
NetSolve's Network Enabled Server: Examples andApplicationsHenri Casanova � Jack Dongarra� yNovember 13, 1997AbstractThe NetSolve project, underway at the University of Tennessee and Oak RidgeNational Laboratory, allows users to access computational resources, such as hardwareand software, distributed across the network. NetSolve provides a variety of interfacesso the user can easily perform scienti�c computing tasks without having any computingresource installed on his/her computer. There are many research issues involved inthe NetSolve system, including fault-tolerance, load balancing, user-interface design,computational servers, virtual libraries, and network based computing. As the projectmatures, several promising extensions and applications of NetSolve are emerging. Inthis article, we provide an overview of the project and examine some of the extensionsbeing developed for NetSolve: An interface to the Condor system, an interface to theScaLAPACK parallel library, a bridge with the Ninf system, and an integration ofNetSolve and ImageVision.
�Department of Computer Science, University of Tennessee, TN 37996, USAyMathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

1 The NetSolve Project1.1 BasicsAs a result of advances in hardware, networking infrastructure and algorithms, computa-tionally intensive problems in many areas can now be successfully attacked using networked,scienti�c computing. In the networked computing paradigm, vital pieces of software andinformation used by a computing process are spread across the network, and are identi�edand linked together only at run time. This is in contrast to the current software usagemodel where one acquires a copy (or copies) of task-speci�c software package for use on localhosts. One can distinguish three main paradigms for such systems: proxy computing, codeshipping, and remote computing. These paradigms di�er in the way they handle the user'sdata and the program that operates on this data. In proxy computing, the data and theprogram reside on the user's machine and are both sent to a server that runs the code onthe data and returns the result. In code shipping, the program resides on the server and isdownloaded to the user's machine, where it operates on the data and generates the result onthat machine. This is the paradigm used widely by Java applets within Web browsers. Inthe third paradigm, remote computing, the program resides on the server. The user's data issent to the server, where the programs or numerical libraries operate on it; the result thenis sent back to the user's machine. NetSolve uses this third paradigm.Figure 1 depicts the typical layout of the system. NetSolve provides the user with a poolof computational resources. These resources are computational servers that have access toready-to-use numerical software. As shown in the �gure, the computational servers can berunning on single workstations, networks of workstations that can collaborate for solving aproblem, or MPP (Massively Parallel Processor) systems. The user gains access by usingone of the NetSolve client interfaces. Through these interfaces, he can send requests tothe NetSolve system asking for his numerical computation to be carried out by one of theservers. The main role of the NetSolve agent is to process this request and to choose themost suitable server for this particular computation. Once a server has been chosen, it isassigned the computation, uses its available numerical software, and eventually returns theresults to the user. One of the major advantages of this approach is that the agent performsload-balancing among the di�erent resources.As shown on Figure 1, there can be multiple instances of the NetSolve agent on thenetwork, and di�erent clients can contact di�erent agents depending on their locations. Theagents can exchange information about their di�erent servers and allow access from anyclient to any server if desired. Suppose, for example, the set of computational resources spanseveral local area networks and that users on each of these networks want to use NetSolve toperform scienti�c computations. It is then possible to start a NetSolve agent on each network,so that user requests always go to the \closest" agent to be processed. Di�erent instancesof the NetSolve agent can then have di�erent views of the set of computational resources,re
ecting the fact that certain clients are closer to certain computational resources. NetSolvecan be used either via the Internet or on an intranet, such as inside a research department or2

reply

choice

choice

reply

 of

Client

Network

 Servers

Client

Agent

Scalar Server

request

Scalar Server

Agent

request

MPP ServersFigure 1: NetSolve's organizationa university, without participating in any Internet based computation. Another importantaspect of NetSolve is that the con�guration of the system is entirely
exible: any server/agentcan be stopped and (re-)started at any time without jeopardizing the integrity of the system.The NetSolve agent is also the primary participant in the management of the di�erentcomputational resources (hardware and software) and is also in charge of the fault-tolerancemechanisms. Details on the way the NetSolve agent operates and its various responsibilitiesin the system are given in Section 1.4.1.2 The Computational Resources1.2.1 ChallengesWhen building the NetSolve system, one of the challenges was to design a suitable modelfor the computational servers. For the user to be able to invoke numerical software directlythrough our servers, three major features emerge as mandatory for the servers:Uniform access to the software: The servers should give users the illusion that theyhave access to a uniform set of subroutines/functions. This is a critical point since we wantto hide, as much as possible, the speci�cs of the underlying numerical software. In this way,3

