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I.  Motivation for Field
Computation

In this paper we discuss the applica-
tions of field computation to natural and
artificial intelligence.  (More detailed dis-
cussions of field computation can be
found in prior publications, e.g.
MacLennan 1987, 1990, 1993b, 1997.)
For this purpose, a field is defined to be a
spatially continuous arrangement of con-
tinuous data.  Examples of fields include
two-dimensional visual images, one-di-
mensional continuous spectra, two- or
three-dimensional spatial maps, as well as
ordinary physical fields, both scalar and
vector.  A field transformation operates in
parallel on one or more fields to yield an
output field.  Examples include summa-
tions (linear superpositions), convolu-
tions, correlations, Laplacians, Fourier
transforms and wavelet transforms.  Field
computation may be nonrecurrent
(entirely feed-forward), in which a field
passes through a fixed series of transfor-
mations, or it may be recurrent (including
feedback), in which one or more fields
are iteratively transformed, either contin-
uously or in discrete steps.  Finally, in
field computation, the topology of the
field (that is, of the space over which it is
extended) is generally significant, either
in terms of the information it represents
(e.g. the dimensions of the field corre-
spond to significant dimensions of the
stimulus), or in terms of the permitted
interactions (e.g. only local interactions).

Field computation is a theoretical
model of information representation and
processing in natural and artificial sys-
tems.  As a model, it is useful for
describing certain natural systems and for
designing certain artificial systems.  The
theory may be applied regardless of
whether the system is actually discrete or
continuous in structure, so long as it is
approximately continuous.  We may
make an analogy to hydrodynamics:  al-
though we know that a fluid is composed
of discrete particles, it is nevertheless
worthwhile to treat it as a continuum for
most purposes.  So also in field compu-
tation, an array of data may be treated as a
field so long as the number of data ele-

ments is sufficiently large to be treated as
a continuum, and the quanta by which an
element varies are small enough so that it
can be treated as a continuous variable.

Physicists sometimes distinguish
between structural fields, which describe
phenomena that are physically continuous
(such as gravitational fields), and phe-
nomenological fields, which are approx-
imate descriptions of discontinuous phe-
nomena (e.g. velocity fields of fluids).
Field computation deals with phenomeno-
logical fields in the sense that it doesn’t
matter whether their realizations are spa-
tially discrete or continuous, so long as
the continuum limit is a good mathemati-
cal approximation to the computational
process.  Thus, we have a sort of
“Complementarity Principle,” which
permits the computation to be treated as
discrete or continuous as convenient to
the situation (MacLennan 1993a).

Neural computation follows different
principles than conventional, digital com-
puting.    Digital computation functions
by long series of high-speed, high-preci-
sion discrete operations.  The degree of
parallelism is quite modest, even in the
latest “massively parallel” computers. We
may say that conventional computation is
deep but narrow.  Neural computation, in
contrast, functions by the massively
parallel application of low-speed, low-
precision continuous (analog) operations.
The sequential length of computations is
typically short (the “100 Step Rule”), as
dictated by the real-time response re-
quirements of animals.  Thus, neural
computation is broad but shallow.  As a
consequence of these differences we find
that neural computation typically requires
very large numbers of neurons to fulfill
its purpose.  In most of these cases the
neural mass is sufficiently large (15 mil-
lion neurons/cm2) that it is useful to treat
it as a continuum.

To achieve by artificial intelligence the
levels of skillful behavior that we observe
in animals, it is not unreasonable to sup-
pose that we will need a similar computa-
tional architecture, comprising very large
numbers of comparatively slow, low
precision analog devices.  Our current
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VLSI technology, which is oriented to-
ward the fabrication of only moderately
large numbers of precisely-wired, fast,
high-precision digital devices, makes the
wrong tradeoffs for efficient, economical
neurocomputers; it is unlikely to lead to
neurocomputers approximating the 15
million neurons/cm2 density of mam-
malian cortex.  Fortunately, the brain
shows what can be achieved with large
numbers of slow, low-precision analog
devices, which are (initially) imprecisely
connected.  This style of computation
opens up new computing technologies,
which make different tradeoffs from con-
ventional VLSI.  The theory of field
computation shows us how to exploit
relatively homogeneous masses of com-
putational materials (e.g. thin films), such
as may be generated by chemical manu-
facturing processes.  We need such a the-
ory to guide our design and use of such
radically different computers.

