Compilation of Prototype Objects into Class Objects Using

Profile Information

Lawrence J. Karnowski and Bradley T. Vander Zanden
University of Tennessee
{karmnowsk, bvz}@cs.utk.edu

Abstract
The prototype-instance inheritance model has a high storage cost. This storage requirement often
forces applications into virtual memory, significantly impairing their interactive performance. We
believe this overhead can be reduced sufficiently to avoid using virtual memory. The key
observation is that large applications have relatively few prototype objects, each of which is
replicated very frequently. Once the design is stabilized, these prototypes do not change.
Consequently, they can be compiled into classes. This paper describes a scheme for performing
such compilations based on profile information. The scheme provides a way to convert a class-
instance object to a prototype-instance object if the profile information is incomplete or inaccurate.
It also lays the groundwork for future storage optimizations on the compiled objects. This
approach allows the software developer to benefit from prototype-instance inheritance during
development and then move the prototype code directly to production.
Keywords: Language Design and Implementation, Programming Environments, Prototype-

Instance Model, Storage Optimization, Graphical Interface Toolkits, Glyph Objects, Profile-

Based Compilation, Transmogrification

Paper Type: Rescarch

1. INTRODUCTION

The prototype-instance model [2, 17, 18, 21] provides a great deal of flexibility. Two of its most
salient features are that: 1) any object can be made a prototype by instancing that object; the
instance will inherit the prototype’s data and method attributes and any changes in the prototype
will be also reflected in the instance, and 2) any object can add or delete data fields and methods
dynamically. These features allow the developer to alter the attributes and behavior of base
prototypes at runtime, quickly making large changes throughout the entire system. This
functionality readily supports rapid-prototyping.

However, this flexibility is very expensive in terms of memory use. The ability to

dynamically add and delete data and method attributes (called s/ozs [20]) incurs a large amount of

1

memory overhead. For example, an application implemented in the Amulet toolkit [20], a
prototype-instance toolkit used for quickly developing graphical user interfaces, will run into
virtual memory after creating only a few thousand objects [11]. Accessing virtual memory creates
unacceptable pauses in the application’s interactivity.

Does this mean that prototype-instance inheritance must be abandoned to develop a
production-quality interface for an application involving millions of objects? Intuitively it seems
unlikely that each object among millions will have a completely unique type (i.e., unique set of
slots). It seems more likely that there will be a few prototypes, each defining a unique type and
having thousands of instances. We predict that a relatively small number of types will be used by
any large interface. Using type information, we can compile these types into less customizable but
also less memory-expensive classes. Ultimately, using these more space-efficient classes, interfaces
consisting of millions of objects will be possible.

This paper describes our first step towards achieving the goal of less memory-expensive
objects--a novel framework that allows an interface to mix prototype-instance objects with class-
instance versions of those objects. The interface developer writes and debugs an application using a
prototype-instance based toolkit. The developer then executes the application with a profiler. The
profiler determines the unique types in the application. This information is given to a code
generator that creates classes from the type information. The application is then recompiled with
the new classes. The developer never has to rewrite a single line of code.

The rest of this paper is organized as follows. The next section discusses related work.
The third section gives an overview of the prototype-instance inheritance system as it is
implemented in Amulet, the toolkit used in our experimental work. The fourth section describes our
class-instance replacement scheme. The fifth section provides information about the
implementation of this scheme. The sixth section documents our empirical results. The seventh
section describes the current implementation and discusses future work. The last section

concludes.

2. RELATED WORK

Related research falls into two categories: profile-based compilation and existing optimizations.

2.1 Profile-Based Compilation

In the past few years, researchers have successfully exploited dynamic profiling as a means of
improving the performance of prototype-instance systems without sacrificing their ease of
development. Dynamic profiling obtains information that can be used for both static optimizations
and for dynamic compilation of frequently executed portions of a program. Both the SELF [4, 5,
14] and Cecil [6, 10] languages have successfully used this approach.

Profile-based compilation automatically instruments a program’s code and, based on the
information collected, dynamically optimizes frequently executed portions of the code. These code
segments are optimized using techniques such as type prediction, method inlining, and code
splitting [4, 22]. Profiling and dynamic compilation have allowed the performance of object-
oriented languages to come within a factor of 2 of C programs [5, 13]. In addition, they do not
adversely affect interactive performance [14]. Finally, a variety of studies have shown that
profiling is applicable for 1) programs under rapid, iterative development, 2) programs handling
mput sets that differ from the training sets, and 3) programs involving graphical interfaces [24,
10].

In this paper, we describe how a profiler can be used to obtain type information that can
then be used to statically compile prototypes into classes. The profiler is invoked as the application
is shutting down. Consequently, the profiler has no effect on interactive performance since it
becomes active only at the termination of the program.

Another hallmark of dynamic compilation is that it gracefully handles situations for which
no optimized code exists by falling back on less optimized code or an interpreter. For example, a
certain spot in the code may have been optimized for integer operands (e.g., the plus operator may
have been inlined). If operands of an unexpected type occur, a method is invoked that is capable of
handling unexpected types. By invoking a method, rather than using inlined code, the operation will
take longer, but it will still perform correctly. Similarly, the scheme described in this paper
gracefully handles situations in which the profile information is incorrect or incomplete.
Specifically, it will convert a class-instance object back to a prototype-instance object and forward

all future requests to the new object.