users will not need to go through long learning phases when using a new set of functions.Con�gurability: The servers should not be limited to any particular software. We thereforeneeded to provide a framework to add functionality to a computational server in an easy way.This would give the system the ability to extend and encompass new numerical applicationsat will.Preinstallation : Of course, the user should not be responsible for installing any numericalsoftware directly. The numerical software available through the servers should be ready-to-use and already compiled to the target architecture. Or, in a more general view, the systemcould dynamically handle installation and compilation itself, without any intervention fromthe user.1.2.2 The Current DesignTo make the implementation of such a computational server model possible, we have designeda general, machine-independent way of describing a numerical computation, as well as a setof tools to generate new computational modules as easily as possible. The main componentof this framework is a descriptive language which is used to describe each separate numericalfunctionality of a computational server. The description �les written in this language canbe compiled by NetSolve into actual computational modules executable on any UNIX or NTplatform.There are several advantages to this approach. Machine independence is one, as is theability to integrate arbitrary software components into NetSolve. But this framework alsoallows increased collaboration between research teams and institutions. Indeed, description�les for a given numerical library need to be written once. These �les can then be exchangedby any institution wanting to set up servers. They can also be compiled and run to create anew stand-alone NetSolve system or to contribute new servers to an existing system. Eachtime a new description �le is created, the capabilities of the entire NetSolve system areincreased.These advantages, however, are e�ective only if the process of creating new problemsand adding them to a computational server is reasonably straightforward. For this reason,we developed a Graphical User Interface (GUI) to handle the generation of the description�les. The interface performs various error checking on the user input which mostly consistsof mouse clicks and choices in menus. Using the interface is much easier than creating adescription �le manually, especially as the complexity of the problem increases.Not only is this interface graphical, but it is also written in Java. Several factors motivatedthis choice. First, Java allows one to write GUIs very easily, as a result of its built-in widgetclasses. Second, Java is object oriented and therefore provides a good degree of modularityand data encapsulation. These features are important to us because we might have to modifythe syntax of the language in the future to describe wider classes of numerical computations.Third, Java is Web-enabled. This interface could thus be downloaded as an applet and thoseusers setting up NetSolve computational servers can create their description �les directlyfrom within Web browsers. These �les can then be downloaded from the Web browser4

and compiled into NetSolve computational modules thanks to the compiler provided by theNetSolve server software.The ultimate goal would be to have a NetSolve description �le repository on the Web.From such a repository, description �les could be downloaded at will to set up computationalservers. The actual numerical software should also be available to make the creation of theseservers nearly immediate. The idea would then be to add a complementary repositorycontaining NetSolve description �les to a regular software repository like Netlib [1].1.2.3 Existing ResourcesA number of description �les have been generated for the following numerical libraries: ARPACK [2],FitPack [3], ItPack [4], MinPack [5], FFTPACK [6], LAPACK [7], BLAS [8, 9, 10], QMR [11],Minpack [5] and ScaLAPACK [12].NetSolve computational servers providing access to these libraries are currently runningat the University of Tennessee and at other locations world-wide. Real-time information onthe running servers can be found on the NetSolve web-page located at:http://www.cs.utk.edu/netsolve.These numerical libraries cover several �elds of computational science; linear algebra,optimization, fast fourier transforms, etc. Some of the subroutines in these libraries requirethe user to supply a function, for example to evaluate a function to be minimized. Thecurrent version of the NetSolve software handles user-supplied functions in a way describedin [13].1.3 The Client InterfacesA major concern in designing NetSolve was to provide several interfaces for a wide range ofusers. NetSolve can be invoked through C, Fortran, Java, as well as on Matlab. In addition,there is a Web-based Java GUI which allows problems to be and solved remotely. Anotherconcern was keeping the interfaces as simple as possible. For example, there are only twocalls in the MATLAB interface, and they are su�cient to allow users to submit problems tothe NetSolve system. Each interface provides asynchronous calls to NetSolve in addition totraditional synchronous or blocking calls. When several asynchronous requests are sent to aNetSolve agent, they are dispatched among the available computational resources accordingto the load-balancing schemes implemented by the agent. Hence, the user|with virtuallyno e�ort|can achieve coarse-grained parallelism from either a C or Fortran program, orfrom interaction with a high-level interface. All the interfaces are described in detail in the\NetSolve's Client User's Guide" [13]. In Section 1.4.4, we show a utilization example ofNetSolve that takes advantage of our agent-based strategy.5

1.4 The NetSolve AgentIn this section, we highlight the main responsibilities of the agent in the NetSolve systemand we give some details about its current implementation.1.4.1 The Agent as a DatabaseKeeping track of what software resources are available and on which servers they are locatedis perhaps the most fundamental task of the NetSolve agent. Since the computational serversuse the same framework to contribute software to the system (see Section 1.2.2), it is possiblefor the agent to maintain a database of di�erent numerical functionalities available to theusers.The protocol is fairly straightforward. Each time a new server is started, it sends anapplication request to an instance of the NetSolve agent. This request contains generalinformation about the server (including its location), but also the list of numerical functionsit intends to contribute to the system. The agent examines this list and detects possiblediscrepancies with the other existing servers in the system. Based on the agent's verdict, theserver is either rejected or integrated into the system.Once a new server is accepted, it is a candidate for being used by a client. The nextsection explains how the agent might make such a decision.1.4.2 The Agent as a Resource BrokerThe goal of the NetSolve agent is to choose the best-suited computational server for eachincoming request to the system. For each user request, the agent determines the set of serversthat can handle the computation and makes a choice between all the possible resources. Todo so, the agent uses computation-speci�c and resource-speci�c information.Computation-speci�c information is mostly included in the user request: size in bytes ofthe input data, size of the problem to be solved (e.g. dimensions of the matrices for a linearalgebra computation), etc. Resource-speci�c information is composed of static and dynamicdata. Static system-speci�c data is communicated to the agent by each server when it is �rststarted and accepted in the system. This data mainly contains the server's host processorspeed, the number of processors and the complexity of the algorithms used by its numericalsoftware. Dynamic data represents the load of the server's host, the network delays, andtransmission rates to contact that host. The network performance is actively estimated bythe agent by continuously averaging samples of the network delays between the hosts. Thestrategy for the load of the servers is di�erent; the computational servers actively notify theagent of their workload
uctuations when they deem it necessary. Rationale and furtherdetail on these protocols can be found in [14].6

