
LAPACK Working Note 139A Numerical Linear Algebra Problem Solving EnvironmentDesigner's PerspectiveA. Petitet�, H. Casanova�, J. Dongarray, Y. Robertz, and R. C. Whaley�October, 1998

�Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301yDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996-1301, and Mathematical SciencesSection, Oak Ridge National Laboratory, Oak Ridge, TN 37831zEcole Normale Sup�erieure de Lyon, 69364 Lyon Cedex 07, France1

AbstractThis chapter discusses the design of modern numerical linear algebra problem solving en-vironments. Particular emphasis is placed on three essential components out of which suchenvironments are constructed, namely well-designed numerical software libraries, software toolsthat generate optimized versions of a collection of numerical kernels for various processor ar-chitectures, and software systems that transform disparate, loosely-connected computers andsoftware libraries into a uni�ed, easy-to-access computational service.A brief description of the \pioneers", namely the EISPACK and LINPACK software librariesas well as their successor, the Linear Algebra PACKage (LAPACK), illustrates the essential im-portance of block-partitioned algorithms for shared-memory, vector, and parallel processors.Indeed, these algorithms reduce the frequency of data movement between di�erent levels ofhierarchical memory. A key idea in this approach is the use of the Basic Linear Algebra Sub-programs (BLAS) as computational building blocks. An outline of the ScaLAPACK softwarelibrary, which is a distributed-memory version of LAPACK, highlights the equal importance ofthe above design principles to the development of scalable algorithms for MIMD distributed-memory concurrent computers. The impact of the architecture of high performance computerson the design of such libraries is stressed.Producing hand-optimized implementations of even a reduced set of well designed softwarecomponents such as the BLAS for a wide range of architectures is an expensive and tediousproposition. For any given architecture, customizing a numerical kernel's source code to optimizeperformance requires a comprehensive understanding of the exploitable hardware resources ofthat architecture. Since this time-consuming customization process must be repeated whenevera slightly di�erent target architecture is available, the relentless pace of hardware innovationmakes the tuning of numerical libraries a constant burden. This chapter presents an innovativeapproach to automating the process of producing such optimized kernels for various processorarchitectures.Finally, many scientists and researchers increasingly tend nowadays to use simultaneouslya variety of distributed computing resources such as massively parallel processors, networksand clusters of workstations and \piles" of PCs. This chapter describes the NetSolve softwaresystem that has been speci�cally designed and conceived to e�ciently use such a diverse andlively computational environment and to tackle the problems posed by such a complex andinnovative approach to scienti�c problem solving. NetSolve provides the user with a pool ofcomputational resources. These resources are computational servers that provide run-time accessto arbitrary optimized numerical software libraries. This uni�ed, easy-to-access computationalservice can make enormous amounts of computing power transparently available to users onordinary platforms.
2

1 IntroductionThe increasing availability of advanced-architecture computers is having a very signi�cant e�ecton all spheres of scienti�c computation, including algorithm research and software development innumerical linear algebra. Linear algebra|in particular, the solution of linear systems of equations|lies at the heart of most calculations in scienti�c computing. In this chapter, particular attentionwill be paid to dense general linear system solvers, and these will be used as examples to highlight themost important factors that must be considered in designing linear algebra software for advanced-architecture computers. We use these general linear system solving algorithms for illustrativepurpose not only because they are relatively simple, but also because of their importance in severalscienti�c and engineering applications [Ede93] that make use of boundary element methods. Theseapplications include for instance electromagnetic scattering [Har90, Wan91] and computational uiddynamics problems [Hes90, HS67].This chapter discusses some of the recent developments in linear algebra software designed to exploitthese advanced-architecture computers. Since most of the work is motivated by the need to solvelarge problems on the fastest computers available, we focus on three essential components out ofwhich current and modern problem solving environments are constructed:1. well-designed numerical software libraries providing a comprehensive functionality and con-�ning most machine dependencies into a small number of kernels, that o�er a wide scope fore�ciently exploiting computer hardware resources,2. automatic generation and optimization of such a collection of numerical kernels on variousprocessor architectures, that is, software tools enabling well-designed software libraries toachieve high performance on most modern computers in a transportable manner,3. software systems that transform disparate, loosely-connected computers and software librariesinto a uni�ed, easy-to-access computational service, that is, a service able to make enormousamounts of computing power transparently available to users on ordinary platforms.For the past twenty years or so, there has been a great deal of activity in the area of algorithms andsoftware for solving linear algebra problems. The linear algebra community has long recognizedthe need for help in developing algorithms into software libraries, and several years ago, as acommunity e�ort, put together a de facto standard identifying basic operations required in linearalgebra algorithms and software. The hope was that the routines making up this standard, knowncollectively as the Basic Linear Algebra Subprograms (BLAS) [LHK+79, DDH+88, DDH+90],would be e�ciently implemented on advanced-architecture computers by many manufacturers,making it possible to reap the portability bene�ts of having them e�ciently implemented on a widerange of machines. This goal has been largely realized.The key insight of our approach to designing linear algebra algorithms for advanced-architecturecomputers is that the frequency with which data is moved between di�erent levels of the memoryhierarchy must be minimized in order to attain high performance. Thus, our main algorithmicapproach for exploiting both vectorization and parallelism in our implementations is the use ofblock-partitioned algorithms, particularly in conjunction with highly-tuned kernels for performing3

matrix-vector and matrix-matrix operations. In general, the use of block-partitioned algorithmsrequires data to be moved as blocks, rather than as vectors or scalars, so that although the totalamount of data moved is unchanged, the latency (or startup cost) associated with the movementis greatly reduced because fewer messages are needed to move the data. A second key idea isthat the performance of an algorithm can be tuned by a user by varying the parameters thatspecify the data layout. On shared-memory machines, this is controlled by the block size, while ondistributed-memory machines it is controlled by the block size and the con�guration of the logicalprocess mesh.Section 2 presents an overview of some of the major numerical linear algebra software libraryprojects aimed at solving dense and banded problems. We discuss the role of the BLAS in portabilityand performance on high-performance computers as well as the design of these building blocks, andtheir use in block-partitioned algorithms.The Linear Algebra PACKage (LAPACK) [ABB+95], for instance, is a typical example of such asoftware design, where most of the algorithms are expressed in terms of a reduced set of compu-tational building blocks, in this case called the Basic Linear Algebra Subprograms (BLAS). Thesecomputational building blocks support the creation of software that e�ciently expresses higher-levelblock-partitioned algorithms, while hiding many details of the parallelism from the application de-veloper. These subprograms can be optimized for each architecture to account for the deep memoryhierarchies [AD89, DMR91] and pipelined functional units that are common to most modern com-puter architectures, and thus provide a transportable way to achieve high e�ciency across diversecomputing platforms. For fastest possible performance, LAPACK requires that highly optimizedblock matrix operations be already implemented on each machine, that is, the correctness of thecode is portable, but high performance is not|if we limit ourselves to a single source code.Speed and portable optimization are thus conicting objectives that have proved di�cult to satisfysimultaneously, and the typical strategy for addressing this problem by con�ning most of thehardware dependencies in a small number of heavily-used computational kernels has limitations.For instance, producing hand-optimized implementations of even a reduced set of well-designedsoftware components for a wide range of architectures is an expensive and tedious task. For anygiven architecture, customizing a numerical kernel's source code to optimize performance requiresa comprehensive understanding of the exploitable hardware resources of that architecture. Thisprimarily includes the memory hierarchy and how it can be utilized to maximize data-reuse, aswell as the functional units and registers and how these hardware components can be programmedto generate the correct operands at the correct time. Clearly, the size of the various cache levels,the latency of oating point instructions, the number of oating point units and other hardwareconstants are essential parameters that must be taken into consideration as well. Since this time-consuming customization process must be repeated whenever a slightly di�erent target architectureis available, or even when a new version of the compiler is released, the relentless pace of hardwareinnovation makes the tuning of numerical libraries a constant burden.The di�cult search for fast and accurate numerical methods for solving numerical linear algebraproblems is compounded by the complexities of porting and tuning numerical libraries to run onthe best hardware available to di�erent parts of the scienti�c and engineering community. Giventhe fact that the performance of common computing platforms has increased exponentially in thepast few years, scientists and engineers have acquired legitimate expectations about being able4

to immediately exploit these available resources at their highest capabilities. Fast, accurate, androbust numerical methods have to be encoded in software libraries that are highly portable andoptimizable across a wide range of systems in order to be exploited to their fullest potential.Section 3 discusses an innovative approach [BAC+97, WD97] to automating the process of produc-ing such optimized kernels for RISC processor architectures that feature deep memory hierarchiesand pipelined functional units. These research e�orts have so far demonstrated very encouragingresults, and have generated great interest among the scienti�c computing community.Many scientists and researchers increasingly tend nowadays to use simultaneously a variety ofdistributed computing resources such as massively parallel processors, networks and clusters ofworkstations and \piles" of PCs. In order to use e�ciently such a diverse and lively computa-tional environment, many challenging research aspects of network-based computing such as fault-tolerance, load balancing, user-interface design, computational servers or virtual libraries, mustbe addressed. User-friendly, network-enabled, application-speci�c toolkits have been speci�callydesigned and conceived to tackle the problems posed by such a complex and innovative approachto scienti�c problem solving [FK98]. Section 4 describes the NetSolve software system [CD95] thatprovides users with a pool of computational resources. These resources are computational serversthat provide run-time access to arbitrary optimized numerical software libraries. The NetSolvesoftware system transforms disparate, loosely-connected computers and software libraries into auni�ed, easy-to-access computational service. This service can make enormous amounts of com-puting power transparently available to users on ordinary platforms.The NetSolve system allows users to access computational resources, such as hardware and software,distributed across the network. These resources are embodied in computational servers and allowusers to easily perform scienti�c computing tasks without having any computing facility installed ontheir computer. Users' access to the servers is facilitated by a variety of interfaces: Application Pro-gramming Interfaces (APIs), Textual Interactive Interfaces and Graphical User Interfaces (GUIs).As the NetSolve project matures, several promising extensions and applications will emerge. In thischapter, we provide an overview of the project and examine some of the extensions being developedfor NetSolve: an interface to the Condor system [LLM88], an interface to the ScaLAPACK parallellibrary [BCC+97], a bridge with the Ninf system [SSN+96], and an integration of NetSolve andImageVision [ENB96].Future directions for research and investigation are �nally presented in Section 5.2 Numerical Linear Algebra LibrariesThis section �rst presents a few representative numerical linear algebra packages in a chronologicalperspective. We then focus on the software design of the LAPACK and ScaLAPACK softwarelibraries. The importance of the BLAS as a key to (trans)portable e�ciency as well as the derivationof block-partitioned algorithms are discussed in detail.5

