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Abstract

This paper a set of low-level, architecture characterization benchmarks that measure
the performance of dense numerical computations, access to the memory hierarchy
and MPI message passing of three high performance architectures. The machines
evaluated are the Cray T3E, IBM SP, and SGI Origin 2000 platforms at the CEWES
Major Shared Resource Center. Verification of the results was performed at the ARL
and ASC MSRCs. The data and benchmarks presented here should be of interest to
developers as a point of reference for application performance, modeling and scalability
analysis.



1 BLASBench

1.1 Introduction

BLASBench is a benchmark designed to evaluate the performance of some kernel oper-
ations of different implementations of the BLAS or Basic Linear Algebra Subroutines.
The BLAS are found in some form or another on most vendors’ machines and were
initially developed as part of LAPACK. Their goal was to provide a standardized API
for common Vector-Vector, Vector-Matrix and Matrix-Matrix operations. A version
of the BLAS is available from Netlib at http://www.netlib.org/. This version is
subsequently referred to as the reference version. The reference BLAS are completely
unoptimized Fortran codes intended as a reference for correctness to the vendors.

1.2 Goals of BLASBench

BLASBench aims to do the following;:
e Evaluate the performance of the BLAS routines in MFLOPS/sec.

e Provide information for performance modeling of applications that make heavy

use of the BLAS.

e Evaluate compiler efficiency by comparing performance of the reference BLAS
versus the hand-tuned BLAS provided by the vendor.

e Validate vendor claims about the numerical performance of their processor.

e Compare against peak cache performance to establish bottleneck, memory or

CPU.

1.3 Description

BLASBench currently benchmarks the three most common routines in the BLAS. They
are:

o AXPY - Vector addition with scale
o GEMV - Matrix-vector multiplication with scale
o GEMM - Matrix-Matrix multiplication with scale

The benchmark can run in either single or double precision. This is important
as many systems cannot sustain the additional memory bandwidth required by using
double precision data. The test space is highly tunable, as are some of the metrics
BLASBench reports. The benchmark reports its results in MFLOPS/sec and MB/sec.
These numbers are not computed from hardware statistics, but rather from the absolute
operation and memory reference count required by each algorithm.



1.4 How it works

BLASBench is a C program that calls BLAS routines written in Fortran so that dy-
namic memory allocation can be performed. For each test, BLASBench allocates its
memory in such a way that the total amount of memory taken up by each test is less
than or equal to the nearest power of two. The rationale for this is that our cache sizes
are always in a power of two. Once the memory is allocated, the arrays are initialized,
and the test is run for a certain number of iterations. By default, the iteration count
is not constant over each problem size. BLASBench trys to keep the amount of data
“touched” by each run constant. This means that larger problem sizes run for fewer
iterations. The effect of this is that the run time for each size is approximately con-
stant. BLASBench provides an option to keep the iteration count constant across all
tests. After each size is tested, the cache is flushed and BLASBench either proceeds
to the next size or repeats that size, depending on the options given to the program.
BLASBench allows you to repeat each size any number of times. This could be used to
validate the numbers from each size on a time-shared system. By default, BLASBench
calls the BLAS routines with the leading dimension of each array or vector set to the
exact size of that vector. This means that the BLAS routines operate on the entire
data set. Frequently, however, BLAS routines are called upon smaller portions of larger
arrays and matrices, thus an option is provided to keep the leading dimension constant
among every test. In this case, BLASBench allocates the largest possible data set, and
simply changes the working set size passed to each BLAS routine.

1.5 Using BLASBench
1.5.1 Obtain the Distribution

Download the latest release from either of the following URLs:

http://www.cs.utk.edu/~mucci/blasbench
ftp://cs.utk.edu/pub/mucci/blasbench.tar.gz

Now unpack the installation using gzip and tar.

kiwi> gzip -dc blasbench.tar.gz | tar xvf -
kiwi> cd blasbench

kiwi> 1s

Ccvs/ Version blasgraph.gp index.html
Makefile bb.c conf/ make.def@
README blasbench.html doc/ samples/



1.5.2 Build the Distribution

First we must configure the build for our machine, OS and BLAS libraries. All con-
figurations support the reference BLAS if available. Running make with no arguments
lists the possible targets.

kiwi> make
Please use one of the following targets:

sunos sunos4
solaris sunosb
sunmp

alpha

linux

hppa

sgi

sgi-o2k o2k
sgi-pca pca
t3e

t3d

ibm-pow2 ibm-sp2 sp2 pow2
ibm-pow pow

Configure the build. Here, we are on a Solaris workstation.

kiwi> make solaris
1n -s conf/make.solaris make.def

Please check the VBLASLIB variable in make.def and make sure
that it is pointing to the vendor BLAS library if one exists.
Then type ’make’.

Examine the make.def file to ensure proper compiler flags and paths to the differ-
ent BLAS libraries. The BLASLIB variable should contain the absolute path to the
reference BLAS library and the VBLASLIB variable should contain the absolute path
to the vendor’s BLAS library. If one or the other is not available, just leave it blank
and that specific executable will not be generated.

Now build it. Depending on whether or not both BLASLIB and VBLASLIB are
set, one or two executables will be generated.



kiwi> make
cc -fast -dalign -DREGISTER -c bb.c -o bb.o
if [ -f "/src/icl/LAPACK_LIBS/blas_SUN4SOL2.a" ];
then f77 -o blasbench bb.o /src/icl/LAPACK_LIBS/blas_SUN4S0OL2.a ; fi;
if [ -f "/kevlar/homes/susan/bin/solaris/libsunperf.a" ];
then £f77 -o vblasbench bb.o /kevlar/homes/susan/bin/solaris/libsunperf.a ;
fi;

Now type ’make run’.

