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1 IntroductionOver the last ten years, the popularity of networks of workstations for distributed computinghas continued to rise. Rapid advances in processor and interconnect technology are bridging theperformance gap between workstation clusters and traditional supercomputers The demand to solvelarger, more sophisticated problems in the shortest amount of time has served as the driving factor.There exist two major communication models that are used to write distributed or MIMDapplications, shared memory and message-passing. With shared memory, all applications share thesame virtual address space and all communication is implicit upon a memory copy from one taskto another. Depending on the implementation, the application/compiler gives hints to the systemregarding page ownership and the propagation of changes in an attempt to minimize the cost ofcommunication. In distributed shared memory, the address space of each process are physicallyseparate, but shared regions can be negotiated.In the message-passing model, data is exchanged between threads of execution via explicit func-tions for sending and receiving. The two most popular application programming interfaces (APIs)are the Message Passing Interface (MPI)[SOHL+96] and Parallel Virtual Machine (PVM)[GBD+94].PVM was developed at Oak Ridge National Laboratory and was one of the �rst freely availablesoftware packages for practical distributed computing. PVM Version 3 developed at The Universityof Tennessee included major improvements in functionality and performance and subsequentlygained a tremendous following. Over the past few years, PVM has experienced widespread use inboth academia and industry, so much so that the PVM API was adopted by many vendors andshipped with their machines as an alternate message passing layer. Although primarily a researche�ort, PVM paved the way for a more advanced message-passing API, namely MPI.MPI (Message Passing Interface) is a rich standard that was �nalized in 1994 as a collaborationbetween commercial and academic research institutions, including the developers of PVM. A varietyof commercial and public domain implementations of the MPI standard are now available for awide range of architectures. Version 2 of the MPI standard (MPI-2) was recently �nished, althoughcomplete implementations have yet to appear. MPI-2 adds some functionality and addresses severalshortcomings of the �rst version, speci�cally the lack fault tolerance and dynamic process creation.Recently, MPI's popularity has continued to increase due to its rich functionality, good performance,and serious commitments from many high performance computing (HPC) vendors.1.1 PVM PerformanceFaster, more a�ordable networks such as 100Mb/s Switched Ethernet and ATM have become acommon occurrence in today's computing lab. As a result, many bottlenecks have surfaced in thePVM code, operations that are now of signi�cant cost relative to the service time of the network.User's of PVM have been frustrated by the lack of increased network performance when switchingto new hardware. Most users are moving from 10Mb/s Ethernet to a medium that is an order ofmagnitude faster, yet experiencing sub-linear application speedups. In addition, developer's have6



been frustrated by the lack of modularity in PVM's communication layer. PVM uses the socketinterface to do all of its communication, the most e�cient being PVM's RouteDirect option thatallows tasks to communicate directly over TCP sockets. However, TCP implementations have beenshown to be ine�cient on many platforms[KP92][KP93][CFF+93]. PVM's use sockets means thatin order for one to port PVM to a new network interface, a stream-socket compatibility layer wouldneed to be written. The very nature of byte-stream based communication can cause performanceproblems when used in a message passing environment. Byte-streams are reliable, undelimiteddata feeds, originally intended for use by data-ow type applications. Multiplexing of the messagebu�ers must be performed twice, once at the transport level for delivery to the application andagain by the application's communication library to maintain ordering and consistency of the user'ssends and receives.1.2 Protocol OverheadsThese performance problems are not unique to PVM. Kay and Pasquale, Stevens, Lazowska,Culler[PP93] [KP93][KP92][CFF+93] and others have authored numerous papers analyzing commu-nication bottlenecks in software layers and how to address them. This research is largely responsiblefor the revolution in networking performance both at the software and hardware levels. A variety ofoptimizations were targeted speci�cally at the TCP/UDP/IP protocol suite. While these changeswere well received, these protocols and the socket API still fell well of delivering the underlyinghardware's capabilities for local area networks with link speeds beyond 100Mb/s. Multiple layers ofprotocol processing and additional memory copies still dominated the cost of message transmissionproducing prohibitively high latencies and reducing bandwidth. This had the undesirable e�ect ofdelaying the acceptance of cluster computing as an alternative to using MPPs.David Culler at the University of California at Berkeley (UCB) recognized the potential ofclusters lay hidden within the interconnect technology. Culler and his graduate students soughtout to design a lightweight, reliable communication layer unhindered by the BSD socket API thatwould allow the user to make full use of the underlying hardware's performance. In addition,this layer was to facilitate very simple and elegant implementations of higher level protocols andcommunication layers. Out of this e�ort, the concept of Active Messaging was born[vEGS92].1.3 Active MessagesAt the lowest level, an Active Message is a packet of data sized to match the underlying transmissionunit of the network. As an Active Message, there are a set of speci�cations as to what type ofinformation it contains and how the message is to be handled. Every Active Message contains theaddress of a handler, a �xed number of arguments to that handler and any associated \bulk data".The handler is a user-de�ned function that is called implicitly at the time of reception. Its roleis to integrate the information from the Active Message directly into the application. This di�ersgreatly from the usual method of event-driven programming, where data is received, processed and7



then handed to the appropriate function by the application. To the uninitiated, an AM may appearto be an remote procedure call (RPC), but there are some important di�erences. Active Messagesare designed to be as fast and as e�cient as possible, and are exceedingly lightweight operations.Handler execution occurs almost simultaneously with reception and in the same execution context.Handlers must run to completion. They are not allowed to block or do any sort of I/O except forsending a reply. No sophisticated bu�ering or scheduling is required. Usually, bu�ering only occursis on the sender side when the message is aligned and formatted for dispatch to the communicationsubstrate. The only scheduling required is the detection of available data at the substrate sothat the handler can be invoked. When communicating with this model, the application mustexplicitly schedule service of the network. This is called polling. On the other hand, RPC's makeno assumptions about when the network is to be serviced, and rely on the operating system tobu�er the network to avoid dropping messages.By using AMs, protocols can be tailored to suit the demands of an application or family ofapplications. Thorsten von Eicken summarizes the AM model nicely in [vE94].This [the architecture of AMs] minimalist approach avoids paying a performance penaltyfor unneeded functionality. The power of Active Messages comes from the ability to cus-tomize the message formats and the handlers, and from the simplicity (hence e�ciency)of the implementation.Active Messages are not intended to be used directly by application engineers, but rather byhigher level communication abstractions providing services like distributed shared memory or mes-sage passing, in this case, PVM. The user's application will be issuing PVM send and receive callswhich will map to the the exchange of Active Messages. By doing so, we are streamlining PVM'scommunication path in the hopes of a more robust and exible message-passing environment.
8



