
The Average Availability of MultiprocessorCheckpointing SystemsJames S. Plank Michael G. ThomasonNovember 3, 1998Technical Report UT-CS-98-403Department of Computer ScienceUniversity of TennesseeNovember 3, 1998See http://www.cs.utk.edu/ plank/plank/papers/CS-98-403.html for o ther information about this paper.AbstractPerformance prediction of checkpointing systems in the presence of failures is a well-studied research area.The average availability is de�ned as a useful metric for uniprocessor checkpointing systems in a previousTechnical Report [PT98]. This report introduces a discrete-parameter, �nite-state Markov chainM to computethe availability for multiprocessor checkpointing systems. N is the number of processors in the system.Processors are interchangeable. At any time, each individual processor is either nonfunctional (failed andunder repair) or functional (actively working on the task or standing-by as a spare). A speci�ed minimumnumber a of the N processors must be functional in order for the system to work on a distributed task.The system does not use more than a processors but cannot compute with fewer than a. M is based onassumptions of independent exponential probability distributions for identically distributed interoccurrencetimes of failures and for identically distributed repair times. A separate continuous-parameter Markov chainS is used to compute some of the transition probabilities inM. System availability is related to the speed-upobtained with multiple processors as a measure of real-time work on a long-running task. Finally, mergingstates to obtain a smaller Markov chain and some additional computations are briey discussed.1 Introduction and AssumptionsIn reference [PT98], the authors describe a uniprocessor checkpointing system, and how to calculate theavailability of such a system given certain assumptions. Their model of a checkpointing system is as follows:1

� A uniprocessor is executing a long-running program. It may be in one of two states: functional, whichmeans that it may devote all of its resources to executing the program, and failed, which means that it isinoperative.� When a machine �rst becomes functional, it starts executing the program. Every I seconds, it initiates acheckpoint of the current state of the program. I is called the checkpoint interval.� Once initiated, each checkpoint takes L seconds to complete. This is called the checkpoint latency. Acheckpoint cannot be used for recovery until it has completed.� If a failure occurs, the processor is unavailable to execute the program. Eventually, the processor is repaired,and may again run the program, but to do so, it must read the execution state stored in the most recentlycompleted checkpoint. This is called recovery. Recovery from a checkpoint takes R seconds. This starts assoon as the processor becomes functional following a failure. R is called the recovery time. Once recovery iscomplete, the program resumes execution from the point in the program where the checkpoint was originallyinitiated. Also, once recovery completes, checkpointing is again resumed every I seconds.� Each checkpoint takes C seconds of processing away from the program. This is called the checkpointoverhead. In real life, the overhead is distributed throughout the latency period, but for the purpose ofmodeling, it is applied to the beginning of the checkpoint. Thus, each checkpoint consists of C seconds ofoverhead, followed by L � C seconds where the processor executes the application, but the checkpoint isnot available for recovery following a failure. If the processor fails during that time period, it must recoverfrom a previous checkpoint.� The probability distribution functions of machine failure and repair are known. In [PT98], the repair timesare assumed to be constant, but the failure distribution function may be anything.Given the above parameters, the authors explain how to compute the long-term availability of the system.Availability is de�ned to be the fraction of time that the machine spends performing useful work, where usefulwork is time spent performing computation on the program that will never be redone due to a failure. In otherwords, this is the time spent executing the program before a checkpoint completes. If time is spent executingthe program, but the machine fails before the next checkpoint completes, then that part of the program must bere-executed, and is therefore not useful. The goal of a checkpointing system is to maximize the availability in thepresence of failures.In this paper, we compute the availability of a parallel computing system. We assume that there N processorsin the system. Processors are interchangeable. As above, at any point in time, each individual processor is eithernonfunctional (failed and under repair) or functional.The processors in the system cooperate to execute a parallel program. We assume that this program is designedso that it requires a �xed number, a, of processors to execute. The program does not use more than a processors2

and cannot continue with fewer than a. We assume that a may be set by the user at the beginning of programexecution, and it does not change until the program is �nished. This is typical of most parallel programs fordistributed memory computing environments.As long as there is no failure among the a processors (which we term active), these processors execute theprogram and checkpoint the global state of the computation at interval I. The act of checkpointing takes Lseconds to complete, and induces an overhead of C seconds. In other words, in the absence of failure, eachcheckpoint adds C seconds to the running time of the program.Processors that are functional but not executing the program are called spares. If an active processor fails andat least one spare is functional, a spare is chosen to replace the failed processor. Immediately, the computationon all active processors is halted, and they all (including the newly swapped-in spare) begin recovery from themost recently completed checkpoint. If a spare processor fails, or if a failed processor becomes functional whilethere are enough active processors, the active processors are not a�ected. If too many processors fail, the systemcannot execute the program until there are once again a functional processors.We assume that interoccurrence times of failures are independent and identically distributed (iid) as exponentialrandom variables with the same failure rate � > 0 for each functional processor. Likewise, times to repair are iidas exponential random variables with repair rate � > 0 for each nonfunctional processor. Occurrences of failuresor repairs at exactly the same instant have probability 0 for the exponential probability laws.In this paper, we introduce a discrete-parameter, �nite-state Markov chain [Fel68, Par62] M to study theavailability of the above parallel checkpointing system. Given the parameters N , a, C, L, R, I, � and �, weuse M to determine the availability A of the parallel system. This is an asymptotic value that can be used toapproximate the availability of executing a program with a long running time, or of many executions of a programwith a shorter running time.1.1 Utility and Reasonableness of the AssumptionsThe determination of availability is useful in the following way. The user of a parallel checkpointing systemis confronted with an important question: What values of a and I minimize the expected running time of myprogram? Using large values of a can lower the running time of the program due to more parallelism. However, italso exposes the program to a greater risk of not being able to run due to too few functional processors. Similarly,increasing I improves the performance of the program when there are no failures, since checkpointing overheadis minimized. However, it also exposes the program to a greater recomputing penalty following a failure. Thus,there may be an optimal combination of a and I to minimze the expected running time of a program in thepresence of failures and repairs.Suppose the user can estimate the failure-free running time RTa of his or her program when employing a activeprocessors and no checkpointing. Moreover, suppose the user can estimate Ca, La and Ra. Additionally, supposethat � and � are known. Then the user can select any value of a and I, and compute the availability Aa;I of3

