
Overview of Iterative Linear System SolverPackagesVictor EijkhoutJuly, 1998AbstractDescription and comparison of several packages for the iterative solu-tion of linear systems of equations.

1

1 IntroductionThere are several freely available packages for the iterative solution of linearsystems of equations, typically derived from partial di�erential equation prob-lems. In this report I will give a brief description of a number of packages, andgive an inventory of their features and de�ning characteristics.The most important features of the packages are which iterative methodsand preconditioners supply; the most relevant de�ning characteristics are theinterface they present to the user's data structures, and their implementationlanguage.

2

2 DiscussionIterative methods are subject to several design decisions that a�ect ease of useof the software and the resulting performance. In this section I will give a globaldiscussion of the issues involved, and how certain points are addressed in thepackages under review.2.1 PreconditionersA good preconditioner is necessary for the convergence of iterative methods asthe problem to be solved becomes more di�cult. Good preconditioners are hardto design, and this especially holds true in the case of parallel processing. Hereis a short inventory of the various kinds of preconditioners found in the packagesreviewed.2.1.1 About incomplete factorisation preconditionersIncomplete factorisations are among the most successful preconditioners devel-oped for single-processor computers. Unfortunately, since they are implicit innature, they cannot immediately be used on parallel architectures. Most pack-ages therefore concentrate on more parallel methods such as Block Jacobi orAdditive Schwarz. There are a few implementations of multicolour incompletefactorisations.BlockSolve95 is the only package catching breakdown of the ILU or IC fac-torisation. The manual outlines code that successively shifts the diagonal untilthe factorisation succeeds.2.1.2 Preconditioners for sequential processingOn sequential architectures, the BPKIT package provides sophisticated blockfactorisations, and LASpack contains multigrid solvers. Most other packagessupply the user with variants of ILU (Incomplete LU) or IC (Incomplete Cholesky).2.1.3 Preconditioners for parallel iterative methodsThese are the approaches towards parallel preconditioning taken in the packagesunder review here.Direct approximations of the inverse SPAI (section 3.13) is the only pack-age that provides a direct approximation method to the inverse of thecoe�cient matrix. Since such an approximation is applied directly, usinga matrix-vector product, it is trivially parallel. The SPAI preconditioneris in addition also generated fully in parallel.Block Jacobi Each processor solves its own subsystem, and there is no commu-nication between the processors. Since this strategy neglects the global/implicitproperties of the linear system, only a limited improvement in the number3

of iterations can result. On the other hand, this type of method is veryparallel.All parallel preconditioner packages provide some form of Block Jacobimethod.Additive Schwarz As in the Block Jacobi method, each processor solves alocal subsystem. However, the local system is now augmented to includebordering variables, which belong to other processors. A certain amountof communication is now necessary, and the convergence improvement canby much higher.This method is available in Aztec (3.1), Petsc (3.10), ParPre (3.8), PSparselib (3.12).Multicolour factorisations It is possible to perform global incomplete fac-torisation if the domain is not only split over the processors, but is alsoaugmented with a multicolour structure. Under the reasonable assumptionthat each processor has variables of every colour, both the factorisationand the solution with a system thus ordered are parallel. The number ofsynchronisation points is equal to the number of colours.This is the method supplied in BlockSolve95 (3.2); it is also available inParPre (3.8).Block factorisation It is possible to implement block SSOR or ILU methods,with the subblocks corresponding to the local systems (with overlap, thisgives the Multiplicative Schwarz method). Such factorisations are neces-sarily more sequential than Block Jacobi or Additive Schwarz methods,but they are also more accurate. With an appropriately chosen processorordering (e.g., multicolour instead of sequential) the solution time is only asmall multiple times that of Block Jacobi and Additive Schwarz methods.Such block factorisations are available in Parpre (3.8); PSparselib (3.12)has the Multiplicative Schwarz method, under the name `multicolourSOR'.Multilevel methods Petsc (3.10) and ParPre (3.8) are the only packages sup-plying variants of (algebraic) multigrid methods in parallel.Schur complement methods ParPre (3.8) and PSparselib (3.12) contain Schurcomplement domain decomposition methods.
4

2.2 Data structure issuesEvery iterative method contains a matrix-vector product and a preconditionersolve. Since these are inextricably tied to the data structures used for thematrix and the preconditioner (and possibly even to the data structure used forvectors), perhaps the most important design decision for an iterative methodspackage is the choice of the data structure.2.2.1 The interface to user dataThe more complicated the data structure, the more urgent the question becomesof how the user is to supply the structures to the package. This question isparticularly important in a parallel context.The packages reviewed here have taken the following list of approaches tothis problem.� Fully internal, not directly accessible, data structures (basically object ori-ented programming). This approach is taken in Petsc (3.10), ParPre (3.8),and BlockSolve (3.2).The data structures here are only accessible through function calls. Thismeans that the package has to supply routines for constructing the struc-tures, for inspecting them, and for applying them.� Prescribed, user supplied, data structures. This approach is taken inAztec (3.1); it is available in PCG (3.9).Here the user has to construct the data structures, but the package suppliesthe product and solve routines.� User supplied, arbitrary, data structures, with user supplied product andsolve routines. This approach is available in PCG (3.9) and Petsc (3.10);the object-oriented package IML++ (3.5) can also be considered to usethis approach.� User de�ned data structures, not passed to the iterative method at all;product and solve operations are requested through a reverse communica-tion interface.This approach is taken in PIM (3.11); it is also available in PCG (3.9).2.2.2 Parallel data layoutThere are several ways of partitioning a sparse matrix over multiple processors.The scheme supported by all packages is partitioning by block rows.� Each processor receives a contiguous series of rows of the matrix. This isthe approach taken in Petsc (3.10); it is available in BlockSolve95 (3.2).Under this approach a processor can determine the ownership of any vari-able, by keeping a short list of �rst and last rows of each processor.5