2.2 Storage Optimizations

A number of storage optimizations have been suggested for object models, including glyphs [3] and

virtual aggregates [19]. Glyphs are extremely lightweight objects that contain only essential

information about an object that cannot be computed by other means [3]. For example, a label
object in a list might contain the value of the string, but not its x or y coordinates, if these
coordinates could be computed externally (e.g., by constraints or by the composite list object). The
advantage of glyphs is that they provide the same interface that a typical structured graphics object
provides, without the corresponding space overhead. The class compilation scheme described in
this paper is intended to lay the foundation for automatically compiling prototype objects into
glyph-like objects. Previously programmers have had to manually handcraft the glyph objects.

Virtual aggregates are composite objects that give the illusion of having internal parts, but
do not represent these internal parts explicitly [19]. Virtual aggregates are typically formatting
objects, such as lists or tables, that position a set of homogenous objects. If an operation needs one
of the objects, the virtual aggregate creates temporary objects for the operation “on demand”. Once
the object is no longer needed, its space is reclaimed. The class compilation scheme described in
this paper provides an attractive vehicle for implementing a virtual aggregate strategy. In
particular, a profiler could be tuned to collect information about types of objects that could benefit
from virtual aggregates (i.c., objects with lots of homogenous parts, none of which are frequently
requested). These objects would be compiled into virtual aggregates, and they would generate part
objects on demand.

Constraints are an increasingly common component of object systems [18, 15, 12, 1, 8,
20] and a number of researchers have tried to minimize the storage costs of constraints, including
Freeman-Benson’s module approach [7], Hudson’s micro-constraints [16], and Halterman’s model
dependencies [11]. The module approach attempts to eliminate constraints by compiling them into
plans. The micro-constraints approach employs a RISC-like strategy. It defines a few common
layout constraints, specifies what types of operands they may have, and represents them in 32-bit
words. A few bits specify the type of constraint, a few bits the operands, and a few bits a possible
constant value. The model dependencies approach represents constraint graphs using implicit
dependencies and generates explicit dependencies on demand. For each prototype object, a model
dependency graph is constructed for that object. Instance objects use this model dependency graph
to find the constraints that are affected by changing one of the slots in the instance object. The
model dependency graph is similar to our approach in that it takes advantage of type information.
However, it is more of a dynamic compilation approach since it dynamically computes and installs

model dependency graphs. It also does not depend on profile information.

3. OVERVIEW OF AMULET PROTOTYPE-INSTANCE SYSTEM

This section first briefly contrasts prototype-instance inheritance with class-instance inheritance. It

then describes features of the Amulet toolkit for those who are not familiar with it.

3.1 Prototype-Instance Inheritance

In a class-instance inheritance model, there is a distinction between object types and object
instances. An object type is similar to a class definition in C++ or Java. It defines a precise
interface of data members and behavior methods. An object type cannot be altered at runtime, and
it is not allocated memory at run-time (i.c., it is not an object). The object instance is the
embodiment of an object type in executable format. It is allocated space, stores data, and its
methods can be executed.

In a prototype-instance inheritance model, the distinction between object type and object
instance is blurred. Here there is only one type of object, and it has a dual nature. First, each
object is an object instance. It is allocated memory and it stores data and methods in a set of
attributes called slots. There is no distinction between data and methods. A slot can store ¢ither
one. Second, each object is an object type. It has a Create method that allocates memory for a new
object, initializes it for use, and then returns it. The Create method allows an object to become a
prototype by creating instances of it. Initially, the new instances inherit the slot set and values of
their prototype, but each object can dynamically change the values of its slots (including its method

slots) or add or delete slots. Hence objects can dynamically change their interface.

3.2 Amulet Features

Amulet is a prototype-instance-based toolkit that provides several features that greatly facilitate
rapid-prototyping of graphical user interfaces. These features include 1) composite objects, 2)
constraints, and 3) triggers.

A composite object is an object that aggregates and organizes other objects [9]. A
composite object is treated like a primitive object. For example, a developer can create instances of
a composite object, move a composite object, and delete a composite object. Composition is highly
useful in a graphical user interface. For example, if a developer wanted to create an interface that
relied heavily on displaying smiley faces, it would be annoying to have to create a new smiley face
object from scratch each time. Also, the developer would not want to duplicate code when

creating, deleting, or moving a smiley face. Composition eliminates this wasted effort. The

developer would create a SmileyFace composite object that contained a yellow circle as the face,
two black circles as the eyes, and one black arc for the mouth. Each time a smiley face was needed,
an instance of a SmileyFace object would be created.

A constraint is a relationship between two values that is expressed as a mathematical
formula and is then maintained automatically by the system [23]. Constraints can be used for
graphical formatting, or for automatic value updates like a cell in a spreadsheet. For example, a
developer would use constraints to automatically compute the size of the eyes and mouth inside the
SmileyFace object. When the composite object changed size, all the interior objects would also
automatically change size proportionally.

Triggers (or as Amulet calls them, demons [20]) are behaviors contingent upon a slot
change. When the slot changes, the trigger is automatically executed. Triggers facilitate the
implementation of constraints (“when value A changes update values B and C”), and automatic

functionality (“when the window closes, close all open files™).

