
NetSolve version 1.2:Design and ImplementationHenri Casanova � Jack Dongarra� yNovember 6, 1998AbstractThe design and implementation of NetSolve have been largely modi�ed and im-proved in version 1.2. This document reviews the general architecture of the software,and gives many details about its implementation. This document is of interest to fu-ture NetSolve developers, to individuals who want to add on to NetSolve (e.g. newuser interfaces), or to curious users.
�Department of Computer Science, University of Tennessee, TN 37996, USAyMathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Contents1 Introduction 32 Software Architecture 42.1 Overview . 42.2 Compilation . 52.3 Source Code . 63 Networking 73.1 XDR . 73.2 Transactions . 83.3 Future of Networking in NetSolve . 94 Fundamental Data Structures 95 Protocols 105.1 Transaction not Involving any Client Process 105.2 Transactions Involving a Client Process . 116 The NetSolve Client 126.1 Client Core . 126.2 C/Fortran API Implementation . 136.3 Matlab API Implementation . 136.4 Mathematica API Implementation . 146.5 Java GUI/API Implementation . 146.6 Farming Implementation . 147 The NetSolve Agent 158 The NetSolve Server 158.1 Customized Servers . 168.2 Expanding a Server . 168.3 User Provided Functions . 179 Conclusion 17A Protocol speci�cations 202

1 IntroductionThis document is intended to provide information about the internals of NetSolve version1.2. The NetSolve project started in the Summer of 1995. The �rst public release of analpha version (1.0) occurred in January 1996 and generated a lot of feedback (suggestions,bug reports, new applications, ...). That feedback led to the release of NetSolve version1.1.b in January 1998. NetSolve's popularity has been growing and the tools for buildinga computational Grid [1] have become more available. The 1.1.b design started to show itsweaknesses in two ways: (i) adding new features needed by new users became problematicbecause of inappropriate design decisions; (ii) the seamless integration of new tools for thecomputation grid seemed di�cult. Those observations motivated a complete rewrite andre-design of the software: NetSolve 1.2. The di�erence between NetSolve 1.1.b and NetSolve1.2 will not be as striking to the NetSolve user (even though a number of new features andcapabilities have been added) as to NetSolve developers. Like version 1.1.b, NetSolve 1.2 hasbeen ported to most UNIX platforms. In addition, it provides Windows 95/NT C, Matlaband Mathematica client interfaces.This document is organized as follows. Section 2 describes the general architecture ofthe software. Section 3 describes how networking is done in NetSolve 1.2. Section 4 liststhe fundamental data structures. Section 5 details the protocols between agents, servers andclients. Sections 6.1, 6.2, 6.3, 6.4, and 6.5 describe general idea behind the implementationof the NetSolve client and its C, Fortran, Matlab, Mathematica, and Java APIs. Sections 7and 8 gives information about the implementation of the NetSolve agent and server. Section 9concludes the document with a set of ideas for short-term and long-term evolutions andimprovements.One of the di�culties about writing a description of the implementation of an ever-evolving research project is that detailed information becomes out-of-date rather quickly.We believe that this document is low-level enough to be relevant for future developers whilebeing high-level enough so that it can be easily updated for future versions of the software.This is accomplished in several ways. First, this document shows NetSolve as a set ofsomewhat independent modules or subsystems (e.g. the networking subsystem in Section 3)and how each one of them can be entirely replaced by another subsystem of equivalentfunctionality. We expect this to happen more and more as grid-enabled tools become furtherstable and available. Second, this document contains a lot of hints and information thatwere gathered during the development of NetSolve. Those are mostly of general interestto readers with little experience with portable UNIX system programming and will be ofuse for future versions of NetSolve. Third, this document is structured such that it can bemodi�ed/upgraded easily when new versions of the software become available. Our goal isto make this document the implementation reference and to update it with any relevantmodi�cations in the software.References to NetSolve include numerous reports and publications [2, 3, 4, 5] as well asthe latest edition of the Users' Guide [6]. We assume that the reader is familiar with thematerial in the Users' Guide. 3

2 Software Architecture2.1 Overview
Core Functions

Client core

MathematicaMatlabCFortran

Java

NetSolve Client

Server daemon

 Core
Functions

Numerical
 Software

 Server
Modules

NetSolve Server

Network

NetSolve Agent

Scheduler Data base

Core Functions

Agent daemon

 NetSolve
Code Generator

Parser

Code Generator

 Problem
Description
 Files

Core Functions

NetSolve Tools

Client Core

Figure 1: Software architectureFigure 1 show the basic organization of the NetSolve software. There are 5 distinctcomponents:� The Agent,� The Server,� The Client,� The Code Generator,� The Tools. 4