� Each processor receives an arbitrary set or rows. This is the approachtaken in Aztec (3.1); it is available in BlockSolve95 (3.2).Under this scheme, each processor needs to maintain the mapping of itslocal rows to the global numbering. It is now no longer trivial to determineownership of a variable.When a sparse matrix is distributed, the local matrix on each processorneeds to have its column indices mapped from the global to the local numbering.Various packages o�er support for this renumbering.

6

2.3 High performance computingSparse matrix problems are notoriously low performers. Most of this is relatedto the fact that there is little or no data reuse, thereby preventing the use ofBLAS kernels. See for example the tests on vector architectures in [4].Other performance problems stem from parallel aspects of the solution meth-ods.Here are then a few of the approaches taken to alleviate performance prob-lems.2.3.1 Quotient graph computationA matrix de�nes a graph by introducing an edge (i; j) for every nonzero ele-ment a ij. A dense matrix in this manner de�nes a graph in which each nodeis connected to every other node. This is also called a `clique'. Sparse matrices,on the other hand, induce a graph where, no matter the number of nodes, eachnode is connected to only a small number of other nodes.However, sparse matrices from problems with multiple physical variableswill have dense subblocks, for instance corresponding to the variables on anygiven node. It is possible to increase the e�ciency of linear algebra operationsby imposing on the matrix the block structure induced by these small densesubblocks. For instance, the scalar multiplication/division a ika kk�1a ki thatappears in Gaussian elimination now becomes a matrix inversion and a matrix-matrix multiplication, in other words, BLAS3 kernels.Identifying cliques in the matrix graph, and deriving a quotient graph by`factoring them out', is the approach taken in the BlockSolve package; sec-tion 3.2.The PCG package (section 3.9) takes the opposite approach in its RegularGrid Stencil data format. To get dense subblocks, the degrees of freedom haveto be numbered �rst in regular storage, but in PCG they are numbered last.This approach is more geared towards vector architectures.2.3.2 Inner productsMost linear algebra operations in the iterative solution of sparse systems areeasily parallelised. The one exception concerns the inner products that appearin all iterative methods (with the exception of the Chebyshev iteration). Sincethe collection and redistribution of data in an inner product will inevitably havesome processors waiting, the number of inner products should be kept low.The conjugate gradients and bi-conjugate gradients algorithms have two in-terdependent inner products, and various people have suggested ways to reducethis to two independent ones, which can then combine their communicationstages. See [3] and the references cited therein. This approach has been takenin the PIM package; section 3.11.The second source of inner products is the orthogonalisation stage in theGMRES algorithm. Using Gram-Schmidt orthogonalisation, the inner products7

are independent and can be combined; however, this makes the resulting al-gorithm unstable. Modi�ed Gram-Schmidt gives a more stable algorithm, butthe inner products are interdependent, and have to be processed in sequence.A middle ground is to apply (unmodi�ed) Gram-Schmidt twice.

8

2.4 LanguageThe languages used to implement the packages here are C, C++, and Fortran.To some extent the implementation language determines from what languagethe library can be called: C++ constructs can not be used from C, and if aC routine returns an internally allocated array, this routine cannot directly beused from Fortran. The Petsc library addresses this last point in its Fortraninterface.

9

3 The packages3.1 AztecAztec is a parallel library of iterative solution methods and preconditioners.Its main aim is to provide tools that facilitate handling the distributed datastructures. For this, there is a collection of data transformation tools, as wellas query functions of the data structures.3.1.1 Basic informationAvailable from Web site1; registration requiredAuthor(s) Scott A. Hutchinson, John N. Shadid, Ray S. TuminaroLatest version 1.1, October 1995Status Unknown3.1.2 ContentsIterative methods CG, GMRES, CGS, TFQMR, BiCGstab, Direct solve (onone processor only).Preconditioners Block Jacobi with ILU on the subblocks; also Additive Schwarz,with an overlap limited to one.Data structures Distributed variants of Compressed Row and Variable BlockRow; see below.Manual User's Guide, 43 pagesExample codes Yes3.1.3 Parallelism and data layoutAztec can handle arbitrary assignments of matrix rows to processors. Since thisquite general arrangement makes it harder to construct the local numberingof the matrices (see section 2.2.2), the user can supply the matrix with globalnumbering and a preprocessing routine performs the localisation. However, theuser does have to supply all rows on the appropriate processor.3.1.4 OtherAztec requires routines from Blas, Lapack, Linpack, Y12m.1http://www.cs.sandia.gov/CRF/aztec1.html10