3.3 Anatomy of an Amulet Object

Amulet is implemented in C++. Consequently, all Amulet objects must be instances of some class,
and this class is called Amulet Object. Amulet Object contains a variety of instance variables that
support prototype-instance inheritance, including the management of instances, slots, composition,
and triggers. The composition of an Amulet Object is shown in Table 1. The storage cost of an

Amulet object, exclusive of storage for slots, is 48 bytes.

Feature Number of Variable Description
Bytes
Inheritance 12 Pointers to an object’s prototype and to the object’s list
of instances.
Slots 4 A pointer to a dynamic array of slot objects
Composition | 16 Pointers to an object’s owner, its list of parts, and its

part slot (the object’s owner has a pointer to this part
slot that allows the owner to directly access this object)

Triggers 16 Storage for a pointer to an object’s set of triggers, a
pointer to a queue for queuing the triggers for execution,
and a number of fields for handling the inheritance of
triggers.

Table 1: A list of instance variables in an Amulet Object and the features that these variables
support.

Each slot in an Amulet object is an instance of a class called Amulet Slot. A slot object
contains instance variables for handling triggers, constraints, and a number of housckeeping
functions. A slot object consumes a minimum of 28 bytes, excluding storage space for a value and
several lists required for constraint maintenance. This paper considers only the compilation of
prototype objects into class objects, since creating the class objects is a prerequisite for compiling

the slot objects. However, in the future we hope to extend this scheme to slot objects as well.

An average Amulet object contains roughly 40 slots and typically consumes well in excess
of 1,000 bytes of storage. Consequently, an Amulet application often moves into virtual storage
after only a few thousand objects are created. At this point interactive performance degrades

significantly as the disk is repeatedly hit.

3.4 Exploiting Types

As noted in the introduction, most interfaces that create large numbers of objects use only a few
distinct prototypes (types). These objects inherit the same triggers and slots. For example, it is very
uncommon to change the set of triggers that are associated with an object. Similarly, it is unusual
to change the methods that an object inherits. Consequently, much of the information for triggers
and slots can be stored in a prototype object and inherited by each of the instances.

We can exploit this insight by compiling prototype objects into classes and creating
instances of these classes at run-time. Trigger information and many slots can be stored as class
variables, with only slots whose values are frequently altered by instances actually stored in the

instance objects.

4. DESCRIPTION OF THE CLASS COMPILATION SCHEME

This section describes the design of the class compilation scheme and the next section describes its

implementation

4.1 Scheme Overview

The class compilation scheme is predicated on profiling. A developer executes an application using
a script of representative operations that might be performed by an end-user. When the application
is terminated, the run-time environment invokes a profiler. The profiler examines each of the
objects in the prototype-instance hierarchy, beginning at the root. The profiler examines each of the

slots in a prototype object and determines whether the slot should be treated as a class variable or

an instance variable. The test is based on a certain percentage of the instances ¢ither inheriting the
slot or treating it as a local variable. Currently a slot is classified as a class variable if 80% or
more of the instances inherit it; otherwise it is classified as an instance variable. The profiler writes
the information about each of the prototype’s slots to a data file.

A code generator reads the data file and generates a class for each of the prototypes listed
in the file. Class slots are declared as static instance variables. Instance slots are handled by
declaring an array of slot objects equal in size to the number of instance slots. Each instance of the
class will allocate storage for this array. Each class also declares a slot accessor method called
find slot that takes a slot key as a parameter and returns the associated slot object. A read method
can then return the slot’s value, and a write method can set the slot’s value. A slot key is an integer
key that denotes a slot. For example, LEFT might be assigned the key 100 and TOP might be
assigned the key 101.

The new class-instance objects are called /ightweight objects, to distinguish them from the
regular prototype-instance objects that are called heavyweight objects. The lightweight objects
cannot dynamically add or delete slots, but they also do not suffer from the overhead of dynamic
slot sets.

The lightweight objects replace the heavyweight objects in the application. However, the
application should still have the illusion that a prototype-instance system is being used. In
particular, if the profile information is incorrect or incomplete, it should still be possible to change
the set of slots associated with an object. For example, the application might display an error
dialog when a disk runs out of space. This condition might not occur during the profiling of the
application, so the dialog window might try to add a slot to a lightweight object. A lightweight
object will be too simple to handle conditions for which it was not designed, like adding a new slot.
In this case the lightweight object will be fransmogrified, or changed, to an equivalent heavyweight
object. The slots will be copied to the new heavyweight object and the requested operation will be
forwarded to the heavyweight object. The new heavyweight replacement will persist for the lifetime
of the application.

4.2 Old Versus New Architecture of Amulet

To allow lightweight objects to replace heavyweight objects, and also to allow transmogrifications,
several design changes had to be made to the Amulet toolkit. The original Amulet system used a

Proxy pattern [9] in its object implementation. The Amulet Object class was actually a wrapper

class that contained a pointer to an implementation object (Figure 1.a). Amulet Object was the
proxy that was exported to the user to allow reference counting and to prevent a user from
obtaining a direct pointer to the implementation object. However, multiple Amulet Objects could

share pointers to the same implementation object.

