
Testing Software for LAPACK90Jack Dongarra� Wojciech Owczarzy Jerzy Wa�sniewskiyPlamen YalamovzSeptember 22, 1998AbstractLAPACK90 and ScaLAPACK are libraries of high-performance linear algebra subroutines.While LAPACK is developed for scalar, superscalar, and shared memory machines, ScaLA-PACK is designed for distributed memory machines. Usually, users are not familiar withdetails in these subroutines. Therefore, in this paper we describe a possible way to developtesting software for all subroutines in both libraries. For simplicity, we consider only thesubroutines for the solution of linear systems. The test subroutines for other linear algebraproblems can be developed in a similar way. The test programs are written in FORTRAN90,and we use LAPACK90, which interfaces FORTRAN90 with LAPACK.1 IntroductionThe high performance packages LAPACK [0] and ScaLAPACK [0] are powerful tools for solvinglinear algebra problems. New standards of FORTRAN have been de�ned; FORTRAN90 andHPF (High Performance FORTRAN). Interface libraries between FORTRAN90 and LAPACK(LAPACK90), and between HPF and ScaLAPACK, have been developed. In this paper, we brieyintroduce these packages and then propose a way to test all the subroutines in them. All of the testprograms will be put together as a subdirectory with the next release of the LAPACK90 library.1.1 FORTRAN 90FORTRAN has always been the principal language used in the �elds of scienti�c, numerical, andengineering computing. A series of revisions to the standard de�ning successive versions of thelanguage has progressively enhanced its power and kept it competitive with several generations ofrivals. The present FORTRAN standard is 90/95. A summary of the new features follows:�Department of Computer Science, University of Tennessee, 107 Ayres Hall, Knoxville, TN 37996-1301, USA andMathematical Sciences Section, Oak Ridge National Laboratory, P.O.Box 2008, Bldg. 6012, Oak Ridge, TN 37831-6367, USA; e-mail: dongarra@cs.utk.eduyThe Danish Computing Centre for Research and Education (UNI�C), Technical University of Denmark, Build-ing 304, DK-2800 Lyngby, Denmark, e-mail: uniwow@uni-c.dk, or e-mail: jerzy.wasniewski@uni-c.dkzCenter of Applied Mathematics and Informatics, University of Rousse, 7017 Rousse, Bulgaria, e-mail:yalamov@ami.ru.acad.bg. This author was supported in part by Grant I-702/97 from the National Scienti�c Re-search Fund of the Bulgarian Ministry of Education and Science.1

� Array operations.� Pointers.� Improved facilities for numerical computations including a set of numerical inquiry functions.� Parameterization of the intrinsic types, to permit processors to support short integers, verylarge character sets, more than two precisions for real and complex, and packed logicals.� User-de�ned derived data types composed of arbitrary data structures and operations uponthose structures.� Facilities for de�ning collections called \modules", useful for global data de�nitions and forprocedure libraries. These support a safe method of encapsulating derived data types.� Requirements on a compiler to detect the use of constructs that do not conform to the syntaxof the language or are obsolete.� A new source form, more appropriate to use at a terminal.� New control constructs such as the SELECT CASE construct and a new form of the DO.� The ability to write internal procedures and recursive procedures, and to call procedures withoptional and keyword arguments.� Dynamic storage (automatic arrays, allocatable arrays, and pointers).� Improvements to the input-output facilities, including handling partial records and a stan-dardized NAMELIST facility.� Many new intrinsic procedures.Together, the new features contained in FORTRAN 90/95 ensure that the FORTRAN languagewill continue to be used successfully for a long time to come. The fact that it contains the whole ofFORTRAN 77 as a subset means that conversion to FORTRAN 90/95 is as simple as conversionto another FORTRAN 77 processor. For more information on FORTRAN 90/95 see [0].1.2 LAPACKLAPACK is a library of FORTRAN 77 subroutines for solving the most commonly occurringproblems in numerical linear algebra. It has been designed for e�ciency on a wide range of modern,high-performance computers. The name LAPACK is an acronym for Linear Algebra PACKage.LAPACK provides routines for solving systems of simultaneous linear equations, least-squaressolutions of linear systems of equations, eigenvalue problems, and singular value problems. Theassociated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also pro-vided, as are related computations such as reordering of the Schur factorizations and estimatingcondition numbers. Dense and banded matrices are handled, but not general sparse matrices. Inall areas, similar functionality is provided for real and complex matrices, in both single and doubleprecision. 2