2.1 Chronological PerspectiveThe EISPACK, LINPACK, LAPACK and ScaLAPACK numerical linear algebra software librariesare briey outlined below in a chronological order. The essential features of each of these packagesare in turn rapidly described in order to illustrate the reasons for this evolution. Particular emphasisis placed on the impact of the high-performance computer architecture on the design features ofthese libraries.2.1.1 The Pioneers: EISPACK and LINPACKThe EISPACK and LINPACK software libraries were designed for supercomputers used in theseventies and early eighties, such as the CDC-7600, Cyber 205, and Cray-1. These machinesfeatured multiple functional units pipelined for good performance [HJ81]. The CDC-7600 wasbasically a high-performance scalar computer, while the Cyber 205 and Cray-1 were early vectorcomputers.EISPACK is a collection of Fortran subroutines that compute the eigenvalues and eigenvectorsof nine classes of matrices: complex general, complex Hermitian, real general, real symmetric,real symmetric banded, real symmetric tridiagonal, special real tridiagonal, generalized real, andgeneralized real symmetric matrices. In addition, two routines are included that use singular valuedecomposition to solve certain least-squares problems. EISPACK is primarily based on a collectionof Algol procedures developed in the sixties and collected by J. H. Wilkinson and C. Reinsch in avolume entitled Linear Algebra in the Handbook for Automatic Computation [WR71] series. Thisvolume was not designed to cover every possible method of solution; rather, algorithms were chosenon the basis of their generality, elegance, accuracy, speed, or economy of storage. Since the releaseof EISPACK in 1972, over ten thousand copies of the collection have been distributed worldwide.LINPACK is a collection of Fortran subroutines that analyze and solve linear equations and linearleast-squares problems. The package solves linear systems whose matrices are general, banded,symmetric inde�nite, symmetric positive de�nite, triangular, and tridiagonal square. In addition,the package computes the QR and singular value decompositions of rectangular matrices and appliesthem to least-squares problems. LINPACK is organized around four matrix factorizations: LUfactorization, pivoted Cholesky factorization, QR factorization, and singular value decomposition.The term LU factorization is used here in a very general sense to mean the factorization of a squarematrix into a lower triangular part and an upper triangular part, perhaps with pivoting. Some ofthese factorizations will be treated at greater length later, but, �rst a digression on organizationand factors inuencing LINPACK's e�ciency is necessary.LINPACK uses column-oriented algorithms to increase e�ciency by preserving locality of reference.This means that if a program references an item in a particular block, the next reference is likely tobe in the same block. By column orientation we mean that the LINPACK codes always referencearrays down columns, not across rows. This works because Fortran stores arrays in column majororder. Thus, as one proceeds down a column of an array, the memory references proceed sequentiallyin memory. On the other hand, as one proceeds across a row, the memory references jump acrossmemory, the length of the jump being proportional to the column's length. The e�ects of columnorientation are quite dramatic: on systems with virtual or cache memories, the LINPACK codes6

will signi�cantly outperform codes that are not column oriented.Another important inuence on the e�ciency of LINPACK is the use of the Level 1 BLAS [LHK+79].These BLAS are a small set of routines that may be coded to take advantage of the special fea-tures of the computers on which LINPACK is being run. For most computers, this simply meansproducing machine-language versions. However, the code can also take advantage of more exoticarchitectural features, such as vector operations. Further details about the BLAS are presentedbelow in Section 2.2.1.2.1.2 LAPACKThe development of LAPACK [ABB+95] in the late eighties was intended to make the EIS-PACK and LINPACK libraries run e�ciently on shared-memory vector supercomputers. LA-PACK [Dem89] provides routines for solving systems of simultaneous linear equations, least-squaressolutions of linear systems of equations, eigenvalue problems, and singular value problems. Theassociated matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also pro-vided, along with related computations such as reordering of the Schur factorizations and estimatingcondition numbers. Dense and banded matrices are handled, but not general sparse matrices. Inall areas, similar functionality is provided for real and complex matrices, in both single and doubleprecision. LAPACK is in the public domain and available from netlib [DG87].The original goal of the LAPACK project was to make the widely used EISPACK and LINPACKlibraries run e�ciently on shared-memory vector and parallel processors. On these machines,LINPACK and EISPACK are ine�cient because their memory access patterns disregard the mul-tilayered memory hierarchies of the machines, thereby spending too much time moving data in-stead of doing useful oating point operations. LAPACK addresses this problem by reorganizingthe algorithms to use block matrix operations, such as matrix multiplication, in the innermostloops [AD90, Dem89]. These block operations can be optimized for each architecture to accountfor the memory hierarchy [AD89, DMR91], and so provide a transportable way to achieve highe�ciency on diverse modern machines. Here we use the term \transportable" instead of \portable"because, for fastest possible performance, LAPACK requires that highly optimized block matrixoperations be already implemented on each machine. In other words, the correctness of the codeis portable, but high performance is not|if we limit ourselves to a single Fortran source code.LAPACK can be regarded as a successor to LINPACK and EISPACK. It has virtually all thecapabilities of these two packages and much more besides. LAPACK improves on LINPACK andEISPACK in four main respects: speed, accuracy, robustness and functionality. While LINPACKand EISPACK are based on the vector operation kernels of the Level 1 BLAS [LHK+79], LA-PACK was designed at the outset to exploit the Level 3 BLAS [DDH+90] | a set of speci�cationsfor Fortran subprograms that do various types of matrix multiplication and the solution of tri-angular systems with multiple right-hand sides. Because of the coarse granularity of the Level 3BLAS operations, their use tends to promote high e�ciency on many high-performance computers,particularly if specially coded implementations are provided by the manufacturer.7

2.1.3 ScaLAPACKThe ScaLAPACK [BCC+97] software library is extending the LAPACK library to run scalablyon MIMD distributed-memory concurrent computers. For such machines the memory hierarchyincludes the o�-processor memory of other processors, in addition to the hierarchy of registers,cache, and local memory on each processor. Like LAPACK, the ScaLAPACK routines are basedon block-partitioned algorithms in order to minimize the frequency of data movement betweendi�erent levels of the memory hierarchy. The fundamental building blocks of the ScaLAPACKlibrary are parallel (distributed-memory) versions of the BLAS (PBLAS) [CDO+95], and a setof Basic Linear Algebra Communication Subprograms (BLACS) [WD95] for communication tasksthat arise frequently in parallel linear algebra computations. In the ScaLAPACK routines, allinterprocessor communication occurs within the PBLAS and the BLACS, so that the source codeof the top software layer of ScaLAPACK looks very similar to that of LAPACK.The ScaLAPACK library contains routines for the solution of systems of linear equations, linearleast squares problems and eigenvalue problems. The goals of the LAPACK project, which continueinto the ScaLAPACK project, are e�ciency so that the computationally intensive routines executeas fast as possible; scalability as the problem size and number of processors grow; reliability,including the return of error bounds; portability across machines; exibility so that users mayconstruct new routines from well designed components; and ease of use. Towards this last goal theScaLAPACK software has been designed to look as much like the LAPACK software as possible.Many of these goals have been attained by developing and promoting standards, especially spec-i�cations for basic computational and communication routines. Thus LAPACK relies on theBLAS [LHK+79, DDH+88, DDH+90], particularly the Level 2 and 3 BLAS for computationale�ciency, and ScaLAPACK [BCC+97] relies upon the BLACS [WD95] for e�ciency of communi-cation and uses a set of parallel BLAS, the PBLAS [CDO+95], which themselves call the BLASand the BLACS. LAPACK and ScaLAPACK will run on any machines for which the BLAS andthe BLACS are available. A PVM [GBD+94] version of the BLACS has been available for sometime and the portability of the BLACS has recently been further increased by the development ofa version that uses MPI [MPI+94, SOH+96].The underlying concept of both the LAPACK and ScaLAPACK libraries is the use of block-partitioned algorithms to minimize data movement between di�erent levels in hierarchical memory.Thus, the ideas discussed in this chapter for developing a library for dense linear algebra computa-tions are applicable to any computer with a hierarchical memory that imposes a su�ciently largestartup cost on the movement of data between di�erent levels in the hierarchy, and for which thecost of a context switch is too great to make �ne grain size multithreading worthwhile. The targetmachines are, therefore, medium and large grain size advanced-architecture computers. These in-clude respectively \traditional" shared-memory vector supercomputers, such as the Cray Y-MP andC90, and MIMD distributed-memory concurrent computers, such as massively parallel processors(MPPs) and networks or clusters of workstations.The ScaLAPACK software has been designed speci�cally to achieve high e�ciency for a wide rangeof modern distributed-memory computers. Examples of such computers include the Cray T3 series,the IBM Scalable POWERparallel SP series, the Intel iPSC and Paragon computers, the nCube-2/3computer, networks and clusters of workstations (NoWs and CoWs), and \piles" of PCs (PoPCs).8

Future advances in compiler and hardware technologies in the mid to late nineties are expectedto make multithreading a viable approach for masking communication costs. Since the blocksin a block-partitioned algorithm can be handled by separate threads, our approach will still beapplicable on machines that exploit medium and coarse grain size multithreading.2.2 Software DesignDeveloping a library of high-quality subroutines for dense linear algebra computations requires totackle a large number of issues. On one hand, the development or selection of numerically stablealgorithms in order to estimate the accuracy and/or domain of validity of the results produced bythese routines. On the other hand, it is often required to (re)formulate or adapt those algorithmsfor performance reasons that are related to the architecture of the target computers. This sectionpresents three fundamental ideas to this e�ect that characterize the design of the LAPACK andScaLAPACK software.2.2.1 The BLAS as the Key to (Trans)portable E�ciencyAt least three factors a�ect the performance of portable Fortran code:1. Vectorization. Designing vectorizable algorithms in linear algebra is usually straightfor-ward. Indeed, for many computations there are several variants, all vectorizable, but withdi�erent characteristics in performance (see, for example, [Don84]). Linear algebra algorithmscan approach the peak performance of many machines|principally because peak performancedepends on some form of chaining of vector addition and multiplication operations, and thisis just what the algorithms require. However, when the algorithms are realized in straight-forward Fortran 77 code, the performance may fall well short of the expected level, usuallybecause vectorizing Fortran compilers fail to minimize the number of memory references|thatis, the number of vector load and store operations.2. Data movement. What often limits the actual performance of a vector, or scalar, oatingpoint unit is the rate of transfer of data between di�erent levels of memory in the machine.Examples include the transfer of vector operands in and out of vector registers, the transferof scalar operands in and out of a high-speed scalar processor, the movement of data betweenmain memory and a high-speed cache or local memory, paging between actual memory anddisk storage in a virtual memory system, and interprocessor communication on a distributed-memory concurrent computer.3. Parallelism. The nested loop structure of most linear algebra algorithms o�ers considerablescope for loop-based parallelism. This is the principal type of parallelism that LAPACK andScaLAPACK presently aim to exploit. On shared-memory concurrent computers, this type ofparallelism can sometimes be generated automatically by a compiler, but often requires theinsertion of compiler directives. On distributed-memory concurrent computers, data mustbe moved between processors. This is usually done by explicit calls to message passingroutines, although parallel language extensions such as Coherent Parallel C [FO88] and Split-C [CDG+93] do the message passing implicitly.9