The NetSolve agent and servers are detailed in Sections 7 and 8. The NetSolve client con-tained several interfaces detailed in Sections 6.2 to 6.5. All but the Java interface are buildon top of a common set of routines called the Client Core. These routines implement basicclient functionalities and are described in Section 6.1. The Code Generator is described inSection 8.2. The NetSolve tools are described in the Users' Guide and their implementationis rather trivial and will not be described in this document. Almost every component of thesystem is build on top of Core Functions. Those functions implement all the low-level func-tionalities in NetSolve: those that handle networking and manage the basic data structures(see Sections 3 and 4). Finally, the protocol used by modules to exchange information overthe network is described in Section 5.2.2 CompilationEven though the compilation procedure is most likely to undergo changes (e.g. use ofautoconf), we still deem it necessary to say a few words about it. In NetSolve version1.2 the compilation in done with make which is a somewhat portable way of compiling soft-ware. However, experience shows that only a small subset of its functionalities is trulyportable. In fact, [7] says: \... many useful features have been added by various implemen-tors after make had time to spread and to develop into di�erent variants...their use de�nitelyreduces the portability of your description �les". And furthermore, \many programmershave added features to make without updating the documentation". The rule of thumb thatwe recommend is: if a feature seems unusually useful, it is probably not portable.The main make�le is located $NETSOLVE ROOT/src. From now on we will assume that thecurrent directory is $NETSOLVE ROOT and we will denote subdirectories as ./src. ./src/Makefilecalls and includes a number of other make�les. Some of those make�les are generated atcompile time by the Code Generator (see Section 8.2). Figure 2 shows the entire make�lestructure with all the make�les:� ./src/Makefile: main entry-point,� ./conf/conf.def: general settings,� ./conf/$NETSOLVE ARCH.def: machine dependent settings,� ./src/Makefile.def: general variable de�nitions,� ./src/Makefile.object: object rules,� ./src/Makefile.numerical: computational module make�le,� ./src/Makefile.num libs: numerical software dependencies,� ./src/Makefile.sample software: sample software make�le.5

./src/Makefile.sample_software

./src/Makefile

./src/Makefile.obj

./conf/conf.def

./conf/$NETSOLVE_ARCH.def

./src/Makefile.def

./src/Makefile.numerical

./src/Makefile.num_libs

 Code
Generator

Generates

Includes

Calls

Figure 2: Make�le structure2.3 Source CodeIn this section, we give a list of all the source code directories in the current NetSolvedistribution:� ./src/Agent: The agent,� ./src/CFortran: The C and Fortran APIs,� ./src/ClientCore: The client core functions,� ./src/CodeGenerator: The code generator,� ./src/CoreFunctions: The core functions,� ./src/Demo: The demos,� ./src/Examples: The C, Fortran and farming examples,� ./src/Farming: The farming interface,� ./src/GlobusHBMWrappers: Wrappers around the Globus Heart Beat Monitor,6

� ./src/MCellInterface: The interface to MCell (see [8]),� ./src/Mathematica: The Mathematica interface,� ./src/Matlab: The Matlab interface,� ./src/SampleNumericalSoftware: The default numerical software,� ./src/Server: The server,{ ./src/Server/Condor: The Condor server,{ ./src/Server/Standard: The standard server,{ ./src/Server/ScaLAPACK: The ScaLAPACK server,{ ./src/Server/PETSC: The PETSC server.� ./src/Testing: The testing programs for the C, Fortran and Matlab interfaces,� ./src/Tool: The command line tools.3 NetworkingIn NetSolve 1.2 networking is done with TCP/IP and the socket layer. However, all thenetworking is kept isolated from the rest of the software. The only routines performing anynetworking tasks are in:� ./src/CoreFunctions/socketutil.c� ./src/CoreFunctions/communicator.cThe �rst �le contains wrappers around the socket layer to (i) bind a socket to a port; (ii)connect a socket to a remote port; (iii) poll a socket to see if some data has arrived. Thewrappers are useful because they isolate those system-dependent functionalities and becausethe actual calls with the socket layer are rather cumbersome. The second �le contains all thefunctions that are used to actually transfer data over the network in NetSolve. The followingtwo sections give details on how transfers are performed.3.1 XDRThe common method used to transfer data between machines which do not have the sameinternal data representations is the XDR protocol [9]. Since NetSolve operates in hetero-geneous environment it uses XDR. However, XDR might be expensive when transferringlarge amount of data, typically user data. NetSolve is designed such that it avoids usingXDR when it would be too costly and unnecessary. Each host in the NetSolve system isdescribed by the HostDesc data structure (see Section 4), which contains an integer �eld, the7

