
The Average Availability of UniprocessorCheckpointing Systems, RevisitedJames S. Plank Michael G. ThomasonTechnical Report UT-CS-98-400Department of Computer ScienceUniversity of TennesseeAugust 25, 1998See http://www.cs.utk.edu/ plank/plank/papers/CS-98-400.html for other information about this paper.AbstractPerformance prediction of checkpointing systems in the presence of failures is a well-studied research area.This paper makes three small contributions to this research area. First, we show how to apply the conceptof availability from reliability theory as a useful metric for checkpointing systems. Second, we study theaverage availability of uniprocessor checkpointing systems, using the libckpt checkpointer as a model. Thisis a slight deviation from previous checkpointing models. We employ Bernoulli trials to derive an expressionfor the availability of such a checkpointing system, and then use this expression to calculate the checkpointinterval which maximizes availability. Third, we present another derivation of the availability based on a directcalculation of average segment uptime. For the exponential failure distribution function, these two derivationsare equivalent. The latter derivation allows for a simple way to numerically approximate availability for otherfailure distribution functions. We conclude with examples of applying these results.1 IntroductionCheckpointing is an important topic in fault-tolerant computing as the basis for rollback recovery. In a check-pointing system, a user periodically checkpoints his or her program, saving its state to stable storage. If for somereason the program fails, then when the machine becomes functional, the program may be restarted from thestored checkpoint, thereby reducing the amount of recomputation that must be performed.When using a checkpointing system, a user is confronted with an important question: How frequently shouldcheckpoints be stored? If the user checkpoints too frequently, then the overhead of checkpointing may slow1

down the program too much. However, if the user checkpoints too infrequently, then the program may spendtoo much time re-executing code following a failure. To help the user decide upon an optimal checkpointinginterval, many researchers have quanti�ed the theoretical performance of checkpointing systems under a varietyof assumptions [You74, GD78, Dud83, TB84].The most relevant research to date has been that of Vaidya [Vai97], who has derived equations for average sys-tem performance of non-trivial uniprocessor checkpointing systems. As a performance metric, Vaidya introducesthe concept of \overhead ratio," r, de�ned as follows:r = �T � 1where � is the average running time of a program in the presence of failures with checkpointing and rollbackrecovery, and T is the optimal running time without checkpointing in the absence of failures. The goal in choosingparameters to optimize the performance of a program in the presence of failures is therefore to minimize r.In this paper, we make three small contributions to the �eld. First, we present availability as an alternativemetric of system performance. Though closely related to overhead ratio, availability is more commonly used inreliability theory, and to some people, it may have a more intuitive meaning.Second, we derive equations for uniprocessor checkpointing system availability, employing a slightly di�erentsystem model than Vaidya. This model is derived from libckpt, a very popular public-domain checkpointinglibrary for Unix-based uniprocessors [PBKL95]. Our derivation is based on on Bernoulli trials. The resultingequation for availability di�ers slightly from Vaidya's, due to the slight change in system model. In practicalterms, the di�erence is unimportant. However, we present it so that a theoretical model exists to match existingsoftware systems.Third, we present an alternate derivation of availability based on a direct calculation of average segment uptime.The signi�cance of this presentation is that it facilitates approximating the availability of non-exponential failuredistribution functions. We conclude by showing some availability studies of several checkpointing scenarios.2 The System ModelThe user is executing a long-running application on a uniprocessor. Every I seconds, a checkpoint is initiated.I is called the checkpoint interval. It takes L seconds from the initiation of a checkpoint before the checkpointmay be used for recovery. This is called the checkpoint latency, and typically corresponds to the time that it takesfor the checkpoint to be written to stable storage. We assume that L � I, meaning that the program cannotstore two checkpoints simultaneously.The impact of checkpointing on the executation time of the program is embodied by the parameter C, calledthe checkpoint overhead. This is the time added to the execution time of the program as a result of storing asingle checkpoint. Many checkpointing systems employ an optimization called forked or copy-on-write checkpoint-ing [LNP90, EJZ92, PBKL95], where an in-memory copy of the checkpoint is created and written to stable storage2