The question arises, \How can we achieve su�cient control over these three factors to obtain thelevels of performance that machines can o�er?" The answer is through use of the BLAS. There arenow three levels of BLAS:Level 1 BLAS [LHK+79]: for vector-vector operations (y �x + y),Level 2 BLAS [DDH+88]: for matrix-vector operations (y �Ax + �y),Level 3 BLAS [DDH+90]: for matrix-matrix operations (C �AB + �C).Here, A, B and C are matrices, x and y are vectors, and � and � are scalars.Table 1: Speed (Mops) of Level 2 and Level 3 BLAS Operations on a CRAY Y-MP. All matricesare of order 500; U is upper triangular.Number of processors: 1 2 4 8Level 2: y �Ax + �y 311 611 1197 2285Level 3: C �AB + �C 312 623 1247 2425Level 2: x Ux 293 544 898 1613Level 3: B UB 310 620 1240 2425Level 2: x U�1x 272 374 479 584Level 3: B U�1B 309 618 1235 2398Peak 333 666 1332 2664The Level 1 BLAS are used in LAPACK, but for convenience rather than for performance: theyperform an insigni�cant fraction of the computation, and they cannot achieve high e�ciency onmost modern supercomputers. The Level 2 BLAS can achieve near-peak performance on manyvector processors, such as a single processor of a CRAY X-MP or Y-MP, or Convex C-2 machine.However, on other vector processors such as a CRAY-2 or an IBM 3090 VF, the performance ofthe Level 2 BLAS is limited by the rate of data movement between di�erent levels of memory.Machines such as the CRAY Y-MP can perform two loads, a store, and a multiply-add operationall in one cycle, whereas the CRAY-2 and IBM 3090 VF cannot. For further details of how theperformance of the BLAS are a�ected by such factors see [DDS+91]. The Level 3 BLAS overcomethis limitation. This third level of BLAS performs O(n3) oating point operations on O(n2) data,whereas the Level 2 BLAS perform only O(n2) operations on O(n2) data. The Level 3 BLAS alsoallow us to exploit parallelism in a way that is transparent to the software that calls them. Whilethe Level 2 BLAS o�er some scope for exploiting parallelism, greater scope is provided by theLevel 3 BLAS, as Table 1 illustrates.2.3 Block Algorithms and Their DerivationIt is comparatively straightforward to recode many of the algorithms in LINPACK and EISPACKso that they call Level 2 BLAS. Indeed, in the simplest cases the same oating point operations are10

done, possibly even in the same order: it is just a matter of reorganizing the software. To illustratethis point, we consider the LU factorization algorithm, which factorizes a general matrix A in theproduct of the triangular factors L and U .Suppose the M � N matrix A is partitioned as shown in Figure 1, and we seek a factorizationA = LU , where the partitioning of L and U is also shown in Figure 1. Then we may write,L00U00 = A00 (1)L10U00 = A10 (2)L00U01 = A01 (3)L10U01 + L11U11 = A11 (4)where A00 is r � r, A01 is r � (N � r), A10 is (M � r) � r, and A11 is (M � r) � (N � r). L00and L11 are lower triangular matrices with ones on the main diagonal, and U00 and U11 are uppertriangular matrices.
= *

A 00 A 01 L 00 U00

L 10 U10A 10

L 01

L 11

U01

U11A 11Figure 1: Block LU factorization of the partitioned matrix A. A00 is r� r, A01 is r� (N � r), A10is (M � r)� r, and A11 is (M � r)� (N � r). L00 and L11 are lower triangular matrices with oneson the main diagonal, and U00 and U11 are upper triangular matrices.Equations 1 and 2 taken together perform an LU factorization on the �rst M � r panel of A (i.e.,A00 and A10). Once this is completed, the matrices L00, L10, and U00 are known, and the lowertriangular system in Eq. 3 can be solved to give U01. Finally, we rearrange Eq. 4 as,A011 = A11 � L10U01 = L11U11 (5)From this equation we see that the problem of �nding L11 and U11 reduces to �nding the LUfactorization of the (M � r)� (N� r) matrix A011. This can be done by applying the steps outlinedabove to A011 instead of to A. Repeating these steps K times, whereK = min (dM=re; dN=re); (6)and dxe denotes the least integer greater than or equal to x, we obtain the LU factorization of theoriginal M � N matrix A. For an in-place algorithm, A is overwritten by L and U { the ones onthe diagonal of L do not need to be stored explicitly. Similarly, when A is updated by Eq. 5 thismay also be done in place.After k of these K steps, the �rst kr columns of L and the �rst kr rows of U have been evaluated,and the matrix A has been updated to the form shown in Figure 2, in which panel B is (M�kr)�rand C is r � (N � (k � 1)r). Step k + 1 then proceeds as follows,11

1. factor B to form the next panel of L, performing partial pivoting over rows if necessary. Thisevaluates the matrices L0, L1, and U0 in Figure 2,2. solve the triangular system L0U1 = C to get the next row of blocks of U ,3. do a rank-r update on the trailing submatrix E, replacing it with E 0 = E � L1U1.
U

L B
E

C

U

L
E’

U

L

1

1

L0

U0Figure 2: Stage k + 1 of the block LU factorization algorithm showing how the panels B and C,and the trailing submatrix E are updated. The trapezoidal submatrices L and U have already beenfactored in previous steps. L has kr columns, and U has kr rows. In the step shown another rcolumns of L and r rows of U are evaluated.The LAPACK implementation of this form of LU factorization uses the Level 3 BLAS to performthe triangular solve and rank-r update. We can regard the algorithm as acting on matrices thathave been partitioned into blocks of r � r elements. No extra oating point operations nor extraworking storage are required for simple block algorithms [DDS+91, GPS90].2.4 High-Quality, Reusable, Mathematical SoftwareIn developing a library of high-quality subroutines for dense linear algebra computations the designgoals fall into three broad classes: performance, ease-of-use and range-of-use.2.4.1 PerformanceTwo important performance metrics are concurrent e�ciency and scalability. We seek good per-formance characteristics in our algorithms by eliminating, as much as possible, overhead due toload imbalance, data movement, and algorithm restructuring. The way the data are distributed(or decomposed) over the memory hierarchy of a computer is of fundamental importance to thesefactors. Concurrent e�ciency, �, is de�ned as the concurrent speedup per processor [FJL+88],where the concurrent speedup is the execution time, Tseq, for the best sequential algorithm runningon one processor of the concurrent computer, divided by the execution time, T , of the parallelalgorithm running on Np processors. When direct methods are used, as in LU factorization, theconcurrent e�ciency depends on the problem size and the number of processors, so on a givenparallel computer and for a �xed number of processors, the running time should not vary greatly12

for problems of the same size. Thus, we may write,�(N;Np) = 1Np Tseq(N)T (N;Np) (7)where N represents the problem size. In dense linear algebra computations, the execution time isusually dominated by the oating point operation count, so the concurrent e�ciency is related tothe performance, G, measured in oating point operations per second by,G(N;Np) = Nptcalc �(N;Np) (8)where tcalc is the time for one oating point operation. Occasional examples where variation doesoccur are sometimes dismissed as \pathological cases". For iterative routines, such as eigensolvers,the number of iterations, and hence the execution time, depends not only on the problem size, butalso on other characteristics of the input data, such as condition number.Table 2 illustrates the speed of the LAPACK routine for LU factorization of a real matrix, SGETRFin single precision on CRAY machines, and DGETRF in double precision on all other machines.Thus, 64-bit oating point arithmetic is used on all machines tested. A block size of one means thatthe unblocked algorithm is used, since it is faster than { or at least as fast as { a block algorithm.In all cases, results are reported for the block size which is mostly nearly optimal over the range ofproblem sizes considered.Table 2: SGETRF/DGETRF speed (Mops) for square matrices of order nMachine Block Values of n(No. of processors) size 100 200 300 400 500IBM RISC/6000-530 (1) 32 19 25 29 31 33Alliant FX/8 (8) 16 9 26 32 46 57IBM 3090J VF (1) 64 23 41 52 58 63Convex C-240 (4) 64 31 60 82 100 112CRAY Y-MP (1) 1 132 219 254 272 283CRAY-2 (1) 64 110 211 292 318 358Siemens/Fujitsu VP 400-EX (1) 64 46 132 222 309 397NEC SX2 (1) 1 118 274 412 504 577CRAY Y-MP (8) 64 195 556 920 1188 1408LAPACK [ABB+95] is designed to give high e�ciency on vector processors, high-performance\superscalar" workstations, and shared-memory multiprocessors. LAPACK in its present form isless likely to give good performance on other types of parallel architectures (for example, massivelyparallel SIMD machines, or MIMD distributed-memory machines). LAPACK can also be usedsatisfactorily on all types of scalar machines (PCs, workstations, mainframes). The ScaLAPACKproject, described in Section 2.1.3, adapts LAPACK to distributed-memory architectures.A parallel algorithm is said to be scalable [GK90] if the concurrent e�ciency depends on the problemsize and number of processors only through their ratio. This ratio is simply the problem size per13

processor, often referred to as the granularity. Thus, for a scalable algorithm, the concurrente�ciency is constant as the number of processors increases while keeping the granularity �xed.Alternatively, Eq. 8 shows that this is equivalent to saying that, for a scalable algorithm, theperformance depends linearly on the number of processors for �xed granularity.Figure 3 shows the scalability of the ScaLAPACK implementation of the LU factorization on theIntel XP/S Paragon computer. Figure 3 shows the speed in Mops per node of the ScaLAPACKLU factorization routine for di�erent computer con�gurations. This �gure illustrates that when thenumber of nodes is scaled by a constant factor, the same e�ciency or speed per node is achieved forequidistant problem sizes on a logarithmic scale. In other words, maintaining a constant memoryuse per node allows e�ciency to be maintained. This scalability behavior is also referred to asisoe�ciency, or isogranularity.) In practice, however, a slight degradation is acceptable. TheScaLAPACK driver routines, in general, feature the same scalability behavior up to a constantfactor that depends on the exact number of oating point operations and the total volume of dataexchanged during the computation. More information on ScaLAPACK performance can be foundin [BCC+97, BW98].
10

