
Low Level Architectural Characterization Benchmarksfor Parallel ComputersPhilip J. MucciKevin S. Londonmucci@cs.utk.edulondon@cs.utk.eduMay, 1998AbstractThis paper a set of low-level, architecture characterization benchmarks that measurethe performance of dense numerical computations, access to the memory hierarchyand MPI message passing of three high performance architectures. The machinesevaluated are the Cray T3E, IBM SP, and SGI Origin 2000 platforms at the CEWESMajor Shared Resource Center. Veri�cation of the results was performed at the ARLand ASC MSRCs. The data and benchmarks presented here should be of interest todevelopers as a point of reference for application performance, modeling and scalabilityanalysis.
1



1 BLASBench1.1 IntroductionBLASBench is a benchmark designed to evaluate the performance of some kernel oper-ations of di�erent implementations of the BLAS or Basic Linear Algebra Subroutines.The BLAS are found in some form or another on most vendors' machines and wereinitially developed as part of LAPACK. Their goal was to provide a standardized APIfor common Vector-Vector, Vector-Matrix and Matrix-Matrix operations. A versionof the BLAS is available from Netlib at http://www.netlib.org/. This version issubsequently referred to as the reference version. The reference BLAS are completelyunoptimized Fortran codes intended as a reference for correctness to the vendors.1.2 Goals of BLASBenchBLASBench aims to do the following:� Evaluate the performance of the BLAS routines in MFLOPS/sec.� Provide information for performance modeling of applications that make heavyuse of the BLAS.� Evaluate compiler e�ciency by comparing performance of the reference BLASversus the hand-tuned BLAS provided by the vendor.� Validate vendor claims about the numerical performance of their processor.� Compare against peak cache performance to establish bottleneck, memory orCPU.1.3 DescriptionBLASBench currently benchmarks the three most common routines in the BLAS. Theyare:� AXPY - Vector addition with scale� GEMV - Matrix-vector multiplication with scale� GEMM - Matrix-Matrix multiplication with scaleThe benchmark can run in either single or double precision. This is importantas many systems cannot sustain the additional memory bandwidth required by usingdouble precision data. The test space is highly tunable, as are some of the metricsBLASBench reports. The benchmark reports its results in MFLOPS/sec and MB/sec.These numbers are not computed from hardware statistics, but rather from the absoluteoperation and memory reference count required by each algorithm.2



1.4 How it worksBLASBench is a C program that calls BLAS routines written in Fortran so that dy-namic memory allocation can be performed. For each test, BLASBench allocates itsmemory in such a way that the total amount of memory taken up by each test is lessthan or equal to the nearest power of two. The rationale for this is that our cache sizesare always in a power of two. Once the memory is allocated, the arrays are initialized,and the test is run for a certain number of iterations. By default, the iteration countis not constant over each problem size. BLASBench trys to keep the amount of data\touched" by each run constant. This means that larger problem sizes run for feweriterations. The e�ect of this is that the run time for each size is approximately con-stant. BLASBench provides an option to keep the iteration count constant across alltests. After each size is tested, the cache is ushed and BLASBench either proceedsto the next size or repeats that size, depending on the options given to the program.BLASBench allows you to repeat each size any number of times. This could be used tovalidate the numbers from each size on a time-shared system. By default, BLASBenchcalls the BLAS routines with the leading dimension of each array or vector set to theexact size of that vector. This means that the BLAS routines operate on the entiredata set. Frequently, however, BLAS routines are called upon smaller portions of largerarrays and matrices, thus an option is provided to keep the leading dimension constantamong every test. In this case, BLASBench allocates the largest possible data set, andsimply changes the working set size passed to each BLAS routine.1.5 Using BLASBench1.5.1 Obtain the DistributionDownload the latest release from either of the following URLs:http://www.cs.utk.edu/�mucci/blasbenchftp://cs.utk.edu/pub/mucci/blasbench.tar.gzNow unpack the installation using gzip and tar.kiwi> gzip -dc blasbench.tar.gz | tar xvf -kiwi> cd blasbenchkiwi> lsCVS/ Version blasgraph.gp index.htmlMakefile bb.c conf/ make.def@README blasbench.html doc/ samples/3



1.5.2 Build the DistributionFirst we must con�gure the build for our machine, OS and BLAS libraries. All con-�gurations support the reference BLAS if available. Running make with no argumentslists the possible targets.kiwi> makePlease use one of the following targets:sunos sunos4solaris sunos5sunmpalphalinuxhppasgisgi-o2k o2ksgi-pca pcat3et3dibm-pow2 ibm-sp2 sp2 pow2ibm-pow powCon�gure the build. Here, we are on a Solaris workstation.kiwi> make solarisln -s conf/make.solaris make.defPlease check the VBLASLIB variable in make.def and make surethat it is pointing to the vendor BLAS library if one exists.Then type 'make'.Examine the make.def �le to ensure proper compiler ags and paths to the di�er-ent BLAS libraries. The BLASLIB variable should contain the absolute path to thereference BLAS library and the VBLASLIB variable should contain the absolute pathto the vendor's BLAS library. If one or the other is not available, just leave it blankand that speci�c executable will not be generated.Now build it. Depending on whether or not both BLASLIB and VBLASLIB areset, one or two executables will be generated.4



