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Abstract

Performance prediction of checkpointing systems in the presence of failures is a well-studied research area.
The average availability is defined as a useful metric for uniprocessor checkpointing systems in a previous
Technical Report [PT98]. This report introduces a discrete-parameter, finite-state Markov chain M to compute
the availability for multiprocessor checkpointing systems. N is the number of processors in the system.
Processors are interchangeable. At any time, each individual processor is either nonfunctional (failed and
under repair) or functional (actively working on the task or standing-by as a spare). A specified minimum
number a of the N processors must be functional in order for the system to work on a distributed task.
The system does not use more than a processors but cannot compute with fewer than a. M is based on
assumptions of independent exponential probability distributions for identically distributed interoccurrence
times of failures and for identically distributed repair times. A separate continuous-parameter Markov chain
S is used to compute some of the transition probabilities in M. System availability is related to the speed-up
obtained with multiple processors as a measure of real-time work on a long-running task. Finally, merging

states to obtain a smaller Markov chain and some additional computations are briefly discussed.

1 Introduction and Assumptions

In reference [PT98], the authors describe a uniprocessor checkpointing system, and how to calculate the

availability of such a system given certain assumptions. Their model of a checkpointing system is as follows:



e A uniprocessor is executing a long-running program. It may be in one of two states: functional, which
means that it may devote all of its resources to executing the program, and failed, which means that it is

inoperative.

e When a machine first becomes functional, it starts executing the program. Every I seconds, it initiates a

checkpoint of the current state of the program. I is called the checkpoint interval.

Once initiated, each checkpoint takes L seconds to complete. This is called the checkpoint latency. A

checkpoint cannot be used for recovery until it has completed.

If a failure occurs, the processor is unavailable to execute the program. Eventually, the processor is repaired,
and may again run the program, but to do so, it must read the execution state stored in the most recently
completed checkpoint. This is called recovery. Recovery from a checkpoint takes R seconds. This starts as
soon as the processor becomes functional following a failure. R is called the recovery time. Once recovery is
complete, the program resumes execution from the point in the program where the checkpoint was originally

initiated. Also, once recovery completes, checkpointing is again resumed every I seconds.

e Each checkpoint takes C' seconds of processing away from the program. This is called the checkpoint
overhead. In real life, the overhead is distributed throughout the latency period, but for the purpose of
modeling, it is applied to the beginning of the checkpoint. Thus, each checkpoint consists of (' seconds of
overhead, followed by L — C' seconds where the processor executes the application, but the checkpoint is
not available for recovery following a failure. If the processor fails during that time period, it must recover

from a previous checkpoint.

e The probability distribution functions of machine failure and repair are known. In [PT98], the repair times

are assumed to be constant, but the failure distribution function may be anything.

Given the above parameters, the authors explain how to compute the long-term availability of the system.
Availability is defined to be the fraction of time that the machine spends performing useful work, where useful
work 1s time spent performing computation on the program that will never be redone due to a failure. In other
words, this is the time spent executing the program before a checkpoint completes. If time is spent executing
the program, but the machine fails before the next checkpoint completes, then that part of the program must be
re-executed, and is therefore not useful. The goal of a checkpointing system is to maximize the availability in the
presence of failures.

In this paper, we compute the availability of a parallel computing system. We assume that there N processors
in the system. Processors are interchangeable. As above, at any point in time, each individual processor is either
nonfunctional (failed and under repair) or functional.

The processors in the system cooperate to execute a parallel program. We assume that this program is designed

so that it requires a fixed number, a, of processors to execute. The program does not use more than a processors



and cannot continue with fewer than a. We assume that a may be set by the user at the beginning of program
execution, and it does not change until the program is finished. This is typical of most parallel programs for
distributed memory computing environments.

As long as there is no failure among the a processors (which we term active), these processors execute the
program and checkpoint the global state of the computation at interval I. The act of checkpointing takes L
seconds to complete, and induces an overhead of C' seconds. In other words, in the absence of failure, each
checkpoint adds C' seconds to the running time of the program.

Processors that are functional but not executing the program are called spares. If an active processor fails and
at least one spare 1s functional, a spare is chosen to replace the failed processor. Immediately, the computation
on all active processors is halted, and they all (including the newly swapped-in spare) begin recovery from the
most recently completed checkpoint. If a spare processor fails, or if a failed processor becomes functional while
there are enough active processors, the active processors are not affected. If too many processors fail, the system
cannot execute the program until there are once again a functional processors.

We assume that interoccurrence times of failures are independent and identically distributed (#id) as exponential
random variables with the same failure rate A > 0 for each functional processor. Likewise, times to repair are #:d
as exponential random variables with repair rate § > 0 for each nonfunctional processor. Occurrences of failures
or repairs at exactly the same instant have probability 0 for the exponential probability laws.