3.1.5 InstallationAs part of the installation, Aztec requests auxiliary routines from netlib, andplaces them in a subdirectory to be compiled later. This precludes native Blasor Lapack libraries to be used. There is no hint on how to substitute these.AzTec uses a distributed version of the MSR (Modi�ed Sparse Row) storageformat, which is close to the Compressed Row Storage format. I �nd this anunfortunate choice:� I do not see any advantage over the CRS format.� While conversion to and from CRS is straightforward, the arrays need tobe longer by one position. This means that interfacing AzTec to a codeusing CRS entails deallocating and reallocating the arrays.� The extra storage location in the real array is not used; the location in theinteger array duplicates the scalar parameter giving the number of rows.

11

3.2 BlockSolve95The main focus of the BlockSolve package is the implementation of SSOR andILU preconditioners based on a parallel multi-colouring algorithm by the au-thors. The algorithm �rst computes a quotient graph of the matrix graph byeliminating cliques and identical nodes. Operations on the nodes of this quotientgraph then become of BLAS2/3 type, leading to a high performance.BlockSolve can be used with the Petsc package; section 3.10.3.2.1 Basic informationAvailable from Web site2Author(s) Mark T. Jones and Paul E. PlassmannLatest version 3.0, June 1997Status Being maintained and further developed3.2.2 ContentsIterative methods CG, SYMMLQ, GMRES are provided, though these arenot the main focus of package; BlockSolve can be interfaced to Petsc formore iterative methods.Preconditioners diagonal scaling, block Jacobi with blocks corresponding tothe cliques factored out of the quotient graph, incomplete LU and Cholesky.Data structures Internal, as a C structure..Access operations on the data structure None; the de�nition of thestructure is given in the manual.Operations using the data structure Iterative solution of the systemand of a shifted system, application of the matrix and the precondi-tioner3.Manual Users Manual; 34 pages. This is a complete reference; the user issuggested to use the example codes as templates for applications.Example codes Yes2http://www.mcs.anl.gov/blocksolve95/3The separate application of the matrix and the preconditioner are not documented in themanual 12

3.2.3 Parallelism and data layoutThe user has two ways to pass the distributed matrix to BlockSolve.1. Since the de�nition of the data structure is given in the manual, the usercan explicitly construct it.2. The user can supply a compressed row storage matrix, with column indicesin the local numbering (section 2.2.2), to the routine BSeasy_A, whichyields the matrix structure.In the second case, the matrix rows need to be consecutively numbered. Inthe �rst case the assignment of rows over the processors can be arbitrary; theuser has to construct the mapping functions between local and global number-ings. There are example codes illustrating this.

13

3.3 BPKIT2BPKIT is a package of block preconditioners, that is, factorisation precondi-tioners that treat the matrix �rst on a subblock level, then recursively factorthe blocks on the element level. One of the selling points of BPKIT is theobject-oriented approach to this two-level factorsation.3.3.1 Basic informationAvailable from Web site4Author(s) E. Chow and M. A. HerouxLatest version 2.0, September 1996Status Maintained3.3.2 ContentsIterative methods Flexible GMRES, though this is not the focus of the pack-agePreconditioners Block SSOR and ILU, possibly with block �ll-in, and withvarious methods for explicit and implicit approximationof inverses of pivotblocksData structures Internal, as a C++ class.Access operations on the data structure Retrieve rows and scalar in-formation such as the number of nonzeros of the matrix.Operations using the data structure Multiply and multiply transposeby the matrix; solve and solve transpose of the preconditioner, boththe whole preconditioner, and the left and right split parts.Manual Reference manual, 53 pagesExample codes Yes, in Fortran, C, and C++3.3.3 InstallationThe make�le in the app subdirectory requires editing for the location of MPIand for compiler options.The manual is not well written. Many parameters and auxiliary routines areunder-documented.4http://www.cs.umn.edu/%7Echow/bpkit.html/14

3.4 GPS: General Purpose Solver3.4.1 Basic informationAvailable from Web site5; requires registration by postal mail.Author(s) Olaf O. Storaasli, Majdi Baddourah, Duc NguyenLatest version 03/08/95 (submission to NASA Langley Software Server)Status Approval for downloading the software did not come in in time for thisreport.5http://www.larc.nasa.gov/LSS/ABSTRACT/LSS-1995-0002.html