1.5.3 Running BLASBench

BLASBench can be run by hand, but it is intended to be run through the makefile.
Running it via the makefile automates the collection and presentation process. By
default, the makefile runs both executables with the arguments -c -o -e 1 -i 1.
This says that the iteration count should be constant, the output should be reported
in MFLOPS /sec, each size should be repeated only once and the iteration count should
be set to one. You can change the default settings by changing the BBOPTS variable
in the makefile after you have configured the distribution.

kiwi> make run
if [ -x blasbench ]; then blasbench -e 1 -i 1 -c -o -v > daxpy.dat; fi
if [ -x blasbench ]; then blasbench -e 1 -i 1 -¢c -o -a > dgemv.dat; fi

if [ -x blasbench ]; then blasbench -e 1 -i 1 -¢c -o -t > dgemm.dat; fi

if [ -x vblasbench ]; then vblasbench =-e 1 -i 1 -c -o -v > vdaxpy.dat; fi
if [ -x vblasbench ]; then vblasbench -e 1 -i 1 -c -o -a > vdgemv.dat; fi
if [ -x vblasbench ]; then vblasbench -e 1 -i 1 -c -o -t > vdgemm.dat; fi

Now do a make datafiles.

At this point, depending on whether or not you have GNUplot installed on your
system, you have the choice of either packaging up the datafiles for analysis on another
machine, or generating the graphs in place.

First we must package up the datafiles.

kiwi> make datafiles



daxpy-kiwi.dat
dgemm-kiwi.dat
dgemv-kiwi.dat
vdaxpy-kiwi.dat
vdgemm-kiwi.dat
vdgemv-kiwi.dat
blasgraph.gp
compare.gp
custom.gp
vcustom.gp
kiwi.info

Now do a ’make graphs’.
If you don’t have GNUplot, you can do this on another machine
using the kiwi-bp-datafiles.tar file.

Now make the graphs.

kiwi> make graphs
gnuplot < custom.gp > blasperf.ps
UTK BLAS graph is in blasperf.ps

gnuplot < vcustom.gp > vblasperf.ps
Vendor BLAS graph is in vblasperf.ps

gnuplot < compare.gp > compare.ps
Vendor BLAS graph is in vblasperf.ps

This will result in either 1 or 3 graphs. Each graph contains the performance in
megaflops of all three operations. They are named as follows:

e blasperf.ps - Postscript file of the reference BLAS.
e vblasperf.ps - Postscript file of the vendor’s BLAS.

e compare.ps - Comparison of the two.

1.5.4 Arguments to BLASBench

kiwi> blasbench -h
Usage: blasbench [-vatsco -x # -m # -e # -i #]
-v AXPY dot product benchmark



-a GEMV matrix-vector multiply benchmark

-t GEMM matrix-matrix multiply benchmark

-s Use single precision floating point data

-c Use constant number of iterations

-0 Report Mflops/sec instead of MB/sec

-x Number of measurements between powers of 2.

-m Specify the log2(available physical memory)

-e Repeat count per cache size

-1 Hold LDA and loop over sizes of square submatrices
-d Report dimension statistics instead of bytes
-1 Maximum iteration count at smallest cache size

Default datatype : double, 8 bytes
Default datatype : float, 4 bytes
Defaults if to tty : -vat -x1 -m24 -e2 -1100000
Defaults if to file: -t -x1 -m24 -el -1100000



1.6 Results on the CEWES MSRC Machines

The following graphs are taken from our runs on each of the CEWES MSRC machines
during dedicated time. The machines are the SGI Origin 2000, the IBM SP and the
Cray T3E. The peak MFLOPS is as reported by the vendor and is simply computed
as a product of the clock speed times the number of independant FMA’s that can be
computed per cycle. The cache size and theoretical peak MFLOPS for each machine

is listed as follows.

Machine Cache Peak
SGI Origin 2000 | 32K,4MB | 390
IBM SP 128K 240
Cray T3E 8K,96K 900




1.6.1 DAXPY
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Vendor BLAS performance for DAXPY at CEWES MSRC
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Figure 1: Performance of Vector-Vector Addition with Scale

The DAXPY operation is highly bound by the latency of cache and the throughput
of the main memory subsystem. Latency is a factor because data is continuously being
replaced in the cache. Every line that is loaded is used once and then discarded. The
data from each vector is never re-used. Thus, for each cache line, we must incur the cost
of flushing the dirty line and loading the new data. Because the data items are accessed
sequentially, cache features like requested data first! line buffering and non-blocking?
help very little.

The performance of this benchmark is highly dependent on cache line size, but
independent of cache size. The reason is that the cache simply adds latency to memory
accesses. As there is no data re-use, the cache is of zero benefit. The size of a cache
line reflects the size of the unit of transfer between cache and main memory. Moving a

IThe cache controller returns the missed-upon operand first and then the rest of the line.
ZMultiple outstanding misses can be satisfied at once.



lot of data at once is a performance win because of high latency of accessing the main
memory.

In figure 1 can been seen the results of performing vector-vector addition for in-
creasing vector lengths of double words. Here we find that the SP far outperforms the
other two machines. Interestly enough, the SP has the simplest memory subsystem and
the largest line size at 128 bytes. Although, the T3E had the stream buffers enabled
its performance was still poor. The Origin’s non-blocking cache didn’t help either.
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1.6.2 DGEMYV
C =adz + Py

Vendor BLAS performance for DGEMV at CEWES MSRC
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Figure 2: Performance of Matrix-Vector Multiplication with Scale

The DGEMYV operation is an operation that stresses both the capacity and the
latency of the cache. It provides us with some opportunity of cache re-use provided
the implementation is blocked or tiled such that portions of the matrix and vectors
remain in cache as long as possible.