data format. This integer is set in the same way it is set in the reference implementation ofPVM [10] in ./src/include/netsolvearch.h. NetSolve compares the data format of hoststo decide on whether XDR should be used or not.We give here a few notes about the use of XDR in NetSolve. First, xdr vector() isused as opposed to xdr array(). Indeed, xdr array() inserts an XDR-encoded integerrepresenting the size of the array before the XDR-encoded elements of the array. Thisis not practical when sending over the network a matrix with a number of rows di�er-ent from its leading dimension (sub-matrices). Second, xdrstdio create() is not used.It would be convenient in order to bind the XDR stream to the socket stream, however,this routine is not available on all platform and especially on Windows systems. Instead,xdrmem create() is used with dynamically allocated bu�ers. It would be possible to use onestatic bu�er for better performance. Third, ./src/CoreFunction/communicator.c containsa function called setXDRSizes() which computes the memory space needed to encode eachdata type. The memory space needed can then be then subsequently accessed by a call tonetsolve xdrsizeof(). This is used to allocate the bu�ers in which encoded data will beplaced. Again, it would be better to use xdr sizeof() but it is missing in some imple-mentations of XDR (e.g. HP-UX). Lastly, NetSolve de�nes the structures scomplex anddcomplex in ./include/communicator.h to stored single and double precision numbers ina Fortran manner. The routines to process those structures with XDR are xdr scomplex()and xdr dcomplex() and they are implemented in ./src/CoreFunctions/communicator.c.3.2 TransactionsIn this section, we describe a typical transaction between two processes over the network.By transaction we mean an entire exchange of data between the two processes, startingfrom socket connection until socket shutdown, with any number of data transmissions in anydirection in between. Let us call A the client process connecting to B, the server process.First, B needs to set up a listening socket bound to a port with a call to establishSocket()and accept connections with the accept() system call. Then, A calls connectToSocket()to connect to the listening socket of B. At this point, the two processes are connectedand can start calling the routines in ./src/CoreFunctions/communicator.c. Process Acalls initTransaction() and B calls acceptTransaction(). These calls take care of theagreement about the XDR encoding by sending and receiving a byte with two possiblebit patterns: (i) all 0 meaning non-XDR and (ii) all 1 meaning XDR. Each call returns aCommunicator structure on each side. That structure needs to be used for any subsequentcommunication until socket shutdown. At this point, both processes can exchange databy any calls to routines such as sendInt(), recvInt(), sendArray(), recvArray(), andthe like, which are all implemented in ./src/CoreFunctions/communicator.c. When allthe necessary data has been transmitted, the connection must be shutdown by a call toendTransaction() on both sides. 8

3.3 Future of Networking in NetSolveAs seen in the previous sections, the networking subsystem in NetSolve is isolated from therest of the software as it is entirely implemented in only two source �les. We anticipatethat this implementation directly on top of TCP/IP will become obsolete as soon as anappropriate communication protocol becomes available on the Grid. Such a protocol willprobably implement secure network communications [11]. At the time this document isbeing written, Nexus [12] seems to be the most likely candidate as it is part of a majorGrid infrastructure project [13] and already implements mechanisms for security and remoteprocess creation in a portable fashion.4 Fundamental Data StructuresIn this section, we give brief descriptions of some of the fundamental data structures usedthroughout the NetSolve code. Those data structures are de�ned in the header �les locatedin ./include:� AgentDesc: contains information about an agent. At the moment, it contains only aport number and a pointer to a HostDesc.� ServerDesc: contains information about a server. That information includes a pointerto a HostDesc, a port number, statistics about network speed and CPU load, alongwith other data gathered from the server con�guration �le.� HostDesc: contains information about a host, including its hostname, its IP address,its architecture type, ...� ProblemDesc: describes a NetSolve problem and contains the problem name, descrip-tion, a list of input Object structures, a list of output Object structures, along withmiscellaneous information that corresponds to the content of the associated problemdescription �le.� Object: describes a datum. It contains the object type, the object's data type, adescription, a name, and attributes that depend on the object type. The attributescan be �lled in with information about the memory space to transfer data over thenetwork, or left empty in which case the Object structure provides only problemspeci�cation information.� MappingDesc: we call mapping the correspondence between a server and a problem.The NetSolve agent keeps track of which server can perform which problem in a matrixof mappings. Hence, a mapping contains a pointer to a ProblemDesc, a pointer to aServerDesc, a the number of failures encountered for that particular server/problemcombination. 9

A collection of functions is implemented in ./src/CoreFunctions to manipulate thosestructures. For example, there are functions to allocate/free memory for each of the datastructures, to send/receive the structures over the network, to read/write the data structuresto �les, etc. It would be too tedious to give here an exhaustive list of all the structures andassociated functions, and we encourage the reader to just inspect the content of ./includeand ./src/CoreFunctions.5 ProtocolsDuring a transaction between two processes, NetSolve uses integer tags for control informa-tions (as opposed to actual data). All the tags are de�ned as macros in ./include/protocol.hand start with NS PROT in order to di�erentiate them from other integer macros in the sourcecode. This section is rather long as it contains the complete speci�cation of the NetSolveprotocol of the current NetSolve version. We assume that the reader is familiar with theroles of the NetSolve client, agent, and server. Each transaction is described separately, andwe assume that the network connection is established and that the transaction has beeninitiated as explained in Section 3.2.In what follows, we describe a transaction by specifying the sender of each datum, thedata type (C data type or NetSolve-de�ned structure) and a short description of the datum.We use the symbol � to denote zero or more datum of a current data type.We distinguish two classes of transactions: (i) the ones that do not involve any clientprocess and (ii) the ones that involve client processes. Readers only interested in building anew client interface to NetSolve should skip Section 5.1 and go directly to Section 5.2. Allthe tables referenced are in Appendix A.5.1 Transaction not Involving any Client ProcessServer registration : A new server registers to an agent according to Table 1. The servermay then register to some of the agents whose descriptors are in the returned list. This isdecided by the server con�guration �le (� after the @AGENT clause). Note that the descriptorof the agent that was contacted in the �rst place is also in that list.New agent : A new agent may let an existing server know of its existence according toTable 2. That agent was able to learn of the server's existence from another agent becausethe server was con�gured to allow such behavior (� after the @AGENT clause in the servercon�guration �le).Network measurements : A process can measure the network latency and bandwidthbetween itself and a server according to Table 3. This feature will most certainly be renderedobsolete by the use of Grid-speci�c tool to obtain such measurements (see [14] for example).Table 3 does not describe the entire protocol for the actual measurements but points to thesource code. 10