15

3.5 IML++The IML++ package consists of C++ implementation of the iterative methodsfrom the templates project [2]. It relies on the user supplying Matrix, Vector,and Preconditioner classes that implement the required operations.An example implementation of such classes called Sparselib++ is availablefrom the same authors. It contains uni-processor matrix classes based on com-pressed row and column and coordinate storage, a vector class, and Jacobi andILU/IC preconditioners for the compressed row and column matrices. Addi-tionally it contains tools for converting a Harwell-Boeing matrix or matrix �leto these formats.3.5.1 Basic informationAvailable from Web site6Author(s) Jack Dongarra, Andrew Lumsdaine, Roldan Pozo and Karin A.RemingtonLatest version 1.2, April 1996Status Being maintained; IML++ will eventually be superseded by the Tem-plate Numerical Toolkit, a package not currently available.3.5.2 ContentsIterative methods BiCG, BiCGstab, CG, CGS, Chebyshev, GMRES, IR,QMRPreconditioners n/aData structures n/aManual Reference guide, 39 pages; also SparseLib++ Reference Guide, 20pages.Example codes no6http://math.nist.gov/iml++/
16

3.6 Itpack 2C / ItpackV 2DItpack is a package of iterative methods. It runs sequentially, but ItpackV is anoptimised version for vector machines such as the Cray Y-MP.Itpack features adaptive determination of matrix bounds, to be used in ac-curate stopping tests, of for the Chebyshev semi-iteration.3.6.1 Basic informationAvailable from Ftp site7, also on NetlibAuthor(s) David R. Kincaid, Thomas C. Oppe, David M. YoungLatest version Itpack 2C: manual dated July 1997, Itpack 2D: manual datedMay 1989Status Being maintained3.6.2 ContentsIterative methods Jacobi Conjugate Gradient, Jacobi Semi-iteration (i.e.,Chebyshev iteration, SOR, SSOR, SSOR CG, Reduced system CG, Re-duced system SIPreconditioners n/a; see aboveData structures Itpack 2C: Compressed Row (there are auxiliary routines tofacilitate building the data structure); ItpackV 2D: ellpack storage.Manual 22/14 pagesExample codes Yes3.6.3 InstallationItpack There is no make�le or anything like it, but there is really no need forit either, since a complete installation consists of one �le of library routines andone �le of tests.The PROGRAM statement in the test �les had to be edited.The test code was insu�ciently documented for an easy 'same problem butlarger' test.Nspcg The nspcg routines come in �les with undescriptive names such asnspcg1.f.The nspcg5.f �le needed replacement of the timer routine.7ftp://ftp.ma.utexas.edu/pub/CNA/ITPACK17

3.7 LaspackLASpack is an object-oriented package of iterative methods, iterative methods,multigrid solvers, and auxiliary routines for the iterative solution of linear sys-tems. It does not run in parallel.There are data structures for vectors, general and square matrices, and pre-conditioners; a large number of accessing and manipulating these objects isavailable.3.7.1 Basic informationAvailable from Web site8; also from NetlibAuthor(s) Tom�a�s Skalick�yLatest version 1.12.3, January 1996Status Developed3.7.2 ContentsIterative methods Jacobi, SOR, SSOR, Chebyshev iteration, CG, CGN, GM-RES, BiCG, QMR, CGS, BiCGstab, restarted GMRES.Multigrid methods Conventional and Full multigrid, BPX preconditioningPreconditioners Jacobi, SSOR, ILU(0)Data structures Internal, created by passing elements by function call.Access operations on the data structure ManyOperations using the data structure Matrix addition and scaling; Matrix-vector multiply, transposition, Matrix inverse vector multiply.Manual Reference manual, 8+40 pages.Example codes Yes.8http://www.math.tu-dresden.de/ skalicky/laspack/index.html
18

3.8 ParPreThis is an add-on package to Petsc; section 3.10. It is solely a collection ofparallel preconditioners, to be used with iterative methods either from Petsc orcoded by the user. The data structures are those used by Petsc.ParPre can be used independently of Petsc, but does require Petsc to beinstalled.3.8.1 Basic informationAvailable from Web site9Author(s) Victor Eijkhout and Tony ChanLatest version 2.0.17Status Maintained and developed3.8.2 ContentsIterative methods NonePreconditioners Additive and multiplicativeSchwarz, Generalised Block SSOR,Schur complement domain decomposition, Algebraic multilevel methods(including multicolour ILU and algebraic multigrid).Data structures Internal.Access operations on the data structure Inherited from Petsc.Operations using the data structure Solve, no solve transpose.Manual Reference manual with programming examples; 32 pages.Example codes Yes3.8.3 Parallelism and data layoutAll methods in ParPre are based on decomposition of the physical domain intosubdomains, with an assignment of one subdomain per processor (or rather:process). Most methods involve a local solve on the subdomain, for which anyof the non-parallel Petsc preconditioners can be used.For the methods that do not have all subdomains operate in parallel (e.g.,multiplicative Schwarz as opposed to additive Schwarz), the user can specify thestrategy that determines the sequential ordering of the domains. The choicesare: natural, red-black, and multicolour.9http://www.math.ucla.edu/ eijkhout/parpre.html19

