
Application Level Fault-Tolerance forScaLAPACK in the NetSolve EnvironmentKim Buckner24 November 1998AbstractThis paper is a technical report documenting implementation and re-sults of providing for application level fault-tolerance for ScaLAPACKperforming a non-trivial computation. NetSolve was used to provide anenvironment for the stand-alone use of the ScaLAPACK. This is TechnicalReport UT-CS-98-409.1 IntroductionClient-server applications are not new nor are parallel computation grids. Ap-plications combining both client-server and parallel computational grids arebecoming more popular and fault-tolerance for these applications has not yetbeen fully explored. This combination should provide more insight into prob-lems involving fault-tolerance.We chose to investigate the client-server application NetSolve [1] due to itsease of use and ready availability. The parallel computation grid portion wasprovided by ScaLAPACK [2], a parallel linear algebra package. Both of theseare available from NETLIB and are compatible with many architectures. Ourgoal in this project was to determine the feasibility of providing fault-tolerancethat is transparent to the client as well as well as user.1.1 NetSolveNetSolve basically consists of an agent which monitors a set of computationalresources (servers). Each server informs the agent of the types of problems itcan solve. The client requests from the agent a server to solve a problem andthe agent returns a listing of the servers available in the order from `best' to`worst'. The client directly contacts the �rst server on the list and waits untilthat server solves the problem and returns the result or until the server indicatesa failure. Upon a failure the client retries that server or goes to the next onthe list if it already has seen a failure from the �rst server. This continues untilthe problem is either solved or no more servers are available at which time theclient reports failure to the user. 1

The NetSolve client is actually a set of library functions which are accessedby the user through one simple function call. The user needs to know verylittle about the NetSolve system other than how to link in the client code atcompilation.The try/retry scenario is unseen by the user. The agent does not directlymonitor the servers but relies on periodic `pinging' and reports from the clientsand servers. This provides a limited form of fault-tolerance. It does not ad-dress the situation where there may only be one server capable of providingthe particular service requested, nor does it address the situation in which theservice is particularly long-running. It is this last case, the long-running parallelcomputation which we chose to investigate.Fault-tolerance with checkpointing requires the integration of a number ofdecisions including; when to take a checkpoint (interval), where in the code totake the checkpoint, where to store the checkpoint, how to detect failure and howto restart the process. The simple method chosen by the NetSolve developerscan serve well in many cases but the implementation of fault-tolerance usingcheckpointing can be more widely applied. Additionally, the design process canprovide unexpected insights into what is really needed to solve a given class ofproblems.1.2 ScaLAPACKScaLAPACK is just such a class of problems. ScaLAPACK is the parallel imple-mentation of the LAPACK [3] suite of linear algebra routines. It can use PVM orMPI as the underlying communication package and uses BLACS (Basic LinearAlgebra Communication Subroutines) [4] on top of these packages.As our concept was to provide transparent fault-tolerance for a non-trivialparallel application that was widely used we concentrated on ScaLAPACK`sfunction pdgesv(), a parallel LU decomposition and solve. The ScaLAPACKcode was modi�ed to provide the application level checkpointing and the Net-Solve server was modi�ed to provide the monitoring for fault tolerance.PVM provides a good interface for the purposes of fault-tolerance. WithPVM, the condition of machines on the grid can be queried at almost anytimeand the computation can be monitored externally. MPI, even though it is notas `friendly' as PVM, is becoming the de facto standard for parallel communica-tions. It is being implemented, in various versions, by more and more vendorsand so was chosen as more of a real-world test.1.3 OrganizationThe remainder of this paper is organized as follows: Section 2 details the mod-i�cations to NetSolve and ScaLAPACK to provide the fault-tolerance; Section3 discusses the tests and results; Section 4 provides conclusions and lessonslearned. 2