0 1000 2000 3000 4000 5000
Time (seconds)

down down

Take
Ckp #1

Take
Ckp #2

Take
Ckp #3

Take
Ckp #4

Take
Ckp #5

Take
Ckp #6

Recover
from

Ckp #1

Recover
from

Ckp #4

500
sec

500
sec

450
sec

450
sec

500
sec

450
sec

15
0

se
c

Program
starts

Program
finishes

I I I I I I

Useful
computation

Checkpoint
overhead

Wasted
computation

Recovery
overheadFigure 1: Timeline of an example program with checkpointing.asynchronously while the program continues execution. To conserve memory, this copy is typically created by the\copy-on-write" technique, where pages that are unmodi�ed by the program during checkpointing are shared bythe program and the in-memory checkpoint. The major implication of copy-on-write checkpointing is that C isvastly smaller than L, which in turn drastically improves the performance of the system [EJZ92, PBKL95, Vai97].Following a failure and subsequent repair of the processor, the program rolls back to the last completedcheckpoint. All computation from the beginning of that checkpoint to the failure is lost. The program takes Rseconds to restore its state to that of the checkpoint, and then it resumes computation, again checkpointingevery I seconds.Figure 1 shows the time line of an example program that executes with the following parameters:� The failure-free running time of the program is 3000 seconds.� Checkpointing is performed with I = 500 seconds, C = 50 seconds, L = R = 200 seconds.� The machine running the computation fails twice, once at 900 seconds, and once at 3400 seconds. For eachfailure, the machine remains unusable for 500 seconds.The execution of the program goes as follows. After 500 seconds, checkpoint #1 is initiated. This takes 200seconds to complete and takes 50 seconds of computation away from the program. This 50 seconds occurs at3

the very beginning of the checkpoint. Once checkpoint #1 completes, the 500 seconds of computation precedingit become \useful," meaning that those 500 seconds will never have to be recomputed. At t = 900 seconds, themachine fails, meaning that all computation after checkpoint #1 is \wasted," because it will have to be redoneupon recovery. At t = 1400 seconds, the machine becomes functional, and begins recovery from checkpoint #1.This takes 200 seconds to complete, at which point computation proceeds from checkpoint #1. At t = 2100,t = 2600 and t = 3100 seconds, checkpoints #2, #3 and #4 are initiated, each taking 50 seconds of computationaway from the program, and requiring 200 seconds to complete. The completion of checkpoint #2 adds 500seconds of useful computation to the completion of the program, and the completion of checkpoints #3 and #4each add 450 more seconds. When checkpoint #4 is complete, the program has completed 1900 seconds (out of3000) of useful computation.At t = 3400 seconds, the machine again fails, rendering the computation following checkpoint #4 wasted. Att = 3900 seconds the machine is repaired, and the computation recovers from checkpoint #4. At t = 4600 andt = 5100, checkpoints #5 and #6 are initiated. Their completion adds another 950 seconds of useful computation,leaving 150 seconds more to �nish the program. At t = 5300, that 150 seconds has been added, thus �nishing thecomputation.2.1 Di�erences between this model and previous modelsBefore Vaidya's paper, most research on checkpointing performance assumed that C = L = R. The di�erencebetween Vaidya's model and the model in this paper is slight. Vaidya denotes the checkpoint interval as T ,which is the time between the end of the previous checkpoint's overhead period, and the beginning of the nextcheckpoint. T is also the time between the beginning of the program and the �rst checkpoint, and between theend of recovery and the �rst checkpoint following recovery.Thus, if we set T = I�C, our model and Vaidya's are in agreement, except that in our model the �rst interval,and the intervals following recovery are all I seconds, whereas in Vaidy's, they are T seconds. We have chosenour model since it conforms to the model implemented by two public domain checkpointing implementations:libckpt [PBKL95], and CLIP [CPL97]. However, as will be shown, unless failures are quite frequent, the resultsfrom our model and Vaidya's do not di�er signi�cantly.2.2 AssumptionsOur model (along with all the others) makes a few assumptions that do not hold in real checkpointing systems.First is that C;L, and R are constants for each program execution. Since L and R depend on the size of eachcheckpoint, they can only be constants if each checkpoint is the same size. When optimizations such as incrementalcheckpointing [FB89] or memory exclusion [PBKL95] are employed, it is common for multiple checkpoints of thesame program to di�er in size. The checkpoint overhead depends on additional factors, such as the memoryusage patterns of the program, and again can vary from checkpoint to checkpoint. However, we assume that the4

