23]). In this research,
we consider only the general case without consideration of the specifics of the numerical
method. The computation, in our case updating the components of the solution vector, has
to be distributed among a collection of processors. We have already stated that we would
consider only static scheduling, meaning that each processor updates one piece of x(t), that

is a preassigned, fixed subset of the components of this vector.

2.1 Synchronism vs. Asynchronism

Synchronous implementations of iterative algorithms are generalizations of sequential im-
plementations. This makes them attractive as their convergence properties are thus well
known. Often, it is rather straightforward to convert a sequential implementation of a given
algorithm into a synchronous parallel implementation. Let us assume that the distributed
environment used to execute the algorithm consists of p processors. Each processor can
access its local memory and communicate with any other processor via a network. Each pro-
cessor starts each iteration with the entire current solution vector in its memory and updates

its piece of x(t) by applying part of the operator Op to the entire vector. The processors



then perform an all-to-all communication, exchange their up-to-date pieces of the solution
vector, and proceed to the next iteration. More formally, if the components of the solution
vector x(t) are denoted by x;(t), ¢ = 1,...,m and if the components of Op(x(t)) are denoted

by Op;(x1(t), ..., xm(t)), the synchronous iteration can be written as:

Vi,t  ai(t+ 1) = Opi(a1(t), ..., 2m()). (2)

The most obvious performance bottleneck in synchronous implementations is the all-to-all
communication phase. First, for slow networks, having to exchange (p—1)* messages at each
iteration can be prohibitive [21]. However, with improvement in network technologies, this
becomes less and less a concern if the implementation runs on a local area network. Second,
and more importantly, the possible lack of synchronization among the processors [26, 18,
8, 14] can lead to dramatic performance losses because relatively fast processors may be
idle waiting for the slower processors. Sources of such lack of synchronization have already
been identified in Section 1.1 and become particularly noticeable when using a non-dedicated
cluster of workstations to run the iterative algorithm. This phenomenon is a clear motivation
for studying asynchronous implementations.

The study of asynchronous implementations started as early as 1969 [11] and has been
the object of many extensions and generalizations. As for the synchronous case, we assume
that there are p processors in the distributed environment and that the solution vector is
segmented in pieces assigned to each processor (static scheduling). By contrast with the
synchronous implementation, there is no all-to-all communication phase to synchronize the

processors. Instead, a processor is “free” to perform another update possibly using out-of-



date data for the pieces of the other processors, or not to perform any update at all. In
addition, a processor can decide at any time to send its most up-to-date piece to some of
the other processors. A good formal description of the asynchronous iteration is given in [2]

and is inspired by the definition of chaotic relaxations in [11]. The definition we give here is

very similar:

zi(t —1) ifi ¢ J,
\V/i,t: 1,2,... J}Z(t) == (3)

Opi(x1(s1(1))y .oy xmlsm(t))) if i € 4y,

where J; is a subset of {1,..,m}, and s;(¢) is an integer for all ¢, and ¢t = 1,2,.... Baudet

in [2] proposes the three additional conditions:
Condition 2.1 Conditions for asynchronous iterations:
(1) si(t) <t foralt=1,2,..
(i1) limyeo(si(t)) = oo
(iil) ¢ occurs infinitely often in the sets J;, t = 1,2, ...

Condition (1) states that when a processor updates a component of the solution vector it can
only make use of past components. Condition (ii) states that the same value for a component
cannot be used indefinitely when computing updates. Condition (iii) says that a processor
does not abandon a component for ever. In the formal definition of asynchronous iterations
that we have given so far, there is no limit on the amount by which a component used in an

update can be out-of-date. If there is no upper bound to this amount, the implementation is



referred to as a totally asynchronous implementation in [7]. Otherwise, the implementation
is said partially asynchronous. Actual implementations are often partially asynchronous
since it is often practical to fix some kind of bound on the asynchronism for implementation

purposes.

2.2 Convergence

The definition of the asynchronous iteration shows clearly that the algorithm can be as
“asynchronous as needed” to take advantage of the very phenomena that were performance
bottlenecks for a synchronous implementation. However, the convergence of the algorithm
is no longer implied by the same conditions as for the sequential case and its convergence
rate must be reexamined.