1.4.3 Fault-ToleranceAs previously mentioned, the hosts in the NetSolve system can be located anywhere on theInternet and can therefore be administered by di�erent institutions. This is the reason whyNetSolve does not try to impose any control on the di�erent resources. Though this approachis
exible, it requires NetSolve to implement some kind of fault tolerance mechanisms. In-deed, any resource can become unreachable at any moment, perhaps because of a networkfailure, a host failure, or simply a system administrator rebooting a host. Every instance ofthe agent has a list of the hardware resource. It is therefore natural that the fault-tolerancemechanisms in NetSolve be at least partly implemented by the agent.The NetSolve system ensures that a user request will be completed unless every singleresource capable of servicing the request has failed. When a client sends a request to aNetSolve agent, it receives a sorted list of computational servers to try. When one of theseservers has been successfully contacted, the numerical computation starts. If the contactedserver fails during the computation, then another server is contacted and the computationrestarts. This whole process is transparent to the user. Each time a computational servermalfunction (server unreachable, server stopped, failure during computation, etc.) is de-tected by a client, this client noti�es the failure to one agent. The agent updates its tablesand takes the necessary measures. If all the servers have failed, then the user is noti�ed thatthe computation can not be performed at that time.1.4.4 Simple Example of the Agent's E�ectivenessSeveral simple experiments can be done with the current version of the NetSolve softwarein order to measure di�erent performance issues. The one we are describing here providesinformation about the kind of typical gain a user can obtain by invoking NetSolve, as wellas a measure of the NetSolve overhead. In this experiment, the user is using MATLABon a Sun workstation (Sparc 5) to perform several matrix multiplications. The size of thematrices is 800 by 800, and the user wants to perform up to 16 consecutive multiplications.A NetSolve system is available and consists of 7 computational servers. These servers runon Sun workstations (Ultra 1's). It should be noted that the results of these experimentswould be the same if instead of one single user, several users were sending requests to theNetSolve system.Figure 2 shows the total execution times for various number of matrix multiplicationsin two cases: (i) the user is using MATLAB, (ii) the user is using the asynchronous calls ofthe MATLAB interface to NetSolve. When the user is using NetSolve, we have performeddi�erent measurements for di�erent geographical locations of the client. The servers arelocated at the University of Tennessee. The \Intranet" curve is for a client located on thesame local area network than the servers. The \Close Internet" curve corresponds to a clientat the Oak Ridge National Laboratory. The \Continental Internet" is for a client at theUniversity of California, Berkeley. Finally, the \Overseas Internet" is for a client located atthe Danish Technical University in Denmark. The matrix multiplication takes roughly 34seconds on the client machine, using MATLAB. It takes approximatively 20 seconds on the7

server machines, using the BLAS.In the case where MATLAB is used directly, the total execution time increases linearlywith the number of operations performed at a rate equal to the execution time of one matrixmultiplication. This is of course expected since the multiplications are executed one afterthe other. One can see that using NetSolve leads to much better execution times, exceptwhen the client is located overseas. In fact, transferring the data and the result overseasis much more costly than performing a matrix multiplication. In all the other cases, it isalways better to use NetSolve, even if only one multiplication is needed.
MATLAB

NetSolve (Intranet)

NetSolve (Close Internet)

NetSolve (Continental Internet)

NetSolve (Overseas Internet)

2 4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of 800x800 matrix operations

R
e

s
p

o
n

s
e

 t
im

e
 i
n

 s
e

c

Figure 2: Multiple 800x800 matrix multiplicationsThe agent is locating powerful machines, if any, on behalf of the user and schedulesthe user's computations on those machines to minimize execution time. In the setting ofthese experiments, all the servers were identical and their workloads were identical as well.The agent was therefore compelled to schedule the computation in what appears to be around-robin fashion.For these advantages to be worthwhile, the user should be required to change as little ofhis program as possible. The MATLAB code to perform a matrix multiply is given below:c = a * band an exactly equivalent NetSolve code using a blocking call could be:8