kiwi> makecc -fast -dalign -DREGISTER -c bb.c -o bb.oif [ -f "/src/icl/LAPACK_LIBS/blas_SUN4SOL2.a" ];then f77 -o blasbench bb.o /src/icl/LAPACK_LIBS/blas_SUN4SOL2.a ; fi;if [ -f "/kevlar/homes/susan/bin/solaris/libsunperf.a" ];then f77 -o vblasbench bb.o /kevlar/homes/susan/bin/solaris/libsunperf.a ;fi;Now type 'make run'.1.5.3 Running BLASBenchBLASBench can be run by hand, but it is intended to be run through the make�le.Running it via the make�le automates the collection and presentation process. Bydefault, the make�le runs both executables with the arguments -c -o -e 1 -i 1.This says that the iteration count should be constant, the output should be reportedin MFLOPS/sec, each size should be repeated only once and the iteration count shouldbe set to one. You can change the default settings by changing the BBOPTS variablein the make�le after you have con�gured the distribution.kiwi> make runif [ -x blasbench ]; then blasbench -e 1 -i 1 -c -o -v > daxpy.dat; fiif [ -x blasbench ]; then blasbench -e 1 -i 1 -c -o -a > dgemv.dat; fiif [ -x blasbench ]; then blasbench -e 1 -i 1 -c -o -t > dgemm.dat; fiif [ -x vblasbench ]; then vblasbench -e 1 -i 1 -c -o -v > vdaxpy.dat; fiif [ -x vblasbench ]; then vblasbench -e 1 -i 1 -c -o -a > vdgemv.dat; fiif [ -x vblasbench ]; then vblasbench -e 1 -i 1 -c -o -t > vdgemm.dat; fi...Now do a make datafiles.At this point, depending on whether or not you have GNUplot installed on yoursystem, you have the choice of either packaging up the data�les for analysis on anothermachine, or generating the graphs in place.First we must package up the data�les.kiwi> make datafiles... 5



daxpy-kiwi.datdgemm-kiwi.datdgemv-kiwi.datvdaxpy-kiwi.datvdgemm-kiwi.datvdgemv-kiwi.datblasgraph.gpcompare.gpcustom.gpvcustom.gpkiwi.infoNow do a 'make graphs'.If you don't have GNUplot, you can do this on another machineusing the kiwi-bp-datafiles.tar file.Now make the graphs.kiwi> make graphsgnuplot < custom.gp > blasperf.psUTK BLAS graph is in blasperf.psgnuplot < vcustom.gp > vblasperf.psVendor BLAS graph is in vblasperf.psgnuplot < compare.gp > compare.psVendor BLAS graph is in vblasperf.psThis will result in either 1 or 3 graphs. Each graph contains the performance inmegaops of all three operations. They are named as follows:� blasperf.ps - Postscript �le of the reference BLAS.� vblasperf.ps - Postscript �le of the vendor's BLAS.� compare.ps - Comparison of the two.1.5.4 Arguments to BLASBenchkiwi> blasbench -hUsage: blasbench [-vatsco -x # -m # -e # -i #]-v AXPY dot product benchmark6



-a GEMV matrix-vector multiply benchmark-t GEMM matrix-matrix multiply benchmark-s Use single precision floating point data-c Use constant number of iterations-o Report Mflops/sec instead of MB/sec-x Number of measurements between powers of 2.-m Specify the log2(available physical memory)-e Repeat count per cache size-l Hold LDA and loop over sizes of square submatrices-d Report dimension statistics instead of bytes-i Maximum iteration count at smallest cache sizeDefault datatype : double, 8 bytesDefault datatype : float, 4 bytesDefaults if to tty : -vat -x1 -m24 -e2 -i100000Defaults if to file: -t -x1 -m24 -e1 -i100000
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1.6 Results on the CEWES MSRC MachinesThe following graphs are taken from our runs on each of the CEWES MSRC machinesduring dedicated time. The machines are the SGI Origin 2000, the IBM SP and theCray T3E. The peak MFLOPS is as reported by the vendor and is simply computedas a product of the clock speed times the number of independant FMA's that can becomputed per cycle. The cache size and theoretical peak MFLOPS for each machineis listed as follows. Machine Cache PeakSGI Origin 2000 32K,4MB 390IBM SP 128K 240Cray T3E 8K,96K 900
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1.6.1 DAXPY y = y + �b
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Figure 1: Performance of Vector-Vector Addition with ScaleThe DAXPY operation is highly bound by the latency of cache and the throughputof the main memory subsystem. Latency is a factor because data is continuously beingreplaced in the cache. Every line that is loaded is used once and then discarded. Thedata from each vector is never re-used. Thus, for each cache line, we must incur the costof ushing the dirty line and loading the new data. Because the data items are accessedsequentially, cache features like requested data �rst1 line bu�ering and non-blocking2help very little.The performance of this benchmark is highly dependent on cache line size, butindependent of cache size. The reason is that the cache simply adds latency to memoryaccesses. As there is no data re-use, the cache is of zero bene�t. The size of a cacheline reects the size of the unit of transfer between cache and main memory. Moving a1The cache controller returns the missed-upon operand �rst and then the rest of the line.2Multiple outstanding misses can be satis�ed at once.9



lot of data at once is a performance win because of high latency of accessing the mainmemory.In �gure 1 can been seen the results of performing vector-vector addition for in-creasing vector lengths of double words. Here we �nd that the SP far outperforms theother two machines. Interestly enough, the SP has the simplest memory subsystem andthe largest line size at 128 bytes. Although, the T3E had the stream bu�ers enabledits performance was still poor. The Origin's non-blocking cache didn't help either.
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1.6.2 DGEMV C = �Ax+ �y
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Figure 2: Performance of Matrix-Vector Multiplication with ScaleThe DGEMV operation is an operation that stresses both the capacity and thelatency of the cache. It provides us with some opportunity of cache re-use providedthe implementation is blocked or tiled such that portions of the matrix and vectorsremain in cache as long as possible.Figure 2 shows the performance of this operation on the three machines under study.Note that while performance of the SP and T3E nearly tripled that for DAXPY, theOrigin only doubled. We attribute again to its small line size of 64 bytes. The T3Eexperienced a large performance improvement because of its hardware prefetching.This time the prefetching is highly e�ective because data is re-used and the ratio ofoating point operations to number of memory references is greater.11