2 Previous WorkThe earliest known predecessor to Active Messages was the VMTP[Che98] protocol developed in1989. The goal of the authors was to provide a general protocol optimized for small packets andrequest-response tra�c. For a variety of reasons VMTP never became widely accepted, primarilydue to the timing of its release. It represented a solution to a problem that had not been widelyexposed. At that time, research was just beginning on communications bottlenecks. Later studiesdone by Kay and Pasquale[KP93] e�ectively pinned down the major points of performance degra-dation in the IP protocol suite. Key contributions of this work was a cost analysis of the variousprotocol processing operations like memory movement, message demultiplexing, bu�ering, timermanagement, interrupts, kernel traps and shared device access. This work provided a quantitativebasis for the conclusion that the IP based protocols are not well suited to local-area parallel anddistributed computing environments. More precisely, IP based protocols cannot make full use of thehighly-reliable, low-latency, high-bandwidth interconnection networks used in cluster computing.Active messages were initially developed by David Culler and a PhD student of his, Thorstenvon Eicken at UCB. Their work hinged on previous studies done by E. D. Lazowska[BALL90] andA. Thekkath[TL91] regarding light-weight remote procedure calls and their related performancebottlenecks. This, in concert with Culler's own knowledge and experience in the design of message-driven multiprocessors, led to the development of the Active Message.UCB's �rst implementations of Active Messages were highly specialized and ran on a verylimited subset of hardware. The very �rst implementation ran on the Thinking Machines CM5 andthe nCUBE/2 as a means of speeding up the vendors message passing layer. Their e�ort provedremarkably successful and overwhelmingly outperformed the vendors message passing layer. Thenew passage passing layer provided exactly the same API to the user, but the implementation wasbased on Active Messages. The result was an eighty percent decrease in startup cost and a sixtypercent decrease in per byte cost. Thinking Machines quickly realized the importance of this e�ortand subsequently purchased the software and shipped it as part of their run-time system. Thiscode was highly specialized for the CM5. Many routines were hand coded in assembler for optimalperformance, and indeed it paid o�. The nCUBE implementation was very similarly designed. Itachieved slightly less impressive numbers due primarily to the latency of initiating bus transfers(DMA) and protected access to the networking hardware.The e�ort at TMC both justi�ed and paved the technical pathway for other successful imple-mentations of Active Messaging. The next logical step was to determine if the same approachwould bene�t networks of workstations (NOWs) with high performance networking cards. Thetest-bed for this implementation was a network of HP workstations with a high performance FDDIcard.[Mar94] This setup was unique in that the FDDI interface card was directly accessible fromuser space. Another key di�erence in this implementation was the inclusion reliability and bu�er-ing. As with any LAN, this network had the capability to corrupt or drop packets, albeit at a verylow rate. In addition, the packet size was much larger than that of the CM5 or the nCUBE/2,introducing cache and congestion e�ects. Rich Martin[Mar94] of UCB did the implementation and9



it proved remarkably successful, reaching 12MB/sec out of a possible 12.5MB/sec, with half-powerpoint1 of 176 bytes. That platforms native TCP stack had n 12 equal to 1352 bytes. The problemof process/memory space protection was solved with user-level locks and a separate scheduler thatarbitrated user processes among the device. It was at this point that Dr. Culler and his colleaguesdecided to standardize the Active Message API. In every implementation, their network was astatic entity with N processors. Additional AM packages appeared out of UCB, all following thesame model of a static network with a �xed number of preallocated message bu�ers per host.After graduating Dr. Culler's group, Thorsten von Eicken moved to Cornell University wherehe continued his work. Von Eicken's group did an implementation of Active Messages using Sparc20's connected by Fore's SBA-100 ATM adapters.[vEABB94] These were early OC-3 (155Mb/sec)cards that provided no hardware support for segmentation and reassembly of the small (48 bytes)ATM cells. This meant that each of the cells had to be directly manipulated by the AM library.Like the other AM packages, this implementation required modi�cations to the kernel. In this case,the kernel was modi�ed with a simpli�ed device driver and highly optimized kernel traps to readand write raw cells. This implementation did not perform nearly as well due to the overhead ofaccessing the device for each individual cell. The reason this was not a problem for the CM5 wasdue to the integration of the communication engine with the CPU and the operating system. TheCM5's network interface was memory mapped by the processor and timeshared by the operatingsystem, thus each process could read and write the network registers without interfering with otherjobs. With the ATM card, cells had to be delivered across the bus, in this case, the Sparcstation'sSBus. Von Eicken found that the dominating cost in his implementation was the trap to the kernel,which had to be performed for every 48 bytes of data. Nevertheless, the numbers proved superiorto the protocols available at that time. The best API at that time was Fore's AAL 5 interface,which achieved an r1of 4MB/sec., Von Eicken's package achieved 5.5MB/sec.Von Eicken later developed the U-Net package as a followup to this work.[ABvE95] The goals ofU-Net were to solve the performance problems of the previous implementation on more advancedATM hardware. The U-Net project aimed to remove the kernel completely from the communicationpathway through the implementation of virtual endpoints. The paper argues that all protocolstacks should be executing at the user level and that the operating system should provide directand protected access to the network hardware. The actual implementation of the Active Messageprotocol was quite similar to his previous work, the di�erence being in the way in which the ATMcard was accessed. The U-Net system allowed one process at a time to directly access the networkinterface bu�ers. Any other running processes that tried to access the device accessed a \shadow"device that existed in kernel memory. The platform for this work was again SPARCstation 20's,this time with Fore's new SBA-200 OC-3 ATM adaptor. The di�erence between this adaptor andthe SBA-100 is that the SBA-200 has a full RISC CPU (an Intel 960) capable of performing directmemory access (DMA) in addition to some local memory. This allowed much more exibility1The half-power point (n 12 ) is de�ned as the message size at which half the peak (r1) measurement is obtained.Normally n 12 is referred to in terms of bandwidth in megabytes per second.10



in terms of implementation and outstanding results were achieved. The performance was only200KB/sec o� of the peak �ber speed for large packets. Like the previous implementation, the U-NET package required modi�cation of the operating system, and in this case, required modi�cationof the �rmware existing on the communication adaptor.Von Eicken's work has formed the basis for a large industry sponsored e�ort called the VirtualInterface Architecture or VIA.[ICC97] The goal of VIA is to standardize an API very similar to thatof U-Net. That is, to o�er direct, protected access to the network interfaces bu�ers in a timesharedenvironment. There is no reference implementation and there is no particular device or substratetargeted. VIA is a standard intended for implementation by the vendors. The evolution of VIAfrom U-Net closely mirrors that of MPI from PVM. It represents a collaborative e�ort to transferresearch to the commercial marketplace.Perhaps the most comprehensive work with Active Messages recently appeared in a work fromMIT. D.Wallach's paperASHs: Application Speci�c Handlers for High-Performance Messaging.[DAWK97]His system facilitates the importation of provenly correct code into the networking layers of theoperating system on an application by application basis. These code fragments are executed onmessage arrival at the device and run in the address space of the user process associated withthat message. ASHs function to direct message transfers using copies or DMA, as well as respondto asynchronous events such as retransmissions and interrupts. The ASH system also integratesthe concept of Dynamic Integrated Layer Processing (DILP) to allow portability among a widevariety of devices and packet formats. The ASHs that are installed by an application are analyzedat run-time and integrated dynamically with the systems packet processing and demultiplexingsystem. For example, this means that at most only one pass is ever made over data received on alink. Consider the case where data must be copied from a network interfaces bu�ers, a checksumcomputation must be performed and then header information stripped from the packet which isthen assembled and delivered to the appropriate application. With DILP, this entire process runs inuser space with direct device access and only makes one pass over the data. This work is relativelynew and requires extensive support from the OS. Currently it only runs on a DECstation 5000running Aegis, an exo-kernel[DREJO95] based operating system. Nevertheless, the performanceand exibility allowed by the ASH system with Aegis is nothing short of amazing and provides uswith a glimpse of what future production operating systems might have to o�er.3 GoalsThe primary goal of this work is to accelerate PVM via Active Messages. Our work aims tolower PVM's protocol processing overhead and allow PVM to take advantage of more advancedcommunication API's. This will be facilitated by a generic Active Messaging API integrated intothe PVM system. The software, including the Active Messaging library and the revamped PVMcode, will be called PVMAM. 11