the system. Then the value RTa=Aa;I is an estimate of the program's average running time in the presence offailures. Thus, the user's question may be answered by choosing values of a and I that minimize RTa=Aa;I. Wegive an example of such a calculation in Section 6.Obviously, such a calculation is only useful if the underlying model has basis in reality. The model of thecheckpointing system with parameters C, L, R and I mirrors several coordinated checkpointing systems that storetheir checkpoints to a centralized storage. There have been several implementations of such systems, for examplethe public-domain checkpointers MIST [CCG+95], CoCheck [Ste94, Ste96, PL96], Fail-Safe PVM [LFS93], as wellas several unnamed checkpointers that have been used for research projects [EJZ92, EZ94, Pla96, PLP98].The modeling of failures and repairs as iid exponential random variables has less grounding in reality. Althoughsuch random variables have been used in many research papers on the performance of uniprocessor and multi-processor checkpointing systems (for example [You74, Gel79, Vai97, KS97, WF96]), the few studies that attemptto observe the nature of processor failures have shown that the time-to-failure and time-to-repair intervals areextremely unlikely to belong to an exponential distribution [LMG95, CS84, PE98].Nonetheless, there are three reasons why performance evaluations based on exponential random values haveutility. First, when failures are rare, independent events, their counts may be approximated by Poisson pro-cesses [BHJ92]. Poisson counts are equivalent to exponential interoccurrence times [BP75], meaning that that iffailures are rare (with respect to I, C, R, L, etc), their TTF distribution may be approximated by an exponential.Since repairs are likely to be less rare, this e�ect is less signi�cant. Second, if the true failure distribution hasan increasing failure rate, rather than the constant failure rate of the exponential distribution, then the resultsof [PT98] and this paper provide a conservative (i.e. lower bound) approximation of the availability. For exam-ple, the LONG data set in reference [PE98] displayed an increasing failure rate. Third, simulation results on realfailure data [PE98] have shown in the uniprocessor case that the determination of the optimal value of I usingan exponential failure rate gives a good �rst-order approximation of the optimal value of I determined by thesimulation.Thus, in the absence of any other information besides a mean time to failure and a mean time to recovery forprocessors, the availability calculation in this paper is a reasonable indicator for selecting the values of a and I.2 Overview of the Markov ModelIn this paper, we introduce a discrete-parameter, �nite-state Markov chain [Fel68, Par62] M to study theavailability of the above parallel checkpointing system. States in M are de�ned by counts of active, spare, andnonfunctional processors. State-transition probabilities are based on likelihoods of failures and repairs. Thetransition probability matrix is the square matrix P = [pij] where pij is the conditional probability that the nextstate is j, given current state i. In addition to probability pij, transition arc i! j must also be labelled with themean system uptime Uij and the mean system downtime Dij associated with that transition.4

We use the long-run properties ofM to compute A. M is a recurrent chain in which every state is reachablefrom every state in one or more transitions. Its well-de�ned, asymptotic properties can be found by standardmethods [KS60, Par62]. In particular, the long-run, unconditional probability of occupancy of state i in terms ofnumber of transitions is entry �i in the unique solution of the matrix equation � = �P where Pi �i = 1; �i > 0:Once � is determined, the long-term expected system uptime U and downtime D per arc may be determined by:U = Xi;j Uij�ipijD = Xi;j Dij�ipijAnd then the availability A may be determined by U=(U +D).Before specifyingM in detail, we must describe a separate Markov chain S which models the status of inactiveprocessors and provides values needed to �ll in some of the transition probabilities inM. To help keep these twochains separate, p's are used for probabilities inM and q's in S.3 Birth-Death Chain S for Inactive ProcessorsLet s = N � a where N is the total number of processors and a is the number required to be active ona distributed task. Then s corresponds to the maximum number of spare processors that may be available tocontinue computation following the failure of an active processor. Suppose s > 0: During the time periods thatthe system has a processors active on the task, the remaining s processors may fail or be repaired independently.Both failure and repair of spares has no e�ect on the computation that is being performed by the active processors.It is only when an active processor fails that the number of functional spares becomes important.Given a current number of functional spares i (0 � i � s), and a period of time t, we need to know theprobability of there being exactly j functional spares at the end of time t, for 0 � j � s. These probabilities maybe calculated by a continuous-parameter, �nite-state, birth-death Markov chain [CM72, Par62] S.S is distinct from the discrete-parameter Markov chain M. Its s + 1 states correspond to \m functional, fnonfunctional" for m + f = s and are labelled in the form [mf]. Its transition diagram is conventionally drawnwith the parameters of the exponential probability laws on the arcs. See �gure 1.
sλ

2θ (s-1) θ sθ
s

0

s-1

1

1

s-1

0

s
...