Work devoted to proving and analyzing the convergence of asynchronous parallel iter-
ative algorithms includes [7, 6, 11, 20, 19, 2, 5, 3, 28, 13, 30, 31]. Some of the earliest
focused on specific iterative algorithms or on specific implementations. A sufficient condi-
tion for convergence for linear operators is available in [11], only for partially asynchronous
implementations. In [20, 19], this sufficient condition is generalized to the case of certain
non-linear operators, still in a partially asynchronous setting. A recent and general theorem
in [7] sufficient condition for convergence of asynchronous iterative algorithms based on a
sequence of subsets of R™ (a “box condition”). However, applications given in [7] are all
contractions or pseudo-contractions with respect to a weighted maximum norm, a “Lipschitz-
like” condition, as it is difficult to fully exploit the generality of the theorem. A lower bound

on rate of convergence is obtained under additional assumptions.



A fundamental reference on which to develop a stochastic approach is Baudet’s work [2].
That work contains a theorem establishing the convergence of asynchronous iterations for

contracting operators defined by the following ““Lipschitz-like” condition:

Definition 2.1 An operator Op from R™ to R™ is a contracting operator on a subset D of

R™ if there exists a nonnegative m x m matriz A such that
Ve,ye D |Op(x) — Op(y)| < Alz —y|, component-wise

and p(A) < 1 where p(A) denotes the spectral radius of A.

Furthermore, Baudet provides a lower bound on the convergence rate of the algorithm defined

traditionally as:

R2lim inf[(— log [l(t) — €]|)/1). (4)

where ||.|| denotes a norm of R™ and ¢ the fixed point of the operator. This definition of the
rate of convergence has an immediate interpretation. If the logarithm is in base 10, then
1/R measures the asymptotic number of iterations required to divide the initial error by a
factor of 10 where an iteration is the computation described by Equ. (3) for all i. Without

any additional assumptions, Baudet states that:
R > —[lifn inf(k;/t)] log p(A). (5)
—+00

where {k;} is a sequence of integers defined in [2]. Due to space constraints, we will just
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say that this sequence is increasing and the more asynchronous the implementation, the less
rapidly it increases.

The main limitation of those convergence results is that, even if they were more in touch
with what the end-user needs to make design decisions, they still provide only lower bounds
on the rate of convergence. Experimentsin [2] indicate that the bounds are very conservative,
and the possibility for stochastic approaches is mentioned. In the next section, we present

stochastic models to extend the convergence results.

3 Application-level Models

In this work, we are interested in providing the end-user with useful insight into the perfor-
mance of different implementation strategies for parallel iterative algorithms in some user-
defined distributed environment. Some of the low-level elements of the computer system

must be ignored or at least approximated to perform an application-level analysis.

3.1 Modeling the Distributed Environment

We assume that the distributed environment is a computer network of p nodes connected by a
communication facility. A node is composed of a processor, memory and a network interface.
Each node has its own memory accessed only by its processor. In this distributed memory
setting, nodes can exchange data via the communication facility, thanks to their network
interfaces. We do not require that all the nodes be identical and are therefore supporting a
heterogeneous environment. The communication facility is seen as an abstract device that

allows reliable point-to-point communication between any two nodes of the network and we
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do not make any assumptions about the network topology. Our model is therefore applicable
for diverse computer networks, from a Massively Parallel System (MPP) to an Internet-wide
collection of machines. The performance of the network in terms of transmission speed
is modeled by a Random Variable (RV) for each point-to-point data path (for a total of
p(p — 1) RVs). Similarly, the performance of each node in terms of computation is modeled
by an RV that describes the time that node spends to perform one update of its piece of the
solution vector (for a total of p RVs). The distributions of all these RVs describe the behavior
of the algorithm execution in the distributed environment. An important element here is
that these discrete probability distributions may be empirically estimated or analytically

specified. They are assumed stationary during the run of the iterative algorithm.