3.1 RestrictionsAs in other implementations, end-to-end performance is of the utmost concern. However, herewe place restrictions on what parts of the system are open to development. This is where thisimplementation of Active Messaging is so di�erent from that of the others. Most other packagesintroduce modi�cations at all levels of the software hierarchy, especially the kernel of the operatingsystems. This is unacceptable for inclusion in the reference PVM implementation. For all practicalpurposes, PVM is a production application in widespread use. Or more appropriately stated, it isrun on machines for general purpose use, in government, industry and most importantly educationalinstitutions. These locations are highly suspect of any modi�cations to privileged code not shippedby the vendor. In a sense, modi�cations of system software can only be trusted when originatingfrom the vendor or a commercial operation.2 As PVM and public domain implementations of MPIare used heavily as research tools, it lowers the possibility for commercial success of any companylooking to market third party PVM and MPI software based on custom communication protocols.So, we are left with a dilemma, a problem that is directly addressed by this thesis. Can we bene�tfrom better application protocols by using Active Messaging over the relatively poor communicationAPI's shipped by the vendors?3.2 Code StructurePVMAM layer will be very portable, maintainable and extensible. To that end, we will use anobject-oriented approach to encapsulate di�erent concepts in our implementation. By doing so,parts of the system can easily be modi�ed or changed and communicate behind a well de�nedinterface. We will shy away from using C++ for two reasons. First, many PVM users may nothave access to a C++ compiler. Second, C provides us with more explicit control over memoryreferencing and allocation; translating to better performance.3.3 Communication LayersA key issue in advancing PVM's performance is to design our Active Message library to provide auniform interface to faster, more advanced communication layers. This requirement stems from theextreme di�culty in porting PVM to a new communication API. These API's may be drasticallydi�erent from one another.3 Not only might the API be di�erent, but the network may have verydi�erent characteristics. These di�erences may require modi�cations to the higher level communi-cation layers in order to facilitate e�cient usage of the medium. Our system will de�ne hints thatthe substrate-dependent portion of our code will export to the higher layers of our active messaginglibrary. In addition, this substrate-dependent portion of our Active Messaging package should beeasily replaced. The methodology must be straightforward enough such that any developer shouldbe able to write this code for a new transport and use our package for increased PVM performance.2It is common practice to purchase and install device drivers.3Consider the di�erence between BSD Sockets and System V shared memory.12



Initially, we will target three communication substrates, TCP, UDP and the Myrinet BPI. Ourimplementation of AM over TCP and UDP will provide a strong point of comparison with thereference PVM implementation. Given suitable options, PVM uses TCP sockets between pairs ofprocesses to communicate. In this case, PVM can deliver most of TCP's bandwidth to the appli-cation. However, PVM greatly a�ects the latency of these transfers with its protocol processing.We wish to greatly reduce this by using Active Messages. Our UDP-based implementation shouldalso bene�t from lower latencies due to the nature of datagram communication and the high re-liability of most LANs. Myrinet currently has no native support in PVM. This means that thevirtual machine must be running TCP/IP over these devices in order for PVM to take advantageof this sophisticated hardware. Again, the problem is that most IP stacks are not nearly capable ofdelivering the performance of the underlying hardware. PVMAM will exchange data with ActiveMessages, which makes use of the lowest level API provided by the vendor. These API's are usu-ally highly tuned and frequently obtain bandwidth and latency �gures within �ve percent of thehardware. Thus, optimizing the protocol processing portion of PVM will become that much moreimportant, as performance will be limited by software, not the speed of the network.3.4 Providing a Dynamic NetworkPVMAM needs to be able to support a dynamic network. By dynamic we mean that during thecourse of an application, processing nodes could be added or deleted from the virtual machine. Thevery nature of PVM is based on this concept, unlike MPI-1 in which the virtual machine is deemedto be static. This greatly reduces code complexity and facilitates many optimizations. In fact,most current Active Messaging systems are based on a static network making them unsuitable forour purposes. PVM's exibility in this regard, introduces signi�cant data structure and bu�eringcomplexity into our implementation of Active Messages.3.5 Reduction of OverheadHere will provide a brief outline of the most severe sources of overhead. Of particular inter-est, is the work done on pro�ling the overheads of TCP/IP in [KP96]. While most of theirwork is in regard to the performance of the in-kernel protocol stack, the conclusions made ap-ply to any software messaging layer. Generally, protocol processing is segregated on the basis ofdata-touching and non-data-touching operations. For further information the reader is referred to[KP93][KP96][KP92][PP93][Gus90][CFF+93][KC94][Ous90].3.5.1 Memory MovementData copies can be the single most inuential factor in a messaging layers end-to-end performance.For TCP/IP under most operating systems, as many as four copies may occur from applicationto application. This involves the copy from user-space to kernel space, followed by a copy to thedevice and then back again on the remote machine. Additional copies may be required for staging13



a message or for the purposes of reliability. With respect to the speed of communication, memorycopies used to be relatively fast. However this is quickly changing as gigabit per second technologieslike SCI and Myrinet come to market. Works like U-Net, ASHs and HPAM go through greatlengths to avoid copies as the are responsible for signi�cant performance degradation. In PVMAM,we will avoid copies as much as possible, given proper support from the OS and the communicationsubstrate. The request-reply nature of Active Messages will allow us to use any advance knowledgeof the destination address to amortize the cost of data movement.3.5.2 Kernel TrapsActive Messaging has brought to light many bottlenecks related to crossing protection boundaries.With faster substrates, the overhead entering the kernel and enforcing the address space becomesquite important. Even the timing routines used for stamping messages can have signi�cant e�ect onperformance. For further detail on the e�ects of operating systems on application performance, thereader is referred to [Ous90]. Since most PVM users do not have access to any specialized networkinterfaces, they will be using PVMAM on top of either TCP or UDP. Thus we must carefullyevaluate our design decisions in the hopes of amortizing the cost of kernel and network access.3.5.3 Bu�eringDue to the loose synchronization found in most parallel applications, a member process may havenot issued a receive before another process has executed the corresponding send. In addition, otherdata from previous transmissions may be still in ight over the network. In order for the applicationnot to deadlock waiting for a particular communication request to complete, it must provide somebu�ering. For that reason bu�ering is of key importance to messaging layers. Bu�ering can greatlya�ect overhead due to the usage and performance of the memory allocator and associated datastructures. PVM bu�ers all of it's incoming messages and provides no facility to receive themin-place. It allocates room for the incoming message at the time of reception possibly resultingin numerous calls to the memory allocator and prohibiting use of any a-priori knowledge of themessages destination. Our implementation will provide preallocated, �xed sized packet bu�ers,sized to match the maximum transmission unit4 of the network. In addition, the number of thesebu�ers will be tuned such that multiple packets can be pipelined in-transit without congestion inthe network or protocol stack.3.5.4 ReliabilityAny messaging layer must be able to reliably and predictably deliver its data. Physics dictatesthat software must compensate for potential loss or corruption of data no matter how small the4This can be interpreted as the maximum packet length of the substrate, not the physical medium over which itis being transferred. UDP has an MTU of 8192 bytes, while 10BT has an MTU of 1500 bytes.14