3
10

4
0

10

20

30

40

50

60

70

Problem Size

M
flo

ps

1x4 2x4 2x8 4x8 4x16

Figure 3: LU Performance per Intel XP/S MP Paragon node2.4.2 Ease-Of-UseEase-of-use is concerned with factors such as portability and the user interface to the library.Portability, in its most inclusive sense, means that the code is written in a standard language,such as Fortran, and that the source code can be compiled on an arbitrary machine to produce aprogram that will run correctly. We call this the \mail-order software" model of portability, sinceit reects the model used by software servers such as netlib [DG87]. This notion of portabilityis quite demanding. It requires that all relevant properties of the computer's arithmetic and ar-chitecture be discovered at runtime within the con�nes of a Fortran code. For example, if it isimportant to know the overow threshold for scaling purposes, it must be determined at runtimewithout overowing, since overow is generally fatal. Such demands have resulted in quite large14

and sophisticated programs [DP87, Kah87] which must be modi�ed frequently to deal with newarchitectures and software releases. This \mail-order" notion of software portability also meansthat codes generally must be written for the worst possible machine expected to be used, therebyoften degrading performance on all others. Ease-of-use is also enhanced if implementation detailsare largely hidden from the user, for example, through the use of an object-based interface to thelibrary [DPW93]. In addition, software for distributed-memory computers should work correctlyfor a large class of data decompositions. The ScaLAPACK library has, therefore, adopted the blockcyclic decomposition [BCC+97] for distributed-memory architectures.2.4.3 Range-Of-UseThe range-of-use may be gauged by how numerically stable the algorithms are over a range of inputproblems, and the range of data structures the library will support. For example, LINPACK andEISPACK deal with dense matrices stored in a rectangular array, packed matrices where only theupper or lower half of a symmetric matrix is stored, and banded matrices where only the nonzerobands are stored. In addition, some special formats such as Householder vectors are used internallyto represent orthogonal matrices. There are also sparse matrices, which may be stored in manydi�erent ways; but in this chapter we focus on dense and banded matrices, the mathematical typesaddressed by LINPACK, EISPACK, LAPACK and ScaLAPACK.3 Automatic Generation of Tuned Numerical KernelsThis section describes an approach for the automatic generation and optimization of numericalsoftware for processors with deep memory hierarchies and pipelined functional units. The pro-duction of such software for machines ranging from desktop workstations to embedded processorscan be a tedious and time consuming customization process. The research e�orts presented belowaim at automating much of this process. Very encouraging results generating great interest amongthe scienti�c computing community have already been demonstrated. In this section, we focus onthe ongoing Automatically Tuned Linear Algebra Software (ATLAS) [WD97] project developed atthe University of Tennessee (see http://www.netlib.org/atlas/). The ATLAS initiative ade-quately illustrates current and modern research projects on automatic generation and optimizationof numerical software such as PHiPAC [BAC+97]. After having developed the motivation for thisresearch, the ATLAS methodology is outlined within the context of a particular BLAS function,namely the general matrix-multiply operation. Much of the technology and approach presentedbelow applies to other BLAS and on basic linear algebra computations in general, and may beextended to other important kernel operations. Finally, performance results on a large collectionof computers are presented and discussed.3.1 MotivationStraightforward implementation in Fortan or C of computations based on simple loops rarely achievethe peak execution rates of today's microprocessors. To realize such high performance for even the15

simplest of operations often requires tedious, hand-coded, programming e�orts. It would be ideal ifcompilers where capable of performing the optimization needed automatically. However, compilertechnology is far from mature enough to perform these optimizations automatically. This is trueeven for numerical kernels such as the BLAS on widely marketed machines which can justify thegreat expense of compiler development. Adequate compilers for less widely marketed machines arealmost certain not to be developed.Producing hand-optimized implementations of even a reduced set of well-designed software com-ponents for a wide range of architectures is an expensive proposition. For any given architecture,customizing a numerical kernel's source code to optimize performance requires a comprehensive un-derstanding of the exploitable hardware resources of that architecture. This primarily includes thememory hierarchy and how it can be utilized to provide data in an optimum fashion, as well as thefunctional units and registers and how these hardware components can be programmed to generatethe correct operands at the correct time. Using the compiler optimization at its best, optimizingthe operations to account for many parameters such as blocking factors, loop unrolling depths,software pipelining strategies, loop ordering, register allocations, and instruction scheduling arecrucial machine-speci�c factors a�ecting performance. Clearly, the size of the various cache levels,the latency of oating point instructions, the number of oating point units and other hardwareconstants are essential parameters that must be taken into consideration as well. Since this time-consuming customization process must be repeated whenever a slightly di�erent target architectureis available, or even when a new version of the compiler is released, the relentless pace of hardwareinnovation makes the tuning of numerical libraries a constant burden.The di�cult search for fast and accurate numerical methods for solving numerical linear algebraproblems is compounded by the complexities of porting and tuning numerical libraries to run onthe best hardware available to di�erent parts of the scienti�c and engineering community. Giventhe fact that the performance of common computing platforms has increased exponentially in thepast few years, scientists and engineers have acquired legitimate expectations about being ableto immediately exploit these available resources at their highest capabilities. Fast, accurate, androbust numerical methods have to be encoded in software libraries that are highly portable andoptimizable across a wide range of systems in order to be exploited to their fullest potential.For illustrative purpose, we consider the Basic Linear Algebra Subprograms (BLAS) described inSection 2.2.1. As shown in Section 2, the BLAS have proven to be very e�ective in assisting portable,e�cient software for sequential, vector, shared-memory and distributed-memory high-performancecomputers. However, the BLAS are just a set of speci�cations for some elementary linear algebraoperations. A reference implementation in Fortran 77 is publically available, but it is not expectedto be e�cient on any particular architecture, so that many hardware or software vendors providean \optimized" implementation of the BLAS for speci�c computers. Hand-optimized BLAS areexpensive and tedious to produce for any particular architecture, and in general will only be createdwhen there is a large enough market, which is not true for all platforms. The process of generatingan optimized set of BLAS for a new architecture or a slightly di�erent machine version can be atime consuming and expensive process. Many vendors have thus invested considerable resources inproducing optimized BLAS for their architectures. In many cases near optimum performance canbe achieved for some operations. However, the coverage and the level of performance achieved isoften not uniform across all platforms. 16

3.2 The ATLAS MethodologyIn order to illustrate the ATLAS methodology, we consider the following matrix-multiply operationC �AB + �C, where � and � are scalars, and A, B and C are matrices, with A an M-by-Kmatrix, B a K-by-N matrix and C an M-by-N matrix. In general, the arrays A, B, and C containingrespectively the matrices A, B and C will be too large to �t into cache. It is however possible toarrange the computations so that the operations are performed with data for the most part incache by dividing the matrices into blocks [DMR91]. ATLAS isolates the machine-speci�c featuresof the operation to several routines, all of which deal with performing an optimized \on-chip"matrix multiply, that is, assuming that all matrix operands �t in Level 1 (L1) cache. This sectionof code is automatically created by a code generator which uses timings to determine the correctblocking and loop unrolling factors to perform optimally. The user may directly supply the codegenerator with as much detail as desired, i.e. size of the L1 cache size, blocking factor(s) to try, etc;if such details are not provided, the code generator will determine appropriate settings via timings.The rest of the code produced by ATLAS does not change across architectures; it is presented inSection 3.2.1. It handles the looping and blocking necessary to build the complete matrix-matrixmultiply from the on-chip multiply. The generation of the on-chip multiply routine is discussedin Section 3.2.2. It is obvious that with this many interacting e�ects, it would be di�cult, if notimpossible to predict a priori the best blocking factor, loop unrolling, etc. ATLAS provides a codegenerator coupled with a timer routine which takes in some initial information, and then triesdi�erent strategies for loop unrolling and latency hiding and chooses the case which demonstratedthe best performance.3.2.1 Building the General Matrix Multiply from the On-Chip MultiplyIn this section, the routines necessary to build a general matrix-matrix multiply using a �xed-sizeon-chip multiply are described. Section 3.2.2 details the on-chip multiply and its code generator.For this section, it is enough to assume the availability of an e�cient on-chip matrix-matrix multiplyof the form C ATB. This multiply is of �xed size, i.e. with all dimensions set to a system-speci�cvalue, NB (M = N = K = NB). Also available are several \cleanup" codes, which handle the casescaused by dimensions which are not multiples of the blocking factor.The �rst decision to be taken by the general matrix multiply is whether the problem is large enoughto bene�t from our special techniques. The ATLAS algorithm requires copying of the operandmatrices; if the problem is small enough, this O(N2) cost, along with miscellaneous overheads suchas function calls and multiple layers of looping, can actually make the \optimized" general matrixmultiply slower than the traditional three do loops. The size required for the O(N3) costs todominate these lower order terms varies across machines, and so this switch point is automaticallydetermined at installation time. For these very small problems, a standard three-loop multiplywith some simple loop unrolling is called. This code will also be called if the algorithm is unableto dynamically allocate enough space to do the blocking (see below for further details).Assuming the matrices are large enough, ATLAS presently features two algorithms for performingthe general, o�-chip multiply. The two algorithms correspond to di�erent orderings of the mainloops. In the �rst algorithm, the outer loop is over M, i.e., the rows of A and the second loop17

is over N, i.e., the columns of B. In the second algorithm, this order is reversed. The commondimension of A and B (i.e., the K loop) is currently always the innermost loop. Let us de�nethe input matrix looped over by the outer loop as the outer or outermost matrix; the other inputmatrix will therefore be the inner or innermost matrix. In the �rst algorithm, A is thus the outermatrix and B is the inner matrix. Both algorithms have the option of writing the result of theon-chip multiply directly to the matrix, or to an output temporary Ĉ. The advantages to writingto Ĉ rather than C are:1. address alignment may be controlled (i.e., one can ensure during the dynamic memory allo-cation that one begins on a cache-line boundary),2. Data is contiguous, eliminating possibility of unnecessary cache-thrashing due to ill-chosenleading dimension (assuming the cache is non-write-through).The disadvantage of using Ĉ is that an additional write to C is required after the on-chip operationshave completed. This cost is minimal if many calls to the on-chip multiply are made (each of whichwrites to either C or Ĉ), but can add signi�cantly to the overhead when this is not the case. Inparticular, an important application of matrix multiply is the rank-K update, where the writeto the output array C can be a signi�cant portion of the cost of the algorithm. Writing to Ĉessentially doubles the write cost, which is unacceptable. The routines therefore employ a heuristicto determine if the number of times the on-chip multiply will be called in the K loop is large enoughto justify using Ĉ, otherwise the answer is written directly to C.Regardless of which matrix is outermost, the algorithms try to dynamically allocate enough spaceto store the NB � NB output temporary, Ĉ (if needed), one panel of the outermost matrix, andthe entire inner matrix. If this fails, the algorithms attempt to allocate enough space to hold Ĉ,and one panel from both A and B. The minimum workspace required by these routines is therefore2KNB, if writing directly to C, and NB2 + 2KNB if not. If this amount of workspace cannot beallocated, the previously mentioned small case code is called instead. If there is enough space tocopy the entire innermost matrix, we see several bene�ts to doing so:� Each matrix is copied only one time,� If all of the workspaces �t into L2 cache, we get complete L2 reuse on the innermost matrix,� Data copying is limited to the outermost loop, protecting the inner loops from unneededcache thrashing.Of course, even if the allocation succeeds, using too much memory might result in unneeded swap-ping. Therefore, the user can set a maximal amount of workspace that ATLAS is allowed to have,and ATLAS will not try to copy the innermost matrix if this maximum workspace requirement isexceeded.If enough space for a copy of the entire innermost matrix is not allocated, the innermost matrixwill be entirely copied for each panel of the outermost matrix, i.e. if A is the outermost matrix,the matrix B will be copied dM=NBe times. Further, the usable size of the Level 2 (L2) cache isreduced (the copy of a panel of the innermost matrix will take up twice the panel's size in L2 cache;18

the same is true of the outermost panel copy, but that will only be seen the �rst time through thesecondary loop). Regardless of which looping structure or allocation procedure used, the inner loopis always along K. Therefore, the operation done in the inner loop by both routines is the same,and it is shown in Figure 4.
M