Figure 2 shows the performance of this operation on the three machines under study.
Note that while performance of the SP and T3E nearly tripled that for DAXPY, the
Origin only doubled. We attribute again to its small line size of 64 bytes. The T3k
experienced a large performance improvement because of its hardware prefetching.
This time the prefetching is highly effective because data is re-used and the ratio of
floating point operations to number of memory references is greater.
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1.6.3 DGEMM
C'= aAB + 5C

Vendor BLAS performance for DGEMM at CEWES MSRC
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Figure 3: Performance of Matrix-Matrix Multiplication with Scale

Matrix-matrix multiplication performs well because it provides a lot of opportunity
for cache re-use. By tiling the matrices, the working set can be reduced to the size
of cache and thus only capacity misses are taken. For this reason, the performance
of GEMM has long since served as a good indicator of a machine’s peak practical
performance. A machine with an adequate memory subsystem like the SP can achieve
very high efficiencies, i.e. high percentage of the vendor’s published MFLOP rating.

The reader should notice that clock speed and L2 cache size do not play as critical
a role in the performance of this routine as one might think. The spikes in the T3E’s
performance curve are due to the matrix dimension being a multiple of the block size.
For other cases, the GEMM routine must engage in rather lengthy cleanup code. The
small cache/line size of the T3E simply exaggerates the performance loss. The SP,
with its large line size and ability to issue two multiply-add instructions as well as
a load/store per cycle does quite well, reaching approximately 90 percent efficiency.
The Origin appears to suffer from its small cache line size and its inability to issue a
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load /store every cycle. Like the Power2, the R10000 processor can issue two multiply-
adds per cycle, however, its memory system does not appear to be able to supply the
operands fast enough for peak performance.

13



1.7 Future work

e Provide an option for measuring specific problem sizes and ranges.
e Provide an option to specify the problem sizes in dimensionality.

e Provide an option to specify the starting problem size.

e Use specialized, high-resolution timers where available.

e Add additional BLAS routines TRSM, TRSV, and SYR2K.

e Add parameters to tune the placement and padding of the arrays.
e Standardize configuration with GNU autoconf.

e Grab machine configuration and store it with each run.

e Standardize data/graph naming scheme with timestamp.
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2 CacheBench

2.1 Introduction

CacheBench is a benchmark designed to evaluate the performance of the memory hi-
erarchy of computer systems. Its specific focus is to parameterize the performance of
possibly multiple levels of cache present on and off the processor. By performance, we
mean raw bandwidth in megabytes per second. Of interest to us is the ability of the
cache to sustain large, unit-stride, floating point workloads.

2.1.1 Cache Architecture

Caches are essentially very small, high speed memories designed to speed computation
among repeatedly accessed data. They are found on virtually all commercially available
processors from small sixteen bit embedded microprocessors to the large, multi-million
transistor RISC chips found in today’s workstations and supercomputers. Caches ex-
ploit both spatial and temporal locality. Spatial locality is the concept that data items
that are physically located near each other in main memory will likely be accessed
together. Temporal locality is the concept that a data item that is frequently accessed
will likely be accessed again in the near future.

When the processor wishes to operate on an item from main memory, it issues a load
to the cache. If the item is resident in the cache, this is called a cache hit. If not, it is
called a cache miss, and the load request is forwarded to main memory, which moves the
data from main memory into a cache line. A detailed discussion of cache and processor
architecture is well beyond the scope of this paper, but interested readers are referred
to Hennessey and Patterson’s, Computer Architecture, A Quantitative Approach. An
example in this textbook serves as the basis for this benchmark.

2.1.2 Goals of CacheBench

The goal of this benchmark is to establish peak computation rate given optimal cache
reuse and to verify the effectiveness of high levels of compiler optimization on tuned
and untuned codes. Many scientific applications in use have significant resource re-
quirements in terms of memory footprint. High speedups of these applications are
often achieved through exploiting the cache. This is especially true given the widening
gap between processor speed and main memory. Thus, this benchmark will provide
us with a good basis for application performance modeling and prediction for those
applications that have already been substantially tuned for cache reuse.
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2.2 How it works

CacheBench currently incorporates eight different benchmarks. FEach one performs
repeated access to data items on varying vector lengths. Timings are taken for each
vector length over a number of iterations. Computing the product of iterations and
vector length gives us the total amount of data accessed in bytes. This total is then
divided by the total time to compute a bandwidth figure. This figure is in megabytes
per second. Here we define a Megabyte as being 10242 or 1048576 bytes. In addition
to this figure, the average access time in nanoseconds per each data item is computed
and reported. The tests are as follows.

e Cache Read

e Cache Write

e Cache Read/Modify/Write

e Hand tuned Cache Read

e Hand tuned Cache Write

e Hand tuned Cache Read/Modify /Write
e memset() from the C library

e memcpy() from the C library

The first six of these tests access their data through arrays of a predefined base type.
This type is set at compile time and defaults to double. The rationale for this is that
some systems perform memory access differently depending on the functional unit that
generated the miss. The default data-type can be altered by setting the USE <type>
compiler definition in the Makefile. Currently USE_CHAR, USE_INT, USE FLOAT and
USE_DOUBLE are supported.

The first three of the tests are intended to provide us with information about how
good the compiler is. They are very straightforward consisting of only a few lines of
code.

The second three are intended to reflect portable, tuned code as found in production
applications. Here, the optimizer has little opportunity to enhance the code, and in
fact, the numbers from these three tests often do not change very much given different
levels of optimization.

The last two tests are included as points of comparison. These routines are often
heavily used in C applications, but vary greatly in efficiency. One would expect high
performance out of these benchmarks in terms of memory bandwidth, but more often
than not, the results have been disappointing.

All of these benchmarks runs for a fixed amount of time, which is tunable at run-
time. The rationale for this is the widely varying performance of processors these
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days. CacheBench intends to provide the user with relatively quick feedback about the
memory performance of the machine in use. However, this timing restriction limits the
accuracy with which we can report the results. A faster machine that runs the test for
a higher number of iterations has less relative error. This makes accurate, statistical
analysis difficult but it will be fixed in the next release.

2.2.1 Cache Read

This benchmark is designed to provide us with read bandwidth for varying vector
lengths in a compiler optimized loop. For the cases where the vector length is less than
the cache size, the data will come completely from cache and the resulting bandwidth
will be much higher.