error rate. Data copies are also part of reliability because if a message is lost or corrupted beyondrecovery, it must be retransmitted. Andrew Chien et al in [KC94] �nds that even in the highlye�cient CMAM layer, up to twenty percent of instructions involved in a multi-packet transfer arefor reliability. PVM solves the reliability problem by using a sophisticated bu�ering/retransmitmechanism in the daemon, and by using TCP/IP among direct-routed clients. Active Messagesattempt to reduce the cost of reliability by making some assumptions about when and how theyare used. When Active Messages were developed, they were targeted at MPPs and workstationclusters. Both networks exhibited very low packet loss and corruption rates. As a result, speedis gained by greatly simplifying the implementation. Rich Martin[Mar94] says in his paper \Inexchange for high-performance most of the time, we occasionally pay a high penalty for the rareoccurrence that a packet is corrupted." This is a valid assumption, as many networks are highlyreliable and support error correction at the link level.3.5.5 Protocol HandlingMost messaging systems encapsulate the concept of the state of the network. More precisely, onlycertain events can happen under certain conditions and after a certain amount of time. Demul-tiplexing, fragmentation, handshaking, connection management, timeouts and address resolutionare all part of the protocol handling present in TCP/IP, and to some extent UDP. For small pack-ets, these operations can take a large percentage of the time for a message exchange.[KP96] Notethat this kind of processing cannot happen o�-line or after a message has been transmitted. Thiskind of processing stands directly in the way of lowering communication latencies. Implementa-tions of UDP often do not much perform any better, weakening the argument that UDP is a trulylightweight protocol.Active Messages directly targets this area of communication bottlenecks. Data movement mustalways occur, only the number of passes over the data can hoped to be reduced. However, notso is the case with protocol processing. Active Messages essentially minimizes this cost. There isno state machine, no connection management logic, no demultiplexing operation and no chaineddata-structures. All protocol-like operations are to be performed by the application. Thus, thedecision as to what processing is necessary for the application to execute correctly is left to thedeveloper.
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4 AM ImplementationOur implementation of Active Messages is focused around two data structures, interfaces and end-points. Both are object-oriented structures that attempt to simplify the roles of various parts ofour Active Messaging subsystem. Active Messages are sent to through an interface to a speci�cendpoint. Applications may use more than one interface at a time, but multi-threaded applicationsusing the same interface are not supported.The interface represents the communication substrate over which messages are sent. An inter-face contains:� Information about the underlying transport layer. This primarily consists of pointers to thedi�erent transport functions.� A list of tasks or processes (endpoints) the interface is connected to.� Parameters controlling the AM protocol such as the maximum number of messages in ightand timeout interval.� Bu�ers for incoming messages. This implementation cannot receive messages in-place. Inother words, the non-header information contained in the AM must be copied from theunderlying substrate into a staging area. The AM's handler is then free to copy this datainto the application's (PVM) bu�ers.� Statistics for the interface. These are used to short-cut redundant reliability computationsfor all connected tasks.An endpoint represents a remote process with which Active Messages can be exchanged. Anendpoint contains:� A string-based network address of the connected task. This is used during connection estab-lishment.� A native address of the connected task. This address is handed directly to the transport layerin the message exchange functions.� Outgoing request and reply bu�ers. These bu�ers are where headers are built and the user'sdata is copied to ensure reliability. If the underlying transport is reliable, then these bu�ersare never allocated.� Reliability information. For unreliable transports, each endpoint keeps track of the num-ber unacknowledged packets. This data is used, as in the interface, to shortcut redundantreliability computations for this particular task.16



� Task state information.� Protocol hints. The AM library keeps hints as to the most recently freed bu�ers. For intensivecommunication patterns, bu�ers are constantly allocated and freed. These hints improve theperformance by reducing the lookup time and the thrashing of the TLBs and data cache.The handling of these two structures is separated by the use of the API. The interface structureis allocated and �lled upon initialization of the AM library. Endpoints can be added or removeddynamically. By implementing the library to be dynamic, we complicate the task addressing issues,but gain the ability to do implement client-server and fault-tolerant type applications.5 The Active Message ProtocolThis implementation uses the protocol presented in [Mar94]. This protocol is designed aroundthe concept that every network has a depth, or the maximum number of packets that can be heldin-ight or bu�ered by the network. In practice, this number is variable depending on the sizeof the packets being transmitted. However, in-order to simplify the implementation our ActiveMessaging layer assumes that the packets are full. The reason for this is that the majority ofmessages exchanged will be larger than the MTU of our AM layer. The depth parameter is tunableas either a run-time parameter passed at intialization time or via an environment variable.This protocol requires that every Active Message generate and transmit an explicit acknowl-edgment. Before we describe the protocol, we must establish some assumptions and de�nitions.� An Active Message has a maximum size, 8192 bytes.� An Active Message has a request and reply, each can have a di�erent handler.� Active Messages are allowed to arrive out-of-order.� Every endpoint contains separate request and reply bu�ers for every other endpoint.� Each request and reply bu�er is numbered as to it's depth in the bu�ering structure. This isreferred to as the instance number.� Every request and reply bu�er has a binary sequence number used to detect dropped orduplicate data within that instance.� No timer-lists are maintained and only requests are allowed to timeout.The protocol is best explained with an example. On the sender's side:1. Process A sends an Active Message to Process B over interface X.17



2. B is looked up in interface's task table.3. B's request table is examined for a free bu�er. If none is found, keep servicing the networkuntil a bu�er becomes available.4. When a bu�er is becomes available (instance I), mark the bu�er as in-use, build the AM'sheader and timestamp the request.5. The message is sent to B using the interface's underlying transport. If the transport indicatesa blocking condition, then the network is serviced and transmission is retried.6. If the transport is unreliable, then A copies the \bulk data" of the message into the requestbu�er. By copying the data after transmission, we hope to hide the latency of the network,especially if our machine is an SMP and the second processor can do the network I/O.At the receiver, B:1. Either the AM library or higher layer explicitly services the network.2. The AM layer obtains an incoming bu�er. When data becomes available, the transportreceives the message into that bu�er.3. If no data is available, check the request bu�ers for timeouts. Recall that there are only a�xed number of these bu�ers, the network depth. If some requests have expired, double theirtimeout interval and retransmit them. Then try to service the network again. If the requeststimeout interval goes beyond a certain limit, then the request is dropped. This limit is tunableat initialization time.4. The AM library determines that the message is a request and it examines the header forreliability.� Lookup the reply bu�er for task A, instance I.� If the reply bu�er is not in use, then continue processing.� Else if the sequence number of the incoming request is di�erent from that in the replybu�er, then the previous reply was successfully transmitted so continue processing.� If these checks fail, then the previous reply was dropped and it is retransmitted.� Mark the reply bu�er for task A, instance I as free.� Lookup the address of the user's handler and invoke it.5. If message's handler was called and it did not send an explicit reply, send a blank reply.Remember that all requests must have a corresponding reply in order for the protocol stateinformation to be properly updated. 18



Back at the sender, A:1. Same as 1 through 3 as above.2. The AM library determines that the message is a reply and it examines the header for relia-bility.� Lookup the request bu�er for B, instance I.� If the request bu�er is in use and the sequence number of the incoming reply matchesthat of the request bu�er, then this reply is valid.� Otherwise, a duplicate reply was received and it is dropped.� Mark request bu�er for task B, instance I as free and toggle the request bu�er's sequencenumber.� Lookup the address of the user's handler and invoke it.The reader will notice that the protocol does not guarantee ordered reception of data. Thushigher layers must be able to detect this condition and handle it appropriately.5.1 Task Addressing, Naming and ManagementSince our target environment is PVM, it was decided to base lookups upon PVM task identi�ersor TIDs. PVM assigns TIDs dynamically when processes are spawned. Our AM library uses theseTIDs to lookup remote endpoints in a circular linked list. Frequently, we expect numerous AMs tobe transmitted to a speci�c endpoint as part of a longer PVM message. Therefore, when a task issuccessfully found in the list, that task is moved to the head of the list to reduce the time of futurelookups.This AM layer is designed to be connection-oriented. The reason for this was that it is far simplerto emulate connection-oriented protocols with connectionless protocols than the other way around.Speci�cally, the connection routines simply become no-ops. However, there are two problems withthis arrangement. The �rst is that it imposes a knowledge of both endpoints of the communicationpath at the time of connection. The second is that no more than two processes should ever tryto connect to each other. Otherwise, race conditions could develop between the arbitration andthe messaging functions. This cannot when using TCP. When connecting two processes with TCPsockets, one side calls connect() and one side calls accept(). Only the task calling connect()needs to have information about the remote process. Once the connection is established, the sidecalling accept() gets returned the address of the connecting entity. In addition, this schemeallows multiple clients to connect to a master in any order. This behavior is highly unportablebetween communication layers and would result in a lot of extra code. The solution is to simpleimpose an exclusive, rigid, ordering scheme on the connection process that must be handled by thehigher level software layers. To ease this implementation, this AM implementation separates the19