N

KM

N
K

A BC

C
32 32

A
32

BA
31

A
33

B
12

B
22Figure 4: One step of the general matrix-matrix multiplyWhen a call to the matrix multiply is made, the routine must decide which loop structure to call(i.e., which matrix to put as outermost). If the matrices are of di�erent size, L2 cache reuse can beencouraged by deciding the looping structure based on the following criteria:� If either matrix will �t completely into L2 cache, put it as the innermost matrix (we get L2cache reuse on the entire inner matrix),� If neither matrix �ts completely into L2 cache, put the one with the largest panel that will�t into L2 cache as the outermost matrix (we get L2 cache reuse on the panel of the outermatrix).By default, the code generated by ATLAS does no explicit L2 blocking (the size of the L2 cacheis not known anywhere in the code), and so these criteria are not presently used for this selection.Rather, if one matrix must be accessed by row-panels during the copy, that matrix will be putwhere it can be copied most e�ciently. This means that if one has enough workspace to copy itup front, the matrix will be accessed column-wise by putting it as the innermost loop and copyingthe entire matrix; otherwise it will be placed as the outermost loop, where the cost of copying therow-panel is a lower order term. If both matrices have the same access patterns, B will be madethe outermost matrix, so that C is accessed by columns.3.2.2 Generation of the On-Chip MultiplyAs previously mentioned, the ATLAS on-chip matrix-matrix multiply is the only code which mustchange depending on the platform. Since the input matrices are copied into blocked form, onlyone transpose case is required, which has been chosen as C ATB + C. This case was chosen (asopposed to, for instance C AB+C), because it generates the largest (ops)/(cache misses) ratiopossible when the loops are written with no unrolling. Machines with hardware allowing a smallerratio can be addressed using loop unrolling on the M and N loops (this could also be addressed bypermuting the order of the K loop, but this technique is not presently used in ATLAS.19

In a multiply designed for L1 cache reuse, one of the input matrices is brought completely into theL1 cache, and is then reused in looping over the rows or columns of the other input matrix. Thepresent ATLAS code brings in the array A, and loops over the columns of B; this was an arbitrarychoice, and there is no theoretical reason it would be superior to bringing in B and looping overthe rows of A. There is a common misconception that cache reuse is optimized when both inputmatrices, or all three matrices, �t into L1 cache. In fact, the only win in �tting all three matricesinto L1 cache is that it is possible, assuming the cache is not write-through, to save the cost ofpushing previously used sections of C back to higher levels of memory. Often, however, the L1cache is write-through, while higher levels are not. If this is the case, there is no way to minimizethe write cost, so keeping all three matrices in L1 does not result in greater cache reuse. Therefore,ignoring the write cost, maximal cache reuse for our case is achieved when all of A �ts into cache,with room for at least two columns of B and one cache line of C. Only one column of B is actuallyaccessed at a time in this scenario; having enough storage for two columns assures that the oldcolumn will be the least recently used data when the cache overows, thus making certain that allof A is kept in place (this obviously assumes the cache replacement policy is least recently used).While cache reuse can account for a great amount of the overall performance win, it is obviously notthe only factor. For the on-chip matrix multiplication, other relevant factors are outlined below.Instruction cache overow: Instructions are cached, and it is therefore important to �t the on-chip multiply's instructions into the L1 cache. This means that it won't be possible to completelyunroll all three loops, for instance.Floating point instruction ordering: When we discuss oating point instruction ordering inthis section, it will usually be in reference to latency hiding. Most modern architectures possesspipelined oating point units. This means that the results of an operation will not be availablefor use until s cycles later, where s is the number of stages in the oating point pipe (typically3 or 5). Remember that the on-chip matrix multiply is of the form C ATB + C; individualstatements would then naturally be some variant of C[i] += A[j] * B[k]. If the architecturedoes not possess a fused multiply/add unit, this can cause an unnecessary execution stall. Theoperation register = A[j] * B[k] is issued to the oating point unit, and the add cannot bestarted until the result of this computation is available, s cycles later. Since the add operationis not started until the multiply �nishes, the oating point pipe is not utilized. The solution isto remove this dependence by separating the multiply and add, and issuing unrelated instructionsbetween them. This reordering of operations can be done in hardware (out-of-order execution)or by the compiler, but this will sometimes generate code that is not quite as e�cient as doing itexplicitly. More importantly, not all platforms have this capability, and in this case the performancewin can be large.Reducing loop overhead: The primary method of reducing loop overhead is through loop un-rolling. If it is desirable to reduce loop overhead without changing the order of instructions, onemust unroll the loop over the dimension common to A and B (i.e., unroll the K loop). Unrollingalong the other dimensions (the M and N loops) changes the order of instructions, and thus theresulting memory access patterns.Exposing parallelism: Many modern architectures have multiple oating point units. There aretwo barriers to achieving perfect parallel speedup with oating point computations in such a case.The �rst is a hardware limitation, and therefore out of our hands: All of the oating point units will20

need to access memory, and thus, for perfect parallel speedup, the memory fetch will usually alsoneed to operate in parallel. The second prerequisite is that the compiler recognizes opportunitiesfor parallelization, and this is amenable to software control. The �x for this is the classical oneemployed in such cases, namely unrolling the M and/or N loops, and choosing the correct registerallocation so that parallel operations are not constrained by false dependencies.Finding the correct number of cache misses: Any operand that is not already in a registermust be fetched from memory. If that operand is not in the L1 cache, it must be fetched fromfurther down the memory hierarchy, possibly resulting in large delays in execution. The numberof cache misses which can be issued simultaneously without blocking execution varies betweenarchitectures. To minimize memory costs, the maximal number of cache misses should be issuedeach cycle, until all memory is in cache or used. In theory, one can permute the matrix multiply toensure that this is true. In practice, this �ne a level of control would be di�cult to ensure (therewould be problems with overowing the instruction cache, and the generation of such precisioninstruction sequence, for instance). So the method used to control the cache-hit ratio is the moreclassical one of M and N loop unrolling.3.3 ATLAS Performance ResultsIn this section we present double precision (64-bit oating point arithmetic) timings across variousplatforms. The timings presented here are di�erent than many BLAS timings in that the cache isushed before each call, and the leading dimensions of the arrays are set to greater than the numberof rows of the matrix. This means that the performance numbers shown below, even when timingthe same routine (for instance the vendor-supplied general matrix multiply routine) are lower thanthose reported in other papers. However, these numbers are in general a much better estimate ofthe performance a user will see in his application. More complete performance results and analysiscan be found in [WD97].Figure 5 shows the performance of ATLAS versus the vendor-supplied matrix multiply (whereavailable) for a 500� 500 matrix multiply.Figure 6 shows the performance of LAPACK's LU factorization. For each platform three resultsare shown in the �gure: (1) LU factorization time linking to ATLAS matrix multiply, (2) LUfactorization time linking to vendor supplied BLAS, (3) LU factorization time linking only to thereference Fortran 77 BLAS. These results demonstrate that the automatically generated ATLASroutine provide good performance in practice.4 Network-Enabled SolversThanks to advances in hardware, networking infrastructure and algorithms, computing intensiveproblems in many areas can now be successfully attacked using networked, scienti�c computing. Inthe networked computing paradigm, vital pieces of software and information used by a computingprocess are spread across the network, and are identi�ed and linked together only at run time.This is in contrast to the current software usage model where one acquires a copy (or copies) of21

Figure 5: 500x500 matrix multiply performance across multiple architectures

Figure 6: 500x500 LU factorization performance across multiple architectures22

task-speci�c software package for use on local hosts. In this section, as a case study, we focuson the ongoing NetSolve project developed at the University of Tennessee and at the Oak RidgeNational Laboratory (see http://www.cs.utk.edu/netsolve). This project adequately illustratesthe current and modern research initiatives on network-enabled solvers. We �rst present an overviewof the NetSolve project and examine some extensions being developed for NetSolve: an interface tothe Condor system [LLM88], an interface to the ScaLAPACK parallel library [BCC+97], a bridgewith the Ninf System [SSN+96], and an integration of NetSolve and ImageVision [ENB96].4.1 The NetSolve SystemThe NetSolve system uses the remote computing paradigm: the program resides on the server; theuser's data is sent to the server, where the appropriate programs or numerical libraries operate onit; the result is then sent back to the user's machine.
reply

choice

choice

reply

 of

Client

Network

 Servers

Client

Agent

Scalar Server

request

Scalar Server

Agent

request

MPP ServersFigure 7: NetSolve's organizationFigure 7 depicts the typical layout of the system. NetSolve provides users with a pool of com-putational resources. These resources are computational servers that have access to ready-to-usenumerical software. As shown in the �gure, the computational servers can be running on sin-gle workstations, networks of workstations that can collaborate for solving a problem, or MassivelyParallel Processor (MPP) systems. The user is using one of the NetSolve client interfaces. Throughthese interfaces, the user can send requests to the NetSolve system asking for a numerical compu-tation to be carried out by one of the servers. The main role of the NetSolve agent is to process thisrequest and to choose the most suitable server for this particular computation. Once a server hasbeen chosen, it is assigned the computation, uses its available numerical software, and eventuallyreturns the results to the user. One of the major advantages of this approach is that the agentperforms load-balancing among the di�erent resources.23

As shown in Figure 7, there can be multiple instances of the NetSolve agent on the network, anddi�erent clients can contact di�erent agents depending on their locations. The agents can exchangeinformation about their di�erent servers and allow access from any client to any server if desirable.NetSolve can be used either via the Internet or on an intranet, such as inside a research departmentor a university, without participating in any Internet based computation. Another important aspectof NetSolve is that the con�guration of the system is entirely exible: any server/agent can bestopped and (re-)started at any time without jeopardizing the integrity of the system.4.1.1 The Computational ResourcesWhen building the NetSolve system, one of the challenges was to design a suitable model for thecomputational servers. The NetSolve servers are con�gurable so that they can be easily upgradedto encompass ever-increasing sets of numerical functionalities. The NetSolve servers are also pre-installed, meaning that the end-user does not have to install any numerical software. Finally, theNetSolve servers provide uniform access to the numerical software, in the sense that the end-userhas the illusion that he or she is accessing numerical subroutines from a single, coherent numericallibrary.To make the implementation of such a computational server model possible, a general, machine-independent way of describing a numerical computation as well as a set of tools to generate newcomputational modules as easily as possible have been designed. The main component of thisframework is a descriptive language which is used to describe each separate numerical functionalityof a computational server. The description �les written in this language can be compiled byNetSolve into actual computational modules executable on any UNIX or NT platform. These �lescan then be exchanged by any institution wanting to set up servers: each time a new description�le is created, the capabilities of the entire NetSolve system are increased.A number of description �les have been generated for a variety of numerical libraries: ARPACK,FitPack, ItPack, MinPack, FFTPACK, LAPACK, BLAS, QMR, Minpack and ScaLAPACK. Thesenumerical libraries cover several �elds of computational science; Linear Algebra, Optimization, FastFourier Transforms, etc.4.1.2 The Client InterfacesA major concern in designing NetSolve was to provide several interfaces for a wide range of users.NetSolve can be invoked through C, Fortran, Java, Matlab [Mat92] and Mathematica [Wol96]. Inaddition, there is a Web-enabled Java GUI. Another concern was keeping the interfaces as simple aspossible. For example, there are only two calls in the MATLAB interface, and they are su�cient toallow users to submit problems to the NetSolve system. Each interface provides asynchronous callsto NetSolve in addition to traditional synchronous or blocking calls. When several asynchronousrequests are sent to a NetSolve agent, they are dispatched among the available computationalresources according to the load-balancing schemes implemented by the agent. Hence, the user|with virtually no e�ort|can achieve coarse-grained parallelism from either a C or Fortran program,or from interaction with a high-level interface. All the interfaces are described in detail in the\NetSolve's Client User's Guide" [CD95]. 24