The pseudo code for this test is as follows:

for all vector length
timer start
for iteration count
for I = 0 to vector length
register += memory[I]
timer stop

2.2.2 Cache Write

This benchmark is designed to provide us with write bandwidth for varying vector
lengths in a compiler optimized loop. This benchmark is greatly affected by archi-
tectural peculiarities in the memory subsystem. Replacement policy, associativity,
blocking and write buffering all play important factors in the performance of this
benchmark. For example, a write-back cache will show a much higher bandwidth be-
cause it frequently avoids unnecessary references to main memory. In addition, many
systems coalesce and buffer multiple writes to cache/memory. This can hide much of
the latency of the underlying hardware.

for all vector length
timer start
for iteration count
for I = 0 to vector length
memory[I] = register++
timer stop
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2.2.3 Cache Read/Modify/Write

This benchmark is designed to provide us with read /modify /write bandwidth for vary-
ing vector lengths in a compiler optimized loop. This benchmark generates twice as
much memory traffic, as each data item must be first read from memory/cache to regis-
ter and then back to cache. Each direction of transfer is counted in the computation of
bandwidth. Bandwidth for this test is often a bit higher than the sum of the previous
two tests. The benefit comes from compilers’ ability to better schedule operations and
group memory accesses to amortize the cost of the store.

for all vector length
timer start
for iteration count
for I = 0 to vector length
memory [I]++
timer stop

2.2.4 Hand Tuned Versions

A full description of the hand tuned versions of these codes is beyond the needs of
this paper. However, to provide some background, the following optimizations were
applied:

e Degree eight unrolling. Each loop now references eight memory elements instead
of one.

e Dependency analysis. Each operation is independent of the previous seven.

e Register re-use. Registers are allocated to memory locations and reused whenever
possible.

The optimizations reflect what a minimally good compiler should be doing on these
simple loops. In CacheBench, if we see our compiler loops not reaching the performance
of our tuned loops, we can conclude that our compiler is poor. The complexity of these
loops is minimal and any compiler should be able to optimize them. It is possible, that
our compiler optimized loops will outperform our hand-tuned loops, if the compiler
inserts prefetching and coalesces memory operations into block transfers.

2.2.5 Memory Set

The C library provides us with the function memset () to initialize regions of memory.
This function is often highly optimized as it is widely used both in and outside of the
operating system. Often, this function is either assembly code placed inline in the
executable from a header file, or it is an intrinsic function that the compiler recognizes
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and replaces automatically. Some systems have additional hardware on chip to perform
this operation, specifically when the value to be set to is zero. This benchmark allows us
to compare the numbers from our two formulations of memory write with this version.
More often than not, we find that both versions outperform a call to this routine.

for all vector length
timer start
for iteration count
for I = 0 to vector length
memset (vectorl,0xf0,length)
timer stop

2.2.6 Memory Copy

The C library also provides us with the function memcpy () to copy regions of memory.
It is also usually an intrinsic or inline assembler function. This benchmark allows us to
compare the numbers from our two versions of memory read /modify /write with this
version. Frequently we find that memcpy () is not as fast as it should be. While this
function may not appear explicitly in Fortran application codes, it is used by many of
the supporting libraries, like MPI.

for all vector lengths
timer start
for iteration count
for I = 0 to vector length
memcpy (dest,src,vector length)
timer stop

2.3 Using CacheBench
2.3.1 Obtain the distribution

Download the latest release from either of the following URLs:

http://www.cs.utk.edu/~mucci/cachebench
ftp://cs.utk.edu/pub/mucci/cachebench.tar.gz

First, we must unpack the installation using gzip and tar.

kiwi> gzip -dc cachebench.tar.gz | tar xvf -
kiwi> cd cachebench
kiwi> 1s
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cvs/

Version cachegraph.gp

Makefile cachebench.c conf/

README

cachebench.html doc/

2.3.2 Build the distribution

First we must configure the build for our operating system.

arguments lists the possible targets.

kiwi> make

Please use one of the following targets:

Configure the build. Here, we are on a Solaris workstation.

sunos sunos4
solaris sunosb
sunmp

alpha

linux

hppa

sgi-rdk
sgi-rbk
sgi-r8k
sgi-ri10k
sgi-o2k o2k
sgi-pca pca
t3e

t3d

ibm-pow2 ibm-sp2 sp2 pow2
ibm-pow pow

kiwi> make solaris
1n -s conf/make.solaris make.def

index.html
make.def
samples/

Running make with no

Examine the make.def file to ensure that the proper compiler flags are being used.
Full optimization should be enabled by default. Some machines have model specific
flags that can significantly affect the performance of this benchmark. Some of the
make.def files have these options commented out. The user should examine his sys-
tem and be sure that the appropriate options are enabled.

kiwi> make cachebench
cc -fast -dalign -DREGISTER -DUSE_DOUBLE -o cachebench cachebench.c
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2.3.3 Running CacheBench

While CacheBench can be run from the command line, it is designed executed through
use of the Makefile. The resulting datafiles for each of the runs will be left in the file:
tmp/<test>-<HOSTNAME>-<DATATYPE>.dat.

Immediately after running, the Makefile will attempt to graph the results. If
GNUPlot is not available on this system, simply copy cacheperf-<HOSTNAME>-<DATATYPE>.tar
to another machine that has GNUPlot, extract the tar file and process each GNUPlot
script file with gnuplot < <HOSTNAME>.gp > <file>.ps.

kiwi> make run
Measuring Read...
Measuring Write...
Measuring RMW...
Measuring Tuned Read...
Measuring Tuned Write...
Measuring Tuned RMW...
Measuring memcpy()...
Measuring memset()...

[commands deleted for brevity].