preallocation, connection and addressing of the endpoints. In PVMAM, a remote task is not ableto be communicated with until it's endpoint has been inserted into the local processes task table.However, it can be allocated and connected to, ahead of time.In order for a connection to be established, we must provide the address of the remote processto the AM library. Unfortunately, network addresses are always binary arrays in host-byte order.In order to solve this problem, each AM task computes it's own address at initialization time. Thisaddress is transformed to network-byte order and turned into a character string. This string canthen be obtained from the AM library through an API call and passed to remote processes forconnection.5.2 Address Identi�ersAs this layer is designed to be highly portable and used among heterogeneous clusters, our AMlayer must contain some abstraction of virtual addresses. Internally, this abstraction is used onlyto lookup the text address of the AM's handler for execution. However, the user could use themexternally to handle any necessary address-independent computations or data storage. Since weexpect a small number of handlers and/or structures, our address identi�ers are implemented asdirect o�sets into a dynamically sized array of addresses. The identi�ers are managed with a smallset of functions in the AM API.5.3 TransportsIn our AM library, we chose to implement three di�erent communication substrates, TCP sockets,UDP sockets and the Myrinet BPI. Each of these protocols has di�erent semantics, usage andcharacteristics. In this section we will discuss some of the implementation issues associated withusing these protocols as substrates for our AM layer. Raw bandwidth and latency of the threeprotocols can be found in �gures 8, 9, 10 and 11.5.3.1 TCPTCP is a connection-oriented, reliable, byte-stream based protocol that can send messages of anylength. Message are undelimited; their boundaries are not preserved when communicated. BecauseTCP is reliable, we can avoid doing copies of the user data and processing most of the AM protocol.This will signi�cantly increase the performance of our library. Since our implementation presentsa connection-oriented model to the higher layers, the connection process maps naturally to thesimilarly named socket calls. However, this also implies that receives must be addressed to aspeci�c connection5, which can cause a severe performance loss. The only solution to this problemis to use the Unix system call, select(), on all the connections to obtain the one on which datais waiting. This operation can be also be expensive, although not quite as costly as executing a5Otherwise known as a �le descriptor. 20



non-blocking receive for each individual �le descriptor. Another problem is that TCP uses discardsmessage boundaries. This is a problem for AMs that are smaller than the maximum size allowed bythe AM layer. If we execute a receive with the MTU as an argument, we might possibly read morethan one Active Message into our receive bu�er. This violates the semantics of our protocol. Thesolution is to execute a separate receive for the �xed-length header and the body of the message.Although this incurs performance hit, it is the only way to guarantee reception of one message ata time. PVM handles incoming TCP messages in much the same manner.5.3.2 UDPUDP is connectionless, unreliable protocol that preserves message boundaries. UDP messages havea maximum length, usually 8192 bytes. This protocol is much more suitable to an e�cient AMimplementation. The connection process is trivial, the AM connection routines simply map toname resolution functions to verify the destination address. UDP provides us with a single pointof contact for all incoming data, thus we can avoid calling select(). Lastly, it preserves messageboundaries, so only one receive need be executed per message. The only drawback is that it isunreliable. As a result, timeouts must be checked and the network must be serviced in a timelymanner. Copies of each outgoing request and reply must be saved for retransmission in the case ofan error. Nevertheless, the reduced number of system calls can possibly outweigh the performanceimpact of this data movement if we have a fast processor. If the machine is an SMP, then wecan hope to hide much of the latency by copying the data after transmission. Ideally, the secondprocessor could continue to output the packet on the network interface while the �rst processor iscopying the data into the library's bu�ers.5.3.3 The Myrinet BPIMyrinet is a highly-reliable, switched interface with a link speed of 1Gb/s. In practice, the overheadof the Myrinet software consumes much of this bandwidth as can be seen in �gure 10. Nevertheless,it still provides much better performance when used with the Myrinet IP protocol stack. Thereare two APIs shipped with the Myrinet hardware. The �rst, simply called the Myrinet API, is aDMA-based library with a FIFO like command interface. The semantics of this library are quitecomplex, albeit it performs quite well. The Myrinet BPI is an additional programming interfacethat hides much of the complexity of the API at the cost of some performance. Like UDP, the BPIprovides an unreliable, connectionless communication layer that preserves message boundaries. Italso has a maximum message size of 8192 bytes. Implementation issues for the BPI are identicalto that of UDP with the exception of the latency hiding mechanism. With the BPI, the operatingsystem is not involved, therefore the second processor will simply lie idle. However, we can still gainsome performance by understanding how the BPI works internally. When a message is sent usingthe BPI, the BPI must copy that message to an area of kernel memory that the Myrinet devicehas direct access to. Once that occurs, the Myrinet card itself copies the data from the kernel21



memory to the network. This process involves a cache ush after the data has been transmitted tothe network. By copying the data before we call the BPI function, we can take advantage of thetemporal locality of this process. Since most if not all data caches are larger than 8K, we guaranteethe data will come directly from the cache providing a much higher bandwidth.
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6 PVM and AM IntegrationPVM presents us with numerous di�cult issues to solve when integrating Active Messages. The�rst and foremost being that PVM is designed around non-blocking TCP sockets and select()for polling and multiplexing among connections. Internally, the ow of control in PVM dependshighly on the status of its incoming and outgoing message bu�ers and the arguments in the callstack. In addition, the message routing and handling functions su�er from recursion and multiplepoints of entry and return. Furthermore, the bu�ering structures are complex with multiple levelsof indirection and redundancy. This makes integration of any new messaging layer very di�cult,especially in regards performance. In order to address these issues, some background on the internalsof PVM is necessary.6.1 PVM Message Bu�ersOutgoing messages in PVM are explicitly or implicitly packed before transmission by calling one ofthe pvm pk() functions. This means that the application's data is encapsulated by internal storagestructures before being transmitted. This process normally involves a copy of the user's data, unlessthe user explicitly requests that the data is packed in-place. In this case, the data is not actuallycopied but recorded with a pointer. Packing also provides a mechanism to encode and/or encryptthe data in a machine-independent fashion. By default, PVM uses a mechanism called XDR, a setof portable encoding routines that handle all of the base C and Fortran datatypes.
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pmsg representing a single call to one of the packing functions for a speci�c datatype. Hanging o�the pmsg structure is a list of structures called message fragments or frags. Fragments containpointers to bu�ers that contain the packed application data. These bu�ers are of �xed size, usually8K bytes, and are the fundamental unit of transmission across the network. Unlike the psmgs,there may be multiple fragments created by a call to one of the packing functions. In the case ofin-place packing, the fragments point directly to the application's data. In-place fragments may beof arbitrary length.6.2 PVM Message Handling and RoutingBefore tackling the understanding of the messaging functions, we need to understand how messagesand fragments are handled at the socket level. As mentioned above, messages are sent and receivedin fragments. Both the entire message and each fragment are preceded by headers that are sentseparately from the application data. When a message is to be sent, a header is built for the entiremessage that contains the length, the tag and the encoding of the message as well as some otherinformation. After that header is sent, a header is built for each fragment, which is sent followedby that fragments data. This process repeats until the entire message is sent.Both internally and externally, PVM has multiple points of entry into the message routing andhandling functions. The PVM API is built on top of the exported pvm send() and pvm recv()functions as well as the internal functions msendrecv(), mroute() and mxfer(). msendrecv() han-dles a singular message exchange usually to the PVM daemon. It calls mroute(). mroute() handlesthe routing of outgoing messages and receives incoming messages. It calls mxfer(). mxfer() pollsand/or writes to the output socket. It might repeatedly call mxinput() to read and handle incom-ing fragments or headers. mxinput() reads either a message header, fragment header or fragmentdata and returns. If the header indicates that the data is for an internal control routine, thatroutine is executed, which might cause recursion by calling pvm send().6.3 PVM Task ManagementThere are two paths by which PVM messages can reach their destination. The �rst is to routethe message through the daemons. The second is to set up a direct-routed connection, a TCPsocket between the sender and receiver. For applications that require performance, direct-routingo�ers the best chance of success. These connections are managed by data structures called thetask-to-task control blocks or ttpcbs. These structures are connected into a list containing thename, tid and socket address of each of the peer tasks. Connections are not static, they are madeimplicitly by mroute() if the user has enabled the PvmRouteDirect option. After a connection isattempted, a ag in the ttpcb indicates whether or not it was successful and if data can be sentusing this route. Hosts that die or are killed are detected at the remote end as a broken socketand the route is disabled. The dynamic nature of this scheme allows a lot of exibility from theapplication developers standpoint. The problem is that it is highly TCP speci�c and relies heavily24