1.6.3 DGEMM C = �AB + �C
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Figure 3: Performance of Matrix-Matrix Multiplication with ScaleMatrix-matrix multiplication performs well because it provides a lot of opportunityfor cache re-use. By tiling the matrices, the working set can be reduced to the sizeof cache and thus only capacity misses are taken. For this reason, the performanceof GEMM has long since served as a good indicator of a machine's peak practicalperformance. A machine with an adequate memory subsystem like the SP can achievevery high e�ciencies, i.e. high percentage of the vendor's published MFLOP rating.The reader should notice that clock speed and L2 cache size do not play as criticala role in the performance of this routine as one might think. The spikes in the T3E'sperformance curve are due to the matrix dimension being a multiple of the block size.For other cases, the GEMM routine must engage in rather lengthy cleanup code. Thesmall cache/line size of the T3E simply exaggerates the performance loss. The SP,with its large line size and ability to issue two multiply-add instructions as well asa load/store per cycle does quite well, reaching approximately 90 percent e�ciency.The Origin appears to su�er from its small cache line size and its inability to issue a12



load/store every cycle. Like the Power2, the R10000 processor can issue two multiply-adds per cycle, however, its memory system does not appear to be able to supply theoperands fast enough for peak performance.
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1.7 Future work� Provide an option for measuring speci�c problem sizes and ranges.� Provide an option to specify the problem sizes in dimensionality.� Provide an option to specify the starting problem size.� Use specialized, high-resolution timers where available.� Add additional BLAS routines TRSM, TRSV, and SYR2K.� Add parameters to tune the placement and padding of the arrays.� Standardize con�guration with GNU autoconf.� Grab machine con�guration and store it with each run.� Standardize data/graph naming scheme with timestamp.
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2 CacheBench2.1 IntroductionCacheBench is a benchmark designed to evaluate the performance of the memory hi-erarchy of computer systems. Its speci�c focus is to parameterize the performance ofpossibly multiple levels of cache present on and o� the processor. By performance, wemean raw bandwidth in megabytes per second. Of interest to us is the ability of thecache to sustain large, unit-stride, oating point workloads.2.1.1 Cache ArchitectureCaches are essentially very small, high speed memories designed to speed computationamong repeatedly accessed data. They are found on virtually all commercially availableprocessors from small sixteen bit embedded microprocessors to the large, multi-milliontransistor RISC chips found in today's workstations and supercomputers. Caches ex-ploit both spatial and temporal locality. Spatial locality is the concept that data itemsthat are physically located near each other in main memory will likely be accessedtogether. Temporal locality is the concept that a data item that is frequently accessedwill likely be accessed again in the near future.When the processor wishes to operate on an item frommain memory, it issues a loadto the cache. If the item is resident in the cache, this is called a cache hit. If not, it iscalled a cache miss, and the load request is forwarded to main memory, which moves thedata from main memory into a cache line. A detailed discussion of cache and processorarchitecture is well beyond the scope of this paper, but interested readers are referredto Hennessey and Patterson's, Computer Architecture, A Quantitative Approach. Anexample in this textbook serves as the basis for this benchmark.2.1.2 Goals of CacheBenchThe goal of this benchmark is to establish peak computation rate given optimal cachereuse and to verify the e�ectiveness of high levels of compiler optimization on tunedand untuned codes. Many scienti�c applications in use have signi�cant resource re-quirements in terms of memory footprint. High speedups of these applications areoften achieved through exploiting the cache. This is especially true given the wideninggap between processor speed and main memory. Thus, this benchmark will provideus with a good basis for application performance modeling and prediction for thoseapplications that have already been substantially tuned for cache reuse.15



2.2 How it worksCacheBench currently incorporates eight di�erent benchmarks. Each one performsrepeated access to data items on varying vector lengths. Timings are taken for eachvector length over a number of iterations. Computing the product of iterations andvector length gives us the total amount of data accessed in bytes. This total is thendivided by the total time to compute a bandwidth �gure. This �gure is in megabytesper second. Here we de�ne a Megabyte as being 10242 or 1048576 bytes. In additionto this �gure, the average access time in nanoseconds per each data item is computedand reported. The tests are as follows.� Cache Read� Cache Write� Cache Read/Modify/Write� Hand tuned Cache Read� Hand tuned Cache Write� Hand tuned Cache Read/Modify/Write� memset() from the C library� memcpy() from the C libraryThe �rst six of these tests access their data through arrays of a prede�ned base type.This type is set at compile time and defaults to double. The rationale for this is thatsome systems perform memory access di�erently depending on the functional unit thatgenerated the miss. The default data-type can be altered by setting the USE <type>compiler de�nition in the Makefile. Currently USE CHAR, USE INT, USE FLOAT andUSE DOUBLE are supported.The �rst three of the tests are intended to provide us with information about howgood the compiler is. They are very straightforward consisting of only a few lines ofcode.The second three are intended to reect portable, tuned code as found in productionapplications. Here, the optimizer has little opportunity to enhance the code, and infact, the numbers from these three tests often do not change very much given di�erentlevels of optimization.The last two tests are included as points of comparison. These routines are oftenheavily used in C applications, but vary greatly in e�ciency. One would expect highperformance out of these benchmarks in terms of memory bandwidth, but more oftenthan not, the results have been disappointing.All of these benchmarks runs for a �xed amount of time, which is tunable at run-time. The rationale for this is the widely varying performance of processors these16