Amulet Object Heavyweight
Inheritance
(@ Parts
_impl Triggers
Slots
Amulet Object Lightweight
(b) Inheritance
Parts
Triggers
Slots
_impl » forward_impl+
Amulet Object Lightweight Heavyweight
Inheritance Inheritance
Parts Parts
Friggers Triggers
Slets Slots
_impl _forward_impl
Amulet Object Bridge Lightweight Heavyweight
© Inheritance | ___ o Triggers i Triggers
Parts i Slots | Slots
| | | |
impl] e

Figure 1: (a) The original implementation of an Amulet object. (b) An implementation of the class
compilation scheme using a proxy pattern. (¢) The final implementation of an Amulet object using
a bridge pattern. _i npl can point to cither a lightweight or heavyweight object.

Our first idea was to allow an Amulet Object to point to a lightweight object instead of a
heavyweight object. If the lightweight object received an operation that it could not handle, it would
create a heavyweight object and save a pointer to it (Figure 1.b). Thereafter, any requests received
by the lightweight object would be forwarded to the heavyweight object. This scheme required that
the lightweight object be retained. However, since few transmogrifications are expected to occur,
the storage overhead of this decision was minimal. However, this idea foundered when we

discovered that some of the functionality associated with composition and inheritance still had to be

handled by the lightweight object. Consequently, both the lightweight object and the heavyweight
object had to share some similar state. This arrangement proved awkward.

Consequently, we changed the design so that a lightweight object could be completely
replaced with a heavyweight object. To accomplish this task, we changed the implementation
object so that it used a bridge pattern rather than a proxy pattern. The new model still has an
Amulet Object class containing a pointer to an implementation class. However, this
implementation class in turn has a pointer to a lightweight or heavyweight data object (Figure 1.¢).
The implementation class handles instance and part management, and the lightweight/heavyweight
data class handles all trigger functionality and the storing and accessing of slots. When an error
occurs and we must transmogrify the object, we simply replace the lightweight data object with a

heavyweight data object with equivalently valued slots.

4.3 Details of Lightweight Implementation

This section gives a more in-depth look at the internals of a lightweight object. The layout of a
lightweight class is shown in Table 2 and the layout of a lightweight subclass is shown in Table 3.
The lightweight class is an abstract base class. It handles the basic functionality of lightweight
objects, including transmogrification, manipulations of slot objects and triggers, and the storing of
trigger information. Each of the lightweight subclasses implements a specific type. Each subclass
stores the slot objects and provides methods for creating a concrete instance and accessing and
mnitializing the object’s slots. The layout of each of these objects is described in greater detail

below.

4.3.1 Lightweight Class

As shown in Table 2, the lightweight class is responsible for implementing the operations declared
in the Amulet interface and for handling transmogrifications. It also stores the object’s trigger
information. Both lightweight and heavyweight classes inherit from the same abstract base class. A
lightweight class supports many, but not all of the operations declared in the Amulet interface.
When it does support an operation, the operation can often be implemented more simply than in the
heavyweight version, because a lightweight object does not have to propagate the changes to any
instances (a lightweight object is always a leaf in the prototype-instance hierarchy).

For operations that a lightweight class does not support, such as remove slot, create
instance, or changing the value of a class slot, the lightweight methods call a transmogrify method.

This method creates a new heavyweight object, copies the lightweight object’s trigger and slot

10

information to the heavyweight object, and makes the implementation object point to the new
heavyweight object. The lightweight object’s method then forwards the request to the heavyweight
object’s method.

Section Name Purpose
Instance Trigger A set of instance variables that store information about triggers,
Variables Information such as the set of triggers associated with this object, the list used

to queue the triggers for execution, and the set of triggers that
cach slot inherits by default. The trigger information is stored in
the lightweight class, rather than in the implementation object
(i.c., the bridge object), because it is tightly connected with slot
objects.

Methods Transmogrify | Allocate storage for a heavyweight object, copy the trigger and
slot information to the new object, and return a pointer to the new
object.

Methods that | These methods are implemented separately in lightweight and
implement the | heavyweight classes, since lightweight objects are always leaves

Amulet in the prototype-instance hierarchy. So, unlike heavyweight

interface objects, they never have to propagate information to instances,
and thus can be implemented more simply than the corresponding
heavyweight methods.

Table 2: The layout of a lightweight class.

Ordinarily the lightweight object would destroy itself once the operation is complete.
However, our current implementation does not actually copy the slot information to the
heavyweight object but instead makes the heavyweight object point back to the slots in the
lightweight object. Consequently the lightweight object is retained, although it is no longer
referenced. Since transmogrifications are infrequent, the extra storage overhead incurred by this

decision 1s minimal.

4.3.2 Lightweight Subclasses (Prototype Classes)
Each lightweight subclass corresponds to a prototype object in the prototype-instance hierarchy. It

provides storage for an instance object’s slots, a method for retrieving a slot object given a slot
key, and methods for creating an instance object and instantiating its slots. Slot storage and
retrieval is described in this section. Section 5.3 describes slot initialization.
Slots are partitioned into instance and class slots. An instance slot has a changeable
value and needs storage in each instance of the class. An example of instance slots would be the x

and vy position of the object on the screen.

