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1 Introduction

Dataflow constraints (also called one-way or spreadsheet-style constraints)allow programmers to easily specify re-

lationships among programming objects in a natural manner. For example,in a graphical interface they can be used

to center a label within a textbox or to keep the size of a bar in a histogramconsistent with a piece of data in an

application. In a syntax-directed editor they can be used to specify type checking rules or to determine whether or not

a variable has been declared.

Constraints are increasingly being integrated into drawing packages and interface development toolkits [18, 19, 11,

10, 14]. Unfortunately, studies of at least two of these toolkits, Garnet [18] and Amulet [19] have shown that constraints

can exact a significant storage toll on programs [27]. Ultimately the execution times of programs managing a large

number of constrained objects suffer since virtual memory must be accessed tomeet their storage demands.

One reason constraints require so much storage is that most dataflow constraint systems explicitly represent the

relationships among constraints by maintaining aconstraint graph(see Section 2). The edges in these graphs can con-

sume a considerable amount of storage (in Amulet, the system in which we have performed our test implementation,

each constraint dependency is represented by a forward edge and a backward edge, each ofwhich requires 12 bytes of

storage). In applications that use thousands of constraints, the space consumed by dependencies can limit the number

of objects that can be created.

In this paper we present a solution to the dependency problem that is basedon the observation that objects that use

the same constraints have the same constraint graph. Consequently, wecan store a pattern of a constraint subgraph, a

model constraint graph, in a common place and then use the pattern to derive explicit dependencies ondemand. Since

thousands of objects may be created from the same prototypical object, the storage savings can be considerable.

Our solution is inspired by the Repset. al. idea of using supertree-subtree graphs to implicitly represent a constraint

graph [20]. However, Reps dealt with restricted types of constraint graphs and restricted types of edits whereas our

problem deals with arbitrary constraint graphs and arbitrary edits. Consequently, while our solution incorporates the

Reps,et. al. idea of supertree-subtree graphs to reduce the number of explicit dependencies, we also support explicit

dependencies that do not conform to our modeling scheme. A more detailed comparison between the two problems is

presented in Section 6.

Our experiments show that over 50% of the explicit dependencies in most applications can be eliminated with

model dependencies.
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2 Background

2.1 Composite Objects

The constraints described in this paper are implemented in the context of composite objects. Acomposite objectis an

object made up of parts consisting of other objects[9]. For example, Figure 1 illustrates a simple composite object, a

labeled box consisting of a text string enclosed within a rectangle.

(b)  The labeled box composition diagram

Labeled_Box

frame label

TextRectangle

owner owner
Knoxville

(a)  A labeled box

Figure 1: A labeled box object (a) and its structural components (b)

Each component of the labeled box hasleft, top, width, andheight instance variables, orattributes. Thelabel

part also has a text string and font attributes. The labeled box has named pointers to its children (frame andlabel)

and the children have named pointers to their parent (owner). (See Figure 1b.) These pointers allow the labeled box

to access instance variables in its parts and the parts to access instance variables in their parent and in their siblings.

2.2 Constraints

Definition. A one-way dataflow constraintis a formula in which the value of the variable on the left side is determined

by the value of the expression on the right side. For example, the frame of the labeled box in Figure 1 should be slightly

larger than the text label, and the label should be centered within the frame.Figure 2a shows the constraints that specify

these relationships.

More formally, a one-way constraint is a formula of the form

v=C(p0; p1; p2; : : : ; pn)
whereC is an arbitrary function,p0 throughpn are the parameters to this function, andv is the variable to which the

function’s result is assigned. If the value of anypi is changed during the program’s execution,v’s value is automatically

recomputed. Note thatv has no reciprocal influence on anypi as far as this constraint is concerned; hence, it isone-

way.