In this paper, we introduce a discrete-parameter, finite-state Markov chain [Fel68, Par62] M to study the
availability of the above parallel checkpointing system. Given the parameters N, a, C', L, R, I, XA and 8, we
use M to determine the availability A of the parallel system. This is an asymptotic value that can be used to
approximate the availability of executing a program with a long running time, or of many executions of a program

with a shorter running time.
1.1 Utility and Reasonableness of the Assumptions

The determination of availability is useful in the following way. The user of a parallel checkpointing system
is confronted with an important question: What values of @ and [ minimize the expected running time of my
program? Using large values of a can lower the running time of the program due to more parallelism. However, it
also exposes the program to a greater risk of not being able to run due to too few functional processors. Similarly,
increasing [ improves the performance of the program when there are no failures, since checkpointing overhead
1s minimized. However, it also exposes the program to a greater recomputing penalty following a failure. Thus,
there may be an optimal combination of ¢ and I to minimze the expected running time of a program in the
presence of failures and repairs.

Suppose the user can estimate the failure-free running time RT, of his or her program when employing a active
processors and no checkpointing. Moreover, suppose the user can estimate C,, L, and R,. Additionally, suppose

that A and ¢ are known. Then the user can select any value of @ and I, and compute the availability A, ; of



the system. Then the value RT,/A, r is an estimate of the program’s average running time in the presence of
failures. Thus, the user’s question may be answered by choosing values of a and I that minimize RT,/A, ;. We
give an example of such a calculation in Section 6.

Obviously, such a calculation is only useful if the underlying model has basis in reality. The model of the
checkpointing system with parameters C'; L, R and I mirrors several coordinated checkpointing systems that store
their checkpoints to a centralized storage. There have been several implementations of such systems,; for example
the public-domain checkpointers MIST [CCGT95], CoCheck [Ste94, Ste96, PLI6], Fail-Safe PVM [LFS93], as well
as several unnamed checkpointers that have been used for research projects [EJZ92, EZ94, Pla96, PLP98].

The modeling of failures and repairs as id exponential random variables has less grounding in reality. Although
such random variables have been used in many research papers on the performance of uniprocessor and multi-
processor checkpointing systems (for example [YouT4, Gel79, Vai97, KS97, WF96]), the few studies that attempt
to observe the nature of processor failures have shown that the time-to-failure and time-to-repair intervals are
extremely unlikely to belong to an exponential distribution [LMG95; CS84, PE9S8].

Nonetheless, there are three reasons why performance evaluations based on exponential random values have
utility. First, when failures are rare, independent events, their counts may be approximated by Poisson pro-
cesses [BHJ92]. Poisson counts are equivalent to exponential interoccurrence times [BP75], meaning that that if
failures are rare (with respect to I, C'; R, L, etc), their TTF distribution may be approximated by an exponential.
Since repairs are likely to be less rare, this effect is less significant. Second, if the true failure distribution has
an increasing failure rate, rather than the constant failure rate of the exponential distribution, then the results
of [PT98] and this paper provide a conservative (i.e. lower bound) approximation of the availability. For exam-
ple, the LONG data set in reference [PE98] displayed an increasing failure rate. Third, simulation results on real
failure data [PE98] have shown in the uniprocessor case that the determination of the optimal value of I using
an exponential failure rate gives a good first-order approximation of the optimal value of I determined by the
simulation.

Thus, in the absence of any other information besides a mean time to failure and a mean time to recovery for

processors, the availability calculation in this paper is a reasonable indicator for selecting the values of a and 1.

2 Overview of the Markov Model

In this paper, we introduce a discrete-parameter, finite-state Markov chain [Fel68, Par62] M to study the
availability of the above parallel checkpointing system. States in M are defined by counts of active, spare, and
nonfunctional processors. State-transition probabilities are based on likelihoods of failures and repairs. The
transition probability matriz is the square matrix P = [p;;] where p;; is the conditional probability that the next
state is j, given current state ¢. In addition to probability p;;, transition arc ¢+ — j must also be labelled with the

mean system uptime U;; and the mean system downtime D);; associated with that transition.



We use the long-run properties of M to compute A. M is a recurrent chain in which every state is reachable
from every state in one or more transitions. Its well-defined, asymptotic properties can be found by standard
methods [KS60, Par62]. In particular, the long-run, unconditional probability of occupancy of state i in terms of
number of transitions is entry m; in the unique solution of the matrix equation II = ITP where > . m; = 1, m; > 0.

Once II 1s determined, the long-term expected system uptime U and downtime D per arc may be determined by:

Z Uzyﬂzpm
ZDzyﬂ'zpzy

U

D

And then the availability A may be determined by U/(U + D).
Before specifying M in detail, we must describe a separate Markov chain § which models the status of inactive
processors and provides values needed to fill in some of the transition probabilities in M. To help keep these two

chains separate, p’s are used for probabilities in M and ¢’s in S.