2.3.4 Arguments to CacheBench

Usage: cachebench -rwbtsp [-x #] [-m #] [-d #] [-e #]
-r Read benchmark
-w Write benchmark
-b Read/Modify/Write benchmark
-t Use hand tuned versions of the above
-s memset() benchmark
-p memcpy() benchmark
-x Number of measurements to take between powers of 2
-m Specify the log base 2 of the available physical memory
-d Number of seconds per iteration
—e Number of times to repeat test for each vector size

Datatype used is double, 8 bytes

Defaults if tty: -rwbsp -x1 -m24 -d5 -e2
Defaults if file: -b  -x1 -m24 -d5 -el
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Note the fact that the defaults are different depending on whether or not the output
is directed to a TTY or a file. Again, the best way to run cachebench is with the
Makefile.
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2.4 Results on the CEWES MSRC Machines

The following graphs are taken from our runs on each of the CEWES MSRC machines
during dedicated time. Those machines are the SGI Origin 2000, the IBM SP and the
Cray T3E. The cache size and theoretical peak MFLOPS for each machine are listed
as follows. The peak MFLOPS is as reported by the vendor and is simply computed
as a product of the clock speed times the number of independent FMA’s that can be
computed per cycle.

Machine Cache Peak
SGI Origin 2000 | 32K,4MB | 390
IBM SP 128K 240
Cray T3E 8K,96K 900
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2.4.1 Cache Reads

Cache Performance of read at CEWES MSRC
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Figure 4: Performance of Compiler Optimized Memory Read

In figures 4 and 5, we notice that the read performance of the Cray T3E is much
lower for the hand-tuned version. For the compiler optimized version, we find a two
to threefold improvement for vector sizes that lie in cache. The Cray compiler seems
to have a very difficult time recognizing what optimized code is doing. This means
that tuned applications ported to the Cray might not perform very well. For the SP2
and the Origin 2000, the only difference we find is the steepness of the portion of the
curve lying substantially below the cache size. Here, we are seeing the overhead of
the compiler’s code that handles the special cases where the vector length is not a
multiple of the degree of unrolling. In the tuned version, this residual code does not
exist and thus there are no branches in the underlying assembly language. The SP has
a hardware loop capability allowing zero cycle branches. For the hand-tuned version,
there is no residual code, so the compiler simply sets up the hardware loop and lets it
run with no overhead. Thus, we see no performance falloff at smaller vector lengths.
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Figure 5: Performance of Hand-tuned Memory Read
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2.4.2 Cache Writes

Cache Performance of write at CEWES MSRC
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Figure 6: Performance of Compiler Optimized Memory Write

In figures 6 and 7, we can see that the performance of the compiler optimized loop is
equal to or greater than that of the hand tuned loop as is the case for reads. The reader
will notice that for vectors residing completely in L1 cache, the write bandwidth is equal
to or greater than the read bandwidth. On the Origin, the L2 cache is significantly
slower to write to than to read from. We infer that the compiler is probably prefetching
on the read case and that there is inadequate pipelining between L2 cache and memory.
For the T3E, we again notice how poorly the compiler does on the optimized code.
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2.4.3 Cache Read/Modify/Write

Cache Performance of rmw at CEWES MSRC
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Figure 8: Performance of Compiler Optimized Memory Read/Modify /Write

Of interest in figure 8 and 9 is the difference in performance of the IBM SP. Note
that in the hand-tuned version, performance averages about six hundred megabytes
per second better than that of the compiler optimized version. In the tuned version,
the compiler is probably scheduling/aggregating memory access into double-word loads
and stores, a unique feature of this architecture. This probably happens in the com-
piler optimized version, but the fact that the compiler must also unroll the loop and
optimize register usage seems to complicate its analysis. Also of interest is the better
performance on the T3E in level two cache for the untuned version. Software pipelin-
ing, the mixing instructions from one iteration to another may be aiding this code to
hide the latency of the level two cache misses. We are seeing this behavior in the case
for reads and writes as well.
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2.4.4 memset()

Cache Performance of memset() at CEWES MSRC
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Figure 10: Performance of memset ()

2.4.5 memcpy()

Figures 10 and 11 are provided as reference. The performance of these two routines,
when compared with the write and read-modify-write benchmark, clearly indicates that
the user would be better off using a typed version coded in C or Fortran rather than
these library calls. The reason for this is that they are often coded at the byte level for
maximum flexibility, not performance. By knowing the type and the alignment of the
data ahead of time, the user could easily write a simple loop, let the compiler optimize
it and still see much better performance. The only exception is the case where the
vector is smaller than L2 cache on the T3E.
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2.5 Future work

e Provide option for measuring specific vector lengths.

e Use specialized, high-resolution timers where available.

e Add benchmark for pointer traversal to measure latency of cache hit and miss.
e Add parameters to tune the placement and padding of the vectors.

e Change from constant run-time to constant iterations.

e Add unoptimized, untuned case for a baseline.

e Standardize configuration with GNU autoconf.

e Grab machine configuration and store it with each run.

e Standardize data/graph naming scheme with timestamp.
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3

3.1

MPBench

Introduction

MPBench is a benchmark to evaluate the performance of MPI and PVM on MPP’s
and clusters of workstations. It uses a flexible and portable framework to allow bench-
marking of any message passing layer with similar send and receive semantics. It
generates two types of reports, consisting of the raw data files and Postscript graphs.
No interpretation or analysis of the data is performed, it is left entirely up to the user.

3.2 How it works

MPBench currently tests seven different MPI and PVM calls. MPI provides much richer
functionality that PVM does, so some of the benchmarks have been implemented in
terms of lower level PVM functions. The following functions are measured.

Benchmark Units Num Procs
Bandwidth Megabytes/sec 2,3
Roundtrip Transactions/sec 2,3
Application Latency | Microseconds 2.3
Broadcast Megabytes/sec 16
Reduce Megabytes/sec 16
AllReduce Megabytes/sec 16

AllReduce is a reduction operation in which all tasks receive the result. This func-
tion is not available in PVM, so it is emulated by performing a reduce followed by a
broadcast.

All tests are timed in the following manner.