Constraint Graphs. The network of variables and constraint objects and their associated relationships form a

constraint graph. The vertices of a constraint graph are constraints and variables. A variable has a directed edge to

a constraint if the constraint uses that variable as a parameter. A constrainthas a directed edge to a variable if the

constraint computes that variable. Many systems also maintain backward edges that point from constraints to their
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Figure 2: Labeled box constraint equations and constraint graph

input variables. These backward edges allow dependencies to be removed if a constraint is deleted. Figure 2b shows

the constraint graph for the labeled box equations in Figure 2a (backpointers are omitted).

Constraint Satisfaction. In this paper amark-sweepalgorithm is used for constraint satisfaction. A mark-sweep

algorithm has two phases: 1) amark phase in which all constraints that depend on a changed variable are marked

invalid, and 2) asweepphase in which constraints are brought up-to-date by evaluating theirformulas [5, 20, 12, 25].

The mark phase is our primary interest in this paper, since it uses the dataflow edges in the constraint graph to determine

which constraints must be markedinvalid.

2.3 Editing Model

Our editing model is similar to one supported by a prototype-instance model [4, 15]. An application can create

instances of any object. All attributes, parts, and formulas associated withthe object are inherited by the new instance.

The original object is called theprototypeof the new instance.

Until an object is instanced, the following editing operations are permitted:� parts may be added to the object� parts may be removed from the object� formulas may be added to instance variables� formulas may be removed from instance variables

Once an object is instanced, we assume that no further editing operations arepermitted on that object.

While the system we describe in this paper uses the prototype-instancemodel, our techniques would work equally

well under the class-instance model. The task would even be easier since a class statically specifies an object and the

class may not be dynamically edited.
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3 The Model Dependency Paradigm

As noted in the previous section, an instance object inherits a prototype’s constraints, and by extension, its constraint

graph. In a conventional constraint system, storage for this constraint graph is duplicated for each new instance. In

contrast, our scheme stores a model constraint graph in the prototype. The instances consult this graph to derive

information about their own dependencies. Unlike a conventional constraint system, they do not maintain explicit

dependencies. Instead, the dependencies are implicit.

The relationships that currently can be expressed with model dependencies includeSELF, CHILD, PARENT, and

SIBLING. Figure 3 shows how these relationships are defined.

Object B has variable x, and object C has variable y.

an object to a variable in one of its parts

represents a dependency between a variable
in one part to a variable in another part where
both parts have a common owner

represents a dependency from a variable in
a part to a variable in its owner

represents a dependency from one variable to
another within the same object

SIBLING

CHILD

PARENT

SELF

C

A

CHILD

SIBLING

PARENT

SELF

B x

v

y

w

Composite object A has variables v and w and parts B and C.

represents a dependency from a variable in

Figure 3: Model edge relationships

A model dependency consists of either a two-tuple or a three-tuple that represents a path in the composition

hierarchy from a given variable to its dependent variable. Given an instance variable v of object A and a model

dependency edge, the actual dependent variablew can be resolved as follows:

Edge Resolution of actual dependent variablew
(SELF, x) w is the variable in objectA namedx
(PARENT, x) w is the variable namedx in A’s parent object
(CHILD, x, y) w is the variable namedy within a part ofA namedx
(SIBLING, x, y) w is the variable namedy within a part namedx of A’s parent object

In the case of the labeled box example,label.width would have the model dependency edgesf(SELF, left),

(SIBLING, frame, width)g, which are derived from the formulas defined for constraints C2 and C3.

Model dependencies are automatically generated frommodel parameter edgesusing a process described in Sec-

tion 4.2. A parameter edge specifies a path to each parameter used by a constraint. For example, the list of parameter

edges for constraint C2 in Figure 2 would bef(PARENT, left), (PARENT, width), (SELF, width)g. Every model

dependency constraint must include a list of its parameter edges.

Although the current set of model dependencies allows a programmer to express a wide variety of relationships, it

does not suffice to express any arbitrary relationship. Consequently, our implementation allows a programmer to also

use explicit dependency constraints. When a variable’s value is changed, the invalidation algorithm follows both the

variable’s model dependencies and its explicit dependencies. In this paper we will assume that a solver’s mechanism
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for creating explicit dependencies does not have to be altered to accommodate model dependencies. This assumption

holds in Amulet, the system in which we have implemented model dependencies.