on the control ow and re-entrancy of the internal message handling routines. This prevents usfrom using the internal mechanisms to establish AM connections. In addition, no guarantee ismade against multiple tasks simultaneously connecting to the same socket, because it relies uponthe semantics of the accept() call as described earlier.6.4 PVMAM Message HandlingThe �rst problem to address is how to make a PVM message look like a series of Active Messages.The natural answer is that every PVM fragment becomes an Active Message in PVMAM. As ActiveMessages have a small maximum size and the maximum fragment length is tunable in the PVMlibrary, the two sizes can be matched. By doing this, a majority of the PVM message handlingcode can remain unchanged, in addition to the bu�ering, packing and encoding routines.Because of the interested in performance, it was decided to shortcut execution of PVM codeas soon as possible in favor of our AM layer. However, we need to make sure we guarantee faircommunication with the PVM daemon as well as the other tasks in the virtual machine. In PVM,the socket to the daemon is polled upon every call to mxfer(). This is a signi�cant source ofoverhead, as the select() call on multiple �le descriptors can be very costly in terms of latency.The solution to this is to have the process be noti�ed asynchronously when the socket to the daemonneeds servicing. This is accomplished by setting up the socket to deliver the SIGIO signal to theprocess when data arrives. The handler for this signal merely toggles a boolean ag indicating thatthe daemon has data. This ag is then checked opportunistically within the new PVMAM code.6.4.1 Message TransmissionIntegration into pvm send() seemed logical as this would remove a lot of of the PVM code pathsfrom execution during normal operation. In addition, integration into pvm send() allows higherlevel communication layers built upon that primitive to take advantage of any increase in perfor-mance. This holds for the combined in-place pack and send function, pvm psend() as well.pvm send() works as follows in PVMAM:1. Check to see if PVMAM is enabled.2. Check to see if the destination is not the PVM daemon.3. Check to see if this function has not been re-entered.4. Check to see if the destination has a task control block (ttpcb).5. Check to see if the destination is open for communication.6. Check to see if the tag is not an PVM control message.25



7. If any of the above checks fail, call mroute() and send the message through the daemon.8. Else, build a message header.9. Build a frag header.10. Send the Active Message.11. Move to the next fragment. Goto 9 until entire message has been sent.12. Check to see if the SIGIO handler has been called. If so, call mroute() which will service thesocket to the daemon.One of the primary di�erences of this protocol is that the network need only be accessed onceper fragment for communication substrates that preserve message boundaries. Previously, PVMwould read fragment's header, process it, and then read the fragment's data. In PVMAM, theActive Messages contain both header(s) and fragment data. All data necessary for the processingof the fragment is contained within that AM. The fewer number of calls to the transport APIdirectly translates to a reduction in processing overhead for PVMAM.6.4.2 Message ReceptionWhen pvm recv() or pvm precv() is called and the message has not already been received, con-trol is eventually transferred to the mxfer() routine. mxfer() waits on possibly multiple socketsuntil data arrives. When data does arrive, mxinput() is called to read and handle the fragment.We choose this routine to be the basis of our handler for PVMAM fragments. However, somemodi�cations to mxfer() are necessary to ensure fair servicing of the daemon socket and the PV-MAM connections. Now, instead of waiting in mxfer() using the rather slow select() systemcall, mxfer() enters a loop, alternately polling the AM interface and checking the ag set by theSIGIO handler. If the SIGIO handler has been called, then data is available at the daemon socketand the original version of mxinput() is invoked. If fragments arrive on the AM interface, then themodi�ed mxinput() routine is called as the handler of the Active Message. This modi�ed versionof mxinput() extracts the entire fragment and processes it. If this fragment is the last in a series,signifying the reception of a complete message, then a ag is set causing mxfer() to exit the loopand put the message on the receive queue.pvm recv() now works as follows:1. If the message desired is not on the receive queue, repeatedly call mroute() until it appears.2. mroute() checks the route and calls mxfer().3. mxfer() repeatedly calls the AM network service routine until:26



� The SIGIO handler has been executed indicating data waiting on the socket to thedaemon.� An entire message has been received over Active Messages.4. If the SIGIO handler has been called, invoke mxinput() on the daemon socket.5. Otherwise, return control to mxfer() which returns to mroute() which returns to the user.6. If this is the message we asked for, return, otherwise goto 1.One of the di�culties in integrating this AM layer is guarding against data received out of order.Fortunately, there are three bytes of unused space in the fragment header. We reserve one byte ofthis to hold the sequence number. Upon the transmission of every AM, the sequence number inthe header is incremented. This number is checked upon reception against the last known sequencenumber from the sending host. If these numbers do not match, the packet is dropped and we relyon the AM library to handle the retransmission.6.5 PVMAM Task ManagementThe AM library is initialized as soon as the PVM client sets up the socket to the PVM daemon.The communications interface used is changed by setting an environment variable. By default,PVMAM uses UDP sockets.It was decided for simplicity of the implementation to remove the direct-routing code, as ourlayer will provide native TCP and UDP sockets in addition to accelerated transports. This involvedcutting out the message routing code from mroute() and disallowing the PvmRouteDirect option.However, the ttpcbs were maintained because they were an integral part of the messaging functions.Whether receiving or sending a message, PVM always attempts a lookup of the destination ttpcbin the task list. Thus, the ttpcbs make a logical choice to store task-related information speci�c tothe AM library. In fact, by recording the destination's endpoint pointer in the ttpcb, a TID basedlookup in the AM library can be eliminated.As mentioned in the previous section, our AM library requires exclusive and explicitly-orderedconnections to work properly with all transports. This problem was temporarily solved with theintroduction of an additional API call called pvmam init(). This function takes as an argumentthe total number of tasks participating in the job and is called by every member process. The roleof pvmam init() is to fully connect all the participating processes so that they can send ActiveMessages to one other. The order problem was solved with the following algorithm.1. All processes obtain their \stringi�ed" AM task address.2. All processes that have been spawned, send this address to the master process, the processthat did the spawning. 27



3. The master then instructs all the tasks, a pair at a time to connect to each other. The taskwith the larger TID does the accepting, the other does the connecting.While exceedingly primitive, this algorithm satis�es our ordering and exclusivity requirement.In addition, it performs quite well for connectionless transports as no arbitration is actually involved.6.6 ProblemsIntegration of Active Messages into PVM has proven to be di�cult without su�ering some loss inPVM functionality. The internal message handling functions of PVM have been a major stumblingblock to a fully functional prototype. This implementation has broken communication with thegroup server mean collective operations no longer function properly. This problems could likelybe solved by moving the AM-speci�c code from mxfer() into the API functions pvm recv() andpvm precv(). In addition, this would have the desirable side e�ect of slightly lowering the latencyand increasing the bandwidth.
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7 PVMAM PerformanceIn this section, we report on the performance of two benchmarks, MPBench a message passingbenchmark designed by the author and a parallel FFT designed by Vasilios Georgitsis[Geo] andmodi�ed by the author. MPbench measures both bandwidth and latency of the pvm psend() andpvm precv() calls. Care has been taken to eliminate cache e�ects and interference from otherprocesses. Here the latencies are computed by taking the roundtrip time and dividing it by two.For further information, the reader is referred to [Muc97]. Here we report MPBench data for allplatforms.The FFT is a master-slave model that computes a two-dimensional, slice-wise FFT on anarray of dimension 1152. A constant size was used so as to increasingly stress the latency of thecommunication layer. The benchmark works as follows. The master partitions the data and theslaves compute and communicate amongst themselves until the FFT is �nished. At that time, themaster gathers the data from the slaves an exits. The time reported by this benchmark is thatignoring initial I/O and setup and begins before the master broadcasts the data to the slaves. Thetimer is stopped and printed after the data from the last slave has been received. This code is fairlycommunication intensive, sending numerous small messages. It is reported only for the Solarisplatform as there weren't enough Linux nodes available to generate a meaningful plot.Our goal in reporting these numbers is not only to show an increase in performance, but alsoto demonstrate little or no loss in performance for the situations where no advanced networkinghardware is available. For these cases, PVMAM succeeds simply by providing an machine andtransport independent abstraction of the network, delivering true portability and future extensibil-ity to existing PVM implementations.7.1 Measurement PlatformsThe following table summarizes the measurement platforms. All source code was compiled withgcc version 2.7.2.1 with the ags -g -O -Wall except for the AM library which was compiled with-O3. For our experiments with TCP and UDP, a depth of 8 demonstrated the best performance.For the Myrinet platform, depths greater than 12 showed no signi�cant performance improvement.CPU OS Network Link Speed Protocols2 Pentium II 300Mhz Linux 2.0.34 SMP Myrinet 1Gb/s BPI, UDP, TCPUltraSparc I 167Mhz Solaris 2.5.1 Fore ATM 155Mb/s UDP, TCPUltraSparc I 167Mhz Solaris 2.5.1 Switched Ethernet 100Mb/s UDP, TCP29