The original goal of the LAPACK project was to make the widely used EISPACK and LIN-PACK libraries run e�ciently on shared-memory vector and parallel processors. On these machines,LINPACK and EISPACK are ine�cient because their memory access patterns disregard the multi-layered memory hierarchies of the machines, thereby spending too much time moving data insteadof doing useful oating-point operations. LAPACK addresses this problem by reorganizing thealgorithms to use block matrix operations, such as matrix multiplication, in the innermost loops.These block operations can be optimized for each architecture to account for the memory hierar-chy, and so provide a transportable way to achieve high e�ciency on diverse modern machines.LAPACK requires that highly optimized block matrix operations are already implemented on eachmachine.LAPACK routines are written so that as much as possible of the computation is performed bycalls to the Basic Linear Algebra Subprograms [0] (BLAS). While LINPACK and EISPACK arebased on the vector operation kernels of the Level 1 BLAS, LAPACK is designed at the outset toexploit the Level 3 BLAS { a set of speci�cations for FORTRAN subprograms that does varioustypes of matrix multiplication and the solution of triangular systems with multiple right-handsides. Because of the coarse granularity of the Level 3 BLAS operations, their use promotes highe�ciency on many high-performance computers, particularly if specially coded implementationsare provided by the manufacturer.Highly e�cient, machine-speci�c implementations of the BLAS are available for many modern,high-performance computers. The BLAS enable LAPACK routines to achieve high performancewith transportable software. It is not expected to perform as well as a specially tuned implementa-tion on most high-performance computers. On some machines it may give much worse performance.But it allows users to run LAPACK software on machines that do not o�er any other implemen-tation of the BLAS. A model FORTRAN implementation of the BLAS is available from netlib [0]in the BLAS library.For more information on LAPACK and references on BLAS, LINPACK and EISPACK see [0, 0].1.3 LAPACK for FORTRAN 90All LAPACK driver subroutines (including expert drivers) and some LAPACK computationalshave both generic LAPACK90 interfaces and generic LAPACK77 interfaces. The remaining com-putationals have only generic LAPACK77 interfaces. In both types of interfaces, no distinction ismade between single and double precision or between real and complex data types. The use of theLAPACK90 (LAPACK77) interface requires the user to specify the F90 LAPACK (F77 LAPACK)module.For example, the GESV driver subroutine, which solves a general system of linear equations,can be called in the following ways:� CALL LA GESV(A, B, IPIV=ipiv, INFO=info)or� CALL LA GESV(N, NRHS, A, LDA, IPIV, B, LDB, INFO)The module F90 LAPACK is needed in the �rst case in which the LAPACK90 interface packageis called. The module F77 LAPACK is needed in the second case in which the LAPACK77 packageis directly called. 3

The implementation of the LAPACK90 can be summarized as follows:� Driver Routines for Linear Equations.� Expert Driver Routines for Linear Equations.� Driver Routines for Linear Least Squares Problems.� Driver Routines for generalized Linear Least Squares Problems.� Driver Routines for Standard Eigenvalue and Singular Value Problems.� Divide and Conquer Driver Routines for Standard Eigenvalue Problems.� Expert Driver Routines for Standard Eigenvalue Problems.� Driver Routines for Generalized Eigenvalue and Singular Value Problems.� Some Computational Routines for Linear Equations and Eigenproblems.The LAPACK90 library is successively updated and is available from netlib (see [0, 0]).1.4 ScaLAPACKScaLAPACK is a library of high-performance linear algebra routines for distributed memorymessage-passing MIMD (Multiple Instruction Multiple Data) computers and networks of worksta-tions supporting PVM [0] (Parallel Virtual Machine) and/or MPI [0] (Message Passing Interface).ScaLAPACK is a continuation of the LAPACK project (see section). Both libraries (LAPACKand ScaLAPACK) contain routines for solving systems of linear equations, least squares problems,and eigenvalue problems. The goals of both projects are e�ciency (to run as fast as possible), scal-ability (as the problem size and number of processors grow), reliability (including error bounds),portability (across all important parallel machines), exibility (so users can construct new routinesfrom well-designed parts), and ease of use (by making the interface to LAPACK and ScaLAPACKlook as similar as possible). Many of these goals, particularly portability, are aided by the de-velopment and promotion of standards, especially for low-level communication and computationroutines. ScaLAPACK has been successful in attaining these goals, limiting most machine de-pendencies to two standard libraries called the BLAS (Basic Linear Algebra Subprograms) andBLACS [0] (Basic Linear Algebra Communication Subprograms). LAPACK runs on any machinewhere the BLAS [0] are available, and ScaLAPACK runs on any machine where both the BLASand the BLACS are available.The library is currently written in FORTRAN 77 (with the exception of a few symmetriceigenproblem auxiliary routines written in C to exploit IEEE arithmetic) in a Single ProgramMultiple Data (SPMD) style using explicit message passing for interprocessor communication. Thename ScaLAPACK is an acronym for Scalable Linear Algebra PACKage, or Scalable LAPACKFor more information on ScaLAPACK and references on BLAS, BLACS, PBLAS, PVM andMPI see [0, 0, 0, 0, 0, 0]. 4

1.5 ScaLAPACK for HPFWork on the HPF interface for ScaLAPACK has been started by a number of groups, such as theUniversity of Tennessee and the Danish Computing Center for Research and Education (UNI�C)(see [0, 0]). The plan is to develop an HPF interface for several of the more heavily used ScaLA-PACK subroutines and test programs.2 Testing routines for LAPACK90We will present the testing routine for SGESV (solution of linear systems with general densematrices). The rest of the testing routines are similar, and we give one more (for banded matrices)in the Appendix.The naming convention for the testing routines is as follows. We add the letters MG (MatrixGenerator) at the end of the corresponding subroutine name. For example, the testing routine forSGESV is called SGESVMG.Now let us present the details for SGESVMG. The code starts with statements for the variables.PROGRAM LA_SGESV_MG_EXAMPLE!! -- LAPACK90 Testing Routine (VERSION 1.0) --! Danish Computing Center (UNI-C), Denmark! University of Rousse, Bulgaria! University of Tennessee, USA! Aug 5, 1998!! .. "Use Statements" ..USE LA_PRECISION, ONLY: WP => SPUSE F90_LAPACK, ONLY: LA_GESV, LA_LAGGE, LA_GETRF! .. "Implicit Statement" ..IMPLICIT NONE! .. "Parameters" ..INTEGER, PARAMETER :: NSTART = 50, NINCR = 20, NSTOP = 100, &NRHS = 50, NIN = 5, NOUT = 6, NTESTS = 4, &NETESTS = 9REAL(WP), PARAMETER :: THRESH_FAC = 100.0! THRESH IS EQUAL TO THE PRODUCT OF THRESH_FAC AND EPS! (THE MACHINE EPSILON)REAL(WP) :: THRESH! .. "Local Scalars" ..INTEGER :: FETESTS, FMATR, FTESTS, INFO, ISEED(4), ISTAT, J, N, NMATRREAL(WP) :: EPS, RATIO, RCOND! .. "Local Arrays" ..INTEGER, ALLOCATABLE :: IPIV(:)REAL(WP), ALLOCATABLE :: A(:,:), AA(:,:), B(:,:), BB(:,:), DUMMY(:,:)REAL(WP), ALLOCATABLE :: D(:) 5