programmer will employ average values for C;L, and R.Another assumption of our model is that all of the overhead induced by a checkpoint occurs when the check-point is initiated. As Vaidya has detailed [Vai97], when forked checkpointing is employed, this overhead is infact distributed throughout the checkpoint's latency. Moreover, when other optimizations such as incrementalcheckpointing or memory exclusion are employed, some of the checkpoint's overhead arises from tagging regions ofmemory for inclusion/exclusion before the checkpoint is initiated. Therefore, our model (and the others) departsfrom reality in this respect.In the analysis that follows, we assume that processor failures occur as a Poisson random variable; hence,the interoccurrence times between failures1 are independently and identically distributed (iid) as an exponentialwith cumulative distribution function F (t) = 1� e��t, probability density function f(t) = �e��t; and mean timeto failure MTTF = 1=�: This model has never been corroborated by observations of real checkpointing systems;however, in [PE98], Plank and Elwasif show that for three sets of observed failure data that do not follow a Poissonmodel, theoretical results based on the Poisson model are applicable for predicting checkpointing performancewhen I is smaller than, or near its optimal value. Thus, there is utility in predicting checkpointing performanceusing the Poisson model.In fact, the exponential is the unique distribution with a constant failure rate [Par62]. Thus, a measure suchas availability de�ned below almost surely underestimates a system's long-run, average performance whenever anexponential distribution is used in lieu of a distribution with the same mean value but an increasing failure rate.3 Average system availability as a metric of checkpointing performanceIn standard reliability theory, the availability of a system is de�ned in terms of uptime and downtime intervals.[BP75]. Relative to system start-up at time 0, the system status is a sequence of time intervals where the startof a new interval is marked by the end of a downtime.Any interval of system observation may be decomposed into uptime and downtime intervals which occur inalternation. An uptime interval is one in which the system produces useful work. Conversely, a downtime intervalis one in which the system does not produce useful work. In checkpointing systems as modeled in section 2, theuptime intervals are only those in which useful computation is being produced. There are other times, for examplewhen the system is recovering from a checkpoint or when the computer is performing wasted computation, that thecomputer is functional but the checkpointing system is not producing useful computation. In terms of availability,these are considered downtimes.Given a time interval of length T from system start-up, let the sum of the durations of the uptime intervals1In the probability literature, a renewal process describes the sequence of independent positive random variables that representthe interoccurrence times of a recurrent event (cf [Par62]). 5

be U and the sum of the durations of the downtime intervals be D. Since uptimes and downtimes are disjoint,T = U +D:The availability of the system during time T is de�ned to beAT = UU +D: (1)As an example, in Figure 1, the availability of the program for the duration of its execution is 3000=5300 = 0:566.In the �rst 1000 seconds, the availability is 500/1000 = 0.5, despite the fact that the computer is functional forthe �rst 900 seconds.The long-run, average availability of a system is de�ned in terms of uptime and downtime as random variables[BP75] by taking the limit of AT as T goes to in�nity:A = limT!1AT : (2)Since interoccurrence times of failures are iid, the uptime and the downtime between consecutive failures arerandom variables with well-de�ned mean values, denoted respectively as � and �, and allow us to compute theavailability as: [Par62] A = ��+ � : (3)MTTF is the mean failure interoccurrence time, and since uptimes and downtime are disjoint, �+ � = MTTFand the availability is computable as: A = �MTTF : (4)In the case of the exponential pdf, we have MTTF = 1=� and thus:A = ��: (5)Average system availability A is a convenient metric of checkpointing performance because it has a straight-forward meaning. It is the fraction of time that the system is producing computation that counts toward thecompletion of the program. All other portions of time, be they machine downtime, checkpointing overhead, re-covery overhead, or wasted computation, combine to lower the availability. If a computation takes F seconds tocomplete in the absense of failures and checkpointing, then a F=A is an approximation of the program's expectedtime to completion in the presence of failures and checkpointing. This approximation becomes more accurate asF !1.When comparing two computing systems S1 and S2 that run at di�erent processor speeds R1 and R2, thesystem availability gives the user a very simple way to compute which system will run faster with checkpointingin the presence of failures. The system Si with the larger value of RiAi is the faster system.6

Availability is directly related to overhead ratio de�ned in [Vai97] in the following way:r = �T � 1and as T !1, r = � + �� � 1= 1A � 1:Therefore, maximizing A is equivalent to minimizing r.4 Computing Average System Availability without Markov Chains4.1 Assumptions and De�nitionsFor simplicity, we assume zero repair time following a failure (or that R includes a �xed time to repair). In otherwords, the time between failures is all time during which the computer is available. As detailed in Section 2.2, weassume that processor failures are iid as a Poisson random variable with mean value �: Thus, the interoccurrencetimes between failures are iid as an exponential with cdf F (t) = 1� e��t, pdf f(t) = �e��t; and MTTF = 1=�:
M+1

M+1

������
�����
�����
�����
�����

0 1 M
R I C I-C C I-C C

time

Segment

L L L

T

failure
interval but before checkpoint completes

for interval

next failure after checkpoint completes for
M

. . .