days. CacheBench intends to provide the user with relatively quick feedback about thememory performance of the machine in use. However, this timing restriction limits theaccuracy with which we can report the results. A faster machine that runs the test fora higher number of iterations has less relative error. This makes accurate, statisticalanalysis di�cult but it will be �xed in the next release.2.2.1 Cache ReadThis benchmark is designed to provide us with read bandwidth for varying vectorlengths in a compiler optimized loop. For the cases where the vector length is less thanthe cache size, the data will come completely from cache and the resulting bandwidthwill be much higher.The pseudo code for this test is as follows:for all vector lengthtimer startfor iteration countfor I = 0 to vector lengthregister += memory[I]timer stop2.2.2 Cache WriteThis benchmark is designed to provide us with write bandwidth for varying vectorlengths in a compiler optimized loop. This benchmark is greatly a�ected by archi-tectural peculiarities in the memory subsystem. Replacement policy, associativity,blocking and write bu�ering all play important factors in the performance of thisbenchmark. For example, a write-back cache will show a much higher bandwidth be-cause it frequently avoids unnecessary references to main memory. In addition, manysystems coalesce and bu�er multiple writes to cache/memory. This can hide much ofthe latency of the underlying hardware.for all vector lengthtimer startfor iteration countfor I = 0 to vector lengthmemory[I] = register++timer stop 17



2.2.3 Cache Read/Modify/WriteThis benchmark is designed to provide us with read/modify/write bandwidth for vary-ing vector lengths in a compiler optimized loop. This benchmark generates twice asmuch memory tra�c, as each data item must be �rst read from memory/cache to regis-ter and then back to cache. Each direction of transfer is counted in the computation ofbandwidth. Bandwidth for this test is often a bit higher than the sum of the previoustwo tests. The bene�t comes from compilers' ability to better schedule operations andgroup memory accesses to amortize the cost of the store.for all vector lengthtimer startfor iteration countfor I = 0 to vector lengthmemory[I]++timer stop2.2.4 Hand Tuned VersionsA full description of the hand tuned versions of these codes is beyond the needs ofthis paper. However, to provide some background, the following optimizations wereapplied:� Degree eight unrolling. Each loop now references eight memory elements insteadof one.� Dependency analysis. Each operation is independent of the previous seven.� Register re-use. Registers are allocated to memory locations and reused wheneverpossible.The optimizations reect what a minimally good compiler should be doing on thesesimple loops. In CacheBench, if we see our compiler loops not reaching the performanceof our tuned loops, we can conclude that our compiler is poor. The complexity of theseloops is minimal and any compiler should be able to optimize them. It is possible, thatour compiler optimized loops will outperform our hand-tuned loops, if the compilerinserts prefetching and coalesces memory operations into block transfers.2.2.5 Memory SetThe C library provides us with the function memset() to initialize regions of memory.This function is often highly optimized as it is widely used both in and outside of theoperating system. Often, this function is either assembly code placed inline in theexecutable from a header �le, or it is an intrinsic function that the compiler recognizes18



and replaces automatically. Some systems have additional hardware on chip to performthis operation, speci�cally when the value to be set to is zero. This benchmark allows usto compare the numbers from our two formulations of memory write with this version.More often than not, we �nd that both versions outperform a call to this routine.for all vector lengthtimer startfor iteration countfor I = 0 to vector lengthmemset(vector1,0xf0,length)timer stop2.2.6 Memory CopyThe C library also provides us with the function memcpy() to copy regions of memory.It is also usually an intrinsic or inline assembler function. This benchmark allows us tocompare the numbers from our two versions of memory read/modify/write with thisversion. Frequently we �nd that memcpy() is not as fast as it should be. While thisfunction may not appear explicitly in Fortran application codes, it is used by many ofthe supporting libraries, like MPI.for all vector lengthstimer startfor iteration countfor I = 0 to vector lengthmemcpy(dest,src,vector length)timer stop2.3 Using CacheBench2.3.1 Obtain the distributionDownload the latest release from either of the following URLs:http://www.cs.utk.edu/�mucci/cachebenchftp://cs.utk.edu/pub/mucci/cachebench.tar.gzFirst, we must unpack the installation using gzip and tar.kiwi> gzip -dc cachebench.tar.gz | tar xvf -kiwi> cd cachebenchkiwi> ls 19



CVS/ Version cachegraph.gp index.htmlMakefile cachebench.c conf/ make.defREADME cachebench.html doc/ samples/2.3.2 Build the distributionFirst we must con�gure the build for our operating system. Running make with noarguments lists the possible targets.kiwi> makePlease use one of the following targets:sunos sunos4solaris sunos5sunmpalphalinuxhppasgi-r4ksgi-r5ksgi-r8ksgi-r10ksgi-o2k o2ksgi-pca pcat3et3dibm-pow2 ibm-sp2 sp2 pow2ibm-pow powCon�gure the build. Here, we are on a Solaris workstation.kiwi> make solarisln -s conf/make.solaris make.defExamine the make.def �le to ensure that the proper compiler ags are being used.Full optimization should be enabled by default. Some machines have model speci�cags that can signi�cantly a�ect the performance of this benchmark. Some of themake.def �les have these options commented out. The user should examine his sys-tem and be sure that the appropriate options are enabled.kiwi> make cachebenchcc -fast -dalign -DREGISTER -DUSE_DOUBLE -o cachebench cachebench.c20



2.3.3 Running CacheBenchWhile CacheBench can be run from the command line, it is designed executed throughuse of the Makefile. The resulting data�les for each of the runs will be left in the �le:tmp/<test>-<HOSTNAME>-<DATATYPE>.dat.Immediately after running, the Makefile will attempt to graph the results. IfGNUPlot is not available on this system, simply copy cacheperf-<HOSTNAME>-<DATATYPE>.tarto another machine that has GNUPlot, extract the tar �le and process each GNUPlotscript �le with gnuplot < <HOSTNAME>.gp > <file>.ps.kiwi> make runMeasuring Read...Measuring Write...Measuring RMW...Measuring Tuned Read...Measuring Tuned Write...Measuring Tuned RMW...Measuring memcpy()...Measuring memset()....[commands deleted for brevity]..2.3.4 Arguments to CacheBenchUsage: cachebench -rwbtsp [-x #] [-m #] [-d #] [-e #]-r Read benchmark-w Write benchmark-b Read/Modify/Write benchmark-t Use hand tuned versions of the above-s memset() benchmark-p memcpy() benchmark-x Number of measurements to take between powers of 2-m Specify the log base 2 of the available physical memory-d Number of seconds per iteration-e Number of times to repeat test for each vector sizeDatatype used is double, 8 bytesDefaults if tty: -rwbsp -x1 -m24 -d5 -e2Defaults if file: -b -x1 -m24 -d5 -e121