3.2 Modeling the Algorithm

In order to make our stochastic models tractable, we segment the algorithm in phases.
Figure 1 depicts one phase. Each phase is composed of two sub-phases. During the first
sub-phase, called the o sub-phase, each processor performs successive updates on its piece of
the solution vector. If a processor performs more than one update during the o sub-phase,
then it begins to use out-of-date data for the components of the solution vector that it is not
updating. At the end of the a sub-phase, each processor broadcasts its piece of the current
solution vector to all the other processors. Just after this broadcast, starts the 3 sub-phase.
During the g sub-phase each processor is waiting to receive p — 1 messages from the other
processors. Fach processor also has the possibility to perform additional updates on its

piece of the solution vector, using more out-of-date data. A processor finishes its 3 sub-
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phase when it has received all the p — 1 messages and it then moves onto the next algorithm
phase. For each processor, the user can chose the number of updates to be performed during
that processor’s a sub-phase and the maximum number of updates to be performed during
the 8 sub-phase.

Note that the model can also describe a synchronous implementation, that is, for each
processor, one single update during its « sub-phase and no update during its 3 sub-phase.
In the next section, we give a few definitions, make one assumption, and exhibit a Markov

chain (cf. [15]) of interest.

3.3 Underlying Markov chain

Let us define the following constants and RVs:
Definition 3.1

(i) A; > 0 denotes the number of updates performed by processor i during the a sub-phase

of each algorithm phase (implementation dependent).

(ii) B; denotes the maximum number of updates that processor i is allowed to perform

during the 3 sub-phase of each algorithm phase (implementation dependent).

(iii) o'(k) € R is the duration in seconds of the o sub-phase of the k' algorithm phase on

processor i (RV).

(iv) nis;(k) € R is the duration in seconds of the message transfer from processor i to
processor j during the k'™ algorithm phase (RV). By convention, processor i sends a
message to itself at each phase and n,—;(k) =0 for all ¢ and k.

13



(v) T'(k) € R denotes the time of the beginning of the k™ algorithm phase on processor i

(RV).

We assume that for each given i, the RV o'(k) are independent and identically distributed
(i.i.d) for each k. Similarly, for each given ¢ and j, the RV n;;(k) are i.i.d for each k. This
assumption is fundamental and has been popular in the past for the purpose of generating
tractable models [32, 1]. The experimental results presented in Section 6 will illuminate its
validity and limitations. In Section 7 we propose ideas to relax the i.i.d assumption, but
we leave them for future work. We also make minor assumptions, such as bounded network
times, messages being sent at exactly the same time during a broadcast, and free message

sends in terms of CPU cycles on the sending processor.

We define the wavefront, X(k) as

X(k) = (0,T%(k) — T"(k),.., T?(k) — T'(k)) € RP, (6)

which describes the shape of the line joining the entry points of each processor in the k™
phase, taking arbitrarily processor 1 as reference. It is represented on figure 1 as a thick

line, and one can show that (See Appendix A):

Vi Xi(k+1) = max }[Xj(k) + ol (k) + nji(k)] —
o (7)

max [X;(k) + o’ (k) +n o (k)].

je{17"7p}

Thanks to our i.i.d assumption, equation 7 is a Markov equation, and the wavefront

appears as a time-homogeneous Markov chain. It is shown in Appendix B that, with a
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few technical assumptions, the Markov chain is also finite-state. Equation 7 can be used to
compute the transition probability matrix of the Markov chain. Examples of computations

of the Markov chain transition matrix and of its stationary distribution can be found in [10].

4 Performance Characterization

The wavefront Markov chain is exploited to obtain performance results for the parallel itera-
tive algorithm. The goal is to obtain as much information as possible on the execution time.
The execution time can be computed as the ratio of the number of iterations to perform over
the number of iterations performed by time unit. The number of iterations to perform can
be approximated with the asymptotic convergence rate of the algorithm which is the object

of the next section.

4.1 Asymptotic Rate of Convergence

The challenge here is to extend Baudet’s work in [2] and replace his lower bound on the
asymptotic rate of convergence by modified estimates that take into account the random-
ness in the algorithm implementation. One can compute three estimates (see Appendix D)
respectively called worst-, average-, and best-case estimates (and denoted by R, ﬁ, and R)
At this point, the meaning of the average- and best-case estimates is unclear. The worst-case
estimate however is a clear improvement over Baudet’s lower bound as (i) it is higher than
Baudet’s and (ii) we guarantee that it is still a lower bound on the asymptotic convergence
rate.