. . .

Figure 2: A segment is a sequence of intervals between consecutive failures.To compute the average system availability of a checkpointing system as detailed in section 2, we de�ne asegment s to be a time interval between processor failures. The duration of s is jsj. A typical segment is depictedin Figure 2, and composed of checkpoint intervals labelled 0 through M + 1. We term a checkpoint intervalcomplete or successful if the checkpoint that ends the interval completes. In other words, the failure that ends thesegment must occur at a time greater than L seconds past when the checkpoint begins. Obviously, if the failureoccurs before an interval's checkpoint begins, the interval is unsuccessful.As pictured, all checkpoint intervals except interval M + 1 are successful. In terms of uptime, checkpointinterval 0, if successful, contributes I seconds to the segment. All other successful intervals contribute I � C7

seconds, and interval M + 1 contributes zero seconds. Therefore, if a segment fails before checkpoint interval 0completes, the value of U for the segment is zero. If checkpoint interval 0 completes, then the value of U for thesegment is: U = I +M (I � C): (6)
tM+1

tM+1

������

0 1 M

t tt0 1 M

time

failure in time span

. . .

. . .

. . .Figure 3: Time spans in a segment.We de�ne the time span ti of checkpoint interval i to be the interval of time, during which a failure would makethat checkpoint interval unsuccessful. Thus, t0 = [0; R+ I +L), and for i > 0, ti = [R+ iI +L;R+(i+1)I +L).In terms of interval size, jt0j = R+ I + L, and for i > 0, jtij = I.Finally, we de�ne the sets Fi and �Fi as follows. Both Fi and �Fi are subsets of S, the set of all possiblesegments. Fi is the set of all segments that fail in ti, and �Fi is the set of all segments that fail after ti. In otherwords: Fi = (s 2 S s:t: i�1Xk=0 jtij � jsj < iXk=0 jtij)�Fi = (s 2 S s:t: jsj � iXk=0 jtij) :We make three observations about Fi and �Fi:Fi \ �Fi = ;F0 [�F0 = SFi [�Fi = �Fi�1; i > 04.2 Determining the availabilityBecause failures are iid and follow the Poisson model, the task of computing availability for an in�nitely longcomputation is equivalent to computing the average availability of an in�nite number of segments, where thesegment sizes are iid in the same manner as the failure interoccurence times. We use Eq. 5 for this determination.Since � is a given, the problem is to detemine �, the expected segment uptime.Segments in F0 have no uptime. Segments in �F0 have uptimes I +M (I � C). Since F0 [�F0 = S, � may bedetermined as: � = P (�F0)(I +M(I � C)); (7)8

where P (�F0) is the probability that a segment is an element of �F0, andM is the mean value ofM for all segmentsin �F0.P (�F0) is the probability that jsj > (R+ I + L):P (�F0) = 1� F (R+ I + L) = e��(R+I+L) (8)To determine M, we de�ne P (�Fi) to be the probability that a segment s 2 �Fi�1 is also in �Fi, and P (Fi) tobe the probability that a segment s 2 �Fi�1 is also in Fi. Obviously, P (�Fi)+P (Fi) = 1. P (Fi) is the conditionalprobability that a segment s with jsj � R+ iI+L also has jsj < R+(i+1)I +L. For the exponential distributionof jsj: P (Fi) = F ((R+ iI + L) � (R + (i + 1)I + L) = F (I) = 1� e��(I) (9)P (�F0) = 1� P (Fi) = e��(I) (10)Let Ei be a Bernoulli trial with possible outcomes fFi; �Fig. We de�ne an experiment E to be a sequence ofBernoulli trials E1; : : :EM ; EM+1 such that for i �M , Ei has outcome �Fi, and EM+1 has outcome FM+1. ThenMis the average value of M for all such experiments E . Using the probabilities in Eqs. 9 and 10, the determinationof M is a standard result in probability theory [Fel68]:M = e��I1� e��I : (11)Therefore: � = e��(R+I+L) �I + e��I1� e��I (I �C)�= e��(R+I+L) �I �Ce��I1� e��I �= �(I � Ce��I) e��I1� e��I� e��(R+L) (12)A = �(I � Ce��I) e��I1� e��I��e��(R+L) (13)Therefore, we maximize A by selecting the value of I that maximizes the term:(I �Ce��I) e��I1� e��I :Note that as in [Vai97], the optimal value of I is independent of L and R.5 Direct Calculation of �One may also calculate � directly as an in�nite sum of the probability of getting to and failing in interval imultiplied by the uptime associated with failing in that interval:9