c = netsolve('matmul',a,b)However, to achieve the speed-ups of the experiment, the user must call NetSolve in anasynchronous way as:request = netsolve_nb('matmul',a,b)......c = netsolve('wait',request)The price to pay in code complexity is quite reasonable given the improvement in speedthat can be achieved by using NetSolve. This is even more true about the C and Fortraninterfaces. Even more strikingly, the same performance can be achieved from a Java programcalling the NetSolve Java API, since the numerical computation will be performed withcompiled Fortran or C on some other platform.1.5 Current and Future DirectionsAgent-based computing is a promising strategy. NetSolve will evolve into a more elaboratesystem in the future and a major part of this evolution is to take place within the agent.The changes will address di�erent parts of the agent concept. We highlight some of themodi�cations in what follows.As the system increases both in number of users and resources, it will be more and moredi�cult to maintain a coherent resource space. The issue of a robust and
exible namingstrategy will undoubtedly arise. Several naming services have been designed (LDAP [15],RCDS[16]) and implementations are starting to become available. Such services would pro-vide a good basis for a metacomputing project like NetSolve and would relieve the NetSolvedevelopers from taking naming responsibilities.NetSolve will eventually need to provide a user-accounting feature so that realistic boundscan be imposed on resource usage. We could, for example, restrict the access to the resources,restrict the access for some users, or do a combination of the two. The word restrict isstill to be precisely de�ned in this context. In the current version of the software, everycomputational server can be started in an access restriction mode. The restrictions aredescribed by maximum numbers of simultaneous pending requests from di�erent domainnames (down to di�erent IP-addresses), not taking the actual users into account. This is areasonable strategy for now, but a more
exible and practical scheme would be to use tokensor credits that users can release or spend to perform computations. Di�erent users couldhave a di�erent level of access. For example, students would not have the ability to run largecomputations, whereas researchers could have full access. Administrative authorities couldalso customize their own accounting policy and put bounds on the usage of their resources.These bounds could be in terms of CPU time, or MBytes on hardware resources, or interms of number of requests. Two universities or national laboratories could then allow eachother to use every resource with, however, a \preference" for the local users to use the local9

resources. The NetSolve agent could then be the primary actor in a sophisticated accountingmechanism.Another step to be taken in the NetSolve project concerns data encryption and compres-sion. Indeed, they become almost mandatory for any realistic metacomputing project. It isat this time still uncertain how NetSolve will provide these services. The preliminary investi-gations imply the use of already existing metacomputing toolkits like the Globus/Nexus [17]project, for example, to achieve such goals.Finally, as the types of hardware resources and the types of numerical software availableon the computational servers become more and more diverse, the resource broker embeddedin the agent will need to become increasingly sophisticated. There are many di�cultiesin providing a uniform performance metric that encompasses any type of algorithmic andhardware considerations in a metacomputing setting, especially when di�erent numericalresources, or even entire frameworks are integrated into NetSolve. Such integrations aredescribed in the following sections.2 An Interface to the Condor System2.1 Overview of CondorCondor [18, 19, 20], developed at the University of Wisconsin, Madison, is a high throughputcomputing environment that can manage very large collections of distributively owned work-stations. Its development has been motivated by the ever increasing need for scientists andengineers to exploit the capacity of such collections, mainly by taking advantage of otherwisewasted CPU cycles. The environment is based on a layered architecture that enables it toprovide a powerful and
exible suite of Resource Management services to sequential andparallel applications. Condor has been ported to most UNIX platforms. Condor views theowners of the resources as the key holders to the success of a High Throughput Computingenvironment. It therefore pays special attention to the rights and sensitivities of the worksta-tion owners. It is the owner of each and every workstation in the collection who de�nes theconditions under which the workstation can be allocated by Condor to an external. Condorjobs that consist of a single process are automatically checkpointed and migrated betweenworkstations as needed to ensure eventual completion.A brief description of Condor's software architecture follows. A Condor pool consists ofany number of machines, of possibly di�erent architectures and operating systems, that areconnected by a network. Condor daemons constantly monitor the status of the individualcomputers in the cluster (the master daemon, maintains the coherency of the set of dae-mons). Two daemons run on each machine, the startd and the schedd. The startd monitorsinformation about the machine itself (load, mouse/keyboard activity, etc.) and decides if it isavailable to run a Condor job. The schedd keeps track of all the Condor jobs that have beensubmitted to the machine. One of the machine, the central manager, keeps track of all theresources and jobs in the pool. All the daemons report their information to a daemon (called10

collector) running on the central manager. Finally, an additional daemon (the negociator) onthe central manager periodically takes information from the collector to �nd idle machinesand match them with waiting jobs. When a job is submitted to Condor, the scheduler onthe central manager matches a machine in the Condor pool to that job. Once the job hasbeen started, it is periodically checkpointed. It can then be interrupted and migrated withinthe Condor pool until completion. This organization is partly depicted in Figure 3. Moredetails on the Condor system and the software layers can be found in [18, 19, 20]. In thenext section, we explain how a Condor pool is being used as the back-end to a NetSolvecomputational resource.2.2 A Condor Pool as a NetSolve Resource
Condor Central Manager

Negociator

Collector

Startd

Schedd

Machine 1

Startd

Schedd

 NetSolve
computational
 module

Machine N

Startd

Schedd

NetSolve Machine

Startd

Schedd

NetSolve Server

NetSolve
 Client

NetSolve
 Agent

Request

ChoiceReply

Condor pool

NetSolve systemFigure 3: NetSolve and Condor2.2.1 MotivationInterfacing NetSolve and Condor is a very natural idea. NetSolve provides remote easy accessto computational resources through multiple, attractive user interfaces. Condor allows usersto harness the power of a pool of machines while using otherwise wasted CPU cycles. The11