4 Implementation

4.1 Division of Responsibility

The four edge relationships fall into two distinct groups. TheSELF andCHILD relationships can be installed and

resolved independently of any context that an owner provides, so these relationships are calledcontext-independent

relationships. In contrast, bothPARENT andSIBLING model edges representcontext-dependentrelationships. They

can be resolved correctly only if a parent object is present. In addition, thePARENT andSIBLING relationships are

intrinsic not to the object but rather to the composite object to whichthey belong. For example, consider theSIBLING

relationship fromB.x to C.y in Figure 3. If partB is removed from the composite object and replaced with another

part, the new part will assume theSIBLING relationship. Consequently, theSIBLING relationship is not intrinsic to

partB, but rather to the composite object to which it belongs.

model constraint graphs

model subtree

model supertree for label part

width

left
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width
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font

text

width
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C

C
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C
C

model constraint graph
in label prototype

in labeled box prototype

sibling.frame.width

Figure 4: The labeled box’s model constraint graphs. Ci refers to the corresponding constraint in Figure 3. Note that the
model dependencies for a formula can be distributed across two different graphs, as is the case for label’s C2 constraint.
C2 has two references to its owner (owner.left andowner.width) and one reference to itself (self.width). The
owner references get resolved intoCHILD edges that are placed in the owner’s model subtree. The self reference gets
resolved into aSELF edge and is placed in the label’s model subtree.

Due to the different nature of these two groups of edges, they are manageddifferently. The model constraint

graph stored in the prototype of an object manages onlySELF andCHILD model dependencies. It is known as the

model subtree graph, or justmodel subtree, since it represents dataflow relationships within the object itself or its parts

below. The prototype also holds individual model constraint graphsfor each of its parts. These graphs storePARENT

andSIBLING dependencies for variables in the parts. They are calledsupertree graphs, or justmodel supertrees, since

they represent dataflow dataflow relationships to the parent object or to other children of the parent. Figure 4 shows

the collection of model constraint graphs for the labeled box.
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When an instance variable is modified, the object’s prototype’s model subtree is consulted to resolveSELF and

CHILD model dependencies, and then the model supertree for that object, stored in the prototype of that object’s owner,

is consulted to determine if anyPARENT andSIBLING dependencies exist.

In some circumstances it is necessary for model constraints to behave like explicit dependency constraints and

generate explicit dependencies. A model constraint needs to establish explicit dependencies when it is explicitly

added to an object by the application (in contrast to being inherited from the prototype). In this case the constraint is

not represented in the prototype’s model constraint graph and hence explicit dependencies must be generated.

4.2 Model Dependency Installation

A model constraint graph is created dynamically for a prototype object the first time the prototype is instanced. The

parameter edge list for each model constraint in the prototype and its partsis examined and used to generate an ap-

propriate set of model dependencies1. For each parameter edge, the model dependency is formed by simply reversing

the parameter’s path.

The installation process for each parameter edge type is summarized in Figure5. For example, consider the labeled

box in Figure 2. The constraint C2 (which centers the label within its owner) is attached to theleft variable of the

label part. C2 has the parameter edge listf(PARENT, left), (PARENT, width), (SELF, width)g. These parameter

edges generate the following model dependencies:

Parameter edge Model Dependency edge
(PARENT, left) Add (CHILD, label, left) to theleft vertex in the model subtree oflabel’s owner.
(PARENT, width) Add (CHILD, label, left) to thewidth vertex in the model subtree oflabel’s owner.
(SELF, width) Add (SELF, left) to thewidth vertex inlabel’s model subtree.

Figure 6 formalizes the algorithm used to create a model constraint graph.It is invoked the first time a prototype

object is instanced. The polymorphicparam.install method called by this algorithm creates an appropriate model

dependency edge and stores it in the correct model constraint graph (either the subtree or supertree model graph). The

install method is defined for each parameter edge type and implements the installation procedure outlined in Figure 5.