3 Birth-Death Chain S for Inactive Processors

Let s = N — a where N is the total number of processors and a 1s the number required to be active on
a distributed task. Then s corresponds to the maximum number of spare processors that may be available to
continue computation following the failure of an active processor. Suppose s > 0. During the time periods that
the system has a processors active on the task, the remaining s processors may fail or be repaired independently.
Both failure and repair of spares has no effect on the computation that is being performed by the active processors.
It is only when an active processor fails that the number of functional spares becomes important.

Given a current number of functional spares i (0 < ¢ < s), and a period of time ¢, we need to know the
probability of there being exactly j functional spares at the end of time ¢, for 0 < j <'s. These probabilities may
be calculated by a continuous-parameter, finite-state, birth-death Markov chain [CM72, Par62] S.

S is distinct from the discrete-parameter Markov chain M. Its s 4+ 1 states correspond to “m functional, f

m

nonfunctional” for m + f = s and are labelled in the form [7] Its transition diagram is conventionally drawn

with the parameters of the exponential probability laws on the arcs. See figure 1.

functlonal A (A A nonfunctlonal
S—l
“(s1)8
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Figure 1: Birth-death Markov chain §



The square matrix R of instantaneous transition rates is

—sA s\ 0 0 0 0 0
0 —((s—1)A+0) (s —1)A 0 0 0 0
ol O 26 —((s—=2)A+20) (s—2A -~ 0 0 0
0 0 0 0 e (s=18 —(A+(s—1)8) A
0 0 0 0 0 s0 —s0

By standard computation for this kind of process [CM72], the probability ¢;;(¢) that S is in state j at time ¢,

given starting in state ¢ at ¢ = 0, is the (ij)'* entry in the matrix
Q) = exp(Ri)
o9 k
i
— k2
= D2 R'G
k=0

where the function exp(R#) is the matrix exponential of Rt.
Q(7) is used to compute probabilities for status of the spare processors at the end of specific time periods 7.

Three values of 7 that will be important in the specification of M are:

71: the unconditional mean time to failure (MTTF) among a active processors with iid exponential failures,

defined as 7 = 1/(aA).

T9: the length of time during which there must be no failure in order to leave the System Recovery Phase

(described in Section 4, defined as 7a = R+ I + L.

73: the conditional MTTF, given an unsuccessful attempt at recovery, defined as:

1 e~ @A(R+I+L)
ERE s el G S ppry vy v Ew 2
e—a>\7—2
= Tl_sz’

4 Completing Markov Chain M

We can now return to the details of M. First Figure 2 demonstrates an interval of the parallel program between
two failures. The interval starts with a recovery, includes four successful checkpoints, and then ends with a failure

before the fifth checkpoint begins. We define three phases that the system may be in:

e The System Recovery Phase encompasses the state of the system in the first R + I 4+ L seconds following a
failure where there are at least a functional processors. The first R seconds are devoted to recovery from

the most recent checkpoint, and the next I seconds are devoted to computation. In the final L seconds, a
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Figure 2: Illustrating System Phases

checkpoint is taken. It is only when that checkpoint completes that the system progresses past the System
Recovery Phase to the System Up Phase. If a failure occurs before R+ I 4+ L seconds have passed, then the
system either starts a new System Recovery Phase (there still at least a functional processors), or moves to

the System Down Phase (there are fewer than a functional processors).

If there is no failure in the System Recovery Phase, then I seconds of useful work are performed. If there is a
failure in the System Recovery Phase, then zero seconds of useful work are performed, since any computation

performed will be lost following the failure.

The System Down Phase occurs whenever there are fewer than a functional processors. No useful work is

performed in this phase.

The System Up Phase is the state of the system from the time that it leaves the System Recovery Phase
due to the completion of the first checkpoint, until the next failure. If M checkpoints complete while in the
System Up Phase, then M (I — ') seconds worth of useful work get performed in this phase.

Definition of the States of M

Let s > 0 (the case s = 0 is a straightforward modification below); then the Markov Chain M has N + s+ 1

states organized into three groups, depicted in Figure 3.

e System Up States 1 through s+ 1 represent when the system is in the System Up Phase. They are labelled

in the form [U:(}/m] to denote “a active, m functional spares, f nonfunctional spares” where m + f = s.

These states are numbered 1 through s + 1 with respective labels [U+/s] through [U%/O] The System Up
states may only be entered when the system has been in a System Recovery state for R 4+ I + L seconds.
The specific state entered depends on the number of functional spares at the time the state is entered. If m

spares are functional, then state [U:(}/m] is entered. The state is exited when a failure occurs in an active

processor. When that occurs, there may be any number of functional spares, from zero to s.

System Down States s + 2 through N + 1 represent when the system is in the System Down Phase. This

happens when there are fewer than a functional processors. These states are labelled [Dfi], for m functional,
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N+2 N+3 N+s+1
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Figure 3: States of Markov chain M.