users at the consoles of those machines are not penalized by the scheduling of Condor jobs.If the pool of machines is reasonably large, it is usually the case that Condor jobs can bescheduled almost immediately. This could prove to be very interesting for a project likeNetSolve. Indeed, NetSolve servers may be started so that they grant local resource accessto outside users. Such servers are permanently available a the University of Tennessee forinstance. Interfacing NetSolve and Condor could then give priority to the local users andprovide underutilized only CPU cycles to NetSolve users. Such an interfacing is describedin the next section.2.2.2 ImplementationFigure 3 shows how an entire Condor pool can be seen as a single NetSolve computationalresource. The Condor pool consists of several machines. The Central Manager is representedat the top of the �gure. As stated before, it runs two daemons in addition to the usual startdand schedd: the negociator and the collector. All the other machines run the startd and theschedd daemons only. One of those machines also runs a customized version of the NetSolveserver. When this server receives a request from a client, instead of creating a local childprocess running a computational module, it uses the Condor tools to submit that module tothe Condor pool. The negociator on the Central Manager then chooses a target machine andnoti�es the startd of that machine to spawn the computational module. Due to
uctuationsin the state of the pool, the computational module can then be migrated among the machinesin the pool. When the results of the numerical computation are obtained, the NetSolve servertransmits that result back to the client.The actual implementation of the NetSolve/Condor interface was made easy by the Con-dor tools provided to the Condor user. In the NetSolve server code, it consisted of replacinga call to execv() by a Condor call. However, the restrictions that apply to a Condor jobsconcerning system calls were di�cult and required quite a few changes to obtain a Condor-enabled NetSolve server. A major issue however still needs to be addressed; how does theNetSolve agent perceive a Condor pool as a resource? Indeed, the agent uses some per-formance metrics to assign client requests to computational resources. It is at this pointunclear how these metrics can be directly applied. A possible approach could be to have theNetSolve server running in the Condor pool to collect statistics on the pool behavior. Thesestatistics could then be used by the NetSolve agent to compute predictions of job executiontimes in that pool. Finding the appropriate prediction technique will be at the focus of thenext step in the NetSolve/Condor collaboration.3 Integrating Parallel Numerical Libraries3.1 MotivationIntegrating parallel packages into NetSolve will allow a user on a PC or workstation to accessMPP systems to perform large computation. This access can be extremely simple and the12

user may not even be aware that he is using a parallel library. Furthermore, this parallellibrary will be accessible for C, Fortran, MATLAB, Java programs, and even a Java GUI asexplained in the following section.NetSolve views a computational resource as a NetSolve server running on some platform.The speci�cs of that platform are totally hidden from the user. Section 2 already describedhow a platform can in fact be a set of machines contributing to the computations requestedby a user. In the case of Condor, the computation is sequential and the computationalprocess may migrate among the di�erent machines to take advantage of unused CPU cycles.There is another obvious way in which several machines can be considered as a single com-putational resource to NetSolve; make those machines participate in a parallel computation.Enabling NetSolve to use parallel numerical libraries would be a very interesting and naturaldevelopment. A user could still use the simple NetSolve interfaces to access the power ofMPPs or networks of workstations to perform large computations. In the next section, wedescribe the �rst steps in integrating the ScaLAPACK library into a NetSolve server.3.2 Integrating Parallel Software Packages into NetSolve
 NetSolve
ScaLAPACK
 server

NetSolve
 client

2−
D B

loc
k C

yc
lic

Dat
a

Dist
rib

ut
ion

2−D Block Cyclic

 Result Gathering

Dat
a

Result

Input
Data

Result
Processor Grid
(NoW or MPP)

ScaLAPACK

Figure 4: The ScaLAPACK NetSolve Server ParadigmScaLAPACK (Scalable Linear Algebra Package) is a library of high-performance linearalgebra routines for distributed-memory message-passing MIMD computers as well as net-13

works of workstations supporting PVM [21] or MPI [22]. ScaLAPACK was developed at theUniversity of Tennessee, Knoxville, Oak Ridge National Laboratory and the University ofCalifornia, Berkeley. It is a continuation of the LAPACK [7] project, which designed andproduced analogous software for workstations, vector supercomputers, and shared memoryparallel computers. The ScaLAPACK library contains routines for solving systems of lin-ear equations, least squares problems, and eigenvalue problems. The goals of ScaLAPACKinclude e�ciency, scalability, reliability and portability. ScaLAPACK views the underly-ing multi-processor system as a rectangular process grid. Global data is mapped to thelocal memories of the processes in that grid assuming speci�c data-distributions. For per-formance reasons, ScaLAPACK uses the two-dimensional block cyclic distribution schemefor dense matrix computations. Inter-process communication within ScaLAPACK is donevia the BLACS (Basic Linear Algebra Communication subprograms) [23, 24]. The BLACSis implemented in terms of the available native message-passing facilities and is speciallydesigned for linear algebra applications. All the details on ScaLAPACK can be found in thelatest edition of the User's Guide [12].Figure 4 is a very simple description of how the NetSolve server has been customizedto use the ScaLAPACK library. The customized server receives data input from the clientin the traditional way. Depending on the implementation environment, the server eitheralready has access to a set of processors, or must request those processors from the system.Once the required number of processors is available, the NetSolve server uses BLACS callsto set up the ScaLAPACK processor grid. ScaLAPACK requires that the data already bedistributed among the processors prior to any library call. This is the reason why each userinput is �rst 2-D block cyclic distributed in that grid when necessary. The server can theninitiate the call to ScaLAPACK and wait until completion of the computation. When theScaLAPACK call returns, the result of the computation is usually available on the processorsand is 2-D block cyclic distributed as well. The server then gathers that result and sendsit back to the client in the expected format. This process is completely transparent to theuser who does not even realize that a parallel execution is taking place.This approach is very promising. A client can use MATLAB on a PC and issue a sim-ple call like [x] = netsolve('eig',a) and have an MPP system use a high-performancelibrary to perform a large eigenvalue computation. We have designed a prototype of thecustomized server running on top of PVM [21] or MPI [22]. There are many research issuesarising with integrating parallel libraries in NetSolve. First, the agent currently needs toperform performance predictions for parallel algorithms running in various distributed sys-tems. Such predictions will be much more involved than the ones performed by the agent atthe moment. Furthermore, the agent may have to make choices regarding, for example theuse of ScaLAPACK or LAPACK for a given problem. Answering the question \is it better tosend this particular computation to a sequential LAPACK server or a parallel ScaLAPACKserver?" will certainly be di�cult in many cases. Second, the server itself must make choicesconcerning the processor grid size and the block size of the 2-D block cyclic distribution.This choice usually depends on the nature and the size of the computation to be performed.In the current prototype, we did not pay much attention to such choices, but a more real-14