Here we explain the most important of the parameters. We do tests with di�erent sizes of thematrix. The size grows from NSTART to NSTOP with a step NINCR. For each size, we repeatall the tests in a DO-loop. In some tests, we solve the problem with multiple right-hand sides.The corresponding number is given in NRHS. Finally, we introduce a threshold for the accuracy.The variable THRESH FAC is a factor by which the machine precision is multiplied, so thatthe product is a threshold for the componentwise backward error. As we will see later, if thecomponentwise backward error is above this threshold we produce an error message. Since thisexample program (SGESV) is in single precision (machine precision � 10�7), we give the value of100 to THRESH FAC. Thus, backward errors larger than � 10�5 will be reported to the user as apossible danger. Gaussian elimination with partial pivoting (which is implemented in SGESV) isquite stable in practice, so we would rarely expect larger than the threshold errors.Next we give values to some counters and messages explaining the routine:! .. "Executable Statements" ..FTESTS = 0; FETESTS = 0; NMATR = 0; FMATR = 0WRITE(NOUT,*)WRITE (NOUT,*) 'SGESV Test Example Program Results.'WRITE(NOUT,*) 'LA_GESV LAPACK subroutine solves a dense general'WRITE(NOUT,*) 'linear system of equations, Ax = b.'EPS = EPSILON(1.0_WP)THRESH = THRESH_FAC * EPSWRITE(NOUT,'(1X, A, E12.5)') 'Threshold value for the backward error &= ',THRESHWRITE(NOUT,'(1X, A, E12.5)') 'The machine eps = ', EPSWe start a DO-loop making tests for di�erent sizes of the matrices. Memory is allocated for allarrays, and a message is produced if the memory is not enough:! DO N = NSTART, NSTOP, NINCRNMATR = NMATR + 1! ALLOCATE (A(N,N), AA(N,N), B(N,NRHS), BB(N,NRHS), IPIV(N), D(N), &STAT=ISTAT)IF(ISTAT /= 0)THENWRITE(NOUT,*) 'Program can not allocate more memory, STA = ', ISTATSTOPEND IFA random matrix and a random block of right-hand sides are generated in AA and BB. Thereciprocal of a condition number of the matrix is then estimated, and the linear system is solved:! GENERATE A MATRIXCALL LA_LAGGE(AA)! GENERATE RHS 6

CALL LA_LAGGE(BB)! CALCULATE THE CONDITION NUMBER OF THE MATRIX AAA = AACALL LA_GETRF(A, RCOND=RCOND)! CALL THE SOLVERA=AA; B=BBCALL LA_GESV(A, B, IPIV, INFO)After that we compute the componentwise backward error of the solution by a call to CWBE. Wediscuss this subroutine at the end. The backward error is stored in RATIO.! COMPUTE THE COMPONENTWISE BACKWARD ERRORCALL CWBE(AA, B, BB, RATIO)We produce an error message if INFO is not zero (the termination of GESV is not normal), or thebackward error is too large (which means that the solution is not accurate enough). We report thevalue of INFO (which shows the type of error in GESV) and the values of RCOND and RATIO(which show the conditioning and the backward error for the linear system) so that the user canmake a conclusion.IF(INFO /= 0 .OR. RATIO > THRESH)THENFTESTS = FTESTS + 1FMATR = FMATR + 1WRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)WRITE(NOUT,*) 'Test 1 -- ''CALL LA_GESV(A, B, IPIV, INFO)'',', &'Failed.'WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', &N, ' with ', NRHS, ' rhs.'WRITE(NOUT,*)WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) ' RCOND = ', RCONDWRITE(NOUT,*)WRITE(NOUT,*) 'THE MAXIMAL COMPONENTWISE BACKWARD ERROR IS: ', RATIOEND IFThis was the �rst type of test presented in detail. Next we repeat the same test but for a linearsystem with one right-hand side only:! A=AA; B=BBCALL LA_GESV(A, B(:,1), IPIV, INFO)CALL CWBE(AA, B(:,1:1), BB(:,1:1), RATIO)7