D:ia—1
s+1

J nonfunctional, where m + f = N, m < a. State s + 2, labelled [ ] may be entered in three ways —

from a System Up state after an active fails and there are no functional spares, from a System Recovery

D:a—2
542

state after an active fails and there are no functional spares, and from state | ] when a nonfunctional

processor is repaired. State [Ds:j_Il] is exited either when a failed processor is repaired, or when a functional
processor fails. State [%] is only entered from state [%] when the last active processor fails, and exits

whenever any of its processors is repaired. For the other System Down states [%], 1 < i < a, the states

D:ia—i+1
s+i—1

Dia—i—1

~riT ) when

may be entered either from state | ] when a functional processor fails, or from state [

D:ia—1
s+1

a failed processor is repaired. Like state [ ], these states are exited either when a failed processor is

repaired, or when a functional processor fails.

e System Recorery States N + 2 through N + s + 1 represent when the system is in the System Recovery

Phase. This happens when there are at least a functional processors, and less than R4 I + L seconds have

passed since the most recent failure (or repair of the a-th active processor). The states are labelled [R(}ﬁ]

R:a/ls—l]

to denote “a active, m functional spares, f nonfunctional spares.” Thus, the labels are [ through

[R%/O]. Any System Recovery state may be entered from any System Up state or from any System Recovery

state, whenever there is a failure. The specific state entered depends on the number of functional spares at

D:ia—1
s+1

the time of failure. Additionally, state [R%/O] may be entered from state | ] when a failed processor

becomes functional. System Recovery states are exited either when a failure occurs, or when R+ I + L

R%/s]. This is because all System
R:a/s
0

seconds elapse with no failure. Note that when s > 0, there is no state [

R:a/O]

Recovery states besides state [ must be entered due to a failure, and state [ ] would imply no

failures.

Example. M for a 3-processor system with a = 2 and s = 1 has

U:Z/I]’ 9 = [U:Z/O]}’

two System Up states {1 = [=3

two System Down states {3 = [21], 4 = [E2]},



one System Recovery state {5 = [RI?/O]}.

M for a 16-processor system with @ = 15 and s = 1 has

[U:15/1]’2 — [U:15/0]}’

two System Up states {1 = [~ T

fifteen System Down states {3 = [£:1] 4 = [213] .17 = [22]}, and

one System Recovery state {18 = [R%S/O]}

M for a 32-processor system with ¢ = 28 and s = 4 has System Up states {1,...,5}, System Down states
{6,...,33}, and System Recovery states {34,...,37}. 1

4.2 Definition of the Transition Probabilities and Weightings

All assumptions of iid exponential distributions apply. Given the values of failure rate A > 0, repair rate § > 0,
and checkpoint parameters R, C, L, and I, the transition probabilities, mean uptimes, and mean downtimes are

computed for arcs exiting states as follows.

System Up states 1 through s+1. Consider a typical state ¢ = [U(}ﬁ] for 1 < ¢ < s+ 1. At the time of
passage into state ¢, the system has a active processors, m spares, and f nonfunctional processors; but since
repair or failure of inactive processors (that is, changes in m and f) do not immediately impact active processors
working on the distributed task, the transitions out of state ¢ correspond to active processor failure. The MTTF
is ;1 = 1/(aX), at which time the conditional probabilities for the status of the inactive processors are the entries
¢;;(m1) for row 7 in the matrix Q(m) for the birth-death chain S, namely,

¢i1(71) is the probability that all s inactive processors are functional,

qi2(71) is the probability that s — 1 inactive processors are functional,

qis(71) is the probability that one inactive processor is functional,

¢i,s+1(m1) is the probability that all s inactive processors are nonfunctional.

If an active processor fails and there is at least one functional spare, the transition is from state ¢ to a System

Recovery statel: for 1 <k <sand j=N+1+k
pij = ¢ik(T1).
If an active processor fails and there are no functional spares, the transition is to System Down state s + 2:

Pist2 = ¢ist1(T1).

IRemember that subscripts on p refer to states in M and subscripts on g refer to states in S.



Mean uptime U;; and mean downtime [);; are computed with reference to the fixed time interval /. Figure 2
illustrates a sequence or time segment beginning with a successful recovery and continuing through checkpoint
intervals 7 in a System Up state until the next active processor failure.

The probability of the event “no active processor failure in an interval 77 is e~%* and the probability of its
complement is 1 — e~%* . Given current state 7, those two events are the outcomes of a Bernoulli trial [Fel68] for
which the mean number of trials until a failure is

e—a)J

M = 1 — e—arl’
that is, M 1s the mean number of intervals I completed until failure causes an exit from state ¢. The mean uptime
assoclated with transition ¢ — j is U;; = M (I — C'). The mean downtime D;; = MC + L + 74 includes M C for

the successful checkpointing expected in a segment before failure, plus L and the conditional MTTF

1 e—a)J
- =
T al 1—e—ar
= T — IM

for the additional downtime expected due to failure.