Network measurement report : A process that has completed a network measurement(see above) may report the measurement to an agent according to Table 5.Server Re-registration : It is possible for an agent to be contacted by a server (for aworkload report typically) that it is not aware of. For instance, this happens when an agentis restarted and servers never stopped running. In this case, the agent asks unknown serversto register again according to Table 4.Terminate Server : It is possible to terminate a server according to Table 6. The processtrying to terminate a server must proceed via an agent. This is used by the NetSolvecommand line tools for instance.Service completion : When a server's child process �nishes a user computation (success-fully or not), it noti�es the server according to Table 7.Agent registration : A new agent (Agent 2) registers to an existing agent (Agent 1)according to table 8. Agent 1 send the server descriptors of those servers that were con�guredwith a � after the @AGENT clause of their con�guration �le. Agent 2 may then notify thoseservers of its existence.Workload report : A server may report its workload to any agent according to Table 9.Terminate Agent : It is possible to terminate an agent according to Table 10. This isused by the NetSolve command line tools for instance.5.2 Transactions Involving a Client ProcessNumber of Servers : A process (typically a client) can query an agent to know thenumber of servers that (i) can solve a given problem and (ii) have never failed while solvingthat problem before. This is done according to Table 11Problem Information : A process (typically a client) can query an agent to get the entireProblemDesc structure associated with a problem name according to Table 12.List of Agents : a process can query an agent to get the list of all agents in the systemaccording to Table 13.List of Server : a process can query an agent to get the list of all servers in the systemaccording to Table 14. 11

List of Problems : a process can query an agent to get the list of all problems solvableby the system according to Table 15.Submitting a request to an agent : a client submits a request to an agent accordingto Table 16. The agent does not send back the whole ServerDesc structures since it couldcontain extensive workload and network history information in future implementations ofNetSolve.Reporting a server failure : a process may report a server failure to an agent accordingto table 17.Reporting a request completion : a client process must report request completions toits agent according to Table 18.Submitting a request to a server : a client may submit a request to a server accordingto Table 19.Terminating a request : a client may prematurely terminate a pending request by con-tacting the server serving the request according to Table 20.6 The NetSolve Client6.1 Client CoreAs depicted on �gure 1, all but the Java client interfaces are build on top of a common setof routines called the Client Core. Those routines are located in ./src/ClientCore andbasically implement the following functionalities:1. sending a request to NetSolve,2. waiting for a request's completion,3. polling for a request,4. getting miscellaneous information about the NetSolve system,5. reporting errors to a NetSolve agent.The client core routines use the data structures described in Section 4 and the networkingsubsystem to implement the protocol of Section 5. They also use an additional data structure,RequestDesc, that contains information about pending requests. That structure is de�nedin ./include/requestdesc.h and is used only inside the client core. Finally, let us notethat that function netsolveWaitProbeRequest() that is used to check on pending requests12