2 ImplementationThe implementation of fault-tolerance for this research included combining sev-eral methods. Multiple checkpoints are stored on separate workstations. Livedata is tracked and only that part of the process space is checkpointed. Ap-plication code is instrumented by hand. Failures are detected by checking thecontents of status �le. Recovery of the process is by restarting the originalroutine with an argument which indicates that it is to restore from checkpointdata. More speci�c information is contained in the subsequent sections.2.1 CheckpointingFirst, the ScaLAPACK routine was modi�ed to provide checkpointing. Thisconsisted of function calls to register and unregister data locations and sizes andfunction calls to actually checkpoint. These functions were inserted into sectionsof code that performed signi�cant computation as determined by data collectedfrom uninstrumented code. The ScaLAPACK routines are normally used bycalling a driver function such as pdgesv(). These driver functions do little actualcalculation but only serve to call the working functions in the appropriate order.This necessitated placing some type of information into the checkpoint �les thatspeci�ed which sub-routine was running when the checkpoint was taken. It doesallow the data registry to be per sub-routine, so that only live data is saved tothe checkpoint �le. That is each sub-routine registers and unregisters data as itis needed so that temporary storage is only checkpointed in the using functions.The checkpoint function �rst checks the time since the previous checkpointand if it exceeds the set interval (compiled-in for the tests), the function thenforces a checkpoint. As all processors need to participate in each checkpoint, thecheckpoint function also serves as a synchronization point for the computation.Checkpoints are saved to a single processor but due to the potential size ofthe checkpoints in the �nal tests, it was decided to save each checkpoint on aseparate processor in a round-robin fashion, that means that checkpoint one issaved on processor (0,1), checkpoint two on processor (0,2), etc. . Because theinput data was written to �les on the initial processor, the round-robin startedwith the second processor so that the original data could serve as the initialcheckpoint without having to actually checkpoint the running computation.Checkpoints and input/output data �les were stored in scratch space on thelocal disks of the workstations. The reason for this was the size of the check-points which precluded writing them to the �le system (NFS). Each checkpointin the �nal tests was 763 megabytes. The input/output data �les also totaled763 megabytes. The round-robin system was adopted for two reasons. The �rstis necessity. The available disk partition was 1.2 gigabytes and two checkpointswould not �t on a single processor. If the checkpoint was simply overwritten afailure during checkpointing would mean the loss of all data. The second reasonis, distributing the checkpoint results in more fault tolerance. It helps guardagainst a single workstation failure resulting in loss of the entire computation.3

2.2 Checkpoint FilesEach checkpoint really consists of two �les. One contains information on thecomputation such as number of processors, name of service and input �les. This�le also contains the IP addresses of the participating processors along with theirposition in the grid and the grid position of the processor which took the lastcheckpoint. The reason for these last items is there is no guarantee exactlywhich order any particular process will check in when started by MPI.The second checkpoint �le contains the actual data. Data distribution forScaLAPACK is based on a 2D block-cyclic format and can have a signi�cantamount of overhead. The idea of having to absorb this overhead was not appeal-ing and so it was decided to store checkpoints in a per machine fashion. Thatmeans the checkpointing process receives the data from the grid processes insequential order and in large blocks and writes all the data for a single processbefore proceeding to the next. This reduces the overhead for gathering a check-point to less than one-�fth of that for the `normal' data distribution. The gridposition of the process and the size of the data for that process is written alongwith the actual data. This means that the restore function has a very easy taskas well, simply read a size and then read and send large blocks of data.2.3 RecoveryMPI has no concept of fault tolerance and hence no to way to cleanly monitorits parallel grid operations other than continually sending keep-alive messages.BLACS further complicates this and there is the potential for the entire com-putation to `hang' forever if a processor fails during blocking communications.Because of this we were forced to rely upon a status �le created by the actualservice routine. The server spawns the service routine via a fork-and-wait andwhen the child terminates, the service routine validates the status of the com-putation by checking the contents of the status �le. If the computation was notcompleted (the status �le is empty/does not exist) or had errors it is restarted.In the case of a restart, the restore function must locate the checkpointand, if multiple checkpoints were taken, determine which is the most current.To do this, each processor checks to see if it has a checkpoint and which gridposition took the checkpoint, then a simple comparison determines which is themost current. That processor which holds the most current checkpoint thendistributes it and the computation is restarted. Unlike many single processorcheckpointing schemes, this one only saves data modi�ed by the process whichis not easily reproduceable instead of the entire data/stack segments. Whenthe server restarts the service routine, the service routine executes up to thepoint of the most current checkpoint via the driver routine. On restore, thedriver has been modi�ed to skip all functions that e�ect the computation whichare completely included in the checkpoint up to the function in e�ect whenthe checkpoint was taken. This ensures that the correct memory is registeredso that the restore function, called from the function that checkpointed, onlyrestores `live' data. Of course this assumes that the computation is completely4