II.  Overview of Field
Computation

A field is treated mathematically as a
continuous function over a bounded set
representing the spatial extent of the field.
Typically, the value of the function is re-
stricted to some bounded subset of the
real numbers, but complex- and vector-
valued fields are also useful.

Fields are required to be physically
realizable, which places restrictions on
the allowable functions.  I have already
mentioned that fields are continuous
functions over a bounded domain that
take their values in a bounded subset of a
linear space.  Furthermore, it is generally
reasonable to assume that fields are uni-
formly continuous finite-energy (i.e.
square integrable) functions.  Among
other things, these assumptions imply
that fields belong to a Hilbert space of
functions.  (See Pribram 1991 and
MacLennan 1990, 1993b for more on
Hilbert spaces as models of continuous
knowledge representation in the brain; see
MacLennan 1990 for more on the physi-
cal realizability of fields.)

A field transformation is any continu-
ous (linear or nonlinear) function that

maps one or more input fields into one or
more output fields.  Since a field com-
prises an uncountable infinity of points,
the elements of a field cannot be pro-
cessed individually in a finite number of
discrete steps, but a field can be pro-
cessed sequentially by a continuous pro-
cess, which sweeps over the input field
and generates the corresponding output
sequentially.  Normally, however, a field
transformation operates in parallel on the
entire input field and generates all ele-
ments of the output at once.  Many useful
information processing tasks can be im-
plemented by a composition of field
transformations, which feeds the field(s)
through a fixed series of processing
stages.  (One might expect sensory sys-
tems to be implemented by such feed-
forward processes, but in fact we find
feedback at almost every stage of sensory
processing, so they are better treated as
recurrent computations, discussed next.)

In many cases we are interested in the
dynamical properties of fields: how they
change in time.  The changes are usually
continuous, defined by differential equa-
tions, but may also proceed by discrete
steps.  As with the fields treated in
physics, we are often most interested in
dynamics defined by local interaction
processes, although nonlocal interactions
are also used in field computation (several
examples are considered later).  One rea-
son for dynamic fields is that the field
may be converging to some solution by a
recurrent field computation; for example,
the field might be relaxing into the most
coherent interpretation of perceptual data,
or into an optimal solution of some other
problem.  Alternately, the time-varying
field may be used for some kind of real-
time control, such as the motor control.

An interesting question is whether
there can be a universal field computer,
that is, a general purpose device
(analogous to a universal Turing ma-
chine) that can be programmed to com-
pute any field transformation (in a large,
important class of transformations, anal-
ogous to the Turing-computable func-
tions).  In fact, we have shown (Wolpert
& MacLennan submitted) that any Turing
machine, including a universal Turing
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machine, can be emulated by a corre-
sponding field computer, but this does
not seem to be the concept of universality
that is most relevant to field computation.
Another notion of universality is provided
by an analog of Taylor’s theorem for
Hilbert spaces.  It shows how arbitrary
field transformations can be approximated
by a kind of “field polynomial” computed
by a series of products between the input
field and fixed “coefficient” fields
(MacLennan 1987, 1990).

Adaptation and learning can be ac-
complished by field computation versions
of many of the common neural network
learning algorithms, although some are
more appropriate to field computation
than others.  Learning typically operates
by computing or modifying “coefficient
fields” or connection fields in a computa-
tional structure of fixed architecture.

III.  Field Computation in the
Brain

A.  Realization in the Brain
Computational maps are ubiquitous in

the brain.  For example, there are the
well-known maps in somatosensory and
motor cortex, in which the neurons form
a topological image of the body.  There
are also the retinotopic maps in the vision
areas, in which locations in the map mir-
ror locations on the retina, as well as
other properties, such as the orientation
of edges.  Auditory cortex contains
tonotopic maps, with locations in the map
systematically representing frequencies in
the manner of a spectrum.  Auditory areas
in the bat’s brain provide further exam-
ples, with systematic representations of
Doppler shift and time delay, among
other significant quantities.