1.
2.
3.

Set up the test.
Start the timer.

Loop of operations over the message size as a power of two and the iteration
count.

Verify that those operations have completed.

. Stop the timer.

Compute the appropriate metric.
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In MPBench, we avoid calling the timer around every operation, because this often
results in the faulty reporting of data. Some of these operations on MPP’s take so little
time, that the accuracy and latency of accessing the system’s clock would significantly
affect the reported data. Thus it is only appropriate that we perform our timing
operations outside the loop. Some MPP’s and workstations have the capability to access
the system’s timer registers, but this is not portable and would introduce unnecessary
complexity into the code to compensate for situations where the timing routines were
not efficient.

For simplicity purposes, we will refer to two different types of tasks in MPBench,
the master of which there is only one, and the slaves of which their may be any number.
The point-to-point tests only use two tasks, a master and a slave. The other tests run
with any number of slaves, the default being sixteen.

MPBench averages performance over a number of iterations. The user should be
aware that MPBench will use a lower number of iterations than the one specified for
certain situations. This should not effect the accuracy of the results, as the iteration
count is only changed when the message lengths are prohibitively large.

By default, MPBench measures messages from 4 bytes to 16 Megabytes, in powers
of two for 500 iterations. We iterate to make sure that the cache is “warmed” with
the message data. This is done because applications typically communicate data soon
after computing on it.

The previous version of MPBench did not pay attention to the placement of slave
tasks. This caused the user to make false claims about the performance of NUMA
multiprocessors like the Origin 2000 where a two task job will be scheduled on proces-
sors on the same physical board. MPBench now measures point-to-point performance
on MPI jobs with 2 and 3 tasks. For the 3 task case, task 1 (of 0, 1 and 2) remains
idle until the end of the run. In fact, this arrangement does not guarantee that the
remote processor is offboard, as that is dictated by the MPI environment. However,
our measurements seem to indicate that task 2 in a three task job always performs
slightly than task 1 of a two task job. We attribute this to extra time required to
arbitrate and negotiate the link.

3.2.1 Notes on PVM

PVM has a number of options to accelerate performance. For this benchmark, we are
interested in the optimal performance of the machine. In order to do so, we use the
following options where possible:

e Direct Routing - This option sets up direct TCP/IP connections between processes
as opposed to forward messages via daemon processes running on each node. It
is established by calling pvm_setopt (PvmRoute, PvmRouteDirect) .
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o In-place Packing - All messages in PVM must be packed into PVM buffers before
transmission. This option tells PVM not to perform any additional copies of the
data, but to transmit the data directly out of the application’s buffer. This option
precludes the use of any data-translation with PVM. By default, in-place packing
is used whenever pvm_psend() is called, which is what is used in this program.

3.2.2 Notes on MPI

There are many different send and receive calls in MPI each with different semantics
for usage and completion. Here we focus on the default mode of sending. This means
we are not using any nonblocking or immediate communication calls. Each MPI im-
plementation handles the default mode a bit differently, but the algorithm is usually a
derivative of the following.

send first chunk of message
if message is larger than size N
wait for reply and destination address Y
send rest of message directly to address Y
else
if more to send
send rest of message
endif

MPI does this to avoid unnecessary copies of the data, which usually dominates the
cost of any communication layer. The receiving process will buffer a limited amount
of data before informing the sender of the destination address in the application. This
way, a large message is received directly into the application’s data structure rather
than being held in temporary storage like with PVM. The problem with this is that
for large messages, sends cannot complete before their corresponding receives. This
introduces possibly synchronization and portability problems.

3.2.3 Bandwidth

MPBench measures bandwidth with a doubly nested loop. The outer loop varies the
message size, and the inner loop measures the send operation over the iteration count.
After the iteration count is reached, the slave process acknowledges the data it has
received by sending a four byte message back to the master. This informs the sender
when the slaves have completely finished receiving their data and are ready to proceed.
This is necessary, because the send on the master may complete before the matching
receive does on the slave. This exchange does introduce additional overhead, but given
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a large iteration count, its effect is minimal.

The master’s pseudo code for this test is as follows:

do over all message sizes
start timer
do over iteration count
send(message size)
recv(4)
stop timer

The slave’s pseudo code is as follows:

do over all message sizes
start timer
do over iteration count
recv(message size)
send(4)
stop timer

3.2.4 Roundtrip

Roundtrip times are measured in much the same way as bandwidth, except that, the
slave process, after receiving the message, echoes it back to the master. This bench-
mark is often referred to as ping-pong. Here our metric is transactions per second,
which is a common metric for database and server applications. No acknowledgment
is needed with this test as it is implicit given its semantics.

The master’s pseudo code for this test is as follows:

do over all message sizes
start timer
do over iteration count
send(message size)
recv(message size)
stop timer

The slave’s pseudo code is as follows:

do over all message sizes
start timer
do over iteration count
recv(message size)
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send(message size)
stop timer

3.2.5 Application Latency

Application latency is something relatively unique to MPBench. This benchmark can
properly be described as one that measures the time for an application to issue a
send and continue computing. The results for this test vary greatly given how the
message passing layer is implemented. For example, PVM will buffer all messages for
transmission, regardless of whether or not the remote node is ready to receive the data.
MPI on the other hand, will not buffer messages over a certain size, and thus will block
until the remote process has executed some form of a receive. This benchmark is
the same as bandwidth except that we do not acknowledge the data and we report our
results in units of time. This benchmark very much represents the time our application
will be waiting to do useful work while communicating.

The master’s pseudo code for this test is as follows:

do over all message sizes
start timer
do over iteration count
send(message size)
stop timer

The slave’s pseudo code is as follows:

do over all message sizes
start timer
do over iteration count
recv(message size)
stop timer

3.2.6 Broadcast and Reduce

The two functions are very heavily used in many parallel applications. Essentially these
operations are mirror images of one another, the difference being that reduce reverses
the direction of communication and performs some computation with the data during
intermediate steps. Both of these benchmarks return the number of megabytes per
second computed from the iteration count and the length argument given to function
call.