deterministic.3 ResultsFinal testing of our concept was performed in the Departments Gemini lab con-sisting of twelve Sun workstations, one Sun Ultra 2 Model 2170, and elevenSun Ultra Enterprise 2 Model 2170s. Each workstation has two 167-MHzUltraSPARC-1 processors, 256-Mbytes memory, 10/100 Mbps Ethernet inter-face, two 2.1-Gbyte internal fast/wide SCSI-2 disks, and they are running SunSolaris 2.5.1. For our tests we used the 100 Mbps Ethernet vice the available155 Mbps ATM on the basis that the Ethernet connection was more similar towhat might be used in a `real' application. Only one process was spawned oneach workstation even though each has two processors. This ensured that therewas no memory conict/contention. The lab was not partitioned of from therest of the department's network but logins were restricted to one individualand all other jobs not owned by root were terminated.As previously indicated we chose to use the ScaLAPACK driver pdgesv(),an LU decomposition and solve of a system Ax = b. For these tests, A is a10,000 by 10,000 matrix of double precision numbers and b is a 10000 by 1vector of doubles. Primary tests were conducted using a 2-by-4 processor grid.The NetSolve agent and the client process were run on workstation 1, the Ultra2, where the input data had been prepositioned on the local disk. The serverand the processor grid used the Enterprise 2 machines. The matrix and thevector are distributed by the service routine in a 2-D block-cyclic fashion.The results of the 2-by-4 grid tests are in Table 3. The �rst entry, \Un-modi�ed Code", is for the original NetSolve and ScaLAPACK code without thecheckpointing modi�cations. The \No Checkpoints" entry is for the modi�edcode with the checkpoint interval (compiled-in) set longer than the possiblerunning time. \With Checkpoints" is time with two checkpoints taken.The last two lines indicate times with failures. The \Failed Before Check-point" shows the time if a failure is induced before the checkpoint is taken andthe process is then restarted and allowed to �nish. The last entry shows thecase where a failure is induced after the checkpoint and the process restartedand restored from the checkpoint. The checkpoint interval is set to 45 minutesfor those cases where checkpoints are taken. The failures before checkpointingwere induced at approximately 30 minutes into the computation and the failuresafter checkpoints occurred at approximately one hour.\Total" is the amount of time required to receive the data from the client,start and run the service routine (including checkpoint and recovery) gather theresult and send the data back to the client. \Ckpt" is the amount of time forthe process to gather the checkpoint and store it to disk. \Rest" is the timefor the process to read the checkpoint from the disk and distribute the data tothe grid. \Comp" is the time for the actual computation excluding the time tostart the service routine and communicate data with the client.The graphs which follow detail the test performed in the Gemini lab with5

Test Total Comp Ckpt RestUnmodi�ed Code 7446.44 5244.11 0.00 0.00No Checkpoints 7819.67 5542.00 0.00 0.00With Checkpoints 8171.00 5834.33 146.17 0.00Failed Before Checkpoint 10259.67 6853.67 144.33 0.00Failed After Checkpoint 9817.33 7381.33 145.23 257.07Table 1: Running Times (All times in seconds)the lab reserved. In all cases the tests are of the same problem (pdgesv()) withinput matrix A and vector b as previously speci�ed.This �rst set of graphs shows the comparison between total and computationtimes for the 2-by-4 grid for unmodi�ed code, modi�ed code with no checkpointstaken, and modi�ed code with checkpointing but no failures.
1 2 3 4 5 6 7 8 9

Run Number

5000

6000

7000

8000

Se
co

nd
s

Unmodified Code

TOTAL TIME
avg 7446.44 seconds
COMPUTATION TIME
avg 5244.11 seconds

1 2 3 4 5 6

Run Number

5000

6000

7000

8000

Se
co

nd
s

No Checkpoints

1 2 3

Run Number

5000

6000

7000

8000

Se
co

nd
s

With Checkpoints6

Here we see the times for the 2-by-4 grid in the presence of failures whichoccur approximately 45 minutes into the computation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run Number

5000

6000

7000

8000

9000

10000

Se
co

nd
s

Processor grid 2 x 4
Times with Checkpoint/Fail/Restore

TOTAL TIME
avg 9817.33 seconds
COMPUTE TIME
avg 7381.33 seconds

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Run Number

0

50

100

150

200

250

Se
co

nd
s

Processor grid 2 x 4
Checkpoint and Restore Times

CHECKPOINT TIME
avg 145.23 seconds
RESTORE TIME
avg 257.07 seconds

After having performed the tests for the 2-by-4 processor grid, we decidedto run the code for di�erent grid sizes. The intent was to gather information oncheckpoint time and running time as the grid size changes. Given the method ofdistributing the data for ScaLAPACK, as the number of processors changes, the7

size of data per processor changes proportionally. The question then was doesthe running time scale the same way. These show the comparison between totaltime, computation time and checkpoint time as processor grid size changes.
2x2 2x3 2x4 2x5