istic version will have to yield the best performance for the number of processors available.Other issues are related to the actual operating system of the hardware platform and includeprocessor availability and accounting.4 NetSolve and Ninf4.1 A Brief Overview of NinfNinf[25], developed at the Electrotechnical Laboratory, Tsukuba, Japan, is a global network-wide computing infrastructure project which allows users to access computational resourcesincluding hardware, software, and scienti�c data distributed across a wide area networkwith an easy-to-use interface. Ninf is intended not only to exploit high performance in net-work parallel computing, but also to provide high quality numerical computation servicesand accesses to scienti�c database published by other researchers. Computational resourcesare shared as Ninf remote libraries and are executable at a remote Ninf server. Users canbuild an application by calling the libraries with the Ninf Remote Procedure Call, whichis designed to provide a programming interface similar to conventional function calls in ex-isting languages, and is tailored for scienti�c computation. In order to facilitate locationtransparency and network-wide parallelism, the Ninf MetaServer maintains global resourceinformation regarding computational server and databases. It can therefore allocate andschedule coarse-grained computations to achieve good global load balancing. Ninf also in-terfaces with existing network service such as the WWW for easy accessibility. Clearly,NetSolve and Ninf bear strong similarities both in motivation and general design. Allowingthe two systems to coexist and collaborate should lead to promising developments, and thenext section describes some preliminary work that has been done in this view.4.2 A Gateway Between Ninf and NetSolveThe content of this section results from documents exchanged between the NetSolve andNinf development teams during the early stages of this collaboration [26, 27]. A collaborationbetween the two projects seemed natural. However, some design issues prevent an immediateseamless integration of these two systems. First, the Ninf MetaServer and the NetSolveAgent, even though similar in intent, have di�erent philosophies. The NetSolve Agent,as seen in Section 1.4, is really a resource broker, whereas the Ninf MetaServer is a proxy.Second, the user interfaces of the two systems are very di�erent. The Ninf interface structureis based on C-like calling sequences. NetSolve, on the other hand, uses an abstract andlanguage-independent I/O description. These are the two major sources of di�culties, butthere are numerous details that contribute to make a seamless integration a non-trivial task(data transfer protocols, data types/structures supported, etc.).In order to overcome these issues, the Ninf team started developing two adapters: aNetSolve-Ninf adapter and a Ninf NetSolve-adapter. Thanks to those adapters, Ninf clients15

can use computational resources administrated by a NetSolve system and vice-versa. This�rst implementation of the adapters is written in Java, and is explained in Figure 5 and 6.
NetSolve−Ninf
 Adapter

NetSolve
 Client

NetSolve
 AgentNetSolve

 Server

 Ninf
Server Figure 5: Going from NetSolve to NinfFigure 5 shows the Ninf-NetSolve adapter allowing access to Ninf resource from a Net-Solve client. The adapter is just seen by the NetSolve agent as any other NetSolve server.When a NetSolve client sends a request to the agent, it can then be told to use the NetSolveadapter. The adapter performs protocol translation, interface translation, and data transferin such a way that the NetSolve client does not realize that it is not interacting with aNetSolve server. The adapter then asks a Ninf server to perform the required computationand returns the result to the user.

Ninf−NetSolve
 Adapter

NetSolve
 Agent

 Ninf
MetaServer

 Ninf
Client

 Ninf
Server

NetSolve
 ServerFigure 6: Going from Ninf to NetSolveFigure 6 is very similar to Figure 5. The NetSolve-Ninf adapter can be seen by the NinfMetaServer as a Ninf server, but in fact plays the role of a NetSolve client. This is a littledi�erent from the Ninf-NetSolve adapter because, as previously mentioned, the NetSolveagent is a resource broker whereas the Ninf MetaServer is a proxy server. Once the adapter16