In the presence of multiple stimuli,
such maps typically represent the pres-
ence of all the stimuli.  For example, if
several tones are present in a sound, then
a tonotopic map will show corresponding
peaks of activity.  Similarly, if there are
patches of light (or other visual microfea-
tures, such as oriented grating patches) at
many locations in the visual field, then a
retinotopic map will have peaks of activ-
ity corresponding to all of these microfea-

tures.  In this way the form of the stimu-
lus may be represented as a superposition
of microfeatures.

Computational maps such as these are
reasonably treated as fields, and it is use-
ful to treat the information processing in
them as field computation.  Indeed, since
the cortex is estimated to contain at least
146,000 neurons per square millimeter
(Changeux 1985, p. 51), even a square
millimeter has enough neurons to be
treated as a continuum, and in fact there
are computational maps in the brain of
this size and smaller (Knudsen et al.
1987).  Even one tenth of a square mil-
limeter contains sufficient neurons to be
treated as a field for many purposes.  The
larger maps are directly observable by
noninvasive imaging technique, such as
NMR.

We refer to these fields as axonal
fields, because the field’s value at each
location corresponds to the axonal spik-
ing (e.g. rate and/or phase) of the neuron
at that location.  If only the rate is signifi-
cant, then it is appropriate to treat the field
as real-valued.  If both rate and phase are
significant (Hopfield 1995), then it is
more appropriate to treat it as complex-
valued.

Another place where field computa-
tion occurs in the brain is in the dendritic
trees of neurons (MacLennan 1993a).
The tree of a single pyramidal cell may
have several hundred thousand inputs,
and signals propagate down the tree by
passive electrical processes (resistive and
capacitive).  Therefore, the dendritic tree
acts as a large analog filter operating on
the neuron’s input field, which may be
significant in dendritic information pro-
cessing.  In this case, the field values are
represented by neurotransmitter concen-
trations, electrical charges and currents in
the dendritic tree; such fields are called
dendritic fields.  They may have a com-
plicated topology, since it is determined
by the morphology of the dendritic tree
over which it’s spread.

Axonal and dendritic fields are com-
paratively dynamic, since their patterns of
activity change on millisecond or faster
time scales.  There are also more static
fields in the brain, which change on



-5-

slower time scale or not at all.  Examples
include connection fields that describe
patterns of connection between brain re-
gions and synaptic fields that describe the
transmission efficacies of masses of
synapses.  In the former case, we often
find that the pattern of connections com-

putes a convolution ρ ⊗ φ with the input

field φ, where the field ρ describes the
common receptive field profile of all the
output neurons.  More generally, the
connections may compute a linear trans-

formation Lφ = ∫ L(u,v) φ(v) dv, where
the kernel L of the operation is a connec-
tion field.  In the case of synaptic fields,
the transmitted signal is given by a

pointwise product σ(u)φ(u) between the

synaptic field σ and the input field φ.
Connection fields and synaptic fields
change comparatively slowly under the
control of neurological development and
learning.

B.  Gabor Wavelets
There is considerable evidence

(reviewed in MacLennan 1991) that im-
ages in primary visual cortex (V1) are
represented in terms of Gabor wavelets,
that is, hierarchically arranged, Gaussian-
modulated sinusoids (equivalent to the
pure states of quantum mechanics).  The
Gabor-wavelet transform of a two-di-
mensional visual field generates a four-
dimensional field:  two of the dimensions
are spatial, the other two represent spatial
frequency and orientation.  To represent
this four-dimensional field in two-dimen-
sional cortex, it is necessary to “slice” the
field, which gives rise to the columns and
stripes of striate cortex.  The representa-
tion is nearly optimal, as defined by the
Gabor Uncertainty Principle (a general-
ization of the Heisenberg Uncertainty
Principle to information representation
and transmission).  Time-varying two-di-
mensional visual images may be viewed
as three-dimensional functions of space-
time, and it is possible that time-varying
images are represented in vision areas by
a three-dimensional Gabor-wavelet trans-
form, which generates a time-varying
five-dimensional field (representing two

spatial dimensions, spatial frequency,
spatial orientation and temporal fre-
quency).  The effect is to represent the
“optic flow” of images in terms of spa-
tially fixed, oriented grating patches with
moving fringes.  (See MacLennan 1991
for more details.)  Finally, Pribram pro-
vides evidence that Gabor representations
are also used for controlling the genera-
tion of motor fields (see citations in
MacLennan 1997, p.64).