System Down states s+2 through N+1. Look first at states s + 3 through N, and consider a typical state
1= [Df—m] This state indicates that f processors are subject to repair rate § and m are subject to failure rate A,

mA+70)t

all as independent exponentials; thus, the cumulative distribution function is F(t) =1 — e . A property

of this form of the exponential cdf is that, whenever an event does occur, the probability that it is a repair 1s
fO/(mA + f0) and that it is a failure is mA/(mA 4 f@) [CM72]. These two ratios are independent of the time an
event occurs; hence, for a repair as first to occur

70

Pii-1= m

whereas for another failure before a repair

= mA
Pii+1 = m/\_i_fg

The uptime is 0 for these arcs. The mean downtime is the mean time to an event, 1/(mA + f6).

State s+2 = [D:a_l] 1s similar except that its transition for a repair is to the System Recovery state N+s+1 =

s+1

[—R:‘:/O] because this repair is the event that a total of a processors has just become functional again:
_ (s+ 1)0
Pet2Nbstl = 0N T 5+ D)o
_ (a—1)A
Petzats = TN+ (5 + D)0
1
U, s = U, s = 0, Dy s =D s = .
+2,543 +2, N4s+1 +2,5+3 +2,N+s+1 (a— DA+ (s+1)0

State N +1 = [%] is similar except that all processors have failed and there is no arc exiting to a higher

numbered state, only an arc to state N = [%] with pyyi v = 1, Uvyi,nw =0, and Dyy1,v = 1/(N8). Note

10



that if @ = 1, then state N 4+ 1 1s the same as s + 2 and is the only System Down state, in which case its exit-arc

is to System Recovery state N + s + 1 with probability 1.

—R:(}/m] are

System Recovery states N+2 through N+s+1. Transitions out of the System Recovery state i = [
based on the recovery time, 3 = R+ I + L. The probability of the event “no active processor failure during

—aATo

interval 75” (hence, a successful recovery) is e The matrix Q(72) provides the probabilities for inactive

processors when the recovery completes. Transitions are to the appropriate System Up states: for 1 <j <s+41
pij = €2 qij(T2).

The uptime for a successful recovery is I and the downtime is R.
The probability of failure that prevents a successful recovery is 1 — e~%*™2. The matrix Q(73) where 73 is the

conditional MTTF

e—a>\7—2

T3=T1—T2 1 — e—@AT2
gives the probabilities for the inactive processors at the expected time of an active processor failure. If all inactive

processors are nonfunctional at the expected time of failure, the transition is to the System Down state s + 2:

Pist2 = (L — e ™)q; o41(73).

Otherwise, the transition is to the appropriate System Recovery state to attempt the recovery again: for 1 <k <s
and j=N+1+k

—a>\72)

pi;=(1—e ¢k (73).

The uptime for an unsuccessful attempt to recover is 0 and the mean downtime is the conditional MTTF r5. This

completes the specification of M for s > 0.

Example. The 5-state Markov chain My for N = 3, a = 2, and s = 1 has System Up states {1 = [Uzg/l], 2=

[U:Z/O R:2/0
1 1

]}, System Down states {3 = [21],4 = [22]}, and System Recovery state {5 = [ 1}. Tts transition

probability matrix is

[ 0 0 q12(71) 0 q11(71) ]
0 0 922(7'1) 0 q21 7’1)
P = 0 0 0 5357 257
0 0 1 0 0
i e T2g01(10) €T T2qna(ma) (1 — €72 g00(13) 0 (1 — =222 gp1 (73) |

Six arcs have nonzero mean uptimes:
Uis=Uis =Usz=Uss = M(I - C), Us; =Usy =1.
The mean downtimes on the eleven arcs are

Diz=Di5 = Dag = Das = MC+ L + 74,

11



As a numerical illustration, suppose the MTTF of a processor is 30 days and the MTTR 1s 0.5 days, so
A =1/30 and @ = 2. Suppose I = 2 (checkpoint every two days), R = L = 1/24 (one hour), and C'= R/2. Then
7 = 15,7 =2.0833, 73 =1.0176, M = 7.0111, 74 = 0.9778, and written in matrix format:

00164 0  0.9836 |

0 0
0 0 00164 0  0.9836
P=| o 0 0 0.0083 09917 |,
0 0 | 0 0
| 0.8563 0.0141 0.0019 0 01278 |
[ _ 138762 — 13.8762 |
— _ 138762 — 13.8762
u=|_- - _- o 0 |
_ _ 0 — —
22 0 - 0 |
[ — 11655 —  1.1655 |
- — 1165 - 1.1655
D=| _ - — 02479 0.2479
- — 01667 - -
| 0.0417 0.0417 10176 —  LOIT6 |

Some of the computations with chain § are

—0.0333  0.0333
9 —2 |

0.9836 0.0164
Q(n) = Q(15) = :
0.9836 0.0164

0.9838 0.0162
Q(m) = Q(2.0833) = [ ] N

0.9694 0.0306

12



4.3 When s=0

The case of all processors active and no spares, that is, s = 0 and N = a, is simpler than s > 0 but gives a

slightly different Markov chain M. There is no separate chain §. M has N + 2 states. The single System Up

state 1s 1 = [U:Jg/o], the System Down states are 2 = [Z8=L] through N + 1 = [82], and the single System

N
R:N/O]
0

Recovery state N + 2 also has label | . Transition probabilities, mean uptimes, and mean downtimes follow

similar specifications as above.