receives the result of the computation from some NetSolve server, it transfers that resultback to the Ninf client.There are several advantages of using such adapters. NetSolve and Ninf are still youngprojects and as such are evolving rapidly. It would therefore be unrealistic to keep mod-ifying the design of either one of the projects for the sake of collaboration. By contrast,just updating the adapters to re
ects the evolutions of NetSolve or Ninf seems perfectlyreasonable. Some early implementation evaluations tend to show that using either systemvia an adapter causes acceptable overheads, mainly due to additional data transfers. Those�rst experiments appear encouraging and will de�nitely be extended to e�ectively enable anintegration of NetSolve and Ninf.5 Extending ImageVision by the Use of NetSolveIn this section, we describe how NetSolve can be used as a building block for a generalpurpose framework for basic image processing.5.1 Integrating the ImageVision Library into NetSolveThis project is under development at the Institute for Computer Graphics (ICG) at GrazUniversity of Technology, Austria. The scope of the project is to make basic image processingfunctions available for remote execution over a network. The goals of the project include twoobjectives that can be leveraged by NetSolve. First, the resulting software should prevent theuser from having to install complicated image processing libraries. Second, the functionalitiesshould be available via Java-based applications. Let us �rst describe brie
y the ImageVisionLibrary (IL) [28]. IL is an object-oriented library written in C++ by Silicon Graphics, Inc.(SGI) and shipped with their workstations. It contains typical image processing routines toaccess, manipulate, display, and store image data. It is also multi-threaded and can thereforemake use of multiprocessor machines and other special graphic hardwares. ImageVision hasbeen judged quite complete and mature by the research team at ICG and seems therefore agood choice as an \engine" for building a remote access image processing framework. Such aframework will make IL accessible from any platform (and not only from SGI workstations)and is described in [29].5.2 NetSolve as an Operating Environment for ImageVisionThe reasons why NetSolve has been a �rst choice for such a project are diverse. First,NetSolve is easy to understand, use, and extend. For example, it very simple to call NetSolveat the client level. Second, NetSolve is freely available. Third, NetSolve provides languagebinding to Fortran, C, and Java. And �nally, NetSolve's agent-based design allows loadmonitoring and balancing among the available servers. New NetSolve computational modulescorresponding to the desired image processing functionalities will be created and integrated17

into the NetSolve servers in the way explained in Section 1.2.2. The servers will then grantaccess to these functionalities via all the NetSolve user interfaces. A big part of the projectat ICG is to build a Java GUI to IL. This will be done with the NetSolve Java API nowavailable.
NetSolve
 Agent

SGI back endVisualization

NetSolve
 Client

 Java GUI

2. choice of a server

3. send data

4. retrieve result

1. netsl("rotate",...)

Figure 7: ImageVision and NetSolveFigure 7 shows a simple example of how ImageVision can be accessed via NetSolve. AJava GUI can be built on top of the NetSolve Java API. As shown on the �gure, this GUIo�ers visualization capabilities. For computations, it uses an embedded NetSolve client andcontacts SGI servers that have access to IL. The user of the Java GUI does not realize thatNetSolve is the back end of the system, or that they are using a SGI library without runningthe GUI on a SGI machine! The protocol depicted on Figure 7 is of course simplistic. Inorder to obtain acceptable levels of performance, the network tra�c needs to be minimized.There are several ways of approaching this problem. It would for instance be possible tokeep a \state" in the server, meaning that some server always keeps the most recent imageobjects in memory. It would also be possible to pack several operations in one single request.Finally, a possibility is for the client to give only references to images (URLs for instance)instead of image data. All these possibilities are under investigations at the moment.Integrating image processing functionalities in NetSolve will undoubtedly raise some new18

issues about NetSolve's design and abilities. We will be considering the integration of HTTPand FTP protocols within NetSolve, on-the-
y compression/decompression of user data, andsecurity considerations.6 ConclusionThe scienti�c community has long used the Internet for communication of email, software,and papers. Until recently there has been little use of the network for actual computations.This situation is changing rapidly and will have an enormous impact on the future.We have discussed throughout this paper how NetSolve can be customized, extended, andused for a variety of purposes. We �rst described in Section 2 how an entire Condor pool canbecome a NetSolve computational resource. Somewhat similarly, Section 3 describes howa parallel machine (MPP or network of workstations) can also be used as a single resourceby NetSolve via the use of the ScaLAPACK library. Those two experiments are extendingthe range of use of NetSolve in di�erent ways. They also raise new research issues. Oneof these issue, and perhaps the most important, concerns the agent resource managementstrategy. Indeed, the NetSolve agent performs performance predictions for all the suitableresources when it receives a user request. Such predictions are much more di�cult to realizefor a Condor pool or a parallel machine than for a single workstation. Much work willbe devoted to unifying our performance metrics so that they encompass the speci�cs ofthese new types of resources. We next discussed the NetSolve/Ninf collaboration. Ninf isa project somewhat similar to NetSolve, at least in its intent, and we described how thetwo projects can be bridged to provide a set of resources usable by either NetSolve of Ninfclients, as well as the preliminary work that has already been done in this view. Making suchmetacomputing projects interact is quite a challenge due to di�erences in designs, protocols,and user interfaces but is one step further toward a metacomputing standard. In Section 5,we gave an example of an entire application that uses NetSolve as an building block. Thisapplication is an extension of the ImageVision library to a more general image processingframework that allows remote access from a network. Network enabled servers, and NetSolvein particular, have helped in developing such a framework and NetSolve has been selectedas the operating environment. All these developments take place at di�erent levels in theNetSolve project and have had and will continue to have an impact on the project itself,causing it to improve and expand.References[1] S. Browne, J. Dongarra, E. Grosse, and T. Rowan. The Netlib Mathematical SoftwareRepository. D-Lib Magazine, Sep. 1995. Accessible at http://www.dlib.org/.[2] R. Leboucq, D. Sorensen, and C. Yang. ARPACK Users Guide. 1997.19