C.  Direction Fields
Another example of field computation

in the brain is provided by direction
fields, in which a direction in space is en-
coded in the activity pattern over a brain
region (Georgopoulos 1995).  Such a
region is characterized by a vector field D
in which the vector value at each neural
location gives the preferred direction en-
coded by the neuron at that location. The
population code for a direction r is pro-
portional to the scalar field given by the
inner product of r at each point of D.  It
will have a peak at the location corre-
sponding to r, which falls off as the co-
sine of the angle between this vector and
the surrounding neurons’ preferred direc-
tions.  (See MacLennan 1997, section
6.2, for a more detailed discussion.)

Field computation is also used in the
brain for modifying direction fields.  For
example, a direction field representing a
remembered location, relative to the
retina, must be updated when the eye
moves (Droulez & Berthoz 1991a,
1991b), and the peak of the direction field
must move in a direction given by the
velocity vector of the eye motion.  The
change in the direction field is given by a
differential field equation, in which the
change in the value of the direction field
is given by the inner product of the eye
velocity vector and the gradient of the di-

rection field:  dφ/dt = v⋅∇φ.  Each com-
ponent (x and y) of the gradient is ap-
proximated by a convolution between the
direction field and a “derivative of
Gaussian” (DoG) field, which is imple-
mented by the DoG shape of the receptive
fields of the neurons.  (See MacLennan
1997, section 6.3, for a more detailed
discussion.)
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Other examples of field computation
in motor control include the control of
frog leg position by the linear superposi-
tion of convergent force fields generated
by spinal neurons (Bizzi & Mussa-Ivaldi
1995), and the computation of convergent
vector fields, defining motions to posi-
tions in head-centered space, from posi-
tions in retina-centered space, as repre-
sented by products of simple receptive
fields and linear gain fields (Andersen
1995).  (See MacLennan 1997, section 6,
for more details.)

D. RBF Networks
One kind of field transformation,

which is very useful and may be quite
common in the brain, is similar to a radial
basis function (RBF) neural network.
The input field is a computational map,
which encodes significant stimulus values
by the location of peak activity within the
field (similar to the direction fields al-
ready discussed).  The transformation has
two stages.    The first stage is a convo-
lution between the input field and a local
field (such as a Gaussian); this “coarse
codes” the stimulus as a pattern of activ-
ity.  (We do not require the local field to
be strictly radial, although it commonly
is.)  This stage is implemented by a layer
of neurons with identical receptive field
profiles given by the local field.

The second stage is a linear transfor-
mation of the coarse-coded field, which
yields the output field; it is also imple-
mented by a single layer of neurons.

Thus the transformation is given by L(ρ

⊗ φ), where φ is the input, ρ is the local
field, and L is the linear transformation.

Notice that this transformation is lin-
ear in its input field (which does not im-
ply, however, that it is a linear function
of the stimulus values).  Since, if there
are several significant stimuli, the input
field will be a superposition of the fields
of the individual stimuli, the output will
likewise be a superposition of the corre-
sponding individual outputs.  Thus this
transformation supports a limited kind of
parallel computation in superposition.
This is especially useful when the output,
like the input, is a computational map.

It has been shown (Lowe 1991,
Moody & Darken 1989, Wettschereck &
Dietterich 1992) that simple networks of
this form are universal in an important
sense, and can adapt through a simple
learning algorithm.  For example, as we
saw for direction fields, and input vector
r can be coded by a vector field D to yield

a scalar field r⋅D, which is linearly trans-

formed L(r⋅D).  Learning proceeds by
slow adaptation of the encoding vector
field D and by fast adaptation of the ker-
nel field L.