Example. The 5-state Markov chain My for N = a = 3 and s = 0 has

System Up state {1 = [U:S/o]}’

System Down states {2 = [22], 3 = [£1] 4 = [22]}, and

R:3/0]

System Recovery state {5 = [~

[—

Its transition probability matrix is

[ 0 1 0 0 0 ]
0 0 25 0 o
P = 0 s 0 53 O
0 0 1 0 0
i e—BAT2 | _ p=3Am 0 0 0|
The expected number of intervals of length 7 in state 1 is
—3A1
M = 1;7_3”

Only two arcs have nonzero uptimes: Ujp = M (] — C) and Us; = I. The mean downtimes on the eight arcs
include Dys = MC' + L + 14, D51 = R, and Daz = 1/(2A 4+ 0). As a numerical illustration using the same values

of parameters as the previous example:

0 1 0 0 0
0 0 00323 0 09677
P=| 0 0917 0 0008 0 |,
0 0 1 0 0
| 08119 01881 0 0 0
[ 89392 — — — |
~— 0 o~ 0
u=|_- o - o -|,
_ _ 0 - _
2 0 - - -

13



1.1025 - - -

- - 0.4839 - 0.4839

0.2479 - 0.2479 - -n
- - 0.1667 - -

i 0.0417 1.0055 - - -

w
I
I

5 Availability of Multiprocessor Checkpointing System

In reliability theory, an important metric for a system with units that fail and undergo repair is the probability
that the system is operating at a specified time ¢ [BP75]. This is the availability at time t, denoted A(t). As a
measure of average performance in the long-term,

1 T
Agy = lim —/ A(t)dt
0

T—oo

which equals the limit A = lim;, o, A(t) when both exist. For a multiprocessor checkpointing system, A is the
fraction of time in the long-run that the system is actually at work on the distributed task. In other words, A is
the total uptime during time span 7', divided by T as T'— oo.

We use the long-run properties of Markov chain M to compute A. M is a recurrent chain with well-defined,
asymptotic properties [KS60, Par62]. In particular, the long-run, unconditional probability of occupancy of state
¢ in terms of number of transitions is entry m; in the unique solution of the matrix equation II = IIP where
Ziﬂ-i =1,m >0.

In fact, the probabilities in vector Il are exactly the limiting relative frequencies of the states with respect to
the number of transitions and are independent of the starting state of the Markov chain. If M is taken through
n transitions selected according to the transition probabilities, and if n; counts the occurrences of state ¢ during

those transitions, then
n;

m; = lim .
n—ocon 4+ 1

Since each visit to state ¢ is followed by probabilistic selection of an exit arc, the limiting relative frequency
of occurrence of transition ¢ — j is the long-run, joint probability m;p;;. Arc ¢ — j has two associated random
variables, one for the system uptime on the distributed task and another for the system downtime, with respective
conditional mean values Us;; and D;;. For a long-running task, U;;m;p;; is the expected contribution to uptime
due to the relative frequency of arc ¢ = j and Dj;m;p;; is that arc’s expected contribution to downtime. The
availability A is the ratio of the mean uptime per arc to the mean total time per arc:

22 Vigmipij

A= .
2i j(Uij + Dij)mipi;

Example. Consider the 5-state chain Ms for N = a = 3 and s = 0 with the same values for the parameters in
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the previous example, in particular, I = 2. We find

IT = [0.282,0.3589,0.0117,0.0001,0.3473],

> Uijmipi; = 3.0849, > Dijmipij = 0.5649
ij ij
and

_ 30849 = 0.8452.

~3.6498

Figure 4: Plots of A vs I. Left: M. Right: M; and M.

As shown by the plot of A vs I for 0.05 < I < 3, the checkpoint interval I = 2 does not maximize A. At the
optimal 7 = 0.651 we find
IT =[0.3101,0.3449,0.0112,0.0001,0.3337],
> Uijmipi; = 3.1069, > Dijmipi; = 0.3999,
ij ij

and the long-run fraction of real-time that all three processors are working on the task is

~3.1069
~ 0.3999

= (.886.

For comparison, suppose N = 3,a = 2, s = 1 with the same values of R, L., C'; A, and #. The 5-state chain M;
for this case i1s also described in a previous example. The second plot has A vs I for both models M; and Ms.