performs automatic resubmission of requests in case of failures and may call itself recursively.The purpose of this behavior is to isolate failure detection and recovery inside the client core.The role of the AIPs described in the following sections is to gather information from the end-user about the data layout in his/her memory space, process and pass down that informationdown to the client core.Finally let us note that in the current implementation, a NetSolve client maintains aTCP/IP connection to each server that is performing a computation on behalf of that client.This solution was adopted for the sake of simplicity. However, it is not scalable as mostoperating systems impose an upper bound on the number of �le descriptors that can beopened by a single process. This is especially penalizing for NetSolve's request farmingfeature (see Section 6.6). The alternative is to allow the client to set up a listening socketbound to a given port and have the server connect back to that socket when they complete acomputation. At the moment, NetSolve implements a function, getMaxNumberFileDesc(),to �nd out how many �le descriptors can be opened simultaneously by a single process. Thesystem call getdtablesize() is not used because it is not quite portable.6.2 C/Fortran API ImplementationThe C and fortran APIs are implemented in ./src/CFortran. The Fortran API consistsof C functions that are to be called directly from Fortran. The main functions, netsl()and netslnb() for C, fnetsl() and fnetslnb() for Fortran, take a variable number ofarguments. The di�erences between the C and Fortran functions come from the di�er-ences between stacks generated by C calls and Fortran calls (call by reference in For-tran, and call by value in C). In order to re-use code as much as possible, functions totransform a C or Fortran stack into an array of pointers or integers are implemented in./src/CFortran/callingsequence.c. Once the conversion has taken place, it is possiblefor all four main functions to call netslX() of netslnbX() that are independent on theoriginal language. Those two last functions use the client core routines to make transactionswith the agent and the servers.Finally, let us note that the way a Fortran stack is build is machine dependent whenarguments contains strings. Since Fortran strings are not null-terminated, it is necessaryto put the length of each string on the stack. On most architecture with most compilersthe lengths of all the strings passed as arguments are put at the end of the stack. How-ever, on CRAY machines, the length of a string is put on the stack right after the stringpointer. In all the cases we have encountered so far, the string lengths are put on the stacka integers and not as addresses of integers. Such details are handled by the functions in./src/CFortran/callingsequence.c.6.3 Matlab API ImplementationThe Matlab API to NetSolve is implemented in ./src/Matlab. It consists of 4 mex-�les, eachof them implementing one function of the API. We use the mex routines provides by Matlabto access data from the Matlab space and pass them down to the client core functions. Since13

Matlab is object oriented, the implementation is not as involved as for the C and FortranAPIs. However, care must be exerted when manipulating dynamic memory in Matlab.Indeed, dynamic memory must be allocated with a call to mxCalloc() instead of calloc().Furthermore, if memory needs to be persistent between calls to the mex-�les, it must bemade persistent explicitly with calls to mexMakeMemoryPersistent(). Persistent memoryis the only way to allow the user to get control back when he/she uses non-blocking calls.To that end, the Matlab API contains functions to make some of the NetSolve structurespersistent.Matlab stores complex matrices in a di�erent way than Fortran. A complex matrix inMatlab consists of two matrices: real part and imaginary part. This means that the real partand imaginary part of a matrix element are not contiguous in memory. NetSolve assumes aFortran storage so that it can use directly most numerical software on the server side. TheMatlab API performs translation from one storage mode to the other. Finally, note thatall numerical data in Matlab is stored as double precision reals. For instance, a matrix ofintegers is stored as a matrix of doubles. The Matlab API performs data conversions tohandle this particularity.6.4 Mathematica API ImplementationThe Mathematica [15] API in implemented in ./src/Mathematica and is very similar inphilosophy to the Matlab interface. It was developed by Alexander Karaivanov and detailson the implementation can be found in [5]. Let us just say that the C code from the clientcore function can be used more directly than for the Matlab API as the memorymanagementissues are much more straightforward.6.5 Java GUI/API ImplementationThe Java interfaces to NetSolve are implemented 100% in Java which makes them moredi�cult to maintain as they cannot re-use any code from the client core. Most functionsfrom ./src/CoreFunctions and ./src/ClientCore have been re-implemented in Java andare used by both the API and the GUI. At the time this document is being written, the Javainterfaces have not yet been converted to NetSolve 1.2.6.6 Farming ImplementationThe netsl farm() function initiates multiple NetSolve requests and takes a variable numberof arguments. Like the functions of the C API, it converts its call stack to an array of pointersand integers and calls netsl farmX(). Even though this is not motivated by the existence ofa Fortran interface, it is always more convenient to work with an array than with a call stack.As seen in the Users' Guide, the arguments to netsl farm() are values returned by callsto ns int(), ns int array(), or ns ptr array(). Those functions all return an Iteratorstructure. That structure encapsulates information about how to generate the values of thearguments for each individual NetSolve request.14

The scheduling strategy for farming is entirely implemented in function netsl farmX()and is isolated from NetSolve's internals. This allows to do experiments and research onscheduling without having to know any of the NetSolve speci�cs. Furthermore, any of thatresearch is applicable to any other system that bears fundamental similarities to NetSolve(e.g. Ninf [16]).7 The NetSolve AgentThe NetSolve agent is implemented in ./src/Agent as a daemon that maintains a databaseof which computational services are available, on which machines. In addition is keeps trackof the status of the machines in terms of network proximity and workload. That data baseis stored as a matrix of MappingDesc structures (see Section 4). The tasks performed by theNetSolve agent are of the three following types:� Update the database with new information,� Answer queries about the database,� Use the database to estimate execution times.These tasks are accomplished according to the protocol described in Section 5. Updating thedatabase is done when (i) a new server registers, (ii) a client reports a failure about a server,(iii) a process reports a network speed measurement, (iv) a server broadcasts its workload.Queries about the database are issued by clients.The estimation of server execution times occurs for each incoming client request and isdone in ./src/Agent/scheduler.c. For each incoming request, the agent computes an esti-mate of the time necessary to ship the input data, perform the computation, and retrieve theoutput data, for each server in the system. This estimation exploits the database (workload,network speed, computational complexity) and the user request (data size, problem size).Once an execution time has been estimated for each server, the servers can be ranked fromthe most suitable one to the least suitable one. That list is then returned to the client asshown in Table 16.The implementation of the NetSolve agent is rather straightforward as it is not a realscheduler, but more a monitor of the resource pool. Future versions of NetSolve will needmore sophisticated scheduling policies as the diversity of computational resources and appli-cations increases. Such evolutions might increase the complexity of the agent (see Section 9).8 The NetSolve ServerLike the agent, the NetSolve server is implemented as a daemon. However, it's design is a lit-tle more complex due to the fact that (i) the server monitor the workload of the host it is run-ning on and that (ii) it can start computational processes to answer users' requests. Monitor-ing the workload is done by a process implemented in ./src/Server/workload manager.c.15