! THE COMPONENTWISE BACKWARD ERROR IS IN RATIOIF(INFO /= 0 .OR. RATIO > THRESH)THENFTESTS = FTESTS + 1FMATR = FMATR + 1WRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)WRITE(NOUT,*) 'Test 2 -- ''CALL LA_GESV(A, B(:,1), IPIV, INFO)'', &Failed.'WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', &N, ' with ', NRHS, ' rhs.'WRITE(NOUT,*)WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) ' RCOND = ', RCONDWRITE(NOUT,*)WRITE(NOUT,*) 'THE COMPONENTWISE BACKWARD ERROR IS: ', RATIOEND IFA new random matrix is then generated, and the last two tests are done for the newly obtainedlinear system (the right hand sides remain the same):! ISEED(1)=4000; ISEED(2)=50; ISEED(3)=1997; ISEED(4)=11CALL LA_LAGGE(AA, ISEED=ISEED)CALL LA_GETRF(AA, RCOND=RCOND)A=AA; B=BBCALL LA_GESV(A, B)! COMPUTE THE COMPONENTWISE BACKWARD ERRORCALL CWBE(AA, B, BB, RATIO)! THE COMPONENTWISE BACKWARD ERROR IS IN RATIOIF(INFO /= 0 .OR. RATIO > THRESH)THENFTESTS = FTESTS + 1FMATR = FMATR + 1WRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)WRITE(NOUT,*) 'Test 3 -- ''CALL LA_GESV(A, B)'', Failed.'WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &' with ', NRHS, ' rhs.'WRITE(NOUT,*)WRITE(NOUT,*) 'INFO = ', INFO 8

WRITE(NOUT,*) ' RCOND = ', RCONDWRITE(NOUT,*) 'THE MAXIMAL COMPONENTWISE BACKWARD ERROR IS: ', RATIOEND IF! A=AA; B=BBCALL LA_GESV(A, B(:,1))! COMPUTE THE COMPONENTWISE BACKWARD ERRORCALL CWBE(AA, B(:,1:1), BB(:,1:1), RATIO)! THE COMPONENTWISE BACKWARD ERROR IS IN RATIOIF(INFO /= 0 .OR. RATIO > THRESH)THENFTESTS = FTESTS + 1FMATR = FMATR + 1WRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)WRITE(NOUT,*) 'Test 4 -- ''CALL LA_GESV(A, B(:,1))'', Failed.'WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &' with ', NRHS, ' rhs.'WRITE(NOUT,*)WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) ' RCOND = ', RCONDWRITE(NOUT,*) 'THE COMPONENTWISE BACKWARD ERROR IS:', RATIOEND IFFinally, we close the DO-loop (which changes the matrix size) and produce a report for all thetests up to this point:! DEALLOCATE (A, AA, B, BB, IPIV, D, STAT=ISTAT)! END DO! WRITE(NOUT,*)WRITE(NOUT,*)'--'WRITE(NOUT,*)WRITE(NOUT,'(I4, A, I2, A, I4, A)') NMATR, ' matrices were tested', &' with ', NTESTS, ' tests. NRHS was ', NRHS, ' and one.'WRITE(NOUT,'(I4, A)') NMATR*NTESTS - FTESTS, ' tests passed.'WRITE(NOUT,'(I4, A)') FTESTS, ' tests failed.'The second part of the test focuses on the tests for the arguments of SGESV. Pointing to theDUMMY array, which is not allocated in the memory, tests the �rst argument. In this case, INFOshould be negative: 9

! TESTS FOR THE ARGUMENT ERROR FAULTSN = 100ALLOCATE (A(N,N), AA(N,N), B(N,NRHS), BB(N,NRHS), IPIV(N), D(N))! A=AA; B=BBCALL LA_GESV(DUMMY, B, INFO=INFO)IF(INFO /= -1 .AND. INFO /= -2)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GESV(DUMMY, B, INFO=INFO)'' failed,'WRITE(NOUT,*) 'INFO returned should be either -1 or -2'END IF! A=AA; B=BBCALL LA_GESV(DUMMY, B(:,1), INFO=INFO)IF(INFO /= -1 .AND. INFO /= -2)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GESV(DUMMY, B(:,1), INFO=INFO)'' &failed,'WRITE(NOUT,*) 'INFO returned should be either -1 or -2'END IFThe arrays A and B are then "cut" in di�erent ways. In this case, INFO should also be negative:! A=AA; B=BBCALL LA_GESV(A(:,1:N-1), B, INFO=INFO)IF(INFO /= -1)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GESV(A(:,1:N-1), B, INFO=INFO)'' &failed,'WRITE(NOUT,*) 'INFO returned should be -1'END IF! A=AA; B=BB 10

CALL LA_GESV(A(:,1:N-1), B(:,1), INFO=INFO)IF(INFO /= -1)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GESV(A(:,1:N-1), B(:,1), ', &` INFO=INFO)'' failed,'WRITE(NOUT,*) 'INFO returned should be -1'END IF! A=AA; B=BBCALL LA_GESV(A, B(1:N-1,:), INFO=INFO)IF(INFO /= -2)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GESV(A, B(1:N-1,:), INFO=INFO)'' &failed,'WRITE(NOUT,*) 'INFO returned should be -2'END IF! A=AA; B=BBCALL LA_GESV(A, B(1:N-1,1), INFO=INFO)IF(INFO /= -2)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GESV(A, B(1:N-1,1), INFO=INFO)'' &failed,'WRITE(NOUT,*) 'INFO returned should be -2'END IF! A=AA; B=BBCALL LA_GESV(A, B(1:N-1,:), INFO=INFO)IF(INFO /= -2)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1 11

WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GESV(A, B(1:N-1,:), INFO=INFO)'' &failed,'WRITE(NOUT,*) 'INFO returned should be -2'END IFThe same type of test is applied to IPIV:! A=AA; B=BBCALL LA_GESV(A, B, IPIV(1:N-1), INFO)IF(INFO /= -3)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GESV(A, B, IPIV(1:N-1), INFO)'' &failed,'WRITE(NOUT,*) 'INFO returned should be -3'END IF! A=AA; B=BBCALL LA_GESV(A, B(:,1), IPIV(1:N-1), INFO)IF(INFO /= -3)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GESV(A, B, IPIV(1:N-1), INFO)'' &failed,'WRITE(NOUT,*) 'INFO returned should be -3'END IFAt the end, we provide a report for all the tests:! WRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)WRITE(NOUT,'(I2, A)') NETESTS, ' error exits tests were ran'WRITE(NOUT,'(I4, A)') NETESTS - FETESTS, ' tests passed.'WRITE(NOUT,'(I4, A)') FETESTS, ' tests failed.'! CONTAINS 12

The subroutine CWBE, which is called inside the test program, is given as follows:SUBROUTINE CWBE(AA, X, B, RATIO)USE LA_PRECISION, ONLY: WP => SPIMPLICIT NONEREAL(WP), INTENT(IN) :: AA(:,:), X(:,:), B(:,:)REAL(WP), INTENT(OUT) :: RATIOINTEGER :: JINTRINSIC SIZE! COMPUTE THE COMPONENTWISE BACKWARD ERRORRATIO = 0.0_WPDO J = 1, SIZE(B,2)RATIO = MAX(RATIO, MAXVAL((ABS(B(:,J) - MATMUL(AA,X(:,J)))) / &(ABS(X(:,J)) + MATMUL(ABS(AA),ABS(X(:,J))))))END DOEND SUBROUTINETo compute the componentwise backward error, we use the expression (see [0])!c = maxi jrij(jAjjx̂j+ jbj)i ;where r = b�Ax̂ is the residual, and x̂ is the computed solution. This is the case of one right-handside. When we have multiple right-hand sides, we take the maximum of all the componentwisebackward errors.The output of the test program appears as follows:SGESV Test Example Program Results.LA_GESV LAPACK subroutine solves a dense generallinear system of equations, Ax = b.Threshold value for the backward error = 0.11921E-04The machine eps = 0.11921E-06--3 matrices were tested with 4 tests. NRHS was 50 and one.12 tests passed.0 tests failed.--9 error exits tests were ran9 tests passed.0 tests failed. 13

3 A testing routine for ScaLAPACKThe testing routines for ScaLAPACK are designed in the same way, so we do not present themhere. If HPF is used, the tests must be updated with the following HPF directives:!HPF$ PROCESSORS PP(NPP,NUMBER_OF_PROCESSORS())!HPF$ DISTRIBUTE (CYCLIC(MB),CYCLIC(NB)) ONTO:: AA, BB, A, B!HPF$ ALIGN IPIV(I) WITH A(I,*)where PP is the name of the processors, MB and NB are the block sizes, and AA, BB, A, B andPIV are arrays used in the program.Our test programs can also be used directly with ScaLAPACK. The data communication canbe done using BLACS [0], as in this case.The test programs can also be used for testing the computer speed. Of course, the machinedependent timing routine must update them.References[1] E. Anderson, Z. Bai, C. H. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling, A. McKenney, S. Ostrouchov and D. C. Sorensen. LAPACK Users' GuideRelease 2.0. SIAM, Philadelphia, 1995.[2] L.S. Blackford, J. Choi, A. Ceary, E. D'Azevedo, J. Demmel, I. Dhilon, J. Dongarra, S. Ham-marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaLAPACK Users'Guide. SIAM, Philadelphia, 1997.[3] L.S. Blackford, J.J. Dongarra, J. Du Croz, S. Hammarling, and J. Wa�sniewski. LAPACK90 -FORTRAN90 version of LAPACK. On web:http://www.netlib.org/lapack90/ (1997)[4] L.S Blackford, J.J. Dongarra, J. Du Croz, S. Hammarling, and J. Wa�sniewski. LAPACKWorking Note 117, A Proposal for a FORTRAN 90 Interface for LAPACK. Report UNIC-96-10, UNI�C, Lyngby, Denmark, 1995. Report ut-cs-96-341, University of Tennessee, ComputerScience Department, Knoxville, July, 1995.[5] BLACS (Basic Linear Algebra Communication Subprograms). See at netlibhttp://www.cs.utk.edu/~rwhaley/Blacs.html[6] BLAS (Basic Linear Algebra Subprograms). See at netlibhttp://www.netlib.org/blas/index.html[7] S. Browne, J. Dongarra, E. Grosse, and T. Rowan. The Netlib Mathematical Software Repos-itory. D-Lib Magazine, Sep, 1995, Accessible at http://www.dlib.org/[8] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and, R. C. Wha-ley. A Proposal for a Set of Parallel Basic Linear Algebra Subprograms. Univer-sity of Tennessee at Knoxville, Technical Report, CS-95-292, May 1995. Accessible athttp://www.netlib.org/lapack/lawns/index.html (lapack/lawns/lawn100.ps).14