11

Class slots do not have changeable values. They are initialized once and then never
changed. Instead of making each instance of the lightweight object waste space in storing this
constant-valued slot, we only store one class slot for each lightweight class. Each instance of the
lightweight object has access to it, but none have to store it. A good example of this type of slot is
the draw method. In Amulet, to encapsulate drawing behavior, each object has a slot that stores a
pointer to the method that draws it likeness on the screen. It is obvious that the value of this slot
will be the same for each instance of the lightweight object, and that the value will never change.

Accordingly, this slot is made a class slot.

Section Name Purpose

Class Class slots One slot object is allocated for each class slot

Variables | Instance Keys Array An array of slot keys that identifies each of the instance

slots
Class_Keys_Array An array of slot keys that identify each of the class slots
Instance Slot_Array An array of slot objects. There is one slot object for each
Variables instance slot.
Class Create The create method called by a prototype in order to
Methods generate a lightweight instance.

Initialize_Class_Slots A static method called by the create method the first time
the prototype creates an instance. This method
instantiates each class slot by copying the contents of the
corresponding slot object from the prototype object to the
class slot.

Virtual Find_Slot A method that takes a slot key and then returns the
Methods corresponding slot object.

Initialize Instance Slots | A method that instantiates each instance slot by copying
the contents of the corresponding slot object from the
prototype object to the instance slot.

Slot_Iterator Returns an iterator object. The iterator object returns
cach of the slot keys in the class (both the instance slot
keys and the class slot keys)

Table 3: The layout of a lightweight subclass.

The lightweight class hierarchy is only one level deep (Figure 2). When a lightweight
class is created for a prototype, all the slots from both the prototype and its ancestors are included
in the lightweight class. The original implementation of lightweight classes mirrored the prototype-

instance hierarchy with lightweight classes subclassing other lightweight classes. However, this

12

multi-level hierarchy merely complicated the implementation without providing any real benefit, so
it was scrapped and replaced with the single-level hierarchy.

A find_slot method is implemented for each lightweight subclass. Amulet uses a
find slot method to find and return a slot object. Slot operations can then perform operations on
the returned slot, such as reading or writing its value. In a heavyweight object, the slot objects are
stored in a dynamic slot array. Amulet uses a linear search to locate a slot object. If the slot object
cannot be found in the object’s array, the prototype object’s array is searched, and so on until the

slot object is located or the root of the inheritance hierarchy is reached.

Graphical Object DataObiect
l
' ' | | |
Arc CompositeObject Heavyweight Li gh}weight
| [1 [L
Smilel Circle SmileyFace Are Circle Eye SmileyFace
Eye Facel SmileyFacel
Eyel Eye2
(@) (b)
GraphicalObject
l
[I
Are CompositeObject
Smilel Circle SmileyFace
Eye Facel SmileyFacel
Eyel Eye2
(c)

Figure 2: A sample prototype instance hierarchy is shown in (a). This hierarchy is compiled into
the class-instance hierarchy shown in (b). CompositeObject and GraphicalObject are not compiled
into classes because they do not have any leaf instances and hence will not generate any lightweight
objects. (c) shows the prototype hierarchy that results with compiled class objects. The objects in
normal type are heavyweight objects, the objects in italics are heavyweight objects that can
generate lightweight objects, and the objects in boldface are lightweight instance objects.

In contrast, each lightweight class defines its own find slot method. The method is simply
a case statement that takes a slot key as input and returns the appropriate slot object from either

the instance slot array or the appropriate class slot object. The switch statement identifies the key

13

in O(1) time, whereas the linear search required by the heavyweight implementation requires O(n)
time, plus a possible search through multiple levels of the prototype-instance hierarchy.
Each lightweight class keeps static arrays for class and instance keys. These arrays are

necessary for initialization of the object, slot iteration, and other internal housekeeping routines.

5. IMPLEMENTATION SPECIFICS

This section gives details about other implementation specifics necessary to our optimization but

external to the actual class compilation system. This includes profiling and object creation.

5.1 Profiling

As noted earlier, the profiler examines each of the prototypes in the prototype-instance hicrarchy.
Amulet provides a mechanism for traversing the slots in an object. The profiler uses this
mechanism to examine each of the prototype’s slots (the slot traversing mechanism returns both
slots stored locally in the prototype and slots stored in any of the prototype’s ancestors; hence both
inherited and non-inherited slots are examined). For each slot, the profiler examines the same slot
in each of the instances. If more than some threshold percentage of the instances inherit the slot, the
slot 1s classified as a class slot, otherwise it is classified as an instance slot. The current threshold
is 80%, and it has worked well in the sense that very few transmogrifications occur in practice (sce
Section 6.1 for more details).

The current implementation of the profiler is somewhat naive but very effective. Except for
a few slots, such as a selecred slot, that the profiler knows Amulet might add to an instance, the
profiler does not check to see if the instances add additional slots that the prototype does not
contain. The profiler does maintain a list of common system-added slots so that these slots can be
checked. The failure to check for additional slots could theoretically lead to a class being
constructed with an insufficient number of slots. In turn, this oversight could lead to the
transmogrification of all of the instances in the class.