� = 1Xi=0 P (getting to and failing in interval i)(I + (I � C)i)= 1Xi=0 (F (L+ (i + 2)I + R)� F (L+ (i + 1)I +R)) (I + (I �C)i) (14)For the exponential distribution with mean interoccurence time 1=�, and F (t) = 1� e��t, � has a closed formsolution: � = 1Xi=0 ��1� e��(L+R+2I+iI)�� �1� e��(L+R+I+iI)�� (I + (I �C)i)= 1Xi=0 ��e��(L+R+I)e��Ie��iI + e��(L+R+I)e��iI� (I + (I �C)i)= e��(L+R+I) �1� e��I� 1Xi=0 �e��iI� (I + (I �C)i)= e��(L+R+I) �1� e��I� 1Xi=0 Ie��Ii + 1Xi=0(I �C)ie��Ii!= e��(L+R+I) �1� e��I� I 1Xi=0 �e��I�i + (I �C) 1Xi=0 i �e��I�i!= e��(L+R+I) �1� e��I�� I1� e��I + (I �C)e��I(1� e��I)2 �= e��(L+R+I)�I + (I � C)e��I1� e��I �= e��(L+R+I)�I � Ie��I + Ie��I � Ce��I1� e��I �= e��(L+R) �I �Ce��I�� e��I1� e��I� :Note that this is the same as Eq. 12 above.5.1 Other distributionsWith Eq. 14, one may calculate � numerically to an arbitrary precision given any distribution function. Forexample, in [ML91], the failure interoccurence time for spare CPU availability was observed to best �t a hyper-exponential distribution [Tri82], which has the general cumulative distribution functionF (t) = kXi=1 �i(1� e��it):Given values for k, �1; : : : ; �k, and �1; : : :�k, one may numerically approximate � and thus A by calculatingEq. 14 for an appropriately large number of intervals. 10

0.01 0.1 1 10 100
Time to Failure (days)

0.00

0.02

0.04

0.06

0.08

F
ra

ct
io

n
of

 I
nt

er
va

ls

Figure 4: TTF intervals for the LONG data set.6 An Example Case Study: The LONG Failure DataIn [PE98], Plank and Elwasif obtained over six months of longitudinal failure data for three separate collectionsof workstations. The probability that any of these collections failed according to a Poisson model is vanishinglysmall [LMG95, PE98]. To assess the relationship between equations derived for the Poisson model and these datasets, Plank and Elwasif wrote a simulator, which takes as input a data set, C, L, R, I, and F , the failure-freerunning time of a program, and determines EI, the mean running time of that program on the machines in thedata set when checkpointing with the given parameters.One of the surprising results of [PE98] is that even though the TTF intervals in the data sets are extremelyunlikely to follow a Poisson model, some of the theoretical results based on the Poisson model still apply. Inparticular, the value of I that minimizes � (i.e. that maximizes A) using Vaidya's analysis typically does a goodjob of approximating the value of I that minimizes EI in the simulator.As an example of using the equations derived in this paper, we consider the LONG data set from [PE98].This is failure data from July, 1994 to May, 1995, for 993 workstations distributed around the world [LMG95].In the data set, there are 10,958 TTF intervals and 9,965 TTR intervals. The MTTF is 13.306 days, and theMTTR is 1.497 days. A histogram of the TTF intervals is plotted in Figure 4.A typical way to apply the standard analysis to this data set for the purposes of selecting a checkpointinginterval and estimating running time is to approximate the system using an exponential distribution with sameMTTF. Thus, � = 1=13:306 days. A histogram of the TTF intervals for this distribution function is plotted inFigure 5(a).The analysis in Section 5 allows us to calculate availability numerically given any distribution function. Wetherefore selected three other plausible distribution functions. First, as mentioned in Section 5.1, computersystems usage often falls into distinct phases that may be modelled with a hyperexponential distribution. In11