3.9 PCGThe PCG package has a large number of iterative methods and a few simplepreconditioners. The code is publically available in a uni-processor version,and one optimised for Cray YMP. An MPI version is under development. Theiterative methods are addressable on three levels, each with a di�erent way ofhandling the data structures.3.9.1 Basic informationAvailable from Web site10Author(s) W.D. Joubert, G.F. Carey, N.A. Berner, A. Kalhan, H. Khli, A.Lorber, R.T. McLay, Y. ShenLatest version 1.0, September 1996Status Being further developed3.9.2 ContentsIterative methods Richardson, CG, CG with Neuman polynomial precondi-tioning, BiCG, BiCG with restart, Lanczos / Orthores, CGS, BiCGstab,BiCGstab2, BiCGstab(`), QMR, TFQMR, truncated OrthoMin and Or-thoRes, Incomplete Orthogonalisation, GMRES: restarted, restarted withHouseholder re
ections, and nested restarted GMRESR; CGNE and CGNR,LSQR and LSQE.Preconditioners Richardson and JacobiData structures Regular Grid Stencil storage supported; also data structurefree mode by passing product and solve routines, or through reverse com-munication.Manual Reference manual, 64 pages; also Getting Started manual, Examplesmanual, and guide to the XPCG Xwindows front end.Example codes Yes.3.9.3 Interface to user data structuresPCG has three ways of handling the matrix and preconditioner data structures.First of all, PCG has one supported data structure: the Regular Grid Stencilstorage. This corresponds to the type of matrices arising from having the same�nite di�erence or �nite element stencil on each grid point of a Cartesian productgrid. Such matrices are trivially stored in multi-dimensional arrays. After theuser sets up the matrix array and the right hand side vector, PCG solves thesystem (this is called Top Level Usage of PCG).10http://www.cfdlab.ae.utexas.edu/pcg/index.html20

Secondly, the user can pass matrix and preconditioner arrays, plus two inte-ger arrays for each, to iterative method routines on the Iterative Method Levelof PCG. Additionally, now the user has to supply routines to perform the matrixvector product and the preconditioner solve, plus their transposes for methodssuch as BiCG that need them.Thirdly, PCG supports Reverse Communication Usage: no matrix or pre-conditioner structures whatsoever are passed to the iterative routines. Instead,when a product or solve operations needs to be performed, the iterative routinewill save its internal state, and return control to the user program with a requestto perform that operation.1 continuecall CG(.... IREQ IVA, IVQL ... FWK ...)if (IREQ .eq. JAV) thenc perform matrix-vector product to the vector FWK(IVQR)c leaving the result in FWK(IVA)else if (IREQ .eq. JQLV)c apply left preconditioner to the vector FWK(IVA)c leaving the result in FWK(IVQR)elseend ifgoto 1Control is also returned to the user for the convergence test, but inner productsare still performed inside the iterative routine.The Regular Grid Stencil storage scheme incorporates the possibility of hav-ing multiple physical variables per grid point; see section 2.3.1.
21

3.10 PetscPetsc is a package for the solution of PDE problems. It contains everything fromlinear algebra tools, through linear solvers, nonlinear solvers, and time-steppingmethods. Since it is written in an object-oriented style, all data structures arehidden from the user. A large number of construction and inspection routinesgive access to the numerical data and parameters of the objects.Petsc can use the preconditioners of the BlockSolve package; section 3.2.3.10.1 Basic informationAvailable from Web site11Author(s) Satish Balay, William Gropp, Lois Curfman McInnes,Barry SmithLatest version 2.0.17Status Begin maintained and further developed3.10.2 ContentsIterative methods Richardson, Chebyshev, CG, GMRES, TCQMR, BCGS,CGS, TFQMR, CR, LSQRPreconditioners Identity, Jacobi, Block Jacobi, Block Gauss-Seidel (only se-quential), SOR and SSOR, IC and ILU (sequential only?), Additive Schwarz,full factorisation (sequential only), user supplied.Data structures Internal, elements passed through function calls.Access operations on the data structure Function calls yielding theinternal arrays of matrices and vectors, matrix rows and the matrixdiagonal; other statistics.Operations using the data structure Vector-vector and matrix-vectoroperations; creation and application of preconditioners, linear andnonlinear system solvers.Manual Users manual, 196 pages; the manual and the man pages are alsoavailable in html format.Example codes Yes3.10.3 Parallelism and data layoutPetsc supports both dense and sparse data structures sequential and in parallel;there is support for multiple physical variables per unknown.The data structures are completely hidden from the user, only accessiblethrough function calls. Creation of the vector and matrix data structures iscompletely general: any processor can specify elements for any other processor.11http://www.mcs.anl.gov/petsc/petsc.html22