Note the fact that the defaults are di�erent depending on whether or not the outputis directed to a TTY or a �le. Again, the best way to run cachebench is with theMakefile.
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2.4 Results on the CEWES MSRC MachinesThe following graphs are taken from our runs on each of the CEWES MSRC machinesduring dedicated time. Those machines are the SGI Origin 2000, the IBM SP and theCray T3E. The cache size and theoretical peak MFLOPS for each machine are listedas follows. The peak MFLOPS is as reported by the vendor and is simply computedas a product of the clock speed times the number of independent FMA's that can becomputed per cycle. Machine Cache PeakSGI Origin 2000 32K,4MB 390IBM SP 128K 240Cray T3E 8K,96K 900
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2.4.1 Cache Reads
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Figure 4: Performance of Compiler Optimized Memory ReadIn �gures 4 and 5, we notice that the read performance of the Cray T3E is muchlower for the hand-tuned version. For the compiler optimized version, we �nd a twoto threefold improvement for vector sizes that lie in cache. The Cray compiler seemsto have a very di�cult time recognizing what optimized code is doing. This meansthat tuned applications ported to the Cray might not perform very well. For the SP2and the Origin 2000, the only di�erence we �nd is the steepness of the portion of thecurve lying substantially below the cache size. Here, we are seeing the overhead ofthe compiler's code that handles the special cases where the vector length is not amultiple of the degree of unrolling. In the tuned version, this residual code does notexist and thus there are no branches in the underlying assembly language. The SP hasa hardware loop capability allowing zero cycle branches. For the hand-tuned version,there is no residual code, so the compiler simply sets up the hardware loop and lets itrun with no overhead. Thus, we see no performance fallo� at smaller vector lengths.24
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Figure 5: Performance of Hand-tuned Memory Read
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2.4.2 Cache Writes
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Figure 6: Performance of Compiler Optimized Memory WriteIn �gures 6 and 7, we can see that the performance of the compiler optimized loop isequal to or greater than that of the hand tuned loop as is the case for reads. The readerwill notice that for vectors residing completely in L1 cache, the write bandwidth is equalto or greater than the read bandwidth. On the Origin, the L2 cache is signi�cantlyslower to write to than to read from. We infer that the compiler is probably prefetchingon the read case and that there is inadequate pipelining between L2 cache and memory.For the T3E, we again notice how poorly the compiler does on the optimized code.
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Figure 7: Performance of Hand-tuned Memory Write
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2.4.3 Cache Read/Modify/Write
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Figure 8: Performance of Compiler Optimized Memory Read/Modify/WriteOf interest in �gure 8 and 9 is the di�erence in performance of the IBM SP. Notethat in the hand-tuned version, performance averages about six hundred megabytesper second better than that of the compiler optimized version. In the tuned version,the compiler is probably scheduling/aggregating memory access into double-word loadsand stores, a unique feature of this architecture. This probably happens in the com-piler optimized version, but the fact that the compiler must also unroll the loop andoptimize register usage seems to complicate its analysis. Also of interest is the betterperformance on the T3E in level two cache for the untuned version. Software pipelin-ing, the mixing instructions from one iteration to another may be aiding this code tohide the latency of the level two cache misses. We are seeing this behavior in the casefor reads and writes as well. 28
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Figure 9: Performance of Hand-tuned Memory Read/Modify/Write
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2.4.4 memset()
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Figure 10: Performance of memset()2.4.5 memcpy()Figures 10 and 11 are provided as reference. The performance of these two routines,when compared with the write and read-modify-write benchmark, clearly indicates thatthe user would be better o� using a typed version coded in C or Fortran rather thanthese library calls. The reason for this is that they are often coded at the byte level formaximum exibility, not performance. By knowing the type and the alignment of thedata ahead of time, the user could easily write a simple loop, let the compiler optimizeit and still see much better performance. The only exception is the case where thevector is smaller than L2 cache on the T3E.30
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Figure 11: Performance of memcpy()
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2.5 Future work� Provide option for measuring speci�c vector lengths.� Use specialized, high-resolution timers where available.� Add benchmark for pointer traversal to measure latency of cache hit and miss.� Add parameters to tune the placement and padding of the vectors.� Change from constant run-time to constant iterations.� Add unoptimized, untuned case for a baseline.� Standardize con�guration with GNU autoconf.� Grab machine con�guration and store it with each run.� Standardize data/graph naming scheme with timestamp.
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3 MPBench3.1 IntroductionMPBench is a benchmark to evaluate the performance of MPI and PVM on MPP'sand clusters of workstations. It uses a exible and portable framework to allow bench-marking of any message passing layer with similar send and receive semantics. Itgenerates two types of reports, consisting of the raw data �les and Postscript graphs.No interpretation or analysis of the data is performed, it is left entirely up to the user.3.2 How it worksMPBench currently tests seven di�erent MPI and PVM calls. MPI provides much richerfunctionality that PVM does, so some of the benchmarks have been implemented interms of lower level PVM functions. The following functions are measured.Benchmark Units Num ProcsBandwidth Megabytes/sec 2,3Roundtrip Transactions/sec 2,3Application Latency Microseconds 2,3Broadcast Megabytes/sec 16Reduce Megabytes/sec 16AllReduce Megabytes/sec 16AllReduce is a reduction operation in which all tasks receive the result. This func-tion is not available in PVM, so it is emulated by performing a reduce followed by abroadcast.All tests are timed in the following manner.1. Set up the test.2. Start the timer.3. Loop of operations over the message size as a power of two and the iterationcount.4. Verify that those operations have completed.5. Stop the timer.6. Compute the appropriate metric. 33