Processor Grid

6000

8000

10000

12000

14000

Se
co

nd
s

Total Time

With Checkpoints
Without Checkpoints

2x2 2x3 2x4 2x5

Processor Grid

4000

6000

8000

10000

12000

Se
co

nd
s

Computation Time

With Checkpoints
Without Checkpoints

2x2 2x3 2x4 2x5

Processor Grid

140

145

150

155

160

Se
co

nd
s

Checkpoint Time8

Because communication overhead is signi�cant we show the communicationtimes to 1) send the input/output data across the network from one local disk toanother within the Gemini lab and 2) the time to distribute (2-D block cyclic)the input data across the process grid and to gather back the answer.
0 50 100 150

Seconds

SEND DATA ON
NETWORK

RECEIVE DATA FROM
NETWORK

Network Communication Time

700 800 900 1000 1100

Seconds

DISTRIBUTE
DATA

GATHER
DATA

Data Redistribution Time4 ConclusionsProviding application level fault-tolerance is a very reasonable approach to theproblem of long running parallel applications. Granted not every application will�t so neatly into the available memory and processor resources but given thatmany users of NetSolve have only large applications (as opposed to huge) anduse standard libraries, this is a very simple method to provide fault-toleranceof a higher order than simply restarting the application from the beginningcomplete with resending the original data.The modi�cations to the application required to perform this fault-toleranceare minimal and could certainly be incorporated in a library that could be usedto instrument other code. The modi�cations to NetSolve are also minimal andgiven the modular implementation of NetSolve could be included in a releasewithout having to modify all of the NetSolve code.The idea of coordinated checkpointing seems to be wasteful of computationtime but in this case as each process completes sending its current state to thecheckpointing process, it is free to continue computation. The same applies to9

recovery. After a particular process has received its share of the data it mayproceed. As is shown the two checkpoints are only 5% of the total computationtime and only 3.6% of the overall total in the 2-by-4 grid.As expected, the cost of restarting the computation from the beginningexceeds that of restarting from a checkpoint. Restarting from the beginning,NetSolve's basic fault-tolerance, could be considered equivalent to a failure be-fore having taken a checkpoint. Comparisons of the data in Table 3 shows thatcheckpoint-restore is faster. The seeming anomaly in the the computation timeand the total time for these two cases is explained by the fact that the failuresbefore checkpoints occurred after 25 minutes of computation. Total time for thecomputation without failures is approximately 90 minutes giving 115 minutestotal computation time. For the failure with recovery case the computation wasallowed to run approximately 70 minutes before failure and then took an addi-tional 53 minutes after recovery for a total of 123 minutes. If the process hadbeen allowed to run without a checkpoint for 70 minutes and then had a failureinduced the total time for the computation would have been on the order of 210minutes. The fact that the total time for the process which failed before check-point is still longer than the one that failed after the checkpoint is explainedby the very costly 2-d block-cyclic data distribution. The algorithm for that isunder examination for improvement but much may depend on portability issues.One other item that this research brought into focus was the need to prepo-sition data. Initially we tried to store the input data in the NFS �le system.The actual disk the data was on resided at the opposite end of the building onanother sub-net. When trying to send the data from the client to server, readingfrom the �les and sending across the network, the server for the data disk ex-perienced periods in which it was unavailable due to the increased tra�c. Thisalso occurred when trying to write a checkpoint to the same disk, the writeswould fail due to unavailability of the server. We considered trying to store thecheckpoint locally in the Gemini lab then moving it with a separate process,however the computation had large compute-intensive segments allowing littletime for the secondary process to run and due to this and NFS latency, thecheckpoint was not actually moved until AFTER the computation completed,at which time the server again became overloaded.References[1] Casanova, Henri and Jack Dongarra. \NetSolve: A Network Server forSolving Computation Science Problems" The International Journal of Su-percomputer Applications and High Performance Computing, Volume 11,Number 3, pp 212-223, Fall 1997.[2] Choi, J. , J. Demmel, I. Dhillon, J. Dongarra, et.al. LAPACK WorkingNote 95, ScaLAPACK: A Portable Linear Algebra Library for DistributedMemory Computers - Design Issues and Performance. Technical ReportUT-CS-283-95, University of Tennessee, 1995.10

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, .et.al. LAPACK:A Portable Linear Algebra Library for High-Performance Computers. Tech-nical Report UT-CS-90-105, University of Tennessee, 1990.[4] Dongarra, Jack J. and R. Clint Whaley. LAPACK Working Note 94, AUsers Guide to the BLACS v1.1. Technical Report UT-CS-95-281, Univer-sity of Tennessee, 1995.

11