3.11 Parallel Iterative Methods (PIM)The sole focus of this package is on iterative methods. PIM let's the user supplyexternal routines for the matrix-vector product, preconditioner application, andnorms and inner products. This makes the package largely independent ofdata structures and communication protocols, in fact of whether the programis running in parallel or not. It also puts a considerable burden on the user.3.11.1 Basic informationAvailable from Web site12Author(s) Rudnei Dias da Cunha, Tim HopkinsLatest version 2.2, May 1997Status Maintained3.11.2 ContentsIterative methods CG, CG on the normal equation (CGNE and CGNR),BiCG, CGS, BiCGstab (normal and restarted), restarted GMRES, restartedGCR, QMR with reduced synchronisation overhead, TFQMR, Chebysheviteration.Preconditioners NoneData structures NoneManual User's guide; 81 pagesExample codes Yes; both sequential and parallel, and for dense and sparsedata formats. The manual contains a good discussion of the exampleprograms.3.11.3 Interface to user data structuresPIM iterative method routines need parameters corresponding to external rou-tines for the matrix-vector (possible matrix-transpose-vector) product, and thepreconditioner application.The calling interface for these external routines is fairly simple, e.g.,subroutine matvec{u,v,ipar}double precision u(*),v(*)integer ipar(*)12http://www.mat.ufrgs.br/pim-e.html 23

where the ipar array is the information array that is passed to the iterativemethod.Unfortunately this puts a number of restriction on the user's choices. Forinstance, it implies that the matrix has to be in common blocks, and that thevectors need to be simple arrays; they can not be pointers to more elaboratestructures.

24

3.12 PSparselibThis seems to be very much a package under development. There are variousdiscrepancies between the manual and the code, and the manual is far frombeing a reference.3.12.1 Basic informationAvailable from Web site13Author(s) Yousef Saad and Gen-Ching LoLatest version 2.15, May 1997 (manual is dated June 1996)Status Being developed; future version may be for internal use only.3.12.2 ContentsIterative methods Flexible GMRES, CG, BiCG, BiCGstab, GMRES, DQGM-RES, TFQMRPreconditioners Additive and multiplicative Schwarz, Schur complement do-main decompositionData structures Undocumented, the user is referred to tech reports and arti-cles.Manual Users manual, 14 pages; this does not document calling sequences ordata structures.Example codes Yes3.12.3 Parallelism and data layoutPSparselib uses reverse communication to abstract away from particulars of thecommunication layer and the data structure: the fgmres routine returns con-trol to the user for each matrix-vector product and preconditioning operation.However, inner products are still performed by hard MPI instructions in thefgmres routine.3.12.4 InstallationThe make�le required editing for some macros, as described in the README �le.13http://www.cs.umn.edu/Research/arpa/p_sparslib/psp-abs.html25

3.13 Sparse Approximate Inverse (SPAI) PreconditionerSPAI is a research code, implementing in parallel an approximate inverse pre-conditioner, based on computing a minimumnorm approximation to the inverseof the coe�cient matrix. Both the computation and application of the precon-ditioner are fully parallel.3.13.1 Basic informationAvailable from Web site14Author(s) Steve BarnardLatest versionStatus Maintained and developed3.13.2 Approximate inverseMost popular preconditioners are implicit, that is, to apply them one has tosolve a system. One might say that they compute an approximation to thecoe�cient matrix that is easier to solve with than the matrix itself.The approximate inverse class of preconditioners is di�erent in that theycompute explicitly an approximation to the inverse. Hence the application isan explicit matrix-vector product operation, and therefore trivially parallel.The method in the SPAI code is based on ideas from [5]: the minimisationproblem minkAM � Ikor minkMA� Ikis solved, with the sparsity pattern of M predetermined or adaptively deter-mined. This minimisation problem turns out to reduce to independent sub-problems for the rows or columns of M , and is therefore executable in parallel.An other advantage of this method is that it is not subject to breakdownthe way factorisation based methods are.14http://lovelace.nas.nasa.gov/NAS/SPAI/download.html
26

3.14 SPlibSPlib is a package of uni-processor iterative methods and preconditioners, pri-marily designed for ease of use.3.14.1 Basic informationAvailable from Ftp site15Author(s) Randall Bramley and Xiaoge WangLatest version UnknownStatus Being maintained3.14.2 ContentsIterative methods CG-stab, BiCG, CGNR and CGNE, CGS, BiCGstab, GM-RES, TFQMR, templates version of CGS, templates version of GMRES,Jacobi, Gauss-Seidel, SOR, OrthominPreconditioners Identity, ILU(s), MILU(s; r), ILUT(s; t), SSOR(!), TRID(s),ILU0, ECIMGS; where s is the number of levels of �ll, r is the relaxationparameter [1], t is the drop tolerance.Data structures Compressed Sparse RowManual 26 pagesExample codes Driver program that read a Harwell-Boeing matrix and solvesa problem with it.15ftp://ftp.cs.indiana.edu/pub/bramley/splib.tar.gz
27

3.15 TemplatesThe templates codes are meant as example implementations of the methodsin the Templates book [2]. As such they are somewhat unsophisticated, moreillustrations of the principles than optimised realisations.3.15.1 Basic informationAvailable from Netlib16Author(s) Richard Barrett et. al.Latest versionStatus Maintained3.15.2 ContentsIterative methods BiCG, BiCGstab, CG, CGS, Chebyshev, GMRES, Jacobi,QMR, SORPreconditioners Identity, JacobiData structures User supplied: each iterative method is given in two versions.1. The matrix-vector product routine is an external, passed to the iter-ative routine, and the matrix is assumed to be in common.2. The iterative routine uses reverse communication.Manual The Templates book [2] is available commercially, or for downloadfrom Netlib.Example codes Yes16http://www.netlib.org/templates/
28