However, as shown in Section 6.1, such transmogrifications have not been problematic in
practice and our hypothesis stated at the beginning of this paper predicts that this strategy should
not lead to many transmogrifications. Qur hypothesis is that a graphical interface that contains a
large number of objects will use a few prototype objects to stamp out thousands of objects with the
same type. It is unlikely that an application will add or remove slots from these objects. Our

empirical results reflect this.

14

In the future, we plan to make the profiler more sophisticated by having it make a
preliminary pass through all the instances of a prototype in order to gather the complete set of slots
used by all the instances. The profiler will then use this set of slots, rather than just the set of slots
in the prototype, to perform its appraisal. This addition will handle the situation where a large

number of mstances all add an additional slot.

5.2 Selecting the Type of Object to Create

When an application creates an instance of an object, our scheme needs to determine whether the
newly created object 1) will eventually serve as a prototype and create lightweight objects, 2) be a
leaf in the prototype-instance hierarchy and be represented by a lightweight object, or 3) failing
either of the above two conditions, be a heavyweight object. This choice is made by checking the
name of the newly created object. Amulet gives a unique name to each object. The developer can
specify a name, or, if one is not provided, Amulet assigns one automatically. When the profiler
writes out a prototype’s information, it also writes out the prototype’s name. The code generator
uses this name in the following fashion. The code generator first places a class declaration in a .h
file and the class in a .cc file. The code generator then declares a dummy variable in the .cc file and
initializes it by calling a function that stores in a global registry the class’s name and a pointer to a
static class method (Create) that returns an instance of the class.

When an object is created, the new name for it is specified. We check this new name. If
it is in the registry, the newly created object is a lightweight-generating object, that is, an interior
node in the inheritance hierarchy that has leaves immediately adjacent to it. We create a
heavyweight object and give it a reference to the instance-generating function. Whenever the
object’s create method is called, it will create lightweight objects.

If the name does not appear in the registry, the system checks to see if the creating object is
a lightweight-generating object. If it is, the new object is created as a lightweight. If it is not, a
regular heavyweight object is created.

5.3 Initializing the Class Slots

The first time that a prototype class creates an instance of itself, it calls its static
Initialize_Class_Slots methods. This method iterates through the class slots array. For each slot
key in the array, it uses the class’s find slor method to locate the appropriate class slot. It then
searches the prototype-instance hierarchy for the slot object corresponding to this key (since the

slot is a class slot, it must be inherited from somewhere in the prototype-instance hierarchy). This

15

search is performed by passing the slot key to the find slot method of the heavyweight object that
is associated with this prototype class (i.e., the heavyweight object that has a pointer to this class’s

Create method). The contents of located slot object are then copied into the class slot.

5.4 Initializing a Lightweight Object

Once created, the slots of a lightweight object must be initialized. This initialization is
accomplished by copying the values of the slots in the prototype using the Initialize Instance Slots
method. Recall that a lightweight class maintains an array of instance slot keys. The initialization
procedure for a lightweight class simply iterates through this array. For each slot key, it retrieves
the appropriate slot object from the prototype using the prototype’s find slotr method. Similarly it
retrieves the appropriate slot object from the instance using the lightweight object’s find slot

method. It then copies the information from the prototype’s slot object to the instance’s slot object.

6. EMPIRICAL RESULTS

The feasibility of the lightweight scheme rests on two factors: 1) whether the number of
transmogrifications is a relatively small percentage of the total number of objects, and 2) whether
the performance degradation that results from the bridge object and from the transmogrifications is
acceptable. The impact of using a bridge object is that operations affecting slots and triggers must
go through another level of indirection. In other words, there is an additional virtual method call
required to access slots and triggers (a virtual method call is required since the data object’s type is
unknown).

To help examine transmogrifications and performance, we took two existing Amulet
applications, a finite state machine simulator and an interface builder called Gilt, and recompiled
them using the class compilation scheme. Additionally, we created an “empty” application that
simply initializes the Amulet run-time environment and then shuts down.

Each of the three applications was profiled using a script of actions (the script for the
empty application was an empty script since the application simply starts up and shuts down). The
applications were then recompiled with the classes created using the profile information. Finally the
applications were rerun both with the same script and with a script of a different set of actions.
Since the results could be made arbitrarily good by creating increasingly large numbers of

application objects that would not be transmogrified, we created a relatively few number of

16

application objects in each application, 21 in the finite state machine application and 100 in the
Gilt application.
The applications were run on a Sun Sparc 5 with 32 megabytes of RAM.

6.1 Transmogrification Results

In each application we measured 1) the number of objects created, and 2) the number of objects

transmogrified. The results are presented in the following table:

Application Number of Total Number of Percentage of
Transmogrifications | Objects Created Objects
Transmogrified
Empty Application 134 738 18%
Finite State Machine 162 929 17%
Interface Builder (Gilt) | 359 4499 8%

Table 4: Transmogrification results for the sample applications.

The results show that a relatively small percentage of transmogrifications occurred in each
application. In addition, almost all of the transmogrifications were in the parts of the Amulet
prototype-instance hierarchy that are nof used by the application. For example, Amulet provides a
number of animation objects that are not used in any of the sample applications. Ordinarily these
animation objects would be prototypes and hence would be interior nodes in the prototype-instance
hierarchy. However, since no instances are created of these objects, they appear to the profiler to
be instances. Hence the profiler creates lightweight objects for each of these prototype objects.
Since Amulet goes ahead and customizes these objects, assuming that they will be prototypes, they
end up being transmogrified. In the future we plan to examine ways that these transmogrifications
could be avoided. However, the important point is that they do not constitute a large percentage of
the objects. In addition, these transmogrifications represent a fixed cost that is incurred at start-up.
They do not occur during the later execution of the interface.