0.01 0.1 1 10 100
Time to Failure (days)

0.00

0.02

0.04

0.06

0.08

F
ra

ct
io

n
of

 I
nt

er
va

ls

0.01 0.1 1 10 100
Time to Failure (days)

0.00

0.02

0.04

0.06

0.08

F
ra

ct
io

n
of

 I
nt

er
va

ls

(a) Exponential (b) Hyperexponential
0.01 0.1 1 10 100

Time to Failure (days)

0.00

0.02

0.04

0.06

0.08

F
ra

ct
io

n
of

 I
nt

er
va

ls

0.01 0.1 1 10 100
Time to Failure (days)

0.00

0.02

0.04

0.06

0.08

F
ra

ct
io

n
of

 I
nt

er
va

ls

(c) Mixed regular/hyperexponential (d) FLONGFigure 5: TTF intervals for various distribution functions.Figure 5(b) we plot a three-level hyperexponential distribution with �1 = 0:370, �1 = 1=5:89 days, �2 = 0:362,�2 = 1=27:64 days, �3 = 0:268, �3 = 1=0:844 days. These values were obtained by attempting to minimizethe least squares di�erence between the TTF histogram produced by the hyperexponential and the histogram inFigure 5(a). The minimization was performed by a simple Monte Carlo program running for a few days.The next distribution function is weighted mixture of uniform distributions and exponential distributions:F (t) = k1Xi=1 �i (U(ai; bi; t)) + kXi=k1+1�i �1� e��it� ;12

where U(a; b; t) = 8>>><>>>: 0 if t < at�ab�a if a � t < b1 if b � tNote that U(a; a; t) is well-de�ned: U(a; a; t) = 0 if t < a, and U(a; a; t) = 1 if t � a.We explore this mixed distribution function because the data in Figure 4 has distinct spikes near one dayand one week. This corresponds to machines that go through phases where they are rebooted daily or weeklyfor maintenance, or perhaps power conservation. In Figure 5(c), we plot a mixed distribution function withparameters displayed in Table 1. This was obtained by selecting four regular intervals corresponding to thehighest spikes in Figure 4 and then mixing them with a four-level hyperexponential distribution obtained by aMonte Carlo program. i �i �i (1/days) ai (days) bi (days)1 0.006632 0.640 0.7802 0.056758 0.800 0.9993 0.016478 5.012 6.3084 0.020878 6.400 7.8005 0.231590 1/1.076 0.204843 1/5.647 0.312144 1/18.348 0.150676 1/39.49Table 1: Parameters for the mixed distribution.Finally, the last distribution function is one built directly from the data. Speci�cally, let S1; S2; : : : ; SN be theTTF intervals in data set X. Then: FX (t) = 1N NXi=0 U(Si; Si; t)Thus, Figure 5(d), displaying FLONG, matches Figure 4 exactly.6.1 Calculating the Optimal Checkpoint IntervalIn [PE98], the authors use their simulator to plot the optimal checkpoint interval of a program running on theLONG data set. They consider a program with a failure-free running time of 30 days, and then �nd the checkpointinterval that minimizes expected running time while varying checkpoint overhead (C) from ten seconds to onehour. In their tests, they assume that C = L = R. Their results are plotted in Figure 6, along with approximationsof the optimal checkpoint interval as determined by Young [You74] and Vaidya [Vai97].13

0 20 40 60
C, L, R (minutes)

0.0

0.5

1.0

O
pt

im
al

 I
 (

da
ys

)

Simulated
Young’s app.
Vaidya’s app.Figure 6: Simulated and theoretical determinations of the optimal checkpoint interval from [PE98].