In MPBench, we avoid calling the timer around every operation, because this oftenresults in the faulty reporting of data. Some of these operations on MPP's take so littletime, that the accuracy and latency of accessing the system's clock would signi�cantlya�ect the reported data. Thus it is only appropriate that we perform our timingoperations outside the loop. Some MPP's and workstations have the capability to accessthe system's timer registers, but this is not portable and would introduce unnecessarycomplexity into the code to compensate for situations where the timing routines werenot e�cient.For simplicity purposes, we will refer to two di�erent types of tasks in MPBench,the master of which there is only one, and the slaves of which their may be any number.The point-to-point tests only use two tasks, a master and a slave. The other tests runwith any number of slaves, the default being sixteen.MPBench averages performance over a number of iterations. The user should beaware that MPBench will use a lower number of iterations than the one speci�ed forcertain situations. This should not e�ect the accuracy of the results, as the iterationcount is only changed when the message lengths are prohibitively large.By default, MPBench measures messages from 4 bytes to 16 Megabytes, in powersof two for 500 iterations. We iterate to make sure that the cache is \warmed" withthe message data. This is done because applications typically communicate data soonafter computing on it.The previous version of MPBench did not pay attention to the placement of slavetasks. This caused the user to make false claims about the performance of NUMAmultiprocessors like the Origin 2000 where a two task job will be scheduled on proces-sors on the same physical board. MPBench now measures point-to-point performanceon MPI jobs with 2 and 3 tasks. For the 3 task case, task 1 (of 0, 1 and 2) remainsidle until the end of the run. In fact, this arrangement does not guarantee that theremote processor is o�board, as that is dictated by the MPI environment. However,our measurements seem to indicate that task 2 in a three task job always performsslightly than task 1 of a two task job. We attribute this to extra time required toarbitrate and negotiate the link.3.2.1 Notes on PVMPVM has a number of options to accelerate performance. For this benchmark, we areinterested in the optimal performance of the machine. In order to do so, we use thefollowing options where possible:� Direct Routing - This option sets up direct TCP/IP connections between processesas opposed to forward messages via daemon processes running on each node. Itis established by calling pvm setopt(PvmRoute, PvmRouteDirect) .34



� In-place Packing - All messages in PVM must be packed into PVM bu�ers beforetransmission. This option tells PVM not to perform any additional copies of thedata, but to transmit the data directly out of the application's bu�er. This optionprecludes the use of any data-translation with PVM. By default, in-place packingis used whenever pvm psend() is called, which is what is used in this program.3.2.2 Notes on MPIThere are many di�erent send and receive calls in MPI each with di�erent semanticsfor usage and completion. Here we focus on the default mode of sending. This meanswe are not using any nonblocking or immediate communication calls. Each MPI im-plementation handles the default mode a bit di�erently, but the algorithm is usually aderivative of the following.send first chunk of messageif message is larger than size Nwait for reply and destination address Ysend rest of message directly to address Yelseif more to sendsend rest of messageendifMPI does this to avoid unnecessary copies of the data, which usually dominates thecost of any communication layer. The receiving process will bu�er a limited amountof data before informing the sender of the destination address in the application. Thisway, a large message is received directly into the application's data structure ratherthan being held in temporary storage like with PVM. The problem with this is thatfor large messages, sends cannot complete before their corresponding receives. Thisintroduces possibly synchronization and portability problems.3.2.3 BandwidthMPBench measures bandwidth with a doubly nested loop. The outer loop varies themessage size, and the inner loop measures the send operation over the iteration count.After the iteration count is reached, the slave process acknowledges the data it hasreceived by sending a four byte message back to the master. This informs the senderwhen the slaves have completely �nished receiving their data and are ready to proceed.This is necessary, because the send on the master may complete before the matchingreceive does on the slave. This exchange does introduce additional overhead, but given35



a large iteration count, its e�ect is minimal.The master's pseudo code for this test is as follows:do over all message sizesstart timerdo over iteration countsend(message size)recv(4)stop timerThe slave's pseudo code is as follows:do over all message sizesstart timerdo over iteration countrecv(message size)send(4)stop timer3.2.4 RoundtripRoundtrip times are measured in much the same way as bandwidth, except that, theslave process, after receiving the message, echoes it back to the master. This bench-mark is often referred to as ping-pong. Here our metric is transactions per second,which is a common metric for database and server applications. No acknowledgmentis needed with this test as it is implicit given its semantics.The master's pseudo code for this test is as follows:do over all message sizesstart timerdo over iteration countsend(message size)recv(message size)stop timerThe slave's pseudo code is as follows:do over all message sizesstart timerdo over iteration countrecv(message size) 36



send(message size)stop timer3.2.5 Application LatencyApplication latency is something relatively unique to MPBench. This benchmark canproperly be described as one that measures the time for an application to issue asend and continue computing. The results for this test vary greatly given how themessage passing layer is implemented. For example, PVM will bu�er all messages fortransmission, regardless of whether or not the remote node is ready to receive the data.MPI on the other hand, will not bu�er messages over a certain size, and thus will blockuntil the remote process has executed some form of a receive. This benchmark isthe same as bandwidth except that we do not acknowledge the data and we report ourresults in units of time. This benchmark very much represents the time our applicationwill be waiting to do useful work while communicating.The master's pseudo code for this test is as follows:do over all message sizesstart timerdo over iteration countsend(message size)stop timerThe slave's pseudo code is as follows:do over all message sizesstart timerdo over iteration countrecv(message size)stop timer3.2.6 Broadcast and ReduceThe two functions are very heavily used in many parallel applications. Essentially theseoperations are mirror images of one another, the di�erence being that reduce reversesthe direction of communication and performs some computation with the data duringintermediate steps. Both of these benchmarks return the number of megabytes persecond computed from the iteration count and the length argument given to functioncall.With PVM, broadcast and reduce will not complete unless the application has per-formed a barrier immediately prior to the operation. Thus, with PVM both of these37