Let R* denote one of the three estimates for this rate. Then, if the user wants the initial
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error on the solution vector to be divided by a factor of 10¥, we approximate the necessary
number of iterations to be performed by w/R* assuming that w is reasonably large. Of
course, the choice of R* is crucial, and we expect that our three estimates will provide good

guidance for this choice.

4.2 Implementation speed

We can use R* to estimate the speed of the implementation in terms of number of iterations

performed per time unit. Let ®(k) denote the duration in seconds of the k& algorithm phase

on processor 1. Let N(k) denote the number of iterations performed during that phase.

Both ®(k) and N(k) are RVs and their probability distributions can be approximated by

making use of the wavefront m-values. The speed of the implementation is therefore entirely
®

described by sums of the random vector (N((lf))> This vector can be used in different ways,

as described in the next section.

4.3 Performance Characterization Levels

Level 1 : Using the Strong Law of Large Numbers [15], it is possible to compute the
asymptotic algorithm speed as the ratio of the expected values of N(k) and ®(k). Calling

S this ratio, one obtains #;, an asymptotic estimate for the execution time expected value:

w
0, = :
'SR
Level 2 : It is possible to compute an asymptotic estimate of the standard deviation of

the execution time distribution (See Appendix C).
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Level 3 : The third level, based on Large Deviation Theory [9, 27, 33], will be presented

in a subsequent paper.

5 Simulation

In order to validate our approach, we performed a series of simulations. The results are
related in Section 5.1 of [10] and are excellent as none of our basic assumptions is violated.
We simulated a Gradient algorithm for a real multi-polynomial cost function with thirty
variables. The simulated distributed environment consisted of three processors with different
arbitrary (non standard) workload distributions (depicted in Figure 2), interconnected by a
network that delivers constant performance (see [10], p.143, for details).

The simulation provides relevant information about the accuracy and sensitivity of our
different characterization levels. First, we observe that our new asymptotic convergence rate
estimates provide much better results than Baudet’s estimate. Table D shows the relative
errors between the different estimates and the observed convergence rate for different imple-
mentations in our simulated distributed environment, for which our average-case estimate
provides a better guess for the convergence rate than Baudet’s estimate. The gaps between
the four estimates increases with asynchronicity. It is to be noted that no estimate exactly
predicts the observed convergence rate. A primary reason is that the estimates depend
only on the spectral radius of the matrix associated to the contracting operator, but not on
the actual shape of that operator. Therefore, the same convergence rate estimates will be
computed for different operators that happen to have the same contracting matrix.

The simulation also shows that level 2 characterization is rather sensitive. Indeed, as it
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is based on a binomial Gaussian approximation, it requires a large number of samples to be
accurate. It was shown in [10] that the error between level 2 characterization and the observe
standard deviation decreases for increasing values of w, the user’s convergence criterion.
Figure 3 shows the simulation versus our characterization for an asynchronous imple-
mentation in our simulated heterogeneous distributed environment. On each graph, the
empirical distribution of the execution time is shown as a bar diagram. The empirical mean
is shown as a vertical solid line and the empirical standard deviation is represented as a hor-
izontal line segment on each side of the empirical mean. Level 1 characterization is shown
as a dashed vertical line. Level 2 characterization is shown as two horizontal dashed line
segments on each side of level 1. We show four characterizations, each corresponding to a
different asymptotic convergence rate estimate. One observes the errors on level 1 charac-
terizations quantified in the third line of Table D. The error on level 2 is only about 20% if
the average-case estimate is chosen, and this error decreases when w increases. The error is

less than 1% for the synchronous implementation which is not shown here.