7.2 Sun/Solaris7.2.1 Bandwidth
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Figure 2: Solaris 2.5.1, Ultra 1, PVM 3.4 vs. PVMAM BandwidthHere we see almost identical performance of stock PVM and the PVMAM implementation.When running over the ATM switch, we �nd that the AM layer runs about about one percentslower than the direct-routed sockets that PVM uses. This di�erence is hardly signi�cant in termsof application performance. The bandwidth curve for TCP has been intentionally left o� thisgraph as UDP was slightly faster for this platform. TCP bandwidth can be found in �gure 16 inthe appendix. Here the performance of both PVM and PVMAM is bound by the speed of accessingthe operating system and the underlying socket implementation. In this case, the cost is primarilydominated by the implicit copy of the user's data to kernel data structures when the socket iswritten to. 30



7.2.2 Latency
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Figure 3: Solaris 2.5.1, Ultra 1, PVM 3.4 vs. PVMAM LatencyAgain, we see almost identical performance of PVM and PVMAM for this platform due to thesocket and kernel overhead.
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7.3 Intel/Linux7.3.1 Bandwidth
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PII Myrinet DirectFigure 4: Linux 2.0.34 SMP, Pentium II, PVM 3.4 vs. PVMAM BandwidthIn this graph, we greatly exceed the performance of standard PVM both with UDP socketsand with the Myrinet BPI. This performance di�erence from UDP is largely due to the lack ofmaturity of the TCP stack for the Myrinet hardware. PVM's performance loss after at 8K seemsto be a repeatable anomaly in this stack. This also appears in the raw network performance graphs,�gure 10 and �gure 11. It is not clear whether this is a Myrinet speci�c problem or whether ornot it is related to some SMP issues in the 2.0.34 kernel. As for PVMAM over the Myrinet BPI,the performance is more than double that of direct-routed PVM. With the Myrinet BPI, the AMlayer can bypass the operating system and directly deal with the network interfaces DMA bu�ers.Comparing this curve with the peak speed of the API in �gure 10, we �nd PVMAM to be nearlyfour megabytes short of the BPI's peak bandwidth. This can be attributed to the extra copyincurred at receive time by the AM library, which can hopefully be eliminated in the future.32



7.3.2 Latency
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Figure 5: Linux 2.0.34 SMP, Pentium II(2), PVM 3.4 vs. PVMAM LatencyAgain, we note the large performance di�erence from the PVMAM implementations versusstock PVM. Here, the latency for PVMAM over UDP asymptotically approaches that for TCP nearmessage sizes of one megabyte. Below that, the latency is many orders of magnitude lower thanPVM. For programs that exchange many small messages, we can expect noticeable performanceincrease even when just using UDP as our PVMAM transport. When using Myrinet and BIP, we�nd that the latency of transfers is consistently lower than that of stock PVM. The similarity inlatency of UDP and the BIP transport at the low end of the message sizes can be attributed tothe fact that the gettimeofday() system call is called upon every transmission. This cost couldpossibly be eliminated by using the Pentium II's hardware cycle counters instead.
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8 Parallel FFT Performance8.1 Solaris8.1.1 Execution Time
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Figure 6: Solaris 2.5.1, Ultra 1, Parallel FFT Execution TimeIn this graph, we examine the execution time of the parallel FFT while varying the number ofprocessors. For this benchmark, we chose PVMAM over TCP as it provided better performancethan did the Solaris implementation of UDP. Here we �nd a slight decrease in run time for thoseruns using PVMAM. For the most part, we �nd the di�erence to be slight between the PVM andPVMAM curve when run on each substrate. The reader will note that although the ATM networkhas a �fty percent faster link speed, the performance of the FFT over the two networks is nearlyidentical. This is an indication that the application is severely latency-bound. In �gure 8, we �ndthat the additional bandwidth is only utilized for transfers larger than 64K. For messages belowthat size, �gure 9 shows that the latency is almost identical.34



8.1.2 Scalability
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9 ConclusionUpon the incarnation of this work, Active Messages were largely a edgling research e�ort by avery small number of institutions. MPI was in it's infancy and PVM was the standard for paralleland distributed computing. Since that time, the community has changed signi�cantly. Exhaustiveresearch has been done on the performance of communication protocols and designing an e�cientcommunication substrate suitable for cluster computing. MPI is now the standard distributedcommunications API and shared memory operations are rapidly gaining popularity. Furthermore,Active Messages have been widely embraced by the research and commercial community as ane�cient mechanism to provide application speci�c, low-latency, high-bandwidth networking to dis-tributed computing environments. Unfortunately, a majority of the AM implementations havebeen explicitly coded and tuned for a speci�c network-interface, processor and operating systemand are highly unportable. This problem largely prevents the development of high performancecommunication in heterogeneous environments. This implementation of Active Messages directlyaddresses this issue by ensuring portability in addition to good performance and exibility. Thiswork also demonstrates that the integration of Active Messages and PVM can be successful forthe many of the same reasons. With PVMAM, PVM is no longer bound by the performance ofthe underlying TCP socket implementation and the overhead of its message handling routines. Nochanges to the API are made except for the addition of pvmam init() which could be eliminatedin favor of a connection-on-demand scheme. PVM's internals remain largely unchanged except forthe modi�cations mentioned earlier in this paper. Thus, through a small amount of changes, PVMhas gained complete protocol independence providing the developer with increased portability andthe user with increased performance.For situations where an advanced network interface is available, PVMAM clearly outperformsstock PVM. The greatest bene�t coming from the bypass of the operating system and its bu�ers.New transport layers for the AM API are not particularly di�cult to write, so the library can growas networking technology progresses. For the normal case where no advanced network interface isavailable, our AM implementation performs on par with stock PVM communicating over direct-routed TCP connections. On the Linux cluster, the UDP socket-based implementation of ActiveMessages actually performed much better than PVM, both in terms of latency and bandwidth.These characteristics can be attributed to the lower number of system calls, automatic ow controland the tuning of advanced socket options in the AM library. It is thought that with some minorchanges to the transport layer and the message dispatch routines, the extra memory copy on thereceive side could be eliminated. This modi�cation would likely increase the performance wellbeyond direct-routed PVM over TCP for most platforms.36