[9] J. Dongarra and J. Wasniewski, High Performance Linear Algebra Package LAPACK90, Re-port UNIC-98-01, February 1998.[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam PVM: A Users'Guide and Tutorial for Networked Parallel Computing. MIT Press, 1994.[11] C.H. Koelbel, D.B. Lovemann, R.S. Schreiber, G.L. Steele Jr., and M.E. Zosel. The HighPerformance FORTRAN Handbook. The MIT Press Cambridge, Massachusetts, London,England, 1994.[12] P.A.R. Lorenzo, A. M�uller, Y. Murakami, and B.J.N. Wylie. High Performance FORTRANInterfacing to ScaLAPACK. In J. Wa�sniewski, J. Dongarra, K. Madsen, and D. Olesen (Eds.),Applied Parallel Computing, Industrial Computation and Optimization, Third InternationalWorkshop, PARA'96, Lyngby, Denmark, August 1996, Proceedings, Lecture Notes in Com-puter Science No. 1184, Springer-Verlag, 1996, pp. 457-466[13] M. Metcalf and J. Reid. FORTRAN 90 Explained. Oxford, New York, Tokyo, Oxford Uni-versity Press, 1990.[14] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The CompleteReference. The MIT Press Cambridge, Massachusetts, 1996.[15] R.C. Whaley. HPF Interface to ScaLAPACK.On web: http://www.netlib.org/scalapack/prototype/ (1997).A SGBSVMGPROGRAM LA_SGBSV_MG_EXAMPLE!! -- LAPACK90 Testing Routine (VERSION 1.0) --! Danish Computing Center (UNI-C), Denmark! University of Rousse, Bulgaria! University of Tennessee, USA! Aug 5, 1998!! .. "Use Statements" ..USE LA_PRECISION, ONLY: WP => SPUSE F90_LAPACK, ONLY: LA_GBSV, LA_LAGGE, LA_GETRF! .. "Implicit Statement" ..IMPLICIT NONE! .. "Parameters" ..INTEGER, PARAMETER :: NSTART = 50, NINCR = 20, NSTOP = 100, &NRHS = 50, NIN = 5, NOUT = 6, NTESTS = 6, &NETESTS = 8REAL(WP), PARAMETER :: THRESH_FAC = 100.0! THRESH IS EQUAL TO THE PRODUCT OF THRESH_FAC AND EPS15

! (THE MACHINE EPSILON)REAL(WP) :: THRESH! .. "Local Scalars" ..INTEGER :: FETESTS, FMATR, FTESTS, INFO, ISTAT, J, N, NMATR, KL, KUREAL(WP) :: EPS, RATIO, RCOND! .. "Local Arrays" ..REAL(WP), ALLOCATABLE :: AB(:,:), AAB(:,:), A(:,:), AA(:,:)REAL(WP), ALLOCATABLE :: B(:,:), BB(:,:), DUMMY(:,:)INTEGER, ALLOCATABLE :: IPIV(:)! .. "Executable Statements" ..FTESTS = 0; FETESTS = 0; NMATR = 0; FMATR = 0WRITE(NOUT,*)WRITE (NOUT,*) 'SGBSV Test Example Program Results.'WRITE(NOUT,*) 'LA_GBSV LAPACK subroutine solves a system of linear'WRITE(NOUT,*) 'equations Ax = b, where A is banded. 'EPS = EPSILON(1.0_WP)THRESH = THRESH_FAC * EPSWRITE(NOUT,'(1X, A, E12.5)') 'Threshold value for the backward', &' error = ',THRESHWRITE(NOUT,'(1X, A, E12.5)') 'The machine eps = ', EPS! DO N = NSTART, NSTOP, NINCRNMATR = NMATR + 1! ALLOCATE(A(N,N), AA(N,N), AB(N,N), AAB(N,N), &B(N,NRHS), BB(N,NRHS), STAT=ISTAT)IF(ISTAT /= 0)THENWRITE(NOUT,*) 'Program can not allocate more memory, STAT = ', ISTATSTOPEND IFKL = (N-1)/2 ; KU = N-2*KL - 1! NEXT SUBROUTINE GENERATES DENSE MATRIX AA WITH KL SUBDIAGONALS AND KU! SUPERDIAGONALS! THE RHS IS STORED IN BB. THE RECIPROCAL OF THE CONDITION NUMBER FOR AA IS! RETURNED IN RCONDCALL GENERATEMATRICES(AA, AB, BB, KL, KU, RCOND)!! CALL THE SOLVERAB=AAB; B=BBCALL LA_GBSV(AB, B, KL, INFO=INFO)16

! COMPUTE THE COMPONENTWISE BACKWARD ERRORCALL CWBE(AA, B, BB, RATIO)! THE COMPONENTWISE BACKWARD ERROR IS IN RATIOIF(INFO /= 0 .OR. RATIO > THRESH)THENFTESTS = FTESTS + 1FMATR = FMATR + 1WRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)WRITE(NOUT,*) 'Test 1 -- ''CALL LA_GBSV(AB, B, KL, INFO)'', Failed.'WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &' with ', NRHS, ' rhs.'WRITE(NOUT,*)WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) ' RCOND = ', RCONDWRITE(NOUT,*)WRITE(NOUT,*) 'THE MAXIMAL COMPONENTWISE BACKWARD ERROR IS: ', RATIOEND IF! AB=AAB; B=BBCALL LA_GBSV(AB, B(:,1), KL, INFO=INFO)! COMPUTE THE COMPONENTWISE BACKWARD ERRORCALL CWBE(AA, B(:,1:1), BB(:,1:1), RATIO)IF(INFO /= 0 .OR. RATIO > THRESH)THENFTESTS = FTESTS + 1FMATR = FMATR + 1WRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)WRITE(NOUT,*) 'Test 2 -- ''CALL LA_GBSV(AB, B(:,1), KL, INFO)'', &Failed.'WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &' with ', NRHS, ' rhs.'WRITE(NOUT,*)WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) ' RCOND = ', RCONDWRITE(NOUT,*)WRITE(NOUT,*) 'THE COMPONENTWISE BACKWARD ERROR IS: ', RATIOEND IFKL = (N-1)/4; KU = N-2*KL - 1 17