Almost no transmogrifications occurred among the application objects during the user’s
interaction with the interface. This result is consistent with our belief that an application creates
objects from a few prototypes and does not customize the objects by adding or deleting slots. It
also supports our hypothesis that as the number of application objects is increased, the percentage

of transmogrified objects will drop to almost 0.

17

6.2 Performance Results

We evaluated the performance of the class compilation scheme in two ways: 1) the user’s
subjective sense of the performance of the applications, and 2) the amount of time required to
perform a single transmogrification. Although it is possible to perform a whole battery of
benchmark tests on individual operations, we have found in the past that the best measure of
performance is the user’s subjective sense of performance. We found that there was no discernable
difference between the original and the new “class” versions of these applications, either at start-up
or during interactive operations. The performance of the class version is especially encouraging in
light of the fact that it has not yet been extensively optimized. However, even with optimization, we
doubt that there will still be any discernable difference in performance, since the performance of all
applications was judged to be quite fast.

We did perform a number of benchmark timings between the original and the modified
versions of Amulet and found a roughly 70% slowdown in performance for most operations. This
finding is preliminary since the original version of Amulet is highly optimized, while the modified
version of Amulet has only recently been completed and has not yet been optimized (for example,
no attempt has been made to inline one and two line methods). The reason that interactive
performance is not affected despite this slowdown is that most interactive operations affect only a
small portion of a graphical interface, and in particular, a few objects. Consequently, the redisplay
time dominates the time to actually alter the objects. This finding is confirmed by studies that have
found that redisplay time accounts for roughly 70-80% of the time consumed by an operation
[12,23].

The performance of the transmogrification routines on the transmogrification benchmark
was also quite good. 10,000 instances of an object with 29 slots were created and transmogrified.
The average time to transmogrify a single object was 1.22 milliseconds. Given these performance
numbers and the number of objects transmogrified in the sample applications, it can be expected
that transmogrification will add only a few fractions of a second to the overhead of an application.

In addition, this overhead is for the most part incurred only at start-up.

7. CURRENT STATUS AND FUTURE WORK

This section summarizes our current progress and predicts the course of our future work.

18

7.1 Current Status

All of the mechanisms described in this paper are implemented. We have a working profiler, class
generating program, and a modified version of Amulet that supports class objects and

transmogrifications.

7.2 Future Work

The class compilation model described in this paper lays the foundation for making objects
significantly more space efficient. Some of the optimizations we plan to pursue are:

Sharing trigger information. Most objects share the same set of triggers, the same set of
default triggers, and the same trigger queue. Consequently, we plan to make these variables be
class variables in lightweight objects.

Moving part management into the data objects. An Amulet object keeps track of parts in
two ways, first in a part list and secondly in part slots that point to individual parts. In lightweight
objects, these part slots can be organized into an array. Consequently, the part slot array can serve
as the parts list and the explicit part list can be removed.

Using model dependencies for constraints to reduce constraint storage. A related paper
describes how patterns can be used to generate constraint dependencies on demand rather than
having to represent them explicitly in a constraint graph [11]. Not only do these “model”
dependencies save storage directly, they will also enable some slots that currently have to be
treated as instance variables to be treated as class variables instead. These slots are inherited slots
that have constraint dependencies, and hence have to be allocated storage in the instance object in
order to be able to store these explicit dependencies.

Making slots lightweight. Just as objects store trigger information that can be shared, slots
also store trigger information that can be shared. We plan to extract this information and place it in
either prototype slots or glyph objects, thus allowing the information to be shared. Similarly, some
of the constraint information that is currently stored in the slots can, in most cases, be shared. We
plan to use a transmogrification scheme similar to the one described in this paper to allow slots to

be customized on demand.

8. CONCLUSION

This paper has described how type information that is obtained by profiling an application can be

used to compile prototypes in a prototype-instance model into classes in a class-instance model. It

19

also describes a transmogrification scheme that allows instances of these classes to be converted to
a prototype-instance object if the instance must be customized in an unexpected way. This class
compilation scheme lays the foundation for significantly reducing the amount of storage required
by a prototype-instance model, since much of the type information that is currently stored in each
individual object can instead be shared as class information. Once these storage optimizations are
completed, the developer will be able to develop code using the prototype-instance model while still

benefiting from the optimizations permitted the class-instance model

20

10.

1.

REFERENCES

Alan Borning. “The Programming Language Aspects of ThingLab; a Constraint-Oriented
Simulation Laboratory. ACM Transactions on Programming Languages and Systems, 3, 4
(Oct. 1981), 353-387.

Alan Borning. “Classes versus Prototypes in Object-Oriented Languages.” Proceedings of the
ACM/IEEE Fall Joint Computer Conference, (Nov.1986).