tests include the cost of a barrier operation every iteration.Here is the pseudo code for both the master and the slave:do over all message sizesstart timerdo over iteration countreduce or broadcast(message size)stop timer3.2.7 AllReduceAllReduce is a derivative of an all-to-all communication, where every process has datafor every other. While this operation could easily be implemented with a reduce fol-lowed by a broadcast, that would be highly ine�cient for large message sizes. ThePVM version of this test does this exactly, plus an additional barrier call. The goalof including this benchmark is to spot poor implementations so that the applicationengineer might be able to restructure his communication.Here is the pseudo code for both the master and the slave:do over all message sizesstart timerdo over iteration countallreduce(message size)stop timer3.3 Using MPBench3.3.1 Obtain the DistributionDownload the latest release from either of the following URLs:http://www.cs.utk.edu/�mucci/mpbenchftp://cs.utk.edu/pub/mucci/mpbench.tar.gzNow unpack the installation using gzip and tar.pebbles> gzip -dc mpbench.tar.gz | tar xvf -pebbles> cd mpbenchpebbles> lsCVS/ README index.html* make.def mpbench.cMakefile conf/ lib/ make_graphs.sh* samples/38



3.3.2 Build the distributionFirst we must con�gure the build for our machine, OS and release of MPI. All con�g-urations support PVM. Before con�guration make with no arguments lists the possibletargets.pebbles> makePlease configure using one of the following targets:sp2t3epca-r8ko2ksgi32-lamsgi64-lamlinux-lamlinux-mpichsolaris-mpichsun4-mpichalphaCon�gure the build. Here, we are on a SunOS workstation, using MPICH as ourMPI implementation.pebbles> make sun4-mpichrm -f make.defln -s conf/make.def.sun4-mpich make.defNow look at the available targets, and build one.pebbles:mpbench> makePlease use one of the following targets:mpi,pvm,allrun-mpi,run-pvm,rungraph-mpi,graph-pvm,graphspebbles> make allgcc -O2 -DINLINE -I/src/icl/MPI/mpich/include -DMPI -c mpbench.c -o mpibench.ogcc -O2 -DINLINE ./mpibench.o -o mpi_bench -L/src/icl/MPI/mpich/lib/sun4/ch_p4 -lmpised -e "s:MPIRUNCMD:mpirun:g" < lib/mpibench.sh | \sed -e "s:MPIRUNOPTS::g" | \ 39



sed -e "s:MPIRUNPROCS:-np:g" | \sed -e "s:MPIHOSTFILE:-machinefile:g" | \sed -e "s:MPIRUNPOSTOPTS:mpi_bench:g" > mpi_bench.shchmod +x mpi_bench.shgcc -I/shag/homes/mucci/pvm3/include -O2 -DINLINE -DPVM -c mpbench.c -o pvmbench.ogcc -O2 -DINLINE ./pvmbench.o -o /shag/homes/mucci/pvm3/bin/SUN4/pvm_bench \\\ -L/shag/homes/mucci/pvm3/lib/SUN4 -lpvm3 -lgpvm3cp lib/pvmbench.sh /shag/homes/mucci/pvm3/bin/SUN4/pvm_bench.shchmod +x /shag/homes/mucci/pvm3/bin/SUN4/pvm_bench.sh3.3.3 Running MPBenchWhile MPBench can be run from the command line, it is designed to be run from viathe Makefile. When running MPI, sometimes it is required that you set up a host�lecontaining the names of the hosts on which to run the processes. If your installationrequires a host�le, MPBench will tell you. If that happens, please check your mpirunman page for the format. The resulting data�les for each of the runs will be left inmpbench/results/<OS>-<HOSTNAME> <API> <test>.dat.pebbles> make run-mpiTesting mpirun...Current value is: mpirun -machinefile \\\ /shag/homes/mucci/mpibench-hostfile -np 2 mpi_bench%Measuring barrier for 500 iterations with 2 tasks...%Measuring barrier for 500 iterations with 4 tasks...%Measuring barrier for 500 iterations with 8 tasks...%Measuring barrier for 500 iterations with 16 tasks...Measuring latency for 500 iterations...Measuring roundtrip for 500 iterations...Measuring bandwidth for 500 iterations...Measuring broadcast for 500 iterations with 16 tasks...Measuring reduce for 500 iterations with 16 tasks...Measuring allreduce for 500 iterations with 16 tasks...Now we plot the results with GNUplot. If GNUplot is not available on your system,perform the following.� Unpack the distribution on a machine that does.� Copy your results �les to the new machine in the MPBench directory.� Execute make graphs.sh with the common pre�x of your data�les.40



Normally, we can just do one of the following:make graphsmake graph-mpimake graph-pvmpebbles> make graph-mpiThe graphs will be left in the results directory.