This process wakes up every IDLE TIME seconds (de�ned in ./include/workloadmanager.h,assesses the current workload, and may decides to broadcast its value to the agents in caseof signi�cant changes. This process needs to be restarted each time a new agent appearsin the system, which is of course done automatically by the server. Starting computationalprocesses is a little more complex and is the object of the following section.8.1 Customized ServersWhen a server �nally agrees to perform a computation (after checking the workload thresh-old, the user access restrictions, etc..), it needs to start a child process. In the most commonscenario, this is done by calling fork() and exec() system calls. However, several customizedversion of the NetSolve server use di�erent mechanisms to spawn computing processes. Atthe moment, there are four versions of the NetSolve server implemented in the followingdirectories:1. ./src/Server/Standard: standard fork() and exec(),2. ./src/Server/Condor: Condor job with condor submit,3. ./src/Server/ScaLAPACK: MPI job with mpirun,4. ./src/Server/PETSC: MPI job with mpirun.Adding a new customized server is rather standard. The procedure consists in creating anew sub-directory in ./src/Server that implements (i) the function that spawns the com-putation process, (ii) the main function of the computation process. For instance in the caseof the Condor [17, 18, 19] server, the spawning is done by issuing a call to the condor submitexecutable and waiting for that call to complete, whereas the main computational functionhas to read its input from �les rather than from the network. Once those two functions havebeen created, it just su�ces to modify the �le ./src/Server/generateservice.c to addthe call to spawn new customized server.8.2 Expanding a ServerAs explained in the NetSolve's Users' Guide, it is possible to expand a NetSolve server bygenerating new description �les and compiling them into a new server with the code gen-erator. The code generator is implemented in ./src/CodeGenerator. It parse the servercon�guration �le to get the list of description �les to be used. It then parses each problemdescription in those �les performing error checking and code generation. For each descrip-tion �le ./problems/file, the code generator generates ./src/Server/numerical-file.calong with the make�les to compile it (see Figure 2). The generation merely replaces oc-currences of mnemonics in the pseudo-code section of the problem description �le by actualdata structures references that are meaningful to the NetSolve server. Again, we expect thatthe reader is entirely familiar with the Users' Guide and we do not give details about the16

problem description �les. At the time this document is being written, the Java applet togenerate description �les in an interactive manner is still under testing.A large part of the NetSolve source code, both on the client and the server side and ofcourse within the code generator itself, is dedicated to the parsing/interpretation/storage ofthe information contained in the problem description �les. That part of the source code is alsothe most involved as the description language is complex, because low-level. Distributingthe aforementioned Java applet is an attempt to provide a higher level tool to generatedescription �le. Other projects like Ninf [16] use much higher level description languagesthereby choosing convenience over generality. Indeed, it is our experience that most legacynumerical code cannot be described accurately enough by a language that does not providelow-level primitives to access the memory layout. At this time, a collaboration the the Ninfteam has been initiated in order to make concerted decisions about the description languagethat should be used. That collaboration will undoubtedly result in changes that will impactthe NetSolve code generator, server, and client.8.3 User Provided FunctionsThe User Provided Function (UPF) feature in NetSolve allows a server to compile C orFortran source code on the y, perform some basic security checks, and link it into thecomputational process. This is useful for the numerous numerical software routines that takea function pointer as argument (typically for non-linear computations). The implementationof the UPF handling at the server side is done in ./src/Server/netsolveupf.c. That�les de�nes a list of allowed system or library calls. Once the source code is downloadedon the server side, the server generates a make�le to compile it. The server then examinesthe compiled object �les (with nm) for unde�ned symbols that are not in the list of allowedcalls. If all the calls are allowed, then the server generates another make�le to re-link thecomputational process with the UPF object �les. Once that new executable is available, itcan then be started by the server is the usual way (see Section 8.1). We do not make theclaim that this procedure is safe, but it provides a basis for experimentations.9 ConclusionNetSolve 1.2 is a consequent improvement over version 1.1.b as the code is easier to maintainand upgrade. A number of new features have been added without any di�culty thanks tothe new software architecture. As mentioned throughout this document, many parts ofthe software will probably be replaced in the near future (build procedure, networking,description language, etc...), but we are con�dent that such replacements will be ratherstraightforward. On issue that seems to be emerging is that of scheduling. At the moment,the NetSolve agent just maintains a database about the computational resources and usesthat database to provide the client with estimation about relative execution times. Theclient is the one responsible for the scheduling, especially in the farming interface. Shouldthe agent be the center of the scheduling decision ? The answer to such questions will17