λ2(s-1) λλ

θ

s+1s21

functional
All s

nonfunctional
All sFigure 1: Birth-death Markov chain S5

The square matrix R of instantaneous transition rates isR = 26666666666664 �s� s� 0 0 � � � 0 0 0� �((s � 1)�+ �) (s� 1)� 0 � � � 0 0 00 2� �((s � 2)�+ 2�) (s � 2)� � � � 0 0 0� � �0 0 0 0 � � � (s � 1)� �(� + (s � 1)�) �0 0 0 0 � � � 0 s� �s� 37777777777775 :By standard computation for this kind of process [CM72], the probability qij(t) that S is in state j at time t,given starting in state i at t = 0; is the (ij)th entry in the matrixQ(t) = exp(Rt)= 1Xk=0Rk tkk!where the function exp(Rt) is the matrix exponential of Rt.Q(�) is used to compute probabilities for status of the spare processors at the end of speci�c time periods � .Three values of � that will be important in the speci�cation of M are:�1: the unconditional mean time to failure (MTTF) among a active processors with iid exponential failures,de�ned as �1 = 1=(a�):�2: the length of time during which there must be no failure in order to leave the System Recovery Phase(described in Section 4, de�ned as �2 = R+ I + L:�3: the conditional MTTF, given an unsuccessful attempt at recovery, de�ned as:�3 = 1a� � (R+ I + L) e�a�(R+I+L)1� e�a�(R+I+L)= �1 � �2 e�a��21� e�a��2 ;4 Completing Markov Chain MWe can now return to the details ofM. First Figure 2 demonstrates an interval of the parallel program betweentwo failures. The interval starts with a recovery, includes four successful checkpoints, and then ends with a failurebefore the �fth checkpoint begins. We de�ne three phases that the system may be in:� The System Recovery Phase encompasses the state of the system in the �rst R+ I + L seconds following afailure where there are at least a functional processors. The �rst R seconds are devoted to recovery fromthe most recent checkpoint, and the next I seconds are devoted to computation. In the �nal L seconds, a6

τ4

����

Sufficient functional
processors for recovery

R I C I-C C I-C C

L

. . . C

Phase
System Up Phase

Next failure of
active processor

System Recovery System Recovery
or System Down
 Phase

timeFigure 2: Illustrating System Phasescheckpoint is taken. It is only when that checkpoint completes that the system progresses past the SystemRecovery Phase to the System Up Phase. If a failure occurs before R+ I +L seconds have passed, then thesystem either starts a new System Recovery Phase (there still at least a functional processors), or moves tothe System Down Phase (there are fewer than a functional processors).If there is no failure in the System Recovery Phase, then I seconds of useful work are performed. If there is afailure in the System Recovery Phase, then zero seconds of useful work are performed, since any computationperformed will be lost following the failure.� The System Down Phase occurs whenever there are fewer than a functional processors. No useful work isperformed in this phase.� The System Up Phase is the state of the system from the time that it leaves the System Recovery Phasedue to the completion of the �rst checkpoint, until the next failure. If M checkpoints complete while in theSystem Up Phase, then M (I �C) seconds worth of useful work get performed in this phase.4.1 De�nition of the States of MLet s > 0 (the case s = 0 is a straightforward modi�cation below); then the Markov Chain M has N + s + 1states organized into three groups, depicted in Figure 3.� System Up States 1 through s+ 1 represent when the system is in the System Up Phase. They are labelledin the form [U :a=mf] to denote \a active, m functional spares, f nonfunctional spares" where m + f = s.These states are numbered 1 through s + 1 with respective labels [U :a=s0] through [U :a=0s]. The System Upstates may only be entered when the system has been in a System Recovery state for R + I + L seconds.The speci�c state entered depends on the number of functional spares at the time the state is entered. If mspares are functional, then state [U :a=mf] is entered. The state is exited when a failure occurs in an activeprocessor. When that occurs, there may be any number of functional spares, from zero to s.� System Down States s + 2 through N + 1 represent when the system is in the System Down Phase. Thishappens when there are fewer than a functional processors. These states are labelled [D:mf], form functional,7

N+2 N+3 N+s+1

N+1Ns+3s+2s+1321

 0 2 s+2 N-1 N

1

1

s

s

2

...

...

...

System Down

(Sufficient functional processors after failure
of active processor(s))

(Too few functional processors)

System Up (No failures of active processors)

System Recovery

s+1

U:a/s U:a/s-1 U:a/s-2 U:a/0 D:a-1 D:a-2 D:1 D:0

R:a/s-1 R:a/s-2 R:a/0Figure 3: States of Markov chain M.f nonfunctional, where m + f = N;m < a. State s + 2, labelled [D:a�1s+1] may be entered in three ways {from a System Up state after an active fails and there are no functional spares, from a System Recoverystate after an active fails and there are no functional spares, and from state [D:a�2s+2] when a nonfunctionalprocessor is repaired. State [D:a�1s+1] is exited either when a failed processor is repaired, or when a functionalprocessor fails. State [D:0N] is only entered from state [D:1N�1] when the last active processor fails, and exitswhenever any of its processors is repaired. For the other System Down states [D:a�is+i], 1 < i < a, the statesmay be entered either from state [D:a�i+1s+i�1] when a functional processor fails, or from state [D:a�i�1s+i+1] whena failed processor is repaired. Like state [D:a�1s+1], these states are exited either when a failed processor isrepaired, or when a functional processor fails.� System Recorery States N + 2 through N + s + 1 represent when the system is in the System RecoveryPhase. This happens when there are at least a functional processors, and less than R+ I +L seconds havepassed since the most recent failure (or repair of the a-th active processor). The states are labelled [R:a=mf]to denote \a active, m functional spares, f nonfunctional spares." Thus, the labels are [R:a=s�11] through[R:a=0s]. Any System Recovery state may be entered from any System Up state or from any System Recoverystate, whenever there is a failure. The speci�c state entered depends on the number of functional spares atthe time of failure. Additionally, state [R:a=0s] may be entered from state [D:a�1s+1] when a failed processorbecomes functional. System Recovery states are exited either when a failure occurs, or when R + I + Lseconds elapse with no failure. Note that when s > 0, there is no state [R:a=s0]. This is because all SystemRecovery states besides state [R:a=0s] must be entered due to a failure, and state [R:a=s0] would imply nofailures.Example. M for a 3-processor system with a = 2 and s = 1 hastwo System Up states f1 � [U :2=10]; 2 � [U :2=01]g,two System Down states f3 � [D:12]; 4 � [D:03]g, 8