4.1.3 The NetSolve AgentKeeping track of what software resources are available and on which servers they are located isperhaps the most fundamental task of the NetSolve agent. Since the computational servers use thesame framework to contribute software to the system (see Section 4.1.1), it is possible for the agentto maintain a database of di�erent numerical functionalities available to the users.Each time a new server is started, it sends an application request to an instance of the NetSolveagent. This request contains general information about the server and the list of numerical func-tions it intends to contribute to the system. The agent examines this list and detects possiblediscrepancies with the other existing servers in the system. Based on the agent's verdict, the servercan be integrated into the system and available for clients.The goal of the NetSolve agent is to choose the best-suited computational server for each incomingrequest to the system. For each user request, the agent determines the set of servers that canhandle the computation and makes a choice between all the possible resources. To do so, the agentuses computation-speci�c and resource-speci�c information. Computation-speci�c information ismostly included in the user request whereas resource-speci�c information is partly static (server'shost processor speed, memory available, etc.) and partly dynamic (processor workload). Rationaleand further detail on these issues can be found in [BCD96], as well as a description of how NetSolveensures fault-tolerance among the servers.Agent-based computing seems to be a promising strategy. NetSolve is evolving into a more elabo-rate system and a major part of this evolution is to take place within the agent. Such issues as useraccounting, security, data encryption for instance are only partially addressed in the current imple-mentation of NetSolve and already is the object of much work. As the types of hardware resourcesand the types of numerical software available on the computational servers become more and morediverse, the resource broker embedded in the agent need to become increasingly sophisticated.There are many di�culties in providing a uniform performance metric that encompasses any typeof algorithmic and hardware considerations in a metacomputing setting, especially when di�erentnumerical resources, or even entire frameworks are integrated into NetSolve. Such integrations aredescribed in the following sections.4.2 Integration of Computational Resources into NetSolveIn this section, we present how various computational resources can be integrated into NetSolve.As explained in Section 4.1.1, traditional software libraries are easy to integrate into the NetSolvesystem. We present however how four very di�erent and more complex computational resourceshave been integrated. We selected a workstation manager environment, a parallel numerical library,a global-wide computing infrastructure similar to NetSolve itself, and �nally a general purposeimage processing application. 25

4.2.1 Interface to the Condor SystemCondor [LLM88], developed at the University of Wisconsin, Madison, is an environment that canmanage very large collections of distributively owned workstations. Its development has beenmotivated by the ever increasing need for scientists and engineers to exploit the capacity of suchcollections, mainly by taking advantage of otherwise unused CPU cycles. Interfacing NetSolve andCondor is a very natural idea. NetSolve provides remote easy access to computational resourcesthrough multiple, attractive user interfaces. Condor allows users to harness the power of a pool ofmachines while using otherwise wasted CPU cycles. The users at the consoles of those machinesare not penalized by the scheduling of Condor jobs. If the pool of machines is reasonably large,it is usually the case that Condor jobs can be scheduled almost immediately. This could prove tobe very interesting for a project like NetSolve. Indeed, NetSolve servers may be started so thatthey grant local resource access to outside users. Interfacing NetSolve and Condor could then givepriority to local users and provide underutilized only CPU cycles to outside users.A Condor pool consists of any number of machines, that are connected by a network. Condordaemons constantly monitor the status of the individual computers in the cluster. Two daemonsrun on each machine, the startd and the schedd. The startdmonitors information about the machineitself (load, mouse/keyboard activity, etc.) and decides if it is available to run a Condor job. Theschedd keeps track of all the Condor jobs that have been submitted to the machine. One of themachine, the Central Manager, keeps track of all the resources and jobs in the pool. When a jobis submitted to Condor, the scheduler on the central manager matches a machine in the Condorpool to that job. Once the job has been started, it is periodically checkpointed, can be interruptedand migrated to a machine whose architecture is the same as the one of the machine on whichthe execution was initiated. This organization is partly depicted in Figure 8. More details on theCondor system and the software layers can be found in [LLM88].Figure 8 shows how an entire Condor pool can be seen as a single NetSolve computational resource.The Central Manager runs two daemons in addition to the usual startd and schedd: the negotiatorand the collector. A machine also runs a customized version of the NetSolve server. When this serverreceives a request from a client, instead of creating a local child process running a computationalmodule, it uses the Condor tools to submit that module to the Condor pool. The negotiator on theCentral Manager then chooses a target machine for the computational module. Due to uctuationsin the state of the pool, the computational module can then be migrated among the machines in thepool. When the results of the numerical computation are obtained, the NetSolve server transmitsthat result back to the client.The actual implementation of the NetSolve/Condor interface was made easy by the Condor toolsprovided to the Condor user. However, the restrictions that apply to a Condor job concerningsystem calls were di�cult to satisfy and required quite a few changes to obtain a Condor-enabledNetSolve server. A major issue however still needs to be addressed; how does the NetSolve agentperceive a Condor pool as a resource? Finding the appropriate performance prediction techniqueis at the focus of the current NetSolve/Condor collaboration.26

Condor Central Manager

Collector

Startd

Schedd

Machine 1

Startd

Schedd

 NetSolve
computational
 module

Machine N

Startd

Schedd

NetSolve Machine

Startd

Schedd

NetSolve Server

NetSolve
 Client

NetSolve
 Agent

Request

ChoiceReply

Condor pool

NetSolve system

Negotiator

Figure 8: NetSolve and Condor4.2.2 Integrating Parallel Numerical LibrariesIntegrating software libraries designed for distributed-memory concurrent computers into NetSolveallows a workstation's user to access massively parallel processors to perform large computations.This access can be made extremely simple via NetSolve and the user may not even be aware thathe or she is using a parallel library on such a computer. As an example, we describe in this section,how the ScaLAPACK library [BCC+97] has been integrated into the NetSolve system.As briey described in Section 2.1.3, the Scalable Linear Algebra Package (ScaLAPACK) is a libraryof high-performance linear algebra routines for distributed-memory message-passing MIMD com-puters as well as networks or clusters of workstations supporting PVM [GBD+94] orMPI [SOH+96].It is a continuation of the LAPACK [ABB+95] project, and contains routines for solving systemsof linear equations, least squares problems, and eigenvalue problems. ScaLAPACK views the un-derlying multi-processor system as a rectangular process grid. Global data is mapped to the localmemories of the processes in that grid assuming speci�c data-distributions. For performance andload balance reasons, ScaLAPACK uses the two-dimensional block cyclic distribution scheme fordense matrix computations. Inter-process communication within ScaLAPACK is done via the BasicLinear Algebra Communication Subprograms (BLACS) [WD95].Figure 9 is a very simple description of how the NetSolve server has been customized to use theScaLAPACK library. The customized server receives data input from the client in the traditional27

way. The NetSolve server uses BLACS calls to set up the ScaLAPACK process grid. ScaLAPACKrequires that the data already be distributed among the processors prior to any library call. This isthe reason why each user input is �rst distributed on the process grid according to the block cyclicdecomposition when necessary. The server can then initiate the call to ScaLAPACK and wait untilcompletion of the computation. When the ScaLAPACK call returns, the result of the computationis distributed on the two-dimensional process grid. The server then gathers that result and sends itback to the client in the expected format. This process is completely transparent to the user whodoes not even realize that a parallel execution has been taking place.
 NetSolve
ScaLAPACK
 server

NetSolve
 client

2−
D B

lo
ck

 C
yc

lic

Dat
a
Dist

rib
ut
io
n

2−D Block Cyclic

 Result G
athering

Dat
a

Result

Input
Data

Result
Processor Grid
(NoW or MPP)

ScaLAPACK

Figure 9: The ScaLAPACK NetSolve Server ParadigmThis approach is very promising. A client can use MATLAB on a PC and issue a simple call like [x]= netsolve('eig',a) and have an MPP system use a high-performance library to perform a largeeigenvalue computation. A prototype of the customized server running on top of PVM [GBD+94]or MPI [SOH+96] has been designed. There are many research issues arising with integratingparallel libraries in NetSolve, including performance prediction, choice of processor-grid size, choiceof numerical algorithm, processor availability, accounting, etc.4.2.3 NetSolve and NinfNinf [SSN+96], developed at the Electrotechnical Laboratory, Tsukuba, is a global network-widecomputing infrastructure project which allows users to access computational resources includinghardware, software, and scienti�c data distributed across a wide area network with an easy-to-useinterface. Computational resources are shared as Ninf remote libraries and are executable at remoteNinf servers. Users can build an application by calling the libraries with the Ninf Remote Proce-dure Call, which is designed to provide a programming interface similar to conventional functioncalls in existing languages, and is tailored for scienti�c computation. In order to facilitate loca-28

tion transparency and network-wide parallelism, the Ninf MetaServer maintains global resourceinformation regarding computational server and databases. It can therefore allocate and schedulecoarse-grained computations to achieve good global load balancing. Ninf also interfaces with ex-isting network service such as the WWW for easy accessibility. Clearly, NetSolve and Ninf bearstrong similarities both in motivation and general design. Allowing the two systems to coexist andcollaborate should lead to promising developments.Some design issues prevent an immediate seamless integration of the two softwares (conceptualdi�erences between the NetSolve agent and the Ninf Metaserver, problem speci�cations, user in-terfaces, data transfer protocols, etc.). In order to overcome these issues, the Ninf team starteddeveloping two adapters: a NetSolve-Ninf adapter and a Ninf NetSolve-adapter. Thanks to thoseadapters, Ninf clients can use computational resources administrated by a NetSolve system andvice-versa.
Ninf−NetSolve
 Adapter