With PVM, broadcast and reduce will not complete unless the application has per-
formed a barrier immediately prior to the operation. Thus, with PVM both of these

37



tests include the cost of a barrier operation every iteration.

Here is the pseudo code for both the master and the slave:

do over all message sizes
start timer
do over iteration count
reduce or broadcast(message size)
stop timer

3.2.7 AllReduce

AllReduce is a derivative of an all-to-all communication, where every process has data
for every other. While this operation could easily be implemented with a reduce fol-
lowed by a broadcast, that would be highly ineflicient for large message sizes. The
PVM version of this test does this exactly, plus an additional barrier call. The goal
of including this benchmark is to spot poor implementations so that the application
engineer might be able to restructure his communication.

Here is the pseudo code for both the master and the slave:

do over all message sizes
start timer
do over iteration count
allreduce(message size)
stop timer

3.3 Using MPBench
3.3.1 Obtain the Distribution

Download the latest release from either of the following URLs:

http://www.cs.utk.edu/~mucci/mpbench
ftp://cs.utk.edu/pub/mucci/mpbench.tar.gz

Now unpack the installation using gzip and tar.

pebbles> gzip -dc mpbench.tar.gz | tar xvf -

pebbles> cd mpbench

pebbles> 1s

Ccvs/ README index.html=* make.def mpbench.c
Makefile conf/ lib/ make_graphs.sh* samples/
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3.3.2 Build the distribution

First we must configure the build for our machine, OS and release of MPI. All config-
urations support PVM. Before configuration make with no arguments lists the possible
targets.

pebbles> make
Please configure using one of the following targets:

sp2

t3e

pca-r8k

o2k
sgi32-lam
sgi64-lam
linux-lam
linux-mpich
solaris-mpich
sun4-mpich
alpha

Configure the build. Here, we are on a SunOS workstation, using MPICH as our
MPI implementation.

pebbles> make sund-mpich
rm -f make.def
1n -s conf/make.def.sun4-mpich make.def

Now look at the available targets, and build one

pebbles :mpbench> make
Please use one of the following targets:

mpi,pvm,all
run-mpi,run-pvm,run
graph-mpi,graph-pvm,graphs

pebbles> make all

gcc  -02 -DINLINE -I/src/icl/MPI/mpich/include -DMPI -c mpbench.c -o mpibench.o

gcc  -02 -DINLINE ./mpibench.o -o mpi_bench -L/src/icl/MPI/mpich/1ib/sun4/ch_p4 -1lmpi
sed -e "s:MPIRUNCMD:mpirun:g" < lib/mpibench.sh | \

sed -e "s:MPIRUNOPTS::g" | \
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sed -e "s:MPIRUNPROCS:-np:g" | \

sed -e "s:MPIHOSTFILE:-machinefile:g" | \

sed -e "s:MPIRUNPOSTOPTS:mpi_bench:g" > mpi_bench.sh

chmod +x mpi_bench.sh

gcc  -I/shag/homes/mucci/pvm3/include -02 -DINLINE -DPVM -c mpbench.c -o pvmbench.o
gcc  -02 -DINLINE ./pvmbench.o -o /shag/homes/mucci/pvm3/bin/SUN4/pvm_bench \\

\ -L/shag/homes/mucci/pvm3/1ib/SUN4 -1pvm3 -lgpvm3

cp lib/pvmbench.sh /shag/homes/mucci/pvm3/bin/SUN4/pvm_bench.sh

chmod +x /shag/homes/mucci/pvm3/bin/SUN4/pvm_bench.sh

3.3.3 Running MPBench

While MPBench can be run from the command line, it is designed to be run from via
the Makefile. When running MPI, sometimes it is required that you set up a hostfile
containing the names of the hosts on which to run the processes. If your installation
requires a hostfile, MPBench will tell you. If that happens, please check your mpirun
man page for the format. The resulting datafiles for each of the runs will be left in
mpbench/results/<0S>-<HOSTNAME> <API> <test>.dat.

pebbles> make run-mpi

Testing mpirun...

Current value is: mpirun -machinefile \\

\ /shag/homes/mucci/mpibench-hostfile -np 2 mpi_bench
iMeasuring barrier for 500 iterations with 2 tasks...
iMeasuring barrier for 500 iterations with 4 tasks...
iMeasuring barrier for 500 iterations with 8 tasks...
iMeasuring barrier for 500 iterations with 16 tasks...
Measuring latency for 500 iteratioms...

Measuring roundtrip for 500 iteratioms...

Measuring bandwidth for 500 iteratioms...

Measuring broadcast for 500 iterations with 16 tasks...
Measuring reduce for 500 iterations with 16 tasks...
Measuring allreduce for 500 iterations with 16 tasks...

Now we plot the results with GNUplot. If GNUplot is not available on your system,
perform the following.

e Unpack the distribution on a machine that does.
e Copy your results files to the new machine in the MPBench directory.

e Execute make _graphs.sh with the common prefix of your datafiles.
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Normally, we can just do one of the following:
make graphs
make graph-mpi
make graph-pvm
pebbles> make graph-mpi

The graphs will be left in the results directory.
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3.4 Results on the CEWES MSRC Machines

The following graphs are taken from our runs on each of the CEWES MSRC machines
during dedicated time. Those machines are the SGI Origin 2000, the IBM SP and the

Cray T3E.