one System Recovery state f5 � [R:2=01]g.M for a 16-processor system with a = 15 and s = 1 hastwo System Up states f1 � [U :15=10]; 2 � [U :15=01]g;�fteen System Down states f3 � [D:142]; 4 � [D:133]; : : : ; 17 � [D:016]g, andone System Recovery state f18 � [R:15=01]g.M for a 32-processor system with a = 28 and s = 4 has System Up states f1; : : : ; 5g, System Down statesf6; : : : ; 33g, and System Recovery states f34; : : : ; 37g:4.2 De�nition of the Transition Probabilities and WeightingsAll assumptions of iid exponential distributions apply. Given the values of failure rate � > 0, repair rate � > 0,and checkpoint parameters R, C, L, and I, the transition probabilities, mean uptimes, and mean downtimes arecomputed for arcs exiting states as follows.System Up states 1 through s+1. Consider a typical state i � [U :a=mf] for 1 � i � s + 1. At the time ofpassage into state i, the system has a active processors, m spares, and f nonfunctional processors; but sincerepair or failure of inactive processors (that is, changes in m and f) do not immediately impact active processorsworking on the distributed task, the transitions out of state i correspond to active processor failure. The MTTFis �1 = 1=(a�), at which time the conditional probabilities for the status of the inactive processors are the entriesqij(�1) for row i in the matrix Q(�1) for the birth-death chain S, namely,qi1(�1) is the probability that all s inactive processors are functional,qi2(�1) is the probability that s � 1 inactive processors are functional,...qis(�1) is the probability that one inactive processor is functional,qi;s+1(�1) is the probability that all s inactive processors are nonfunctional.If an active processor fails and there is at least one functional spare, the transition is from state i to a SystemRecovery state1: for 1 � k � s and j = N + 1 + kpij = qik(�1):If an active processor fails and there are no functional spares, the transition is to System Down state s+ 2:pi;s+2 = qi;s+1(�1):1Remember that subscripts on p refer to states inM and subscripts on q refer to states in S.9

Mean uptime Uij and mean downtime Dij are computed with reference to the �xed time interval I. Figure 2illustrates a sequence or time segment beginning with a successful recovery and continuing through checkpointintervals I in a System Up state until the next active processor failure.The probability of the event \no active processor failure in an interval I" is e�a�I and the probability of itscomplement is 1� e�a�I : Given current state i, those two events are the outcomes of a Bernoulli trial [Fel68] forwhich the mean number of trials until a failure isM = e�a�I1� e�a�I ;that is, M is the mean number of intervals I completed until failure causes an exit from state i: The mean uptimeassociated with transition i! j is Uij = M (I � C). The mean downtime Dij = MC + L + �4 includes MC forthe successful checkpointing expected in a segment before failure, plus L and the conditional MTTF�4 = 1a� � I e�a�I1� e�a�I= �1 � IMfor the additional downtime expected due to failure.System Down states s+2 through N+1. Look �rst at states s + 3 through N , and consider a typical statei � [D:mf]. This state indicates that f processors are subject to repair rate � and m are subject to failure rate �,all as independent exponentials; thus, the cumulative distribution function is F (t) = 1� e�(m�+f�)t. A propertyof this form of the exponential cdf is that, whenever an event does occur, the probability that it is a repair isf�=(m� + f�) and that it is a failure is m�=(m�+ f�) [CM72]. These two ratios are independent of the time anevent occurs; hence, for a repair as �rst to occurpi;i�1 = f�m� + f�whereas for another failure before a repair pi;i+1 = m�m� + f� :The uptime is 0 for these arcs. The mean downtime is the mean time to an event, 1=(m� + f�):State s+2 � [D:a�1s+1] is similar except that its transition for a repair is to the System Recovery state N+s+1 �[R:a=0s] because this repair is the event that a total of a processors has just become functional again:ps+2;N+s+1 = (s+ 1)�(a� 1)�+ (s + 1)� ;ps+2;s+3 = (a� 1)�(a� 1)�+ (s + 1)� ;Us+2;s+3 = Us+2;N+s+1 = 0; Ds+2;s+3 = Ds+2;N+s+1 = 1(a � 1)� + (s + 1)� :State N + 1 � [D:0N] is similar except that all processors have failed and there is no arc exiting to a highernumbered state, only an arc to state N � [D:1N�1] with pN+1;N = 1, UN+1;N = 0, and DN+1;N = 1=(N�): Note10