6 Experiment

This section presents experimental results [10] with a Gradient algorithm for a real multi-
polynomial cost function with thirty variables on three Sun Sparc Ultra 1 workstations
interconnected by a standard 10 Mbps Ethernet. Those workstations are being used by
students for course-work as well as for personal research. Measurements were obtained

throughout one week (Nov. 17-24, 1997).
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6.1 Preliminary Remarks

Figure 4 shows the execution times observed throughout the whole week for the synchronous
implementation and for our first asynchronous implementation (mildly asynchronous: at most
one update performed in 3 sub-phase for each processor). This corresponds to 862 consecu-
tive observations for each implementation. The measurements for our second asynchronous
implementation (fairly asynchronous: at most two update performed in [ sub-phase for each
processor) are not shown because they would be difficult to distinguish from the ones of the
first asynchronous implementation on that time scale.

The first observation to make is that the asynchronous implementations are generally
more efficient than the synchronous one. The first asynchronous implementation is up to
150 seconds faster than the synchronous implementation, and 30 seconds faster on average.
On average the second implementation is faster than the first one by about 1.9 seconds.
But in only 15% of the observations is the absolute difference between between the two
implementations more than 10 seconds.

It seems that, in this environment, a good choice is to use an asynchronous implemen-
tation as opposed to a synchronous one. However, a mild asynchronicity is sufficient to
obtain improvement over a synchronous implementation. This can be explained both by the
nature of the distributed environment and by the nature of the iterative algorithm. Several
other research works include examples for which asynchronous implementations outperform
synchronous ones [2, 4, 21].

A fundamental observation on Figure 4 is that the execution time is bursty. In fact,

the distributed environment, and therefore the algorithm, behaves very differently at dif-
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ferent times in our time period, for the system is in use for a variety purposes during the
experimental runs. In order to illustrate these different behaviors, Figures 5(a), (b) and
(c) show three close-ups of the execution times for each implementation during three short
sub-periods about two hour long. Without going into details, one can immediately see that
the distributed environment behaved according to distinct modes during the week.

Figure 7 shows the execution times for the parallel iterative algorithm throughout a 24
hour time period at the end of the week. The distributed environment exhibited a fairly stable
behavior, leading to relatively smoother observations. We expect our stochastic models to
yield better results for the 24-hour time period than for the entire week as burstiness indicates
violation of our i.i.d assumption. In the following sections, we present and comment on some

of the results for both time periods.

6.2 Applying the Model
6.2.1 The One Week Time Period

The workload distributions of the three processors where sampled throughout the week and
are shown in figure 6. Figure 8 shows the results for the synchronous implementation. The
empirical distribution is clearly multi-modal as already seen in Section 6.1. The level 1
characterization makes an error of about 17% in predicting the mean of the execution time.
The level 2 characterization is the most striking as it is smaller than the observed standard
deviation by a factor of 50! In fact, level 2 is very sensitive to the violation of the i.i.d
assumption as a Gaussian approximation is involved.

The workload distributions were sampled and are shown on Figure 10. Figure 9 shows the

20



results for the mildly asynchronous implementation. Four characterizations are shown, one
of each estimate of the asymptotic convergence rate. If one uses our average-case estimate
(see Section 4.1), then the error on the mean prediction is only 4% (as opposed to 116% with
Baudet’s estimate). The observations made on Figure 8 about level 2 are still valid. The
results for the second asynchronous implementation are not shown here as they are fairly
similar to the results for the first asynchronous implementation. The next section reduces
the time period to 24 hours and should lead to improvements, especially for the level 2

characterization as the i.i.d assumption should be less violated.

6.2.2 The 24 Hours Time Period

Figure 11, for a synchronous implementation, demonstrates that the level 2 characterization
becomes much more accurate for this shorter time period. One can easily observe that its
error is about 27% whereas it was a factor of 50 for the whole week. The same kind of im-
provements were observed for all implementations. Furthermore, the level 1 characterization
is more informative than for the one week time period. Indeed, the use of our models states
clearly that an asynchronous implementation will on average outperform a synchronous one

by about 40 seconds which perfectly agrees with Figure 7.