Paul R. Calder and Mark A. Linton. “Glyphs: Flyweight Objects for User Interfaces.” ACM
SIGGRAPH Symposium on User Interface Software and Technology, Proceedings UIST 90,
Snowbird, Utah, Oct., 1990, pp. 92-101.

Craig Chambers, David Ungar, and Elgin Lee. “An Efficient Implementation of SELF, A
Dynamically-Typed Object-Oriented Language Based on Prototypes.” Sigplan Notices 24, 10
(Oct. 1989), 49-70. ACM Conference on Object-Oriented Programming Systems, Languages,
and Applications; OOPSLA’89.

Craig Chambers and David Ungar. “Making Pure Object-Oriented Languages Practical.”
Sigplan Notices 26, 10 (Oct. 1991), 1-15. ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications; OOPSLA’91.

Craig Chambers. “The Cecil Language: Specification & Rationale.” Tech. Rept. 93-03-05,
Computer Science Department, University of Washington, March, 1993.

Bjorn Freeman-Benson, John Maloney, and Alan Borning. “A Module Mechanism for
Constraints in SmallTalk.” Sigplan Notices 24, 9 (Oct. 1989). ACM Conference on Object-
oriented Programming, Systems, Languages, and Applications; OOPSLA89.

Bjorn Freeman-Benson. Kaleidoscope: Mixing Objects, Constraints, and Imperative
Programming. OOPSLA/ECOOP 90 Conference Proceedings, 1990, 77-88.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-oriented Sofiware. Addison-Wesley, Reading, Massachusetts, 1995.

David Grove, Jeffrey Dean, Charles Garrett, and Craig Chambers. “Profile-Guided Receiver
Class Prediction.” Sigplan Notices 30, 10 (Oct. 1995), 108-123. ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications; OOPSLA’95.

Richard L. Halterman and Bradley T. Vander Zanden. “Using Model Dependency Graphs to
Reduce the Storage Requirements of Dataflow Constraints in Prototype-Instance Systems”.

Submitted to OOPSLA’98.

21

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Ralph Hill. “The Rendezvous Constraint Maintenance System.” In ACM SIGGRAPH
Symposium on User Interface Software and Technology, Proceedings UIST 93, (Nov. 1993),
Atlanta, GA, 225-234.

Urs Holzle and David Ungar. “Optimizing Dynamically-Dispatched Calls with Run-Time
Type Feedback.” Sigplan Notices 29, 6 (June 1994), 326-336. ACM SIGPLAN’94
Conference on Programming Language Design and Implementation.

Urs Holzle and David Ungar. “A Third-Generation SELF Implementation: Reconciling
Responsiveness with Performance.” Sigplan Notices 29, 10 (Oct. 1994), 229-243. ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications;
OOPSLA’94.

Scott E. Hudson. A System for Efficient and Flexible One-Way Constraint Evaluation in C++.
Technical Report 93-15, Graphics Visualization and Usability Center, College of Computing,
Georgia Institute of Technology, (April, 1993), 10 pages.

Scott Hudson and Ian Smith. “Ultra-lightweight Constraints.” In ACM SIGGRAPH
Symposium on User Interface Software and Technology, Proceedings UIST 96 (Oct. 1996),
Secattle, WA.

Henry Lieberman. “Using Prototypical Objects to Implement Shared Behavior in Object-
Oriented Systems.” Sigplan Notices 21, 11 (Nov.1986), 214-223. ACM Conference on
Object-Oriented Programming, Systems, and Applications] OOPSLA’86.

Brad Myers, Dario A. Guise, Roger Dannenberg, Bradley Vander Zanden, David Kosbie, Ed
Pervin, Andrew Mickish, and Philippe Marchal. “Garnet: Comprehensive Support for
Graphical, Highly-Interactive User Interfaces.” IEEE Computer 23, 11 (Nov.1990), 71-85.
Brad Myers, Dario A. Guise, Andrew Mickish, and David Kosbie. “Making Structured
Graphics and Constraints Practical for Large-Scale Applications.” Tech. Rept. CMU-CS-94-
150, Carnegie Mellon University Computer Science Department, May, 1994,

Brad A. Myers, Rich McDaniel, Robert Miller, Alan Ferrency, A. Faulring, Bruce Kyle, Andy
Mickish, Alex Klimovitski, and P Doane. “The Amulet Environment: New Models for
Effective User Interface Software Development”. [EEE Transactions on Software
Engineering, 23, 6 (June 1997).

David Ungar and Randall B. Smith. “SELF: The Power of Simplicity.” Sigplan Notices 22,
12 (Dec. 1987), 227-241. ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications; OOPSLA87.

22

22. David Ungar, Randall B. Smith, Craig Chambers, and Urs Holzle. “Object, Message, and
Performance: How They Coexist in Self.” IEEE Computer 25, 10 (Oct. 1992), 53-64.

23. Brad Vander Zanden, Brad A. Myers, Dario Giuse and Pedro Szekely. “Integrating Pointer
Variables into One-Way Constraint Models.” ACM Transactions on Computer Human
Interaction, 1, 2 (June 1994), 161-213.

24. David W. Wall. “Predicting Program Behavior Using Real or Estimated Profiles.” Sigplan
Notices 22, 12 (Dec 1987), 227-241. ACM SIGPLAN’91 Conference on Programming

Language Design and Implementation.

23