that if a = 1, then state N + 1 is the same as s+ 2 and is the only System Down state, in which case its exit-arcis to System Recovery state N + s + 1 with probability 1.System Recovery states N+2 through N+s+1. Transitions out of the System Recovery state i � [R:a=mf] arebased on the recovery time, �2 = R + I + L. The probability of the event \no active processor failure duringinterval �2" (hence, a successful recovery) is e�a��2 . The matrix Q(�2) provides the probabilities for inactiveprocessors when the recovery completes. Transitions are to the appropriate System Up states: for 1 � j � s + 1pij = e�a��2qij(�2):The uptime for a successful recovery is I and the downtime is R.The probability of failure that prevents a successful recovery is 1� e�a��2 . The matrix Q(�3) where �3 is theconditional MTTF �3 = �1 � �2 e�a��21� e�a��2gives the probabilities for the inactive processors at the expected time of an active processor failure. If all inactiveprocessors are nonfunctional at the expected time of failure, the transition is to the System Down state s + 2:pi;s+2 = (1 � e�a��2)qi;s+1(�3):Otherwise, the transition is to the appropriate System Recovery state to attempt the recovery again: for 1 � k � sand j = N + 1 + k pij = (1� e�a��2)qik(�3):The uptime for an unsuccessful attempt to recover is 0 and the mean downtime is the conditionalMTTF �3. Thiscompletes the speci�cation ofM for s > 0:Example. The 5-state Markov chain M1 for N = 3, a = 2, and s = 1 has System Up states f1 � [U :2=10]; 2 �[U :2=01]g, System Down states f3 � [D:12]; 4 � [D:03]g, and System Recovery state f5 � [R:2=01]g. Its transitionprobability matrix isP = 26666666664 0 0 q12(�1) 0 q11(�1)0 0 q22(�1) 0 q21(�1)0 0 0 ��+2� 2��+2�0 0 1 0 0e�2��2q21(�2) e�2��2q22(�2) (1� e�2��2)q22(�3) 0 (1� e�2��2)q21(�3) 37777777775 :Six arcs have nonzero mean uptimes:U13 = U15 = U23 = U25 = M (I �C); U51 = U52 = I:The mean downtimes on the eleven arcs areD13 = D15 = D23 = D25 = MC + L + �4;11

D34 = D35 = 1�+ 2� ;D43 = 13� ;D51 = D52 = R; D53 = D55 = �3:As a numerical illustration, suppose the MTTF of a processor is 30 days and the MTTR is 0.5 days, so� = 1=30 and � = 2: Suppose I = 2 (checkpoint every two days), R = L = 1=24 (one hour), and C = R=2: Then�1 = 15; �2 = 2:0833; �3 = 1:0176;M = 7:0111; �4 = 0:9778; and written in matrix format:P = 26666666664 0 0 0:0164 0 0:98360 0 0:0164 0 0:98360 0 0 0:0083 0:99170 0 1 0 00:8563 0:0141 0:0019 0 0:1278 37777777775 ;U = 26666666664 � � 13:8762 � 13:8762� � 13:8762 � 13:8762� � � 0 0� � 0 � �2 2 0 � 0 37777777775 ;D = 26666666664 � � 1:1655 � 1:1655� � 1:1655 � 1:1655� � � 0:2479 0:2479� � 0:1667 � �0:0417 0:0417 1:0176 � 1:0176 37777777775 :Some of the computations with chain S areR = 24 �0:0333 0:03332 �2 35 ;Q(�1) = Q(15) = 24 0:9836 0:01640:9836 0:0164 35 ;Q(�2) = Q(2:0833) = 24 0:9838 0:01620:9694 0:0306 35 :12

4.3 When s = 0The case of all processors active and no spares, that is, s = 0 and N = a; is simpler than s > 0 but gives aslightly di�erent Markov chain M. There is no separate chain S. M has N + 2 states. The single System Upstate is 1 � [U :N=00], the System Down states are 2 � [D:N�11] through N + 1 � [D:0N], and the single SystemRecovery state N + 2 also has label [R:N=00]. Transition probabilities, mean uptimes, and mean downtimes followsimilar speci�cations as above.Example. The 5-state Markov chainM2 for N = a = 3 and s = 0 hasSystem Up state f1 � [U :3=00]g,System Down states f2 � [D:21]; 3 � [D:12]; 4 � [D:03]g, andSystem Recovery state f5 � [R:3=00]g.Its transition probability matrix isP = 26666666664 0 1 0 0 00 0 2�2�+� 0 �2�+�0 2��+2� 0 ��+2� 00 0 1 0 0e�3��2 1� e�3��2 0 0 0 37777777775The expected number of intervals of length I in state 1 isM = e�3�I1� e�3�I :Only two arcs have nonzero uptimes: U12 = M (I � C) and U51 = I: The mean downtimes on the eight arcsinclude D12 = MC + L + �4; D51 = R; and D23 = 1=(2�+ �): As a numerical illustration using the same valuesof parameters as the previous example:P = 26666666664 0 1 0 0 00 0 0:0323 0 0:96770 0:9917 0 0:0083 00 0 1 0 00:8119 0:1881 0 0 0 37777777775 ;U = 26666666664 � 8:9392 � � �� � 0 � 0� 0 � 0 �� � 0 � �2 0 � � � 37777777775 ;13