4 Comparison chart of featuresThe following chart gives some basic information about the packages. Pleaseconsult the previous section for a more detailed discussion of the individualpackages.Parallel Does the package run in parallel? All the parallel packages are basedon MPI, other protocols are noted.Iterative Does the package contain iterative methods? A few packages havepreconditioners as their main focus, but suppply one or a few iterativemethods for the user who doesn't have any yet.Prec Does the package contain preconditioners?Data How does the package interface to user data? See note 3 below.Lang What is the implementation language of the package?Inst Is the library instrumented, reporting on
ops and timing?Package Parallel Iterative Prec Data3 Language InstAztec yes yes yes internal3a C YesBlockSolve95 yes yes1 yes internal3a C YesBPKIT no yes1 yes internal3b C++8 NoIML n/a2 yes yes9 supplied C++Itpack no yes yes7 prescribed Fortran NoLaspack no yes yes internal CParPre yes no yes internal4 CPCG coming yes yes prescribed/supplied/free FortranPetsc yes yes yes internal/supplied C8 YesPIM n/a2 yes no free FortranPSparselib yes yes yes free Fortran NoSPAI yes yes1 yes CSPlib no yes yes prescribed Fortrantemplates no yes no5 supplied6/free Fortran/C/MatlabNotes1 Not the main focus of this package.2 The library abstracts away from data structure implementation aspects;parallelism is possible, but is the user's responsibility.3 For the explanation of terms `internal', `prescribed', `supplied', and `free',see section 2.2.1.3a converted from compressed row format.3b converted from Harwell-Boeing format.4 Identical to Petsc format. 29

5 Nothing beyond Jacobi.6 The external product and solve routines are presumed to �nd the matrixin a common block.7 Can not be chosen independently of the iterative method: the user picksa combination.8 Fortran interface provided.9 Preconditioners provided in an example C++ matrix class library, SparseLib++.

30

5 Performance testsWe have run performance tests on a number of packages. Ideally, these testscombine all of the following possibilities:� Single processor and parallel where possible.� Using all data structures supplied or accepted by the package.� Comparing various iterative methods, in particular where they have dif-ferent parallel behaviour, such as the Chebyshev method versus the Con-jugate Gradient method.� Assessing the e�cacy of di�erent preconditioners, measuring separatelyand combined:{ Cost of setup,{ Reduction in numbers of iterations,{ Number of
ops per iteration,{ Flop rate of the solve performed in each iteration.� Solving di�erent systems of the same size and structure is not of muchuse, as this only changes the number of iterations performed; one couldnote how many iterations are necessary to o�set the initial setup cost.5.1 Machines usedThe following machines at the University of Tennessee, Knoxville, were used:nala Sun Ultra-Sparc 2200 with Solaris 5.5.1. 200MHz, 16K L1, 1Mb L2. Com-pilers: f77 -O5 and gcc -O2.cetus lab Sun Ultra-Sparc 1, 143 Mhz, connected by 10Mbps Ethernet.
31

N M
 MSR M
 VBR (nb=4)2500 232744 2310,000 209261 2222,500 19 22Table 1: AzTec performance on Nala (section 5.1.N np=1 np=2 np=4 np=82500 26 20 18 1610,000 20 26 37 4522,500 19 27 49 6890,000 17 26 50 89250,000 16 25 49 95Table 2: AzTec aggregate M
op rating for Jacobi preconditioned CG on theCetus lab (section 5.1.5.2 Results5.2.1 AzTecProblem tested: �ve-point Laplacian solved with Jacobi CG.We used the samplemain program provided, and altered only parameter settings� CG instead of CGS,� Block Jacobi preconditioner,� 5-point instead of 7-point matrix.We also tested the 7-point Laplacian with 4 variables per grid point, using theVBR format. Since this uses level 2 BLAS routines, it should in principle beable to get higher performance, but in practice we do not see this happening.In the single processor tests in table 1 we see that for small problems there isa slight performance increase due to cache reuse, but not on the order that wewould see for dense operations. The use of Blas2 in the VBR format seems tohave no e�ect.AzTec's built in timing and
op count does not support the ILU(0) pre-conditioner, so we added that. The
op count is approximate, but does notoverestimate by more than a few percent. We omit the N = 400 tests becausethey were too short for the timer to be reliable.From table 2 we see for small problem sizes the communication overheaddominates; for larger problems the performance seems to level o� at 13 M
 perprocessors, about 10 percent of peak performance. Performance of an ILU(0)-preconditioned method (table 3) is slightly lower. The explanation for this isnot immediately clear. Note that, since we used a regular grid problem, it isnot due to indirect addressing overhead.32