probably arise from future experiments with the system and with new applications. Anotherimportant issue concerns data locality and proximity. Indeed, a number of applications donot need to use a full RPC paradigm as intermediary data might not be needed betweencalls. The idea would then be to cache such data on storage servers rather than returningit to clients. It may also be the case that an application makes a large number of callsto NetSolve and some input data is passed to each call. Such data could then be sharedbetween multiple remote servers without having each of them download and store a copy.This is particularly easy to do if that input data is a �le. This exact situation is in factcommon among many embarrassingly parallel applications that would make use of farming(e.g. Monte-Carlo simulations in MCell). NetSolve's characteristics make it an ideal terrainfor such computer science research as well as a powerful enabling technology that targetsdomain scientists.References[1] Ian Foster and Carl Kesselman, editors. The Grid, Blueprint for a New computing Infrastruc-ture. Morgan Kaufmann Publishers, Inc., 1998.[2] H Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational ScienceProblems. The International Journal of Supercomputer Applications and High PerformanceComputing, 1997.[3] H Casanova and J. Dongarra. The use of Java in the NetSolve project. In Proc. of the15th IMACS World Congress on Scienti�c Computation, Modelling and Applied Mathematics,Berlin. Department of Computer Science, University of Tennessee, Knoxville, 1997.[4] Henri Casanova and Jack Dongarra. NetSolve's Network Enabled Server: Examples andApplications. IEEE Computational Science & Engineering, 5(3):57{67, September 1998.[5] H. Casanova, J. Dongarra, A. Karaivanov, and J. Wasniewski. Mathematica Interface toNetSolve. Technical Report UNIC-98-05, UNI-C, September 1998.[6] H. Casanova, J. Dongarra, and K. Seymour. Client User's Guide to Netsolve. Technical ReportCS-96-343, Department of Computer Science, University of Tennessee, 1996.[7] A. Oram and S. Talbott. Managing Projects with make. O'Reilly & Associates, Inc., 1991.[8] H. Casanova, M. Kim, J. Plank, and J. Dongarra. Request Farming with NetSolve. TechnicalReport to appear, Department of Computer Science, University of Tennessee, 1998.[9] Inc. Sun Microsystems. XDR: External Data Representation Standard. RFC 1014, Sun Mi-crosystems, Inc., Jun. 1987.[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM : ParallelVirtual Machine. A Users' Guide and Tutorial for Networked Parallel Computing. The MITPress Cambridge, Massachusetts, 1994. 18

[11] A. Freier, P. Karlton, and P. Kocher. The SSL Protocol. Technical report, Netscape Commu-nications, 1996. Internet Draft.[12] I. Foster, C. Kesselman, and S. Tuecke. The Nexus Approach to Integrating Multithreadingand Communication. Journal of Parallel and Distributed Computing, 37:70{82, 1996.[13] I. Foster and K Kesselman. Globus: A Metacomputing Infrastructure Toolkit. In Proc.Workshop on Environments and Tools. SIAM, to appear.[14] R. Wolski. Dynamically forecasting network performance using the network weather service.Technical Report TR-CS96-494, U.C. San Diego, October 1996.[15] S. Wolfram. The Mathematica Book, Third Edition. Wolfram Median, Inc. and CambridgeUniversity Press, 1996.[16] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka, and U. Nagashima. Ninf : Network basedInformation Library for Globally High Performance Computing. In Proc. of Parallel Object-Oriented Methods and Applications (POOMA), Santa Fe, 1996.[17] M. Litzkow, M. Livny, and M.W. Mutka. Condor - A Hunter of Idle Workstations. In Proc. ofthe 8th International Conference of Distributed Computing Systems, pages 104{111. Depart-ment of Computer Science, University of Winsconsin, Madison, June 1988.[18] M. Litzkow and M. Livny. Experience with the Condor Distributed Batch System. In Proc.of IEEE Workshop on Experimental Distributed Systems. Department of Computer Science,University of Winsconsin, Madison, 1990.[19] J. Pruyne and M. Livny. A Worldwide Flock of Condors : Load Sharing among WorkstationClusters . Journal on Future Generations of Computer Systems, 12, 1996.
19

A Protocol speci�cationsSender Data ContentServer int NS PROT SV REGISTER- ServerDesc this server's descriptor- int number of problems for this server- ProblemDesc� corresponding problem descriptor listAgent int NS PROT REGISTRATION REFUSED (abort) orNS PROT REGISTRATION ACCEPTED (continue)- int total number of known agents- AgentDesc� corresponding agent descriptor listTable 1: Server registrationSender Data ContentAgent int NS PROT NEW AGENT- AgentDesc this agent's descriptorTable 2: New agentSender Data ContentProcess int NS PROT PONG REQUEST- ProblemDesc� corresponding problem descriptor listProcess/Server char� (see ./src/CoreFunctions/pong.cServer int latency in microseconds- int bandwidth in byte per second- int date (in seconds since 1/1/1970, 00:00:00)Table 3: Network measurements
20