D = 26666666664 � 1:1025 � � �� � 0:4839 � 0:4839� 0:2479 � 0:2479 �� � 0:1667 � �0:0417 1:0055 � � � 37777777775 :5 Availability of Multiprocessor Checkpointing SystemIn reliability theory, an important metric for a system with units that fail and undergo repair is the probabilitythat the system is operating at a speci�ed time t [BP75]. This is the availability at time t, denoted A(t). As ameasure of average performance in the long-term,Aav = limT!1 1T Z T0 A(t)dtwhich equals the limit A = limt!1A(t) when both exist. For a multiprocessor checkpointing system, A is thefraction of time in the long-run that the system is actually at work on the distributed task. In other words, A isthe total uptime during time span T; divided by T as T !1:We use the long-run properties of Markov chain M to compute A. M is a recurrent chain with well-de�ned,asymptotic properties [KS60, Par62]. In particular, the long-run, unconditional probability of occupancy of statei in terms of number of transitions is entry �i in the unique solution of the matrix equation � = �P wherePi �i = 1; �i > 0:In fact, the probabilities in vector � are exactly the limiting relative frequencies of the states with respect tothe number of transitions and are independent of the starting state of the Markov chain. If M is taken throughn transitions selected according to the transition probabilities, and if ni counts the occurrences of state i duringthose transitions, then �i = limn!1 nin+ 1 :Since each visit to state i is followed by probabilistic selection of an exit arc, the limiting relative frequencyof occurrence of transition i ! j is the long-run, joint probability �ipij. Arc i ! j has two associated randomvariables, one for the system uptime on the distributed task and another for the system downtime, with respectiveconditional mean values Uij and Dij. For a long-running task, Uij�ipij is the expected contribution to uptimedue to the relative frequency of arc i ! j and Dij�ipij is that arc's expected contribution to downtime. Theavailability A is the ratio of the mean uptime per arc to the mean total time per arc:A = Pi;j Uij�ipijPi;j(Uij +Dij)�ipij :Example. Consider the 5-state chain M2 for N = a = 3 and s = 0 with the same values for the parameters in14

the previous example, in particular, I = 2. We �nd� = [0:282; 0:3589;0:0117;0:0001;0:3473];Xi;j Uij�ipij = 3:0849; Xi;j Dij�ipij = 0:5649and A = 3:08493:6498 = 0:8452:
0 0.5 1 1.5 2 2.5 3

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A

I

a=3 s=0

0 0.5 1 1.5 2 2.5 3
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

a=3 s=0

a=2 s=1

I

AFigure 4: Plots of A vs I. Left: M2. Right: M1 and M2.As shown by the plot of A vs I for 0:05 � I � 3; the checkpoint interval I = 2 does not maximize A. At theoptimal I = 0:651 we �nd � = [0:3101; 0:3449; 0:0112; 0:0001;0:3337];Xi;j Uij�ipij = 3:1069; Xi;j Dij�ipij = 0:3999;and the long-run fraction of real-time that all three processors are working on the task isA = 3:10690:3999 = 0:886:For comparison, suppose N = 3; a = 2; s = 1 with the same values of R;L;C ; �, and �. The 5-state chain M1for this case is also described in a previous example. The second plot has A vs I for both models M1 and M2.With two active processors and a spare, the optimal I = 0:797 gives� = [0:4747; 0:0066; 0:0082; 0:0001;0:5104];Xi;j Uij�ipij = 7:2293; Xi;j Dij�ipij = 0:4287;so the long-run fraction of time that two processors are working on the task (and one inactive processor isfunctional or nonfunctional) is A = 7:22937:6579 = 0:944:15

For completeness with the same values of R, L, C, �, and �, we remark that the case N = 3; a = 1; s = 2 hasmaximum availability A = 0:9612 for I = 1:124 where its 6-state Markov chain has� = [0:474; 0:0158;0:0001; 0:0001; 0:4934;0:0166]:6 Availability vs. Speed-Up with Multiple ProcessorsAs stated in the introduction, calculation of the availaibility of a multiprocessor checkpointing system is usefulfor determining the runtime parameters that may optimize the average execution time of a long-running programin the presence of failures. In this section, we present an example of such an optimization.We assume a processing environment where N = 8 processors, and our program is one such as PSTSWMfrom [PLP98], which solves the nonlinear shallow water equations on a rotating sphere. We derive the followingparameters from the DISK-FORK tests in reference [PLP98]. The checkpoint size is (384:56+ 1:26a) MB, andthe disk bandwidth is 0.1296 MB/sec. Therefore, the latency and recovery time are:La; Ra = 384:56+ 1:26a0:1296 secondsDue to the FORK optimization, the checkpoint overhead is 0.0146 of the latency:Ca = 384:56 + 1:26a8:856 secondsThe running time of the program on one processor with no failures and no checkpointing is 270,769 seconds (3.13days). When it is executed on a parallel environment, 85 percent of the computation is completely parallelizable,and the rest must run serially. Therefore, the running time of the program is:RTa = (270; 769)(:15+ :85=a)Failure and recovery times are taken roughly from the PRINCETON data set in reference [PE98]: � = 1=30and � = 2.We consider �ve values of a and s, and present their calculated optimal values of I and A in Table 1.When a = 8, the program runs roughly 6 percent faster in the absence of failures than when a = 7. However,when failures are present, the program spends more time in the System Down state with a = 8 than a = 7 or 6.For optimal values of I, the expected running time of the program with checkpointing is roughly 8 percent fasterwhen a = 7 than when a = 8.7 Merging States in MIn some cases, a Markov chainM0 with fewer states thanM yields the same calculation of availability. Considerthe three groups of states|System Down, System Up, and System Recovery|as three disjoint sets.16

a s La; Ra Ca Optimal I Aa;I RTa RTa=Aa;I8 0 3045.1 sec 44.6 sec .062 days .8457 69,385 sec 82,039 sec7 1 3035.3 44.4 .067 .9684 73,494 75,8936 2 3025.6 44.3 .072 .9721 78,974 81,2385 3 3015.9 44.1 .078 .9757 86,646 88,8064 4 3006.2 43.99 .088 .9793 98,154 100,230Table 1: Calculating the optimal running time of a program in the presence of failuresThe set of System Down states is entered by a transition to state s + 2 and exited by the unique transitionfrom state s + 2 to System Recovery state N + s + 1. Once passage into the set has occurred, the mean systemdowntime � accumulated until exit from the set is a function of a, s, �, and � but does not depend on checkpointparameters R, L, C, and I. Therefore, for the purpose of computing availability, the entire set of System Downstates can be merged together and represented by one state. That state has an exit-arc to the System Recoverystate N + s + 1 labelled with probability 1, uptime 0, and mean downtime �.All pairs of System Up states i and j have Uik = Ujk and Dik = Djk for all states k. If all pairs i and j alsohave pik = pjk for all states k, then there is no distinction among these states in terms of exit-arc probabilities,mean uptimes, or mean downtimes; consequently, for the purpose of evaluating availability, the System Up statescan be merged together (or lumped [KS60]) into a single state. Likewise, all pairs i and j of System Recoverystates have Uik = Ujk and Dik = Djk for all states k; therefore, if all pairs i and j have pik = pjk for all states k,then the System Recovery states can be merged into a single state as well.In the case of all these mergers, the resulting Markov chain M0 in �gure 7 has three states.
N+2 N+3 N+s+1