With two active processors and a spare, the optimal I = 0.797 gives

IT = [0.4747, 0.0066, 0.0082, 0.0001, 0.5104],

Z Uijmipij = 7.2293, Z Dijmipi; = 0.4287,
i,j ,J
so the long-run fraction of time that two processors are working on the task (and one inactive processor is

functional or nonfunctional) is

_7.2293
~ 76579

= 0.944.
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For completeness with the same values of R, L, C, A, and 6, we remark that the case N =3,a = 1,s = 2 has

maximum availability A = 0.9612 for I = 1.124 where its 6-state Markov chain has

IT = [0.474, 0.0158,0.0001, 0.0001, 0.4934, 0.0166]. m

6 Availability vs. Speed-Up with Multiple Processors

As stated in the introduction, calculation of the availaibility of a multiprocessor checkpointing system is useful
for determining the runtime parameters that may optimize the average execution time of a long-running program
in the presence of failures. In this section, we present an example of such an optimization.

We assume a processing environment where N = 8 processors, and our program is one such as PSTSWM
from [PLP98], which solves the nonlinear shallow water equations on a rotating sphere. We derive the following
parameters from the DISK-FORK tests in reference [PLP98]. The checkpoint size is (384.56 + 1.26a) MB, and
the disk bandwidth is 0.1296 MB/sec. Therefore, the latency and recovery time are:

384.56 + 1.26a
La, Ha = 0.1296

seconds

Due to the FORK optimization, the checkpoint overhead is 0.0146 of the latency:

[ _ 384.56 4 1.26a
“T 8856

seconds

The running time of the program on one processor with no failures and no checkpointing is 270,769 seconds (3.13
days). When it is executed on a parallel environment, 85 percent of the computation is completely parallelizable,

and the rest must run serially. Therefore, the running time of the program is:
RT, = (270,769)(.15+ .85/a)

Failure and recovery times are taken roughly from the PRINCETON data set in reference [PE98]: A = 1/30
and 6 = 2.

We consider five values of a and s, and present their calculated optimal values of I and A in Table 1.

When a = 8, the program runs roughly 6 percent faster in the absence of failures than when a = 7. However,
when failures are present, the program spends more time in the System Down state with ¢ = 8 than ¢ = 7 or 6.
For optimal values of I, the expected running time of the program with checkpointing is roughly 8 percent faster

when ¢ = 7 than when a = 8.

7 Merging States in M

In some cases, a Markov chain M’ with fewer states than M yields the same calculation of availability. Consider

the three groups of states—System Down, System Up, and System Recovery—as three disjoint sets.
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a | s | Ly, Rqg C, Optimal | Aar RT, RT,/Aqr1

8 | 0| 3045.1 sec | 44.6 sec || .062 days | .8457 || 69,385 sec | 82,039 sec
71130353 44 .4 067 9684 || 73,494 75,893
62| 3025.6 44.3 072 9721 || 78,974 81,238
53| 30159 44.1 078 9757 || 86,646 88,806

4 14 |3006.2 43.99 .088 9793 || 98,154 100,230

Table 1: Calculating the optimal running time of a program in the presence of failures

The set of System Down states is entered by a transition to state s + 2 and exited by the unique transition
from state s + 2 to System Recovery state N + s 4+ 1. Once passage into the set has occurred, the mean system
downtime 1 accumulated until exit from the set is a function of a, s, A, and é but does not depend on checkpoint
parameters R, L, C'; and I. Therefore, for the purpose of computing availability, the entire set of System Down
states can be merged together and represented by one state. That state has an exit-arc to the System Recovery
state N 4+ s + 1 labelled with probability 1, uptime 0, and mean downtime 7.

All pairs of System Up states ¢ and j have U, = Uj, and Dy, = Dy, for all states k. If all pairs ¢ and j also
have p;;, = pjr for all states k, then there is no distinction among these states in terms of exit-arc probabilities,
mean uptimes, or mean downtimes; consequently, for the purpose of evaluating availability, the System Up states
can be merged together (or lumped [IKS60]) into a single state. Likewise, all pairs ¢ and j of System Recovery
states have U;, = Ui, and Dy, = Dy, for all states k; therefore, if all pairs ¢ and j have p;, = pj;, for all states £,
then the System Recovery states can be merged into a single state as well.

In the case of all these mergers, the resulting Markov chain M’ in figure 7 has three states.

stl Ss+2 s+3 N N+1

System Up states merged into one System Down states merged into one

NV AN N

N+2  N+3 N+s+1

System Recovery states merged into one
Figure 5: Representation of M’ with merged states

The System Up states can be merged if and only if there are identical rows in the matrix Q(¢) evaluated at

t = 7. For a Markov chain with the structure of S, the rows in Q(¢) do in fact converge to the same vector
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q = [g¢;], that is,
Jm gi5(t) = g

where ¢; is independent of ¢ and is the long-run fraction of time that S occupies state j [CM72]. q is called the

equilibrium distribution of 8, and its values are directly computable as

where 91 = 1 and

one.