Sender Data ContentAgent int NS PROT REGISTER AGAINTable 4: Network measurementsSender Data ContentProcess int NS PROT NETWORK REPORT- IPaddr type IP address of the measuring process- IPaddr type IP address of the server- int latency in microseconds- int bandwidth in byte per second- int date (in seconds since 1/1/1970, 00:00:00)Table 5: Network measurement reportSender Data ContentProcess to Agent int NS PROT KILL SERVER- IPaddr type IP address of the server to terminateAgent to Process int NS PROT SERVER PORTint port number of the server to kill (-1 if error)Process to Server int NS PROT KILL SERVERServer to Process int NS PROT NOT ALLOWED (not allowed) orNS PROT KILLED (killed)Table 6: Network measurementsSender Data ContentProcess int NS PROT SERVICE FINISHED- int restriction indexServer int any integer, for ackTable 7: Service completion21

Sender Data ContentAgent 2 int NS PROT AG REGISTER- AgentDesc this agent's descriptorAgent 1 int NS PROT REGISTRATION REFUSED (abort) orNS PROT REGISTRATION ACCEPTED (continue)- int total number of known agents- AgentDesc� corresponding agent descriptor list- int total number of known and advertisable servers- ServerDesc� corresponding server descriptor list- int total number of known problems- ProblemDesc� corresponding problem descriptor list- int total number of known mappings- MappingDesc� corresponding mapping descriptor listTable 8: Agent registrationSender Data ContentServer int NS PROT WPRKLOAD RREPORT- IPaddr type the server's IP address- int the server's port number- int the server's workload- int the date (in seconds since 1/1/1970, 00:00:00)Table 9: Workload reportSender Data ContentProcess int NS PROT KILL AGENT- char usernameServer int NS PROT NOT ALLOWED (unallowed)int NS PROT KILLED (killed)Table 10: Terminate AgentSender Data ContentProcess int NS PROT NB SERVERS- char problem's nameAgent int number of servers (may be 0)Table 11: Number of Servers22

Sender Data ContentProcess int NS PROT PROBLEM INFO- char problem's nameAgent int NS PROT PROBLEM NOT FOUND (abort) orNS PROT PROBLEM PROBLEM DESC (ok)ProblemDesc number of servers (may be 0)Table 12: Problem InformationSender Data ContentProcess int NS PROT AGENT LISTAgent int number of agents- AgentDesc� corresponding agent descriptor listTable 13: List of AgentsSender Data ContentProcess int NS PROT SERVER LISTAgent int number of servers- ServerDesc� corresponding server descriptor listTable 14: List of ServersSender Data ContentProcess int NS PROT PROBLEM LISTAgent int number of problems- ProblemDesc� corresponding problem descriptor listTable 15: List of Problems23

Sender Data ContentProcess int NS PROT PROBLEM SUBMIT- char * problem name- int input size in bytes- int output size in bytes- int problem sizeAgent int NS PROT PROBLEM NOT FOUND (abort) orNS PROT OK- int number of servers- (char * + server hostnameIPaddr type + server IPAddrint + server port numberint + server data formatint)� predicted execution time in secondsTable 16: Submitting a request to an agentSender Data ContentProcess int NS PROT SV FAILURE- IPaddr type server's IP address- char * server's hostname- int HOST ERROR orSERVER ERRORTable 17: Reporting a server failure
24

Sender Data ContentClient int NS PROT JOB COMPLETED- IPaddr type successful server's IP addressTable 18: Reporting a request completionSender Data ContentClient int NS PROT PROBLEM SOLVE- ProblemDesc descriptor of the problem to solveServer int NS PROT PROBLEM NOT FOUND (abort) orNS PROT BAD SPECIFICATION (abort) orNS PROT NOT ALLOWED (abort) orNS PROT ACCEPTED (ok)Client int client major- char * agent name- Object� all the input objects (with data)Server int NS PROT SERVIVE PID (ok) orNS PROT INTERNAL FAILURE (abort) orNS PROT BAD VALUES (abort) orNS PROT DIM MISMATCH (abort) orNS PROT NO SOLUTION (abort) orNS PROT UPF ERROR (abort) orNS PROT UPF UNSAFE (abort)- int service process pidComputation under wayServer char * server stdout- int NS PROT SOLVED (ok) orNS PROT INTERNAL FAILURE (abort) orNS PROT BAD VALUES (abort) orNS PROT DIM MISMATCH (abort) orNS PROT NO SOLUTION (abort)- Object� all the output objects (with data)Table 19: Submitting a request to a serverSender Data ContentClient int NS PROT KILL REQUEST- int service process pidServer int NS PROT KILLED (ok) orNS PROT SV FAILURE (error)Table 20: Terminating a request25