! NEXT SUBROUTINE GENERATES DENSE MATRIX AA WITH KL SUBDIAGONALS AND KU! SUPERDIAGONALS! THE RHS IS STORED IN BB. THE RECIPROCAL OF THE CONDITION NUMBER FOR AA IS! RETURNED IN RCONDCALL GENERATEMATRICES(AA, AB, BB, KL, KU, RCOND)! CALL THE SOLVERAB=AAB; B=BBCALL LA_GBSV(AB, B, KL, INFO=INFO)! COMPUTE THE COMPONENTWISE BACKWARD ERRORCALL CWBE(AA, B, BB, RATIO)! THE COMPONENTWISE BACKWARD ERROR IS IN RATIOIF(INFO /= 0 .OR. RATIO > THRESH)THENFTESTS = FTESTS + 1FMATR = FMATR + 1WRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)WRITE(NOUT,*) 'Test 3 -- ''CALL LA_GBSV(AB, B, KL, INFO)'', Failed.'WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &' with ', NRHS, ' rhs.'WRITE(NOUT,*)WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) ' RCOND = ', RCONDWRITE(NOUT,*)WRITE(NOUT,*) 'THE MAXIMAL COMPONENTWISE BACKWARD ERROR IS: ', RATIOEND IF! AB=AAB; B=BBCALL LA_GBSV(AB, B(:,1), KL, INFO=INFO)! COMPUTE THE COMPONENTWISE BACKWARD ERRORCALL CWBE(AA, B(:,1:1), BB(:,1:1), RATIO)IF(INFO /= 0 .OR. RATIO > THRESH)THENFTESTS = FTESTS + 1FMATR = FMATR + 1WRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)WRITE(NOUT,*) 'Test 4 -- ''CALL LA_GBSV(AB, B(:,1), KL, INFO)'', &Failed.' 18

WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &' with ', NRHS, ' rhs.'WRITE(NOUT,*)WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) ' RCOND = ', RCONDWRITE(NOUT,*)WRITE(NOUT,*) 'THE COMPONENTWISE BACKWARD ERROR IS: ', RATIOEND IFKL = 0 ; KU = N-2*KL - 1! NEXT SUBROUTINE GENERATES DENSE MATRIX AA WITH KL SUBDIAGONALS AND KU! SUPERDIAGONALS! THE RHS IS STORED IN BB. THE RECIPROCAL OF THE CONDITION NUMBER FOR AA IS! RETURNED IN RCONDCALL GENERATEMATRICES(AA, AB, BB, KL, KU, RCOND)! CALL THE SOLVERAB=AAB; B=BBCALL LA_GBSV(AB, B, KL, INFO=INFO)! COMPUTE THE COMPONENTWISE BACKWARD ERRORCALL CWBE(AA, B, BB, RATIO)! THE COMPONENTWISE BACKWARD ERROR IS IN RATIOIF(INFO /= 0 .OR. RATIO > THRESH)THENFTESTS = FTESTS + 1FMATR = FMATR + 1WRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)WRITE(NOUT,*) 'Test 5 -- ''CALL LA_GBSV(AB, B, KL, INFO)'', Failed.'WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &' with ', NRHS, ' rhs.'WRITE(NOUT,*)WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) ' RCOND = ', RCONDWRITE(NOUT,*)WRITE(NOUT,*) 'THE MAXIMAL COMPONENTWISE BACKWARD ERROR IS: ', RATIOEND IF! AB=AAB; B=BBCALL LA_GBSV(AB, B(:,1), KL, INFO=INFO)! COMPUTE THE COMPONENTWISE BACKWARD ERROR19

CALL CWBE(AA, B(:,1:1), BB(:,1:1), RATIO)IF(INFO /= 0 .OR. RATIO > THRESH)THENFTESTS = FTESTS + 1FMATR = FMATR + 1WRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)WRITE(NOUT,*) 'Test 6 -- ''CALL LA_GBSV(AB, B(:,1), KL, INFO)'', &Failed.'WRITE(NOUT,'(A, I4, A, I4, A, I4, A)') 'Matrix ', N, ' x', N, &' with ', NRHS, ' rhs.'WRITE(NOUT,*)WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) ' RCOND = ', RCONDWRITE(NOUT,*)WRITE(NOUT,*) 'THE COMPONENTWISE BACKWARD ERROR IS: ', RATIOEND IFDEALLOCATE(A, AA, AB, AAB, B, BB, STAT=ISTAT)END DO! WRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)WRITE(NOUT,'(I4, A, I2, A, I4, A)') NMATR, ' matrices were tested', &' with ', NTESTS, ' tests. NRHS was ', NRHS, ' and one.'WRITE(NOUT,'(I4, A)') NMATR*NTESTS - FTESTS, ' tests passed.'WRITE(NOUT,'(I4, A)') FTESTS, ' tests failed.'!! TESTS FOR THE ARGUMENT ERROR FAULTSN = 100ALLOCATE (AB(N/2,N), AAB(N/2,N), B(N,NRHS), BB(N,NRHS), IPIV(N))! AB=AAB; B=BBCALL LA_GBSV(DUMMY, B, INFO=INFO)IF(INFO /= -1 .AND. INFO /= -2)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GBSV(DUMMY, B, INFO=INFO)'' failed,'WRITE(NOUT,*) 'INFO returned should be either -1 or -2'END IF 20