41



3.4 Results on the CEWES MSRC MachinesThe following graphs are taken from our runs on each of the CEWES MSRC machinesduring dedicated time. Those machines are the SGI Origin 2000, the IBM SP and theCray T3E. Machine CacheSGI Origin 2000 32K,4MBIBM SP 128KCray T3E 8K,96K
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3.4.1 Latency
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Figure 12: Application Latency of SendIn the �gure 12 we see three interesting performance variations. First note thejump in latency of the O2K when the message is greater than 64 bytes. This is likelydue to space allocated in the header exchanged between two processes. Many messagepassing systems allocate space in the header for a small payload so only one exchangeis required. Next we note the jump in latency on the SP for messages larger than 4096bytes. This is the point where IBM's MPI switches to a rendezvous protocol. This istunable from the command line for poe IBM's version of mpirun with the -eagerlimitargument. It is also tunable with the MP EAGERLIMIT environment variable. We rec-ommend setting this to 16384 bytes for all runs. In fact, IBM does this when runningparallel benchmarks. Also, note the fallo� in performance at 8MB on the T3E. This isfound throughout all our communication graphs and we are currently unable to explainit. On the Origin we see a steady increase in the latency corresponding to the messagesize. The Origin exhibits extremely low latencies until they exceed a cache size. Theselatencies suggest that the Origin might be suitable for applications that do a lot of dataexchange in small quantities. When the message exceeds the 64 byte cache line on theOrigin, it appears that some expensive routine is being called increasing the latency43



more than twenty-fold. As far as the di�erences between Origin processors on and o�the node, it appears that the only time this is a factor is when messages are smallerthan the cache line size. Otherwise, the transmission time appears to be dominated bythe memory controller not the communication link.
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3.4.2 Roundtrip
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Figure 13: Roundtrip Time of Ping-PongFigure 13 is a graph of the average roundtrip time for a message exchange. Thistest is also commonly referred to as ping-pong. For small messages, roundtrip timeis largely dominated by protocol overheads and the method of access to the networkhardware. Notice in �gure 14 that while the bandwidth for the T3E are higher thanfor the Origin, the Origin still outperforms it. An inversion takes place at 8K messagesbetween the Origin and the T3E. We deduce that the Origin with its distributed sharedmemory hardware provides a very lightweight method of accessing remote memory. 8Kis the page size of the Origin 2000, so it is not surprising that a penalty is paid aftercrossing that boundary. For the 3 task test case it appears that only very small messagesizes are a�ected. At larger messages, the raw link speed of the T3E clearly dominates,while the performance of the SP and the Origin falters.45



3.4.3 Bandwidth
0

50

100

150

200

250

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 256K 1MB 4MB 16MB

M
B

/s
ec

Message Size in bytes

Bandwidth of MPI_Send at CEWES MSRC

Cray T3E, jim
IBM SP, osprey

Origin 2000, pagh
Origin 2000, pagh with 3 procs

Figure 14: Bandwidth of SendIn �gure 14, we note the dramatic e�ect of MPI's rendezvous protocol on all threemachines. The tradeo� is latency for bandwidth, but it doesn't always appear to bevalid. As mentioned, the SP has a rather small limit of 4K, thus responsible for the�fty percent fallo� at larger message sizes. The Origin and the T3E both have an eagerlimit set to 16K, with only the Origin su�ering a loss in performance. Also of interestis the e�ect that caching has on the Origin. As mentioned, these tests are repeated anumber of times, so most of the data will lie in the Origin's large 4MB level two cache.Note that for larger sizes, its performance su�ers severely. We recommend that usersraise the default eager limit to 32K for their runs.
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3.4.4 Broadcast
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Figure 15: Broadcast PerformanceFor �gure 15, we again note the dramatic drop-o� found at the 8MB message sizeon the T3E. For the Origin, we also notice the e�ect of cache. The user should be awarethat this test also includes the time for every task to send an acknowledge back to themaster. In �gure 16 we show the time steps for this test on an eight processor system. Ifwe assume a left-to-right ordered binary tree distribution algorithm, we receive our �rstacknowledgement after log2(8)-1 or 2 full sends. Our last acknowledgement arrives onthe rightmost branch after log2(8)+1 or 4 full sends have completed. Note that in thistest, the timer does not stop until we receive the last acknowledgment. Relating ourbroadcast performance to our bandwidth requires understanding that we must executeat least one send to transmit the data. Thus to compare broadcast to bandwidthperformance we must take into account the �rst send. Therefore broadcast performanceshould be 1/log2(p) that of bandwidth. This only holds true for machines that haveno hardware assisted broadcast. Our results seem to agree with this model.47
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3.4.5 Reduce
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Figure 17: Reduce PerformanceIn �gure 17 we plot the performance of a reduction operation. as due to a changein the MPI protocol, we would expect a graduate increase in performance after theinitial drop. However, because this is an iterated test, the cache may be hiding thee�ects of the MPI protocol and exaggerating the cost of a distributed page fault. Thelarge hump is where the message �ts into the level two cache. For the SP, the dipat the 4K message size is again related to the small eager limit. Performance of theT3E increases steadily and levels o� around 20MB/sec. Notice the lack of a signi�cantfallo� at larger messages on the T3E. Also notice how poorly the T3E performs inrelation to �gure 15.
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3.4.6 AllReduce
0

2

4

6

8

10

12

14

16

18

20

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 256K 1MB 4MB 16MB

M
B

/s
ec

Message Size in bytes

Performance of MPI_Allreduce for 16 tasks at CEWES MSRC

Cray T3E, jim
IBM SP, osprey

Origin 2000, pagh

Figure 18: AllReduce PerformanceFor �gure 18, we again notice the dramatic e�ect caching has on the Origin withperformance falling o� around the 8MB mark. Comparing this graph with that of�gure 17, we note that the SP2 and the T3E perform about twenty percent worse onAllreduce than on Reduce. The Origin performs more than thirty percent worse, whichis perhaps an architectural problem related to network contention.
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3.5 Future work� Provide option for adjusting the test space.� Provde the option for measuring a speci�c message size.� Provide an option for cache ushing between transmission.� Use specialized, high-resolution timers where available.� Add benchmarks for MPI Isend, MPI Irecv, MPI Irsend and MPI Alltoall.� Standardize con�guration with GNU autoconf.� Grab machine con�guration and store it with each run.� Standardize data/graph naming scheme with timestamp.
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