E.  Diffusion Processes
Diffusion processes can be imple-

mented by the spreading activation of
neurons, and they can be used for impor-
tant tasks, such as path planning
(Steinbeck & al. 1995) and other kinds of
optimization (Miller & al. 1991, Ting &
Iltis 1994).  In a diffusion process the
rate of change of a field is directly pro-
portional to the Laplacian of the field,

dψ/dt ∝ ∇2ψ.  The Laplacian of the field
can be approximated in terms of the con-
volution of a Gaussian with the field,
which is implemented by a simple pattern
of connections with nearby neurons:

dψ/dt ∝ γ⊗ψ − ψ, where γ is a Gaussian
field of appropriate dimension.  (See
MacLennan 1997 for more details.)

F.  Information Fields
As previously remarked, Hopfield

(1995) has proposed that in some cases
the information content of a spike train is
encoded in the phase of the impulses
relative to some global or local clock,
whereas the impulse rate reflects prag-
matic factors, such as the importance of
the information.  Phase-encoded fields of
this sort are a special case of what may be
termed information fields.   An informa-
tion field represents by virtue of its form,
that is, the relative magnitude and dispo-
sition of its parts; its significance is a
holistic property of the field.  The overall
magnitude of the field does not contribute
to its meaning, but may reflect the
strength of the signal and thereby influ-
ence the confidence or urgency with
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which it is used.  Thus a physical field φ

may be factored φ = m ν, where m = ||φ||

is its magnitude and ν is the (normalized)
information field, representing its mean-
ing.  Information fields can be identified
in the brain wherever we find information
processing that depends on the form of a
field, but not its absolute magnitude, or
where the form is processed differently
from the magnitude.  Information is in-
herently idempotent:  repeating a signal
does not affect its semantics, although it
may affect its reliability, urgency and
other pragmatic factors; the idempotency
of information was recognized by Boole
in his Laws of Thought.  Of course, this
independence of magnitude also charac-
teristic of the quantum field, which has
led Bohm & Hiley (1993) to characterize
this field as active information.

IV.  Field Computing Hardware
Field computation can, of course, be

performed on conventional digital com-
puters or by special-purpose, but con-
ventional digital hardware.  However, as
noted previously, neural computation and
field computation are based on very dif-
ferent tradeoffs from traditional computa-
tion, which creates the opportunity for
new computing technologies better suited
for neural computation and field compu-
tation (which is broad but shallow).  The
ability to use slow, low precision analog
devices, imprecisely connected, compen-
sates for the need for very large numbers
of computing elements.  These character-
istics suggest optical information trans-
mission and processing, in which fields
are represented by optical wavefronts.
They also suggest molecular processes,
in which fields are represented by spatial
distributions of molecules of different
kinds or in different states (e.g. bacteri-
orhodopsin).  Practical field computers of
this kind will probably combine optical,
molecular and electrical processes for
various computing purposes.

Mills (1995) has designed and im-
plemented Kirkhoff machines, which op-
erate by diffusion of charge carriers in
bulk silicon.  This is a special purpose

field computer which finds the steady
state defined by the diffusion equation
with given boundary conditions.  Mills
has applied it to a number of problems,
but its full range of application remains to
be discovered.

To date, much of the work on quan-
tum computing has focused on quantum
mechanical implementation of binary digi-
tal computing.  However, field computa-
tion seems to be a more natural model for
quantum computation, since it makes
better use of the full representational po-
tential of the wave function.  Indeed, field
computation is expressed in terms of
Hilbert spaces, which also provides the
basic vocabulary of quantum mechanics.
Therefore, since many field computations
are described by the same mathematics as
quantum phenomena, we expect that
quantum computers may provide direct,
efficient implementations of these compu-
tations.  Conversely, the mathematics of
some quantum-mechanical processes
(such as computation in linear superposi-
tion) can be transferred to classical sys-
tems, where they can be implemented
without resorting to quantum phenomena.
This can be called quantum-style comput-
ing, and it may be quite important in the
brain (Pribram 1991).

V.  Concluding Remarks
In this summary I have attempted to

provide a brief overview of field compu-
tation, presenting it as a model of mas-
sively parallel analog computation, which
can be applied to natural intelligence, im-
plemented by brains, as well as to artifi-
cial intelligence, implemented by suitable
field computers.  It is my hope that this
summary will entice the reader to look at
the more detailed presentations listed in
the references and perhaps to explore the
field computation perspective.
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