! AB=AAB; B=BBCALL LA_GBSV(DUMMY, B(:,1), INFO=INFO)IF(INFO /= -1 .AND. INFO /= -2)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GBSV(DUMMY, B(:,1), INFO=INFO)'' &failed,'WRITE(NOUT,*) 'INFO returned should be either -1 or -2'END IF! AB=AAB; B=BBCALL LA_GBSV(AB(:,1:N-1), B, INFO=INFO)IF(INFO /= -1 .AND. INFO /= -2)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GBSV(AB(:,1:N-1), B,', &' INFO=INFO)'' failed,'WRITE(NOUT,*) 'INFO returned should be either -1 or -2'END IF! AB=AAB; B=BBCALL LA_GBSV(AB(:,1:N-1), B(:,1), INFO=INFO)IF(INFO /= -1 .AND. INFO /= -2)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GBSV(AB(:,1:N-1), B(:,1),', &' INFO=INFO)'' failed,'WRITE(NOUT,*) 'INFO returned should be either -1 or -2'END IF! AB=AAB; B=BBCALL LA_GBSV(AB, B(1:N-1,:), INFO=INFO)IF(INFO /= -2)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'21

WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GBSV(AB, B(1:N-1,:), INFO=INFO)'' &failed,'WRITE(NOUT,*) 'INFO returned should be -2'END IF! AB=AAB; B=BBCALL LA_GBSV(AB, B(1:N-1,1), INFO=INFO)IF(INFO /= -2)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GBSV(AB, B(1:N-1,1), INFO=INFO)'' &failed,'WRITE(NOUT,*) 'INFO returned should be -2'END IF! AB=AAB; B=BBCALL LA_GBSV(AB, B, (N-1)/2 + 1, INFO=INFO)IF(INFO /= -1 .AND. INFO /= -3)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GBSV(A, B, (N-1)/2 + 1, INFO)'' &failed,'WRITE(NOUT,*) 'INFO returned should be either -1 or -3'END IFAB=AAB; B=BBCALL LA_GBSV(AB, B, IPIV=IPIV(1:N-1), INFO=INFO)IF(INFO /= -4)THENWRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)FETESTS = FETESTS +1WRITE(NOUT,*) 'INFO = ', INFOWRITE(NOUT,*) 'Test ''CALL LA_GBSV(A, B, IPIV=IPIV, INFO=INFO)'' &failed,'WRITE(NOUT,*) 'INFO returned should be -4'22

END IF! WRITE(NOUT,*)WRITE(NOUT,*)'---'WRITE(NOUT,*)WRITE(NOUT,'(I2, A)') NETESTS, ' error exits tests were ran'WRITE(NOUT,'(I4, A)') NETESTS - FETESTS, ' tests passed.'WRITE(NOUT,'(I4, A)') FETESTS, ' tests failed.'! CONTAINSSUBROUTINE GENERATEMATRICES(AA, AB, BB, KL, KU, RCOND)USE LA_PRECISION, ONLY: WP => SPUSE F90_LAPACK, ONLY: LA_LAGGE, LA_GETRFREAL(WP), INTENT(OUT) :: AA(:,:), AB(:,:), BB(:,:), RCONDINTEGER, INTENT(IN) :: KL, KUINTEGER :: I, J, N, NRHS! .. "Implicit Statement" ..IMPLICIT NONEINTRINSIC MIN, MAX, SUMN = SIZE(A,1)NRHS = SIZE(B,2)!! GENERATE A MATRIXCALL LA_LAGGE(AA, KL, KU)DO I = 1, NIF (AA(I,I) == 0) THENAA(I,I) = IEND IFEND DO!! GENERATE RHSCALL LA_LAGGE(BB)!! CALCULATE THE RECIPROCAL OF THE CONDITION NUMBER OF MATRIX AAA = AACALL LA_GETRF(A, RCOND=RCOND)!! STORE IT AS BAND MATRIX AS NEED BY LA_SGBSVDO J=1, NDO I=MAX(1, J-KU), MIN(N,J+KL)AAB(KL+KU+1+I-J:KL+KU+1+I-J, J) = AA(I,J)END DO 23

END DOEND SUBROUTINESUBROUTINE CWBE(AA, X, B, RATIO)USE LA_PRECISION, ONLY: WP => SPIMPLICIT NONEREAL(WP), INTENT(IN) :: AA(:,:), X(:,:), B(:,:)REAL(WP), INTENT(OUT) :: RATIOINTEGER :: JINTRINSIC SIZE! COMPUTE THE COMPONENTWISE BACKWARD ERRORRATIO = 0.0_WPDO J = 1, SIZE(B,2)RATIO = MAX(RATIO, MAXVAL((ABS(B(:,J) - MATMUL(AA,X(:,J)))) / &(ABS(X(:,J)) + MATMUL(ABS(AA),ABS(X(:,J))))))END DOEND SUBROUTINEEND PROGRAM LA_SGBSV_MG_EXAMPLE

24