7 Conclusion and Future Work

Parallelizing iterative algorithms for the solution of large or complex optimization problems
is a crucial issue. Indeed, the amount of computation required to solve such problems can

be prohibitive for a sequential implementation, especially in non-linear cases. We examined
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different popular parallelization strategies as well as the corresponding theoretical results
available in the literature and came to the conclusion that there is a gap between those
results and what the end-user needs to know about the execution of his parallel iterative
algorithm. This work showed that this gap can be filled using stochastic models that take
into account the distributed environment used to run the algorithm. Such models have been
developed and used to obtain a variety of performance characterizations that are directly
meaningful to the end-user.

An additional level of performance characterization based on Large Deviation The-
ory will be covered in a future paper. Additional research may also extend the current

models to Markov-modulated random processes to model bursty behaviors in more de-

tails [22, 24, 12, 25, 16].

APPENDIX

A  Wavefront Equation

Let 3(k) € R be the the duration in seconds of the 3 sub-phase of the k' algorithm phase
on processor 7. (3'(k) is a RV and it can be computed as follows. The 3 sub-phase of the
k' algorithm phase on processor i clearly starts at time 3, ,(k) = T'(k) + a'(k). It ends

when the last expected message has been received by processor . The message expected

22



from processor j is received by processor 1 at time ﬁgm(k) + nji(k). Therefore,

ﬁl(k) = max [5Ztart(k) + njsi(k)] = ﬁztart(k)

je{17"7p}

= max [ﬁztart(k) +njsi(k) = Blyp(k)).

je{17"7p}

Since n,;(k) = 0, one obtains:
ﬁl(k) = max[0, max (Tj(k) +al — Tl(k) — o/(k) +nji(k))].

je{lv"vp}_{i}

By definition 3.1(v) and Equ. 6:

Xk +1) = X'(k) + o' (k) + 3'(k) — o' (k) — 8" (k).

Replacing 3'(k) and (37(k) by their expression and using the fact that

Ve,y €R - max(0,x — y) +y = max(z, ),

one obtains Equ. 7. |

B Wavefront State-Space
Lemma B.1 IM,Vk>1 || X(k)|. < M.

Proof. Let us consider processor 1 and processor ¢ # 1 during the k* algorithm phase.

The times at which these two processors receive a message from a processor h are apart by
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|np—1(k) —npi(k)| seconds since we assume that processor h sends all messages at the exact
same time. Therefore, the times at which processors 1 and i receive the last messages they
were expecting are apart by at most maxzeqi,. py(|nrs1(k) — npsi(k)]). The communication

times are assumed to be bounded above and below as:

Vs,d  dnssang ., Yk nssa < nesa(k) <ng,.

On can then write that:

Vh |nh—>1(k) - nh—>i(k)| < ma‘X(nh_>1 —Nh—iy Ny — nh—>1)

< max(nh—nv nh—n’)

< ).
< )

implying that the times at which processors 1 and ¢ receive the last message they were
expecting are apart by at most maxy, je(1,.,3(n,_,;). But those times are also apart by X;(k)
according to definitions 3.1(v) and Equ. 6. Since || X(k + 1)||lc = maxief,.p3 | Xi(k + 1),

the proof is complete. 1

The wavefront vector is now in a closed ball of R?. If one assumes that the RVs a'(k),
ni;(k), and the components of X(0) are rational (in Q), then for each k, X (k) is in a finite
subset of R? that does not depend on k. Those assumptions are really purely technical and
the data being manipulated is in Q since it is processed by computers with finite arithmetic.
The size of the state-space of the wavefront depends on the distributions of a’(k) and n;_;(k)

(see [10]).
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C Level 2 Characterization

One can make a binomial Gaussian approximation for the distribution of the random vector
(g(k)> (with covariance matrix C'). The covariance matrix of the sum of those vectors for

each algorithm phase until convergence, C’, can then be estimated as

w

“=wR

where E{N(k)} denotes the expected value of N(k) (this expected value does not depend
on k). Using C' , it is then easy to obtain an estimate of the standard deviation of the

execution time. Indeed, if

This result is available in [15] for instance.
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D Asymptotic Convergence Rate Estimates

To compute estimates of the algorithm asymptotic rate of convergence, we need to extend

Equ. 5. In [2], the sequence {t}} is defined as:

to - 0
ty =ty + ag + by,
where {a;} and {b;} defined as:

(1) starting with the (¢; + aj)-th iteration, no solution vector update makes use of values

of components corresponding to iterates with indices smaller than ;.