s+1321

 0 2

R:a/s-1

1

1

s

s

R:a/0R:a/s-2

2
...

...

System Recovery states merged into one

System Up states merged into one System Down states merged into one

N+1Ns+3s+2

s+2 N-1 N
...

s+1

U:a/s U:a/s-1 U:a/s-2 U:a/0 D:a-1 D:a-2 D:1 D:0

Figure 5: Representation of M0 with merged statesThe System Up states can be merged if and only if there are identical rows in the matrix Q(t) evaluated att = �1. For a Markov chain with the structure of S, the rows in Q(t) do in fact converge to the same vector17

q = [qj], that is, limt!1 qij(t) = qjwhere qj is independent of i and is the long-run fraction of time that S occupies state j [CM72]. q is called theequilibrium distribution of S, and its values are directly computable asqj = %jPs+1i=1 %iwhere %1 = 1 and %j = �s � (j � 2)j � 1 �����%j�1for j = 2; 3; : : : ; s + 1. If �1 is su�ciently large, then Q(�1) �= [q] and the System Up states can be merged intoone.Example. For two-state S used with M1 in previous examples, q = [0:9836; 0:0164] and we have alreadycomputed Q(�1) = Q(15) = 24 0:9836 0:01640:9836 0:0164 35 :At the optimal I = 0:797, chain M1 hasP = 26666666664 0 0 0:0164 0 0:98360 0 0:0164 0 0:98360 0 0 0:0083 0:99170 0 1 0 00:9301 0:0129 0:0005 0 0:0565 37777777775 :The three states in the smaller chain M01 represent subsets of original states: its System Up state is f1; 2g, itsSystem Down state is f3; 4g, and its System Recovery state is f5g. Computation withM01 gives the same optimalI = 0:797 at which P0 = 26664 0 0:0164 0:98360 0 10:943 0:0005 0:0565 37775 ;U0 = 26664 � 14:2233 14:2233� � 00:797 0 0 37775 ;and D0 = 26664 � 0:8184 0:8184� � 0:25140:0417 0:4359 0:4359 37775 :18

The mean downtime for the arc f3; 4g ! f5g is computed with reference to the original chainM1 as� = � �2��� 1�+ 2� + 13��+ 1� + 2�= 0:2514where 1=(3�) is the mean downtime on the one arc exiting state 4, 1=(�+ 2�) is the mean downtime on both arcsexiting state 3, and the expected number of transitions 3! 4 (each of them immediately followed by 4! 3 withprobability 1) before the �rst transition 3! 5 is ��+2�2��+2� = �2� :8 Other Calculations with MSeveral computations with a discrete-parameter, �nite-state Markov chain give further information about themultiprocessor checkpointing system. Two additional computations with � [KS60] are:(1) The mean number of transitions until the next occurrence of state i, given current state i, is 1=�i:(2) The mean number of times in state j between occurrences of state i is �j=�i:Example. ForM01 in the previous example with optimal I = 0:797, the steady-state probability vector is�0 = [0:4814; 0:0082;0:5105]and the mean number of transitions between occurrences of state f5g is 1/0.5105 = 1.959 which is the sum ofentries in the vector �00:5105 = [0:943; 0:016;1]:Since transitions to the System Recovery state correspond one-to-one with swapping spares for failed processors,the mean number of transitions between these swaps is 1.959. Taking transition probabilities, uptimes, anddowntimes into account, the expected value of the sum of system uptimes and downtimes between these swaps iscomputed to be 15.004.Additional computations are possible.9 Related WorkA few other researchers have studied performance prediction of multiprocessor checkpointing systems. Vaid-ya [Vai95] explores a two-level recovery scheme, where processors store checkpoints on both volatile storage thatdoes not survive failures, and stable storage that does survive failures. In his system, two kinds of checkpoints19

are stored: 1-checkpoints, that can survive the failure and repair of a single processor, and n-checkpoints whichcan survive the failure and repair of multiple processors. The conclusion that he draws is that a combination of 1-checkpoints and n-checkpoints results in better performance than relying on either 1-checkpoints or n-checkpointsexclusively. Iid exponentials are assumed. Vaidya's work di�ers from ours in that we only consider n-checkpoints,and Vaidya does not consider the issue of spare processors. It is a subject of future work to consider checkpointingprotocols where R is a function of the number of active processor failures between the �rst active processor failureand successful recovery. Such protocols would then include a variety of diskless checkpointing protocols based onmirroring (as in [Vai95]), parity [PLP98] and Reed-Solomon coding [Pla97].Wong and Franklin [WF96] study the performance of multiprocessor checkpointing systems in which theapplication either uses N processors, or it can recon�gure itself so that it makes use of however many processorsare functional at the time. They assume that failures cannot occur during checkpointing or recovery. Our workdi�ers in the relaxation of that assumption (which can be signi�cant when programs exhibit a large checkpointlatency), in the use of spare processors for the large class of applications that cannot recon�gure, and in theseparation of latency from overhead. It is a subject of future work to address the costs of recon�guration uponfailure or repair, given the assumptions of our system.Finally, Kavanaugh and Sanders study of the performance of checkpoint consistency protocols based on limitingthe skew of local clocks in multiprocessor systems [KS97]. Their analysis does not consider the issue of spares,repairs, or failures during checkpointing or recovery.10 ConclusionsIn this paper, we have have de�ned a way to compute the average availability of a multiprocessor checkpointingsystem, given values of checkpoint latency, recovey time, overhead, checkpoint interval, and iid exponentialfailure and repair rates. This availability calculation may be used to optimize two running time parameters of aparallel program: the number of active processors and the checkpoint interval. Future work in this area includesextending the checkpointing model to include more complex multiprocessor checkpointing algorithms such asdiskless checkpointing [PLP98], and using failure and repair trace data to drive simulations of checkpointingsystems given the same assumptions as in this paper.11 AcknowledementsThis material is based upon work supported by the National Science Foundation under grant CCR-9703390.20