10 Future DirectionsPVMAM could certainly bene�t from some further performance tuning. There is still a largeamount of redundancy in the code as well as a number of sanity checks for debugging purposes.After suitable testing, these checks could be eliminated in favor of reducing the latency. Anotherimportant issue is the additional memory copy incurred when the data is moved from the networkinterface into a staging area by am poll(). This has a signi�cant e�ect on bandwidth, especiallywhen using the Myrinet interface. This copy could be eliminating by passing some additionalinformation to am init(). An Active Message in PVMAM contains both AM header informationas well as PVM header information in addition to fragment data. The request handler for PVMAMneeds the PVM header information so it will know how to handle the incoming message. Otherapplications using this AM layer will most likely function in a similar manner. The solution toremoving this copy is provide the AM library with a hint as to how much \user"' header informationwill be carried by each Active Message. Then, when the network is serviced, the AM library onlyreads the entire header and let's the message handler itself receive the body of the message fromthe network. This modi�cation should be fairly simple to implement and require little or no changeto the transport layers. Other, more severe changes include:� Use the VIA interface as a transport layer. This change would guarantee that the AM librarywill have high-bandwidth, low latency access to the next generation of network interfaces.For non-VIA transports, a simple, e�cient VIA emulation layer could be written.� Add in-place receive capability to PVM so that PVM message bu�ers can be preallocatedinstead of inside the message handlers.� Remove the chained in-place packing modi�cation and fragment the data at the time theActive Message is sent.� Move the AM network service routines to pvm recv and pvm precv(). This would allow lowerlatency and remove the race conditions from communication with the group server.� Remove pvmam init() and make PVMAM jobs dynamic. Processes that wish to use ActiveMessages would connect on demand, just like direct-routed tasks do.� Use more e�cient timestamps where available.� Eliminate header and timestamp processing for reliable transports.� Eliminate the ordering and exclusivity requirements of the connection process.37



A PVMAM Message FormatsA.1 Format of an Active Message in PVMAMBytes What Description4 from task TID of the requesting task2 total length Total length of this AM1 instance Instance number of this bu�er1 sequence Binary sequence number of this bu�er1 pad Unused1 type Type of AM (request or reply)2 handler Address identi�er of handler4 checksum UnusedA.2 Format of a PVM Message HeaderBytes What Description4 data signature Encoding of the data4 tag PVM Message Tag4 context PVM Message Context4 sequence Unused for non-MPPs4 wait id Unused for client4 checksum Unused4 reserved Unusued4 reserved Unusued
38



A.3 Format of a PVM Fragment HeaderBytes What Description4 destination Destination TID4 source Source TID4 length Length of fragment3 - Unused1 Control bits Start and End-Of-Message Indicators

39



B The PVMAM APIint am global init() Initialize the address identi�er tables and timestamp routines.void *am init(transport init fn, info) Initialize the transport with the provided informationand return a pointer to the interface.void *am shutdown(interface) Make sure all messages are acknowledged, close all connectionsand free all bu�ers and associated memory.int am global shutdown() Free the address identi�er tables and invalidate further timestamps.void *am id to address(id) - Translates integer identi�er id into an address.int am bind address with id(addr,id) - Replaces the current address in id with addr.int am address to id(addr) - Inserts address addr into the table and returns an integer identi-�er.char *am task address(endpoint, tid) - Returns the transport address of task tid.void *am allocate task(interface) - Allocates the internal structures and bu�ers necessary tomake a connection with a new task.int am connect task(interface, endpoint, name) - Connect the remote task to our interface.name is that returned by am task address() on the remote machine.int am accept task(interface, endpoint, name) - Accept the remote task at our interface.name is that returned by am task address() on the remote machine.int am insert task(interface, endpoint, tid) - Insert endpoint with tid into our inter-face's task list.int am remove task(interface, tid) - Remove the task with tid from our interface's task list.int am deallocate task(interface, endpoint) - Free all memory associated with this endpoint.char *am hostname(interface, tid) - Return the actual name of tid.int am request ep(interface, endpoint, handler id, data, length) - Send a request to endpointwith data.int am request(interface, tid, handler id, data, length) - Send a request to tid withdata. 40



int am request vdata ep(interface, endpoint, handler id, data, length) - Send a requestto endpoint with vectorized data.int am request vdata(interface, tid, handler id, data, length) - Send a request to tidwith vectorized data.int am reply(interface, header, handler id, data, length) - Send a reply to the request-ing host with data.int am request vdata(interface, tid, handler id, data, length) - Send a reply to the re-questing host with vectorized data.int am poll(interface) - Service the network.

41



C The AM Transport Interface Functionsint (*network init) Allocates initializes the transport and allocates the our hosts endpointstructure. It also readies the localhost to accept connections. In addition, this routinereads the information structure that exists in the interface and modi�es it to reect thecharacteristics of the transport in use. Requiredint (*network pkaddr) Translates a machine independent representation of a endpoint addressand packs it into the native representation as used by the transport. Requiredint (*network upkaddr) Translates a binary transport address into a machine independent char-acter representation. Requiredint (*network resolve) Translates a character hostname and binary port number into a binarytransport address. This function is used to check validity of an address with a name service.Optionalint (*network desolve) Translates a binary transport address into a character hostname andbinary port number. Optionalint (*network connect) Connects to a remote endpoint speci�ed by the binary transport ad-dress. Optionalint (*network accept) Accepts the a remote endpoint speci�ed by the binary transport address.Optionalint (*network send) Sends a contiguous check of data to the endpoint speci�ed. This functionfully completes or returns 0. Requiredint (*network gather) Gathers a vector of data and sends it to the endpoint speci�ed. Thisfunction fully completes or returns 0. Requiredint (*network wait) Waits until data is available at the interface. This function is currently onlyused internally by the TCP transport. Optionalint (*network recv) Receives a complete Active Message or returns 0. Requiredvoid *(*network get buf) Get message bu�ers to be used for transmission. This functions cur-rently just calls malloc. It is intended to be used for DMA-like transport interfaces.Required.int (*network free buf) Free message bu�ers to be used for transmission. Required. See above.char *(*network error) Return a string corresponding to the speci�ed error code returned byone of the above function. Optional 42



int (*network shutdown) Frees the localhost's endpoint returns all resources to the operatingsystem. Required
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D Raw Network PerformanceThe following results were collected using netperf[Inf94] for the TCP and UDP protocols and withbpi latency[Myr] for the Myrinet cluster and plotted with GNUplot.D.1 Raw TCP and UDP on Sun/SolarisD.1.1 Bandwidth
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Figure 8: Solaris 2.5.1, Ultra 1, Raw Socket Bandwidth
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D.1.2 Latency
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Figure 9: Solaris 2.5.1, Ultra 1, Raw Socket Latency
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D.2 Raw TCP, UDP and the Myrinet BPI on Intel/LinuxD.2.1 Bandwidth
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Figure 10: Linux 2.0.34 SMP, Pentium II(2), Raw Socket Bandwidth
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D.2.2 Latency
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Figure 11: Linux 2.0.34 SMP, Pentium II(2), Raw Socket Latency
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E PVM and PVMAM PerformanceE.1 Direct Routed PVM(TCP) on Sun/SolarisE.1.1 Bandwidth
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Figure 12: Solaris 2.5.1, Ultra 1, PVM 3.4 Bandwidth
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E.1.2 Latency
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Figure 13: Solaris 2.5.1, Ultra 1, PVM 3.4 Latency
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E.2 Direct Routed PVM(TCP) on Intel/LinuxE.2.1 Bandwidth
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Figure 14: Linux 2.0.34 SMP, Pentium II(2), PVM 3.4 Bandwidth
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Figure 15: Linux 2.0.34 SMP, Pentium II(2), PVM 3.4 Latency
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E.3 PVMAM on Sun/SolarisE.3.1 Bandwidth
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Figure 16: Solaris 2.5.1, Ultra 1, PVMAM Bandwidth
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E.3.2 Latency
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Figure 17: Solaris 2.5.1, Ultra 1, PVMAM Latency
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E.4 PVMAM on Intel/LinuxE.4.1 Bandwidth
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E.4.2 Latency
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Figure 19: Linux 2.0.34 SMP, Pentium II(2), PVMAM Latency
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