(ii) all solution vector components are updated at least once between the (5 + aj)-th and

the (tx + ax + bg)-th iterations.

The sequence {k;:} of Equ. 5 is then defined as:

kté sup{k € Nlag + bo + ... + ap_1 + bp_1 < t}.

In our setting, one has:

ap = N(k)
Vk=0,1,..

by =0,
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where N(k) denotes the number of iterations performed during the k' algorithm phase. One

can then compute:

k—1

ke = sup{k| > mazieqn,. (A + N(1)) < 1},

(=0

The long-term probability distribution of the RV N(k) can be approximated using the wave-
front m-values, leading to the probability distribution of k; for each ¢. It is then possible to
compute three estimates for the asymptotic rate of convergence by replacing k; in equation 5
by its minimal observable value, its expectation, or its maximal observable value. A formal
proof of the convergence of the limit in equation 5 for each estimate is left for future work.

The existence of a finite limit has been witnessed in every simulation and experiment.
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Table 1: Convergence rate errors.
H Impl. ‘ R ‘ R ‘ R ‘ R Baudet
Sync. 7.69% | 7.69% | 7.69% | 7.69%
Asyne. 1| 31.96% | 17.53% | 36.08% | 54.64%
Asyne. 2| 9.55% | 17.86% | 57.14% | 69.05%

All messages All messages
sent received
Local Local
Computation Computation

process #i

X(<) Alpha X(k+1)

sub—phase Broadcast

process #i+1

Beta
sub—phase

process #i+2

previous next

phase current phase

phase

Figure 1: Decomposition of the algorithm in phases

32

time



Probability

Processor #1

T
0.4 -
=
Z 03 B
8
© 0.2 -
o
0.1r - - - - . . -
0
0o 0.2 0.4 0.6 0.8 1
Processor #2
T
0.4 -
=
Z 03 B
8
© 0.2
Q.
0.1
0
0] 0.2 0.4 0.6 0.8 1
Processor #3
T
0.4 -
2
=
<
=)
[<]
Q.

o) 0.2 0.4 0.6 0.8 1
update time (in seconds)

Figure 2: Update time distributions for the three processors

ir | | 1 1
| | 1 Empirical distrib.
0.9 | _ Empirical mean
— Empirical stddev
I I -——— Level 1
0.8 | | -—— - Level 2
| | I I
o7+ | [ | 1
| | | |
o6l | | | |
| | | |
st W | |
R K Kl ki
04 | | |
@est case Averf:lge case | |
0.3 Simpulation | Worst case Bauydet
| | | |
0.2 - | | | |
| | | |
o.1r | | | |
| | | |
o | I I | I I I | I I I 1|
100 150 200 250 300 350 400 450 500 550

Execution time in seconds

Figure 3: Simulation vs. characterizations for an asynchronous implementation

33



Execution time

Execution time

300 T T T T 300 T T T T
250 Synchronous - 250 - First Asynchronous -
Implementation Implementation
200 - @ 200 : -
k=
=
S
3
(<}
i
150 W - 150 - -
100 = 100 w =
50 H H H H 50 H H H H
o 200 400 600 800 o 200 400 600 800
Observation number Observation number
Figure 4: Execution time measurements over a week
@) (b) ©
300 - 300 300
4’\,\‘%,\'\‘__‘\‘/*_#
250 - 250 250
200 - o 200+ . 2oof\‘/¢\’/“/\'/’\'/‘\F
= =
= & _—
= f =
=] E S
= =
(=3 (=3
(<5} (<%}
fini fi
150 150 - 150 -
9‘%
CS\S_G_SM_O aM
100 L 100 100@_8/@—6\9/8\8/9—6—8/9
H—+ Synch. H— Synch. H— Synch.
p—¢ 1st Asynch. p—¢ 1st Asynch. p—k 1st Asynch.
>-© 2nd Asynch. >-© 2nd Asynch| >© 2nd Asynch,|
50 . ! 50 . ! 50 . !
100 105 110 130 135 140 185 190 195
Observation number Observation number Observation number