NetSolve
 Agent

 Ninf
Server

NetSolve
 Server

NetSolve
 Client

Ninf−NetSolve
 Adapter

NetSolve
 Agent

 Ninf
MetaServer

 Ninf
Client

 Ninf
Server

NetSolve
 Server

(ii)(i)Figure 10: Going (i) from NetSolve to Ninf and (ii) from Ninf to NetSolveFigure 10(i) shows the Ninf-NetSolve adapter allowing access to Ninf resource from a NetSolveclient. The adapter is just seen by the NetSolve agent as any other NetSolve server. When aNetSolve client sends a request to the agent, it can then be told to use the NetSolve adapter. Theadapter performs protocol translation, interface translation, and data transfer, asks a Ninf serverto perform the required computation and returns the result to the user.In Figure 10(ii), the NetSolve-Ninf adapter can be seen by the Ninf MetaServer as a Ninf server, butin fact plays the role of a NetSolve client. This is a little di�erent from the Ninf-NetSolve adapterbecause the NetSolve agent is a resource broker whereas the Ninf MetaServer is a proxy server.Once the adapter receives the result of the computation from some NetSolve server, it transfersthat result back to the Ninf client.There are several advantages of using such adapters. Updating the adapters to reects the evolu-tions of NetSolve or Ninf seems to be an easy task. Some early implementation evaluations tendto show that using either system via an adapter causes acceptable overheads, mainly due to addi-tional data transfers. Those �rst experiments appear encouraging and will de�nitely be extendedto e�ectively enable an integration of NetSolve and Ninf.29

4.2.4 Extending ImageVision by the Use of NetSolveIn this section, we describe how NetSolve can be used as a building block for a general purposeframework for basic image processing, based on the commercial ImageVision library [ENB96]. Thisproject is under development at the ICG institute at Graz University of Technology, Austria. Thescope of the project is to make basic image processing functions available for remote executionover a network. The goals of the project include two objectives that can be leveraged by NetSolve.First, the resulting software should prevent the user from having to install complicated imageprocessing libraries. Second, the functionalities should be available via Java-based applications.The ImageVision Library (IL) [ENB96] is an object-oriented library written in C++ by SiliconGraphics, Inc. (SGI) and shipped with newer workstations. It contains typical image processingroutines to e�ciently access, manipulate, display, and store image data. ImageVision has beenjudged quite complete and mature by the research team at ICG and seems therefore a good choiceas an \engine" for building a remote access image processing framework. Such a framework willmake IL accessible from any platform (and not only from SGI workstations) and is describedin [Obe97].The reasons why NetSolve has been a �rst choice for such a project are diverse. First, NetSolveis easy to understand, use, and extend. Second, NetSolve is freely available. Third, NetSolveprovides language binding to Fortran, C, and Java. And �nally, NetSolve's agent-based designallows load monitoring and balancing among the available servers. New NetSolve computationalmodules corresponding to the desired image processing functionalities will be created and integratedinto the NetSolve servers. A big part of the project at ICG is to build a Java GUI to IL.
NetSolve
 Agent

SGI back endVisualization

NetSolve
 Client

 Java GUI

2. choice of a server

3. send data

4. retrieve result

1. netsl("rotate",...)

Figure 11: ImageVision and NetSolveFigure 11 shows a simple example of how ImageVision can be accessed via NetSolve. A Java GUIcan be built on top of the NetSolve Java API. As shown on the �gure, this GUI o�ers visualizationcapabilities. For computations, it uses an embedded NetSolve client and contacts SGI servers that30

have access to IL. The user of the Java GUI does not realize that NetSolve is the back end ofthe system, or that he or she uses a SGI library without running the GUI on a SGI machine!The protocol depicted in the �gure is of course simplistic. In order to obtain acceptable levelsof performance, the network tra�c needs to be minimized. There are several ways of attackingthis problem: keeping a \state" in the server, combine requests, reference images with URLs forinstance, etc.5 ConclusionsThis chapter presented some of the recent developments in linear algebra software designed to ex-ploit advanced-architecture computers. We focused on three essential components out of which cur-rent and modern problem solving environments are constructed: well-designed numerical softwarelibraries, automatic generators of optimized numerical kernels and exible, easy-to-access softwaresystems enabling the hardware and software computational resources. Each of these componentswas concretely illustrated with existing and/or ongoing research projects. We summarize below themost important features of these components. We hope the insight we gained from our work willinuence future developers of hardware, compilers and systems software so that they provide toolsto facilitate development of high quality portable scienti�c problem solving environments.5.1 Well-Designed Numerical Software LibrariesPortability of programs has always been an important consideration. Portability was easy toachieve when there was a single architectural paradigm (the serial von Neumann machine) and asingle programming language for scienti�c programming (Fortran) embodying that common modelof computation. Architectural and linguistic diversity have made portability much more di�cult,but no less important, to attain. Users simply do not wish to invest signi�cant amounts of timeto create large-scale application codes for each new machine. Our answer is to develop portablesoftware libraries that hide machine-speci�c details.In order to be truly portable, parallel software libraries must be standardized. In a parallel comput-ing environment in which the higher-level routines and/or abstractions are built upon lower-levelcomputation and message-passing routines, the bene�ts of standardization are particularly appar-ent. Furthermore, the de�nition of computational and message-passing standards provides vendorswith a clearly de�ned base set of routines that they can implement e�ciently.From the user's point of view, portability means that, as new machines are developed, they aresimply added to the network, supplying cycles where they are most appropriate.From the mathematical software developer's point of view, portability may require signi�cant e�ort.Economy in development and maintenance of mathematical software demands that such develop-ment e�ort be leveraged over as many di�erent computer systems as possible. Given the greatdiversity of parallel architectures, this type of portability is attainable to only a limited degree, butmachine dependences can at least be isolated.Like portability, scalability demands that a program be reasonably e�ective over a wide range31

of number of processors. The scalability of parallel algorithms, and software libraries based onthem, over a wide range of architectural designs and numbers of processors will likely require thatthe fundamental granularity of computation be adjustable to suit the particular circumstances inwhich the software may happen to execute. The ScaLAPACK approach to this problem is blockalgorithms with adjustable block size.Scalable parallel architectures of the present and the future are likely to be based on a distributed-memory architectural paradigm. In the longer term, progress in hardware development, operatingsystems, languages, compilers, and networks may make it possible for users to view such distributedarchitectures (without signi�cant loss of e�ciency) as having a shared-memory with a global addressspace. Today, however, the distributed nature of the underlying hardware continues to be visible atthe programming level; therefore, e�cient procedures for explicit communication will continue tobe necessary. Given this fact, standards for basic message passing (send/receive), as well as higher-level communication constructs (global summation, broadcast, etc.), have become essential to thedevelopment of scalable libraries that have any degree of portability. In addition to standardizinggeneral communication primitives, it may also be advantageous to establish standards for problem-speci�c constructs in commonly occurring areas such as linear algebra.Traditionally, large, general-purpose mathematical software libraries have required users to writetheir own programs that call library routines to solve speci�c subproblems that arise during a com-putation. Adapted to a shared-memory parallel environment, this conventional interface still o�erssome potential for hiding underlying complexity. For example, the LAPACK project incorporatesparallelism in the Level 3 BLAS, where it is not directly visible to the user.When going from shared-memory systems to the more readily scalable distributed-memory sys-tems, the complexity of the distributed data structures required is more di�cult to hide from theuser. One of the major design goal of High Performance Fortran (HPF) [KLS+94] was to achieve(almost) a transparent program portability to the user, from shared-memory multiprocessors upto distributed-memory parallel computers and networks of workstations. But writing e�cient nu-merical kernels with HPF is not an easy task. First of all, there is the need to recast linear algebrakernels in terms of block operations (otherwise, as already mentioned, the performance will belimited by that of Level 1 BLAS routines). Second, the user is required to explicitly state how thedata is partitioned amongst the processors. Third, not only must the problem decomposition anddata layout be speci�ed, but di�erent phases of the user's problem may require transformationsbetween di�erent distributed data structures. Hence, the HPF programmer may well choose to callScaLAPACK routines just as he called LAPACK routines on sequential processors with a memoryhierarchy. To facilitate this task, an interface has been developed [BDP+98]. The design of thisinterface has been made possible because ScaLAPACK is using the same block-cyclic distributionprimitives as those speci�ed in the HPF standards. Of course, HPF can still prove a useful tool ata higher level, that of parallelizing a whole scienti�c operation, because the user will be relievedfrom the low level details of generating the code for communications.32

5.2 Automatic Generation and Optimization of Numerical Kernels on VariousProcessor ArchitecturesThe ATLAS package presently available on netlib is organized around the matrix-matrix multipli-cation. This operation is the essential building block of all of the Level 3 BLAS. Initial researchusing publicly available matrix-multiply-based BLAS implementations [KLV93, DDP94] suggeststhat this provides a perfectly acceptable Level 3 BLAS. As time allows, we can avoid some ofthe O(N2) costs associated with using the matrix-multiply-based BLAS by supporting the Level 3BLAS directly in ATLAS. We also plan on providing the software for complex data types.We have preliminary results for the most important Level 2 BLAS routine (matrix-vector multiply)as well. This is of particular importance, because matrix vector operations, which have O(N2)operations and O(N2) data, demand a signi�cantly di�erent code generation approach than thatrequired for matrix-matrix operations, where the data is O(N2), but the operation count is O(N3).Initial results suggest that ATLAS will achieve comparable success with optimizing the Level 2BLAS as has been achieved for Level 3 (this means that the ATLAS timings compared to the vendorwill be comparable; obviously, unless the target architecture supports many pipes to memory, aLevel 2 BLAS operation will not be as e�cient as the corresponding Level 3 BLAS operation).Another avenue of ongoing research involves sparse algorithms. The fundamental building blockof iterative methods is the sparse matrix-vector multiply. This work leverages the present research(in particular, make use of the dense matrix-vector multiply). The present work uses compile-timeadaptation of software. Since matrix-vector multiply may be called literally thousands of timesduring the course of an iterative method, run-time adaptation is also investigated. These run-time adaptations may include matrix dependent transformations [Tol97], as well as speci�c codegeneration.ATLAS has demonstrated the ability to produce highly optimized matrix multiply for a wide rangeof architectures based on a code generator that probes and searches the system for an optimal setof parameters. This avoids the tedious task of generating by hand routines optimized for a speci�carchitecture. We believe these ideas can be expanded to cover not only the Level 3 BLAS, butLevel 2 BLAS as well. In addition there is scope for additional operations beyond the BLAS, suchas sparse matrix-vector operations, and FFTs.5.3 The NetSolve Problem Solving EnvironmentWe have discussed throughout this chapter how NetSolve can be customized, extended, and usedfor a variety of purposes. We �rst described in Sections 4.2.1 and 4.2.2 how NetSolve can encompassnew types of computing resources, resulting in a more powerful and exible environment and raisingnew research issues. We next discussed in Section 4.2.3 how NetSolve and Ninf can be merged intoa single metacomputing environment. Finally, in Section 4.2.4, we gave an example of an entireapplication that uses NetSolve as an operating environment to build general image processingframework. All these developments take place at di�erent levels in the NetSolve project and havehad and will continue to have an impact on the project itself, causing it to improve and expand.The scienti�c community has long used the Internet for communication of email, software, and33