Machine Cache
SGI Origin 2000 | 32K,4MB
IBM SP 128K
Cray T3E SK,96K
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3.4.1 Latency

Application Latency of MPI_Send at CEWES MSRC
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Figure 12: Application Latency of Send

In the figure 12 we see three interesting performance variations. First note the
jump in latency of the O2K when the message is greater than 64 bytes. This is likely
due to space allocated in the header exchanged between two processes. Many message
passing systems allocate space in the header for a small payload so only one exchange
is required. Next we note the jump in latency on the SP for messages larger than 4096
bytes. This is the point where IBM’s MPI switches to a rendezvous protocol. This is
tunable from the command line for poe IBM’s version of mpirun with the ~eagerlimit
argument. It is also tunable with the MP_EAGERLIMIT environment variable. We rec-
ommend setting this to 16384 bytes for all runs. In fact, IBM does this when running
parallel benchmarks. Also, note the falloff in performance at 8MB on the T3E. This is
found throughout all our communication graphs and we are currently unable to explain
it. On the Origin we see a steady increase in the latency corresponding to the message
size. The Origin exhibits extremely low latencies until they exceed a cache size. These
latencies suggest that the Origin might be suitable for applications that do a lot of data
exchange in small quantities. When the message exceeds the 64 byte cache line on the
Origin, it appears that some expensive routine is being called increasing the latency
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more than twenty-fold. As far as the differences between Origin processors on and off
the node, it appears that the only time this is a factor is when messages are smaller
than the cache line size. Otherwise, the transmission time appears to be dominated by
the memory controller not the communication link.
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3.4.2 Roundtrip

Roundtrip Time of MPI_Send at CEWES MSRC
40000

],,”5.,,{},_,5\2 |.B_MEP, osprey
35000 ] » Origin 2000, pagh -3--
3 R Origin 2000, pagh with 3 procs -

T
Cray T3E, jim —<—
N
B
b

30000

25000

20000

Transactions/sec

15000

10000

5000

L \EQ\E

O B i
4 8 16 32 64 128256 512 1K 2K 4K 8K 16K 32K 64K
Message Size in bytes

256K  1MB 4MB  16MB

Figure 13: Roundtrip Time of Ping-Pong

Figure 13 is a graph of the average roundtrip time for a message exchange. This
test is also commonly referred to as ping-pong. For small messages, roundtrip time
is largely dominated by protocol overheads and the method of access to the network
hardware. Notice in figure 14 that while the bandwidth for the T3E are higher than
for the Origin, the Origin still outperforms it. An inversion takes place at 8K messages
between the Origin and the T3I. We deduce that the Origin with its distributed shared
memory hardware provides a very lightweight method of accessing remote memory. 8K
is the page size of the Origin 2000, so it is not surprising that a penalty is paid after
crossing that boundary. For the 3 task test case it appears that only very small message
sizes are affected. At larger messages, the raw link speed of the T3E clearly dominates,
while the performance of the SP and the Origin falters.
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3.4.3 Bandwidth

Bandwidth of MPI_Send at CEWES MSRC
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Figure 14: Bandwidth of Send

In figure 14, we note the dramatic effect of MPI’s rendezvous protocol on all three
machines. The tradeoff is latency for bandwidth, but it doesn’t always appear to be
valid. As mentioned, the SP has a rather small limit of 4K, thus responsible for the
fifty percent falloff at larger message sizes. The Origin and the T3E both have an eager
limit set to 16K, with only the Origin suffering a loss in performance. Also of interest
is the effect that caching has on the Origin. As mentioned, these tests are repeated a
number of times, so most of the data will lie in the Origin’s large 4MB level two cache.
Note that for larger sizes, its performance suffers severely. We recommend that users
raise the default eager limit to 32K for their runs.
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3.4.4 Broadcast

Performance of MPI_Bcast for 16 tasks at CEWES MSRC
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Figure 15: Broadcast Performance

For figure 15, we again note the dramatic drop-off found at the 8MB message size
on the T3E. For the Origin, we also notice the effect of cache. The user should be aware
that this test also includes the time for every task to send an acknowledge back to the
master. In figure 16 we show the time steps for this test on an eight processor system. If
we assume a left-to-right ordered binary tree distribution algorithm, we receive our first
acknowledgement after log2(8)-1 or 2 full sends. Our last acknowledgement arrives on
the rightmost branch after log2(8)+1 or 4 full sends have completed. Note that in this
test, the timer does not stop until we receive the last acknowledgment. Relating our
broadcast performance to our bandwidth requires understanding that we must execute
at least one send to transmit the data. Thus to compare broadcast to bandwidth
performance we must take into account the first send. Therefore broadcast performance
should be 1/log2(p) that of bandwidth. This only holds true for machines that have
no hardware assisted broadcast. Our results seem to agree with this model.
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3.4.5 Reduce

Performance of MPI_Reduce for 16 tasks at CEWES MSRC
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Figure 17: Reduce Performance

In figure 17 we plot the performance of a reduction operation. as due to a change
in the MPI protocol, we would expect a graduate increase in performance after the
initial drop. However, because this is an iterated test, the cache may be hiding the
effects of the MPI protocol and exaggerating the cost of a distributed page fault. The
large hump is where the message fits into the level two cache. For the SP, the dip
at the 4K message size is again related to the small eager limit. Performance of the
T3E increases steadily and levels off around 20MB/sec. Notice the lack of a significant
falloff at larger messages on the T3E. Also notice how poorly the T3E performs in
relation to figure 15.
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3.4.6 AllReduce

Performance of MPI_Allreduce for 16 tasks at CEWES MSRC
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Figure 18: AllReduce Performance

For figure 18, we again notice the dramatic effect caching has on the Origin with
performance falling off around the 8MB mark. Comparing this graph with that of
figure 17, we note that the SP2 and the T3E perform about twenty percent worse on
Allreduce than on Reduce. The Origin performs more than thirty percent worse, which

is perhaps an architectural problem related to network contention.
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3.5 Future work

e Provide option for adjusting the test space.

e Provde the option for measuring a specific message size.

e Provide an option for cache flushing between transmission.

e Use specialized, high-resolution timers where available.

e Add benchmarks for MPI_Isend, MPI_Irecv, MPI_Irsend and MPI_Alltoall.
e Standardize configuration with GNU autoconf.

e Grab machine configuration and store it with each run.

e Standardize data/graph naming scheme with timestamp.
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