Figure 5: Different experimental behaviors throughout one week

34



Execution time

0.7+ 1st processor
2nd processor
0.6 — 3rd processor

Probability
o
ol
[

Update time in seconds

Figure 6: Simulated update time distributions for the three processors

170

+——+  Synch.

e — 1st Asynch.
160 o—o 2nd AsSynch.
150 A o - N

- /

140 -
130
120+

110

100 [,

920

80
o

Observation number

Figure 7: Measurements during 24 hours for the three implementations

35



Probability

1
1
1
0.9 I o
) [ 1 Empirica digtrib.
1 ——  Empirica mean
08k 1 ——  Empirica stddev
I ---  ledl
: === Llevd2
07F X
1
1
06 |
> 1
I 1
gosp f |
<) |
& K
0.4 '
1
1
03} !
I
I
0.2 |
I
I
0.1p |
1
1
1 ’_‘ 1 ’_‘ —‘ 1 Fﬁ’_"_‘l_\ - ALV_"_‘ 1 |

80 100 120 140 160 180 200 220 240 260 280 300
Execution time in seconds

Figure 8: Experiment vs. Characterization for the synchronous implementation

1 . . . .
! ! ! I Empirical distrib.
o9F I I I B Empirical mean
| | | — Empirical stddev
| | | -_- - Level 1
0.8 - : : : - - - Level 2
| | | |
0.7 I I I I
Be5t| case ] WOI"SF case Bz-pudet
0.6 | | | |
| | | |
o5l L} L i I I
oar T mEN I I
| Aiverage case | |
0.3 I I I I
| | | |
0.2~ I I I I
| | | |
0.1 | | | |
| | | |
o [_—I o g — —_— il )
50 100 150 200 250 300

Execution time in seconds

Figure 9: Experiment vs. characterization for the first asynchronous implementation

36



0.9 —

0.8
0.7

1st processor
0.6 — 2nd processor

Probability

Figure 10: Experimental update time distributions for the three processors

Update time in seconds

3rd processor

1
1 I
\ [ ] Empiical distrib.
09 1 ——  Empirical mean
1 ——  Empirical stddev
! - == Llevell
08 : === Level2
I
I
07F ,
1
1
061 |
2> I
z 1
Qo
Zos} L
& F---q----
041 !
1
1
I
03 ,
I
I
0.2 |
I
I
0.1p |
1
1
0 — 1 1 1 |
165 170 175 180 185 190 195 200 205

Execution time in seconds

Figure 11: Experiment vs. Characterization for the synchronous implementation

37



Michael G. Thomason received the BS from Clemson University in 1965, MS from Johns
Hopkins University in 1970, and PhD from Duke Univiversity in 1973. He worked for West-
inghouse (Baltimore) and currently is Professor of Computer Science at the University of Ten-
nessee, Knoxville. His research interests include pattern/image analysis, parallel /distributed
computation, and stochastic models in computer science. He is a member of ACM and senior
member of [EEE.

Henri Casanova received the BS from I’Ecole Nationale Supérieure d’Electrotechnique,
d’Informatique et d’Hydraulique de Toulouse (ENSEEIHT) in 1993, MS from I’Université
Paul Sabatier, Toulouse, in 1994, and PhD from the University of Tennessee, Knoxville,
in 1998, and is currently a postdoctoral research associate at the University of Tennessee,
Knoxville. His research interests include metacomputing, parallel/distributed computing,
performance modeling, and stochastic models.

Jack Dongarra Jack Dongarra received the PhD in Applied Mathematics from the Uni-
versity of New Mexico in 1980, MS in Computer Science from the Illinois Institute of Tech-
nology in 1973, and BS in Mathematics from Chicago State University in 1972. Dongarra is
a Distinguished Scientist specializing in numerical algorithms in linear algebra at the Uni-
versity of Tennessee’s Computer Science Department and Oak Ridge National Laboratory’s
Mathematical Sciences Section. Professional activities include membership in the Society

for Industrial and Applied Mathematics and in the Association for Computing Machinery

(ACM).

38