documentation. Until recently there has been little use of the network for actual computations.This situation is changing rapidly and will have an enormous impact on the future. Novel userinterfaces that hide the complexity of scalable parallelism require new concepts and mechanisms forrepresenting scienti�c computational problems and for specifying how those problems relate to eachother. Very high level languages and systems, perhaps graphically based, not only would facilitatethe use of mathematical software from the user's point of view, but also help to automate thedetermination of e�ective partitioning, mapping, granularity, data structures, etc. However, newconcepts in problem speci�cation and representation may also require new mathematical researchon the analytic, algebraic, and topological properties of problems (e.g., existence and uniqueness).Software and Documentation AvailabilityMost of the software mentioned in this document and the corresponding documentations are in thepublic domain, and are available from netlib (http://www.netlib.org/) [DG87]. For instance,the EISPACK, LINPACK, LAPACK, BLACS, ScaLAPACK, and ATLAS software packages arein the public domain, and are available from netlib. Moreover, these publically available softwarepackages can also be retrieved by e-mail. For example, to obtain more information on LAPACK, oneshould send the following one-line email message to netlib@ornl.gov: send index from lapack.Information for other packages can be similarly obtained. Real-time information on the NetSolveproject can be found at the following web address http://www.cs.utk.edu/netsolve.References[ABB+95] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorensen, LAPACK User's Guide(second edition), SIAM, Philadelphia PA, 1995[AD89] E. Anderson and J. Dongarra, Results from the Initial Release of LAPACK, LAPACKWorking Note No. 16, Technical Report University of Tennessee, Knoxville, TN, 1989[AD90] E. Anderson and J. Dongarra, Evaluating Block Algorithm Variants in LAPACK,LAPACK Working Note No. 19, Technical Report University of Tennessee, Knoxville,TN, 1990[BAC+97] J. Bilmes, K. Asanovi�c, C.W. Chin and J. Demmel, Optimizing Matrix Multiply UsingPHiPAC: A Portable, High-Performance, ANSI C Coding Methodology, in Proceedingsof the International Conference on Supercomputing, ACM SIGARC, Vienna, Austria,1997[BCC+97] L. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S.Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker and R. C. Whaley, ScaLA-PACK Users' Guide, SIAM, Philadelphia PA, 199734

[BCD96] S. Browne, H. Casanova and J. Dongarra, Providing Access to High Performance Com-puting Technologies, Lecture Notes in Computer Science 1184, Editors J. Wasniewski,J. Dongarra, K. Madsen and D. Olesen, Springer-Verlag, Berlin, 1996[BDP+98] L. Blackford, J. Dongarra, C. Papadopoulos, and R. C. Whaley, Installation Guideand Design of the HPF 1.1 interface to ScaLAPACK, SLHPF, LAPACK WorkingNote No. 137, Technical Report UT CS-98-396, University of Tennessee, Knoxville,TN, 1998[CDG+93] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken andK. Yelick, Introduction to Split-C: Version 0.9, Computer Science Division { EECS,University of California, Berkeley, CA 94720, 1993[BW98] L. S. Blackford and R. C. Whaley, ScaLAPACK Evaluation and Performance at theDoD MSRCs, LAPACK Working Note No. 136, Technical Report UT CS-98-388,University of Tennessee, Knoxville, TN, 1998[CDO+95] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker and R. C. Whaley, AProposal for a Set of Parallel Basic Linear Algebra Subprograms, LAPACK WorkingNote No. 100, Technical report UT CS-95-292, University of Tennessee, Knoxville,TN, 1995[CD95] H. Casanova and J. Dongarra, NetSolve: A Network Server for Solving ComputationalScience Problems, Technical report UT CS-95-313, University of Tennessee, Depart-ment of Computer Science, Knoxville, TN, 1995[DDH+88] J. Dongarra, J. Du Croz, S. Hammarling and R. Hanson, An Extended Set of For-tran Basic Linear Algebra Subroutines, ACM Transactions on Mathematical Software,Volume 14(1), 1988[DDH+90] J. Dongarra, J. Du Croz, S. Hammarling and I. Du�, A Set of Level 3 Basic LinearAlgebra Subprograms, ACM Transactions on Mathematical Software, Volume 16(1),1990[DDP94] M. Dayde, I. Du� and A. Petitet, A Parallel Block Implementation of Level 3 BLASfor MIMD Vector Processors, ACM Transactions on Mathematical Software, Vol-ume 20(2), 1994[DDS+91] J. Dongarra, I. Du�, D. C. Sorensen and H. A. Van der Vorst, Solving Linear Systemson Vector and Shared Memory Computers, SIAM Publications, Philadelphia, PA, 1991[DG87] J. Dongarra and E. Grosse, Distribution of Mathematical Software via Electronic Mail,Communications of the ACM, Volume 30(5), 1987 (See http://www.netlib.org/)[Dem89] J. Demmel, LAPACK: A Portable Linear Algebra Library for Supercomputers, Pro-ceedings of the 1989 IEEE Control Systems Society Workshop on Computer-AidedControl System Design, 1989[DMR91] J. Dongarra, P. Mayes and G. Radicati di Brozolo, The IBM RISC System 6000 andLinear Algebra Operations, Supercomputer, 8(4):15{30, 199135

[Don84] J. Dongarra, Increasing the Performance of Mathematical Software through High-Level Modularity, Proceedings Sixth Int. Symp. Comp. Methods in Eng. & AppliedSciences, Versailles, France, North-Holland, 1984[DP87] J. Du Croz and M. Pont, The Development of a Floating-Point Validation Package,Proceedings of the 8th Symposium on Computer Arithmetic, IEEE Computer SocietyPress, Como, Italy, 1987[DPW93] J. Dongarra, R. Pozo and D. Walker, An Object Oriented Design for High PerformanceLinear Algebra on Distributed Memory Architectures, Proceedings of the Object Ori-ented Numerics Conference, 1993[ENB96] G. Eckel, J. Neider and E. Bassler, ImageVision Library Programming Guide, SiliconGraphics, Inc., Mountain View, CA, 1996[Ede93] A. Edelman, Large Dense Numerical Linear Algebra in 1993: The Parallel ComputingInuence, International Journal of Supercomputing Applications, Vol. 7, No. 2, 1993[FJL+88] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D. Walker, Solving Problemson Concurrent Processors, Volume 1, Prentice Hall, Englewood Cli�s, N.J., 1988[FK98] The Grid { Blueprint for a New Computing Infrastructure, Eds. I. Foster andC. Kesselman, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1998[FO88] E. Felten and S. Otto, Coherent Parallel C, Proceedings of the Third Conference onHypercube Concurrent Computers and Applications", ACM Press, 1988[GBD+94] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam, PVM :Parallel Virtual Machine. A Users' Guide and Tutorial for Networked Parallel Com-puting, The MIT Press Cambridge, Massachusetts, 1994[GK90] A. Gupta and V. Kumar, On the Scalability of FFT on Parallel Computers, Pro-ceedings of the Frontiers 90 Conference on Massively Parallel Computation, IEEEComputer Society Press, 1990[GPS90] K. Gallivan, R. Plemmons and A. Sameh, Parallel Algorithms for Dense Linear AlgebraComputations, SIAM Review, 32(1), 1990[HJ81] R. W. Hockney and C. R. Jesshope, Parallel Computers, Adam Hilger Ltd., Bristol,UK, 1981[HS67] J. Hess and M. Smith, Calculation of Potential Flows about Arbitrary Bodies, in D.K�uchemann, editor, Progress in Aeronautical Sciences, Vol. 8, Pergamon Press, 1967[Har90] R. Harrington, Origin and Development of the Method of Moments for Field Compu-tation, IEEE Antennas and Propagation Magazine, 1990[Hes90] J. Hess, Panel Methods in Computational Fluid Dynamics, Annal Reviews of FluidMechanics, Vol. 22, 1990[Kah87] W. Kahan, Paranoia, Available from netlib [DG87]36

[KLS+94] C. Koebel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel, The High PerformanceFortran Handbook, The MIT Press, Cambridge, Massachusetts, 1994[KLV93] B. K�agstr�om, P. Ling and C. Van Loan, Portable High Performance GEMM-basedLevel 3 BLAS, in R. F. Sincovec et al., editor, Parallel Processing for Scienti�c Com-puting, SIAM, Philadelphia, 1993[LHK+79] C. Lawson, R. Hanson, D. Kincaid and F. Krogh, Basic Linear Algebra Subprogramsfor Fortran Usage, ACM Trans. Math. Softw., Volume 5, 1979[LLM88] M. Litzkow and M. Livny and M.W. Mutka, Condor - A Hunter of Idle Workstations,Proceedings of the 8th International Conference of Distributed Computing Systems,1988[Mat92] The Math Works Inc., MATLAB Reference Guide, The Math Works Inc., 1992[MPI+94] Message Passing Interface Forum, MPI: A Message-Passing Interface standard, Inter-national Journal of Supercomputer Applications, Volume 8(3/4), 1994[Obe97] M. Oberhuber, http://www.icg.tu-graz.ac.at/mober/pub, Integrating ImageVi-sion into NetSolve, 1997[SOH+96] M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Dongarra, MPI: The CompleteReference, MIT Press, Cambridge, Massachusetts, 1996[SSN+96] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka and U. Nagashima, Ninf : Networkbased Information Library for Globally High Performance Computing, Proceedings ofParallel Object-Oriented Methods and Applications (POOMA), Santa Fe, 1996[Tol97] S. Toledo, Improving Instruction-Level Parallelism in Sparse Matrix-Vector Multipli-cation Using Reordering, Blocking, and Prefetching, in Proceedings of the 8th SIAMConference on Parallel Processing for Scienti�c Computing, SIAM, 1997[WD95] R. C. Whaley and J. Dongarra, A User's Guide to the BLACS v1.1, LAPACKWorkingNote No. 94, Technical Report UT CS-95-281, University of Tennessee, Knoxville, 1995(See also http://www.netlib.org/blacs/)[WD97] R. C. Whaley and J. Dongarra, Automatically Tuned Linear Algebra Software, LA-PACK Working Note No. 131, Technical Report UT CS-97-366, University of Ten-nessee, Knoxville, TN, 1997 (See also http://www.netlib.org/atlas/) (Note: Arevised version of this paper will appear in the Proceedings of Supercomputing '98,ACM SIGARCH and IEEE Computer Society)[WR71] J. Wilkinson, C. Reinsch, Handbook for Automatic Computation: Volume II - LinearAlgebra, Springer-Verlag, New York, 1971[Wan91] J. Wang, Generalized Moment Methods in Electromagnetics, John Wiley & Sons,New-York, 1991[Wol96] S. Wolfram, The Mathematica Book, Third Edition, Wolfram Median, Inc. and Cam-bridge University Press, 1996 37