Example. For two-state § used with M; in previous examples, q = [0.9836,0.0164] and we have already

computed

0.9836 0.0164
0.9836 0.0164

Q(m) = Q(15) =

At the optimal I = 0.797, chain M; has

0 0.0164 0 0.9836
0 0.0164 0 0.9836
0 0 0.0083 0.9917
0 0 1 0 0

| 09301 0.0129 0.0005 0 0.0565

o o ©

The three states in the smaller chain M represent subsets of original states: its System Up state is {1,2}, its
System Down state is {3,4}, and its System Recovery state is {5}. Computation with M/ gives the same optimal

I =0.797 at which
0 0.0164 0.9836

P = 0 0 1 ,
0.943  0.0005 0.0565

— 14.2233 14.2233
U = — — 0
0.797 0 0

and

— 0.8184 0.8184
D = - - 0.2514
0.0417 0.4359 0.4359
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The mean downtime for the arc {3,4} — {5} is computed with reference to the original chain M; as

_ (A L 1y, 1t
= \20 )\ X520 30) T X520

= 0.2514

where 1/(36) is the mean downtime on the one arc exiting state 4, 1/(A+ 26) is the mean downtime on both arcs
exiting state 3, and the expected number of transitions 3 — 4 (each of them immediately followed by 4 — 3 with

probability 1) before the first transition 3 = 5 is

A
328 _ A -
20 20°
X130

8 Other Calculations with M

Several computations with a discrete-parameter, finite-state Markov chain give further information about the

multiprocessor checkpointing system. Two additional computations with IT [KS60] are:
(1) The mean number of transitions until the next occurrence of state 4, given current state ¢, is 1/7;.
(2) The mean number of times in state j between occurrences of state 7 is m; /7;.

Example. For M/ in the previous example with optimal I = 0.797, the steady-state probability vector is

1" = [0.4814, 0.0082, 0.5105]

and the mean number of transitions between occurrences of state {5} is 1/0.5105 = 1.959 which is the sum of

entries in the vector

H/
=[0.943,0.016, 1].
05105 [0.943,0.016,1]

Since transitions to the System Recovery state correspond one-to-one with swapping spares for failed processors,
the mean number of transitions between these swaps is 1.959. Taking transition probabilities; uptimes, and
downtimes into account, the expected value of the sum of system uptimes and downtimes between these swaps 1s

computed to be 15.004. B

Additional computations are possible.

9 Related Work

A few other researchers have studied performance prediction of multiprocessor checkpointing systems. Vaid-
ya [Vai95] explores a two-level recovery scheme, where processors store checkpoints on both volatile storage that

does not survive failures, and stable storage that does survive failures. In his system, two kinds of checkpoints
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are stored: I-checkpoints, that can survive the failure and repair of a single processor, and n-checkpoints which
can survive the failure and repair of multiple processors. The conclusion that he draws 1s that a combination of 1-
checkpoints and n-checkpoints results in better performance than relying on either 1-checkpoints or n-checkpoints
exclusively. Iid exponentials are assumed. Vaidya’s work differs from ours in that we only consider n-checkpoints,
and Vaidya does not consider the issue of spare processors. It is a subject of future work to consider checkpointing
protocols where R is a function of the number of active processor failures between the first active processor failure
and successful recovery. Such protocols would then include a variety of diskless checkpointing protocols based on
mirroring (as in [Vai95]), parity [PLP98] and Reed-Solomon coding [Pla97].

Wong and Franklin [WF96] study the performance of multiprocessor checkpointing systems in which the
application either uses N processors, or it can reconfigure itself so that it makes use of however many processors
are functional at the time. They assume that failures cannot occur during checkpointing or recovery. Our work
differs in the relaxation of that assumption (which can be significant when programs exhibit a large checkpoint
latency), in the use of spare processors for the large class of applications that cannot reconfigure, and in the
separation of latency from overhead. It is a subject of future work to address the costs of reconfiguration upon
failure or repair, given the assumptions of our system.

Finally, Kavanaugh and Sanders study of the performance of checkpoint consistency protocols based on limiting
the skew of local clocks in multiprocessor systems [KS97]. Their analysis does not consider the issue of spares,

repairs, or failures during checkpointing or recovery.

10 Conclusions

In this paper, we have have defined a way to compute the average availability of a multiprocessor checkpointing
system, given values of checkpoint latency, recovey time, overhead, checkpoint interval, and #d exponential
failure and repair rates. This availability calculation may be used to optimize two running time parameters of a
parallel program: the number of active processors and the checkpoint interval. Future work in this area includes
extending the checkpointing model to include more complex multiprocessor checkpointing algorithms such as
diskless checkpointing [PLP98], and using failure and repair trace data to drive simulations of checkpointing

systems given the same assumptions as in this paper.
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