References[BHJ92] A. D. Barbour, L. Holst, and S. Janson. Poisson Approximation. Clarendon Press (Oxford University),Oxford, UK, 1992.[BP75] R. E. Barlow and F. Proschan. Statistical Theory of Reliability and Life Testing. Holt, Reinhart, andWinston, Inc., NY, 1975. Republished by TO BEGIN WITH, Silver Spring, MD, 1981.[CCG+95] J. Casas, D. L. Clark, P. S. Galbiati, R. Konuru, S. W. Otto, R. M. Prouty, and J. Walpole. MIST:PVM with transparent migration and checkpointing. In 3rd Annual PVM Users' Group Meeting,Pittsburgh, PA, May 1995.[CM72] D. R. Cox and H. D. Miller. The Theory of Stochastic Processes. Chapman and Hall Ltd., London,UK, 1972.[CS84] L. H. Crow and N. D. Singpurwalla. An empirically developed fourier series model for describingsoftware failures. IEEE Transactions on Reliability, R-33:176{183, June 1984.[EJZ92] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The performance of consistent checkpointing. In11th Symposium on Reliable Distributed Systems, pages 39{47, October 1992.[EZ94] E. N. Elnozahy and W. Zwaenepoel. On the use and implementation of message logging. In 24thInternational Symposium on Fault-Tolerant Computing, pages 298{307, Austin, TX, June 1994.[Fel68] W. Feller. An Introduction to Probability Theory and Its Applications (Third Edition). John Wiley &Sons, Inc., NY, 1968.[Gel79] E. Gelenbe. On the optimum checkpoint interval. Journal of the ACM, 26:259{270, April 1979.[KS60] J. G. Kemeny and J. L. Snell. Finite Markov Chains. Van Nostrand, Princeton, NJ, 1960. Republishedby Springer-Verlag, NY, 1976.[KS97] G. P. Kavanaugh and W. H. Sanders. Performance analysis of two time-based coordinated checkpoint-ing protocols. In 1997 Paci�c Rim International Symposium on Fault-Tolerant Systems (PRFTS'97),Taipei, Taiwan, December 1997.[LFS93] J. Le�on, A. L. Fisher, and P. Steenkiste. Fail-safe PVM: A portable package for distributed pro-gramming with transparent recovery. Technical Report CMU-CS-93-124, Carnegie Mellon University,February 1993.[LMG95] D. Long, A. Muir, and R. Golding. A longitudinal survey of internet host reliability. In 14th Symposiumon Reliable Distributed Systems, pages 2{9, Bad Neuenahr, September 1995. IEEE.21

[Par62] E. Parzen. Stochastic Processes. Holden-Day, San Francisco, CA, 1962.[PE98] J. S. Plank and W. R. Elwasif. Experimental assessment of workstation failures and their impact oncheckpointing systems. In 28th International Symposium on Fault-Tolerant Computing, pages 48{57,Munich, June 1998.[PL96] J. Pruyne and M. Livny. Managing checkpoints for parallel programs. In Workshop on Job SchedulingStrategies for Parallel Processing (IPPS '96), 1996.[Pla96] J. S. Plank. Improving the performance of coordinated checkpointers on networks of workstationsusing RAID techniques. In 15th Symposium on Reliable Distributed Systems, pages 76{85, October1996.[Pla97] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. Software {Practice & Experience, 27(9):995{1012, September 1997.[PLP98] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpointing. IEEE Transactions on Parallel andDistributed Systems, 9(10):972{986, October 1998.[PT98] J. S. Plank and M. G. Thomason. The average availability of uniprocessor checkpointing systems,revisited. Technical Report CS-98-400, University of Tennessee, August, 1998.[Ste94] G. Stellner. Consistent checkpoints of PVM applications. In First European PVM User Group Meeting,Rome, 1994.[Ste96] G. Stellner. CoCheck: Checkpointing and process migration for MPI. In 10th International ParallelProcessing Symposium, April 1996.[Vai95] N. H. Vaidya. A case for two-level distributed recovery schemes. In ACM SIGMETRICS Conferenceon Measurement and Modeling of Computer Systems, Ottawa, May 1995.[Vai97] N. H. Vaidya. Impact of checkpoint latency on overhead ratio of a checkpointing scheme. IEEETransactions on Computers, 46(8):942{947, August 1997.[WF96] K. F. Wong and M. Franklin. Checkpointing in distributed systems. Journal of Parallel & DistributedSystems, 35(1):67{75, May 1996.[You74] J. S. Young. A �rst order approximation to the optimum checkpoint interval. Communications of theACM, 17(9):530{531, September 1974. 22