0 20 40 60
C, L, R (minutes)

0.0

0.5

1.0

O
pt

im
al

 I
 (

da
ys

)

Simulated
Exponential distribution
Hyperexponential distribution
Mixed distribution
Distribution from dataFigure 7: Simulated and theoretical determinations of of the optimal checkpoint interval using Eq. 14.We use Eq. 14 to calculate the checkpoint interval numerically that maximizes availability for each of thedistributions in Figure 5. The results are plotted in Figure 7, along with the values determined by the simulatorin [PE98].The points of interest in Figure 7 are as follows. First, the curve for the exponential and hyperexponentialdistributions di�er very little. Moreover, the optimal values of I as determined by Eq. 14 and the exponentialdistribution is nearly identical to Vaidya's. The other two distribution functions give curves for optimal I thatare much less smooth, and resemble the simulator's values more closely.Although the distribution function FLONG matches the distribution of the LONG data exactly, the simulatorgives di�erent values for optimal I than Eq. 14. There are two reasons for this. First, the exact ordering ofTTF intevals in the data is one of many that can create FLONG. Moreover, that ordering a�ects the results14

of the simulator. Therefore, it is reasonable to expect the simulated and theoretical values to di�er. Second,the simulator's values for optimal I in Figures 6 and 7 are those that minimize the expected running time ofthe program with failures and downtime due to repair. If the repair time is removed from the simulator, thensimulator's values for optimal I change. It is the subject of future work to calculate all of these values andcompare them to the values generated by Eq. 14.7 ConclusionWe have presented two derivations of the availability of uniprocessor checkpointing systems. These are usefulfor predicting and optimizing the performance of checkpointing when the distribution of failures is known. We haveapplied the results of these derivations to some real-life data and compared them to simulations of checkpointingsystems on that data. It is a subject of future work to further evaluate the di�erence between simulated andtheoretical results, and the implications of this di�erence in the performance of checkpointing systems. It is also atopic of future work to use these analyses as the bases for deriving the availability of multiprocessor checkpointingsystems.8 AcknowledgementThis material is based upon work supported by the National Science Foundation under grant CCR-9703390.References[BP75] R.E. Barlow and F. Proschan. Statistical Theory of Reliability and Life Testing. Holt, Reinhart, andWinston, Inc., NY, 1975. Republished by TO BEGIN WITH, Silver Spring, MD, 1981.[CPL97] Y. Chen, J. S. Plank, and K. Li. CLIP: A checkpointing tool for message-passing parallel programs.In SC97: High Performance Networking and Computing, San Jose, November 1997.[Dud83] A. Duda. The e�ects of checkpointing on program execution time. Information Processing Letters,16:221{229, 1983.[EJZ92] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The performance of consistent checkpointing. In11th Symposium on Reliable Distributed Systems, pages 39{47, October 1992.[FB89] S. I. Feldman and C. B. Brown. Igor: A system for program debugging via reversible execution. ACMSIGPLAN Notices, Workshop on Parallel and Distributed Debugging, 24(1):112{123, January 1989.15

[Fel68] W. Feller. An Introduction to Probability Theory and Its Applications (Third Edition). John Wiley &Sons, Inc., NY, 1968.[GD78] E. Gelenbe and D. Derochette. Performance of rollback recovery systems under intermittant failures.Communications of the ACM, 21(6):493{499, June 1978.[LMG95] D. Long, A. Muir, and R. Golding. A longitudinal survey of internet host reliability. In 14th Symposiumon Reliable Distributed Systems, pages 2{9, Bad Neuenahr, September 1995. IEEE.[LNP90] K. Li, J. F. Naughton, and J. S. Plank. Real-time, concurrent checkpoint for parallel programs. InSecond ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 79{88,March 1990.[ML91] M. W. Mutka and M. Livny. The available capacity of a privately owned workstation environment.Perfomance Evaluation, August 1991.[Par62] E. Parzen. Stochastic Processes. Holden-Day, San Francisco, CA, 1962.[PBKL95] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under unix. InUsenix Winter 1995 Technical Conference, pages 213{223, January 1995.[PE98] J. S. Plank and W. R. Elwasif. Experimental assessment of workstation failures and their impact oncheckpointing systems. In 28th International Symposium on Fault-Tolerant Computing, pages 48{57,Munich, June 1998.[TB84] S. Toueg and �O. Babaoglu. On the optimum checkpoint selection problem. SIAM Journal on Com-puting, 13:630{649, August 1984.[Tri82] K. S. Trivedi. Probability and Statistics with Reliability, Queuing, and Computer Science Applications.Prentice-Hall, Inc., Englewood Cli�s, NJ, 1982.[Vai97] N. H. Vaidya. Impact of checkpoint latency on overhead ratio of a checkpointing scheme. IEEETransactions on Computers, 46(8):942{947, August 1997.[You74] J. S. Young. A �rst order approximation to the optimum checkpoint interval. Communications of theACM, 17(9):530{531, September 1974.
16