N np=1 np=2 np=4 np=82500 17 19 19 1710,000 15 21 35 4722,500 14 21 38 6590,000 13 20 39 73250,000 20 38 76Table 3: AzTec aggregate M
op rating for ILU(0) preconditioned CG on theCetus lab (section 5.1.N p=1 p=2 p=4400 5.6 8.8 4.52500 5.5 2.4 2.410,000 5.5 3.7 4.690,000 5.0 5.3 8.4250,000 4.8 5.5 9.5Table 4: BlockSolve95 aggregate mega
op rates on the Cetus lab (section 5.1;one equation per grid point.5.2.2 BlockSolve95We tested the supplied grid5 demo code, with the timing and
op countingdata supplied in BlockSolve95. The method was CG preconditioned with ILU.From table 4 we see that the performance of BlockSolve95 is less than of otherpackages reported here. This is probably due to the more general data formatand the resultant indirect addressing overhead. Results in table 5 show that byinode/clique identi�cation BlockSolve95 can achieve performance comparableto regular grid problems in other packages.Larger problems than those reported led to segmentation faults, probablybecause of insu�cient memory. Occasionally, but not always, BlockSolve abortswith an `Out of memory' error.5.2.3 ItpackProblem tested: �ve-point Laplacian solved with Jacobi CG. We wrote our ownmain program to generate the Laplacian matrix in row compressed and diagonalN p=1 p=2 p=4 p=8400 23(10) 10(2) 5(2) 06(2)2500 19(9) 20(6) 17(5) 24(5)10,000 18(8) 25(7.5) 38(9) 54(10)Table 5: BlockSolve95 aggregate mega
op rates on the Cetus lab (section 5.1;�ve equations per grid point; parenthesized results are without inode/cliqueisolation. 33

N alloc (Mb) M
 CRS M
 Dia400 .05 19 12500 .3 20 810,000 1.2 17 1422,500 2.8 16 15Table 6: Mega
op rates for Itpack on a single Cetus machine (section 5.1.N p=1 p=2 p=4 p=8400 17 4 2 12500 18 12 8 710,000 15 20 20 2490,000 13 22 44 75250,000 13 22 44 88Table 7: Aggregate mega
op rates for unpreconditioned CG under Petsc on theCetus lab (section 5.1).storage format.Certain Itpack �les are provided only in single precision. We took the singleprecision �les and compiled them with f77 -r8 -i4, which makes the REALs8 bytes and INTEGERs 4. It is not clear why diagonal storage will only givegood performance on larger problems.5.2.4 PetscWe tested the Petsc library on Sun UltraSparcs that were connected by bothEthernet and an ATM switch. The results below are for the Ethernet connection,but the ATM numbers were practically indistinguishable.We wrote our own main program to generate the �ve-point Laplacian matrix.The method in table 7 is an unpreconditioned CG algorithm.We tested the e�cacy of ILU by specifyingPCSetType(pc,PCSOR);PCSORSetSymmetric(pc,SOR_LOCAL_SYMMETRIC_SWEEP);which corresponds to a block Jacobi method with a local SSOR solve on-processor. This method, reported in table 8, has a slightly lower performancethan the unpreconditioned method, probably due to the larger fraction of indirect-addressing operations.5.2.5 PSparsLibWe added
op counting to the example program dd-jac, which is an additiveSchwarz method with a local solve that is ILUT-preconditioned GMRES.Larger problem sizes ran into what looks like a memory-overwrite. Attemptsto allocate more storage failed. 34

N p=1 p=2 p=4 p=8400 14 2 2 12500 15 9 7 610,000 12 13 18 2090,000 10 13 26 45250,000 14 27 52Table 8: Aggregate mega
op rates for ILU CG under Petsc on the Cetus lab(section 5.1).N p=1 p=2400 29 102500 26 5Table 9: Aggregate mega
op rates for PSparsLib on the Cetus lab (section 5.1).5.3 DiscussionAlthough our tests are nowhere near comprehensive, we can state a few generalconclusions.� A sequential code should be able to attain 10{20% of the peak speed ofthe machine. This value was attained by most packages, using a varietyof storage formats.� Parallel codes have signi�cant overhead; for large enough problems this isamortized to where the per-processor performance is about half of that ofthe sequential code.� Inode/clique identi�cation can make a large di�erence in systems thathave multiple variables per node.References[1] Owe Axelsson and Gunhild Lindskog. On the eigenvalue distribution of aclass of preconditioning matrices. Numer. Math., 48:479{498, 1986.[2] Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Do-nato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, andHenk van der Vorst. Templates for the Solution of Linear Systems: BuildingBlocks for Iterative Methods. SIAM, Philadelphia PA, 1994.[3] E.F. D'Azevedo, V.L. Eijkhout, and C.H. Romine. Lapack working note56: Reducing communication costs in the conjugate gradient algorithm ondistributed memory multiprocessor. Technical Report CS-93-185, ComputerScience Department, University of Tennessee, Knoxville, 1993. to appear.35

[4] Jack Dongarra and Henk van der Vorst. Performance of various computersusing sparse linear equations software in a fortran environment. Supercom-puter, 1992.[5] L. Yu. Kolotilina and A. Yu. Yeremin. On a family of two-level precondition-ings of the incomlete block factorization type. Sov. J. Numer. Anal. Math.Modelling, pages 293{320, 1986.

36