[3] A. Cline. Scalar- and Planar-Valued Curve Fitting Using Splines Under Tension. Com-munications of the ACM, 17:218{220, 1974.[4] D. Young, D. Kincaid, J. Respess, and R. Grimes. Itpack2c: a FORTRAN package forsolving large sparse linear systems by adaptive accelerated iterative methods. Technicalreport, University of Texas at Austin, Boeing Computer Services Company, 1996.[5] J. Mor�e, B. Garbow, and K. Hillstrom. Minpack : Documentation �le accessible at:"http://www.netlib.org/minpack/readme".[6] P. Swarztrauber. FFTPACK : Documentation �le accessible at:"ftp://ftp.ucar.edu/ftp/dsl/lib/�tpack/readme".[7] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide,Second Edition. SIAM, Philadelphia, PA, 1995.[8] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprogramsfor Fortran Usage. ACM Transactions on Mathematical Software, 5:308{325, 1979.[9] J. Dongarra, J. Du Croz, S Hammarling, and R. Hanson. An Extended Set of For-tran Basic Linear Algebra Subprograms. ACM Transactions on Mathematical Software,14(1):1{32, 1988.[10] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A Set of Level 3 Basic LinearAlgebra Subprograms. ACM Transactions on Mathematical Software, 16(1):1{17, 1990.[11] R.W. Freund and N.M. Nachtigal. QMR: A quasi-minimal residual method for non-Hermitian linear systems. Numer. Math., 60:315{339, 1991.[12] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra,S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-PACK Users' Guide. Society for Industrial and AppliedMathematics, Philadelphia, PA,1997.[13] H. Casanova, J. Dongarra, and K. Seymour. Client User's Guide to Netsolve. TechnicalReport CS-96-343, Department of Computer Science, University of Tennessee, 1996.[14] H Casanova and J. Dongarra. NetSolve: A Network Server for Solving ComputationalScience Problems. In Proc. of Supercomputing'96, Pittsburgh. Department of ComputerScience, University of Tennessee, Knoxville, 1996. to appear in The International Jour-nal of Supercomputer Applications and High Performance Computing.[15] Timothy A. Howes. The Lightweight Directory Access Protocol: X.500 Lite. TechnicalReport CITI-95-8, CITI, University of Michigan, July 1995.20

[16] K. Moore, S. Browne, J. Cox, and J. Gettler. Resource Cataloging and DistributionSystem. Technical Report CS-97-346, Computer Science Dept, University of Tennessee,Knoxville, TN, Jan. 1997.[17] I. Foster and K Kesselman. Globus: A Metacomputing Infrastructure Toolkit. In Proc.Workshop on Environments and Tools. SIAM, to appear.[18] M. Litzkow, M. Livny, and M.W. Mutka. Condor - A Hunter of Idel Workstations.In Proc. of the 8th International Conference of Distributed Computing Systems, pages104{111. Department of Computer Science, University of Winsconsin, Madison, June1988.[19] M. Litzkow and M. Livny. Experience with the Condor Distributed Batch System. InProc. of IEEE Workshop on Experimental Distributed Systems. Department of Com-puter Science, University of Winsconsin, Madison, 1990.[20] J. Pruyne and M. Livny. A Worldwide Flock of Condors : Load Sharing among Work-station Clusters. Journal on Future Generations of Computer Systems, 12, 1996.[21] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM :Parallel Virtual Machine. A Users' Guide and Tutorial for Networked Parallel Comput-ing. The MIT Press Cambridge, Massachusetts, 1994.[22] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI : The CompleteReference. The MIT Press Cambridge, Massachusetts, 1996.[23] J. Dongarra and R. van de Geijn. Two dimensional basic linear algebra communica-tion subprograms. Technical Report CS-91-138, Computer Science Dept, University ofTennessee, Knoxville, TN, 1991. Also LAPACK Working Note #37.[24] R.C. Whaley and J. Dongarra. A user's guide to the BLACS v1.1. Technical ReportCS-95-281, Computer Science Dept, University of Tennessee, Knoxville, TN, 1995. AlsoLAPACK Working Note #118.[25] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, and U. Nagashima. Ninf : Networkbased Information Library for Globally High Performance Computing. In Proc. ofParallel Object-Oriented Methods and Applications (POOMA), Santa Fe, 1996.[26] H. Casanova. Enabling Collaboration between NetSolve and Ninf. May 1997.[27] H. Najada, S. Matsuoka, and S. Sekigushi. Bridging Ninf and NetSolve. September1997.[28] G. Eckel, J. Neider, and E. Bassler. ImageVision Library Programming Guide. SiliconGraphics, Inc., Mountain View, CA, 1996.21

[29] M. Oberhuber. Integrating imagevision into netsolve. Available at http://www.icg.tu-graz.ac.at/mober/pub, October 1997.

22