The install method requires a reference to the object containing the constraint so that it can locate the appropriate

model constraint graph. In the case of thePARENT andSIBLING parameter types, it also needs the object in order to

identify which part name should be included in the model dependency’s path.

4.3 Resolution of Literal Dependencies

Once the model dependencies are installed, an instance can use them to derive explicit dependencies. When a variable

is changed, the resolution algorithm consults the model constraint graph vertex representing that variable and uses

1In this paper we are assuming that we can use areflection[2] mechanism to iterate through the instance variables of an object and find the
object’s constraints. However, in a system that does not provide a reflection mechanism, the programmer can manually specify the set of constraints
in an object, for example, by passing them as parameters to a function.
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Figure 5: Model dependency edge installation. Installed vertex is the vertex with which the model dependency edge
is associated. Dependency edge is the model dependency edge generated from the parameter edge.

the stored model path to traverse the object’s structure to find the dependent variable. The constraint that determines

that variable’s value can then be invalidated. If the dependent variable cannot be found, then the composite object’s

structure has changed (for example, the part has been removed or replaced with another part) and no objects are

invalidated. Note that this strategy allows the model dependency scheme to work even when an individual instance

alters its structure. Figure 7 formalizes the resolution algorithm.

To illustrate the resolution algorithm, letbox be a labeled box and suppose itswidth attribute is invalidated

(this could occur, for example, as a result of editing the label’s text attribute). If any explicit dependencies of

box.label.width exist, they will be invalidated in the usual manner as described in Section2.2. Next, the context-

independent model dependencies are located in the model subtree forbox.label (this graph is found in the prototype

object forlabel; recall Figure 4). The model edge entry(SELF, left) is found. The edge directs the algorithm

to thebox.label.left variable. The copy of constraint C2 being used to determinebox.label.left’s value is

then invalidated. Finally, the context-dependent model dependencies are located by consulting the model supertree for

label, which is found inbox’s prototype object. There the edge(SIBLING, frame, width) is found. In a manner

similar to the resolution of theSELF dependency, the edge’s target dependent variablebox.frame.width is located,

and the appropriate constraint is invalidated.

5 Empirical Test Results

We implemented our model dependency scheme in Amulet [19], a C++ based toolkit used for research and develop-

ment of graphical interfaces that includes a dataflow constraint system like the one discussed here. We additionally

instrumented the Amulet support code so that the number of model and explicit dependencies could be counted. The

criteria for evaluating the merit of model dependencies is the number of explicit dependencies saved. Amulet’s object
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Constraint:
invalid true, if the constraint has been invalidated; otherwise, false
out_var the variable computed by this constraint
modeled true, if the constraint is capable of using model dependencies; otherwise, false
model_parameters the set of model parameters supplied to the formula upon which this constraint is based

Object:
parts the set of objects that are parts of this composite object
variables the set of instance variables of this object

Variable:
object the object in which this variable resides
invalid true, if the variable has been invalidated; otherwise, false
explicit_dependencies the set of explicit dependencies associated with the variable
constraint the constraint that can be used to compute the value of this variable

Method Object.create_model_dependency_graph()
1 for each variablevar 2 self.variables :
2 cn var.constraint
3 if cn.modeled = true :
4 for each parameterparam 2 cn.model parameters :
5 param.install(self)
6 for each partpt 2 self.parts :
7 pt.create_model_dependencies_graph()

Figure 6: Model constraint graph creation algorithm.install is a method that creates a dependency edge from a
parameter edge given an object. All edge subclasses (SELF, PARENT, CHILD, andSIBLING) customize theinstall
method to meet their needs.

Method Constraint.invalidate()
1 if self.invalid = false :
2 self.invalid true
3 self.out_var.invalidate()

Method Variable.invalidate()
1 if self.invalid = false :
2 self.invalid true
3 for each constraintcn 2 self.explicit dependencies :
4 cn.invalidate()
5 model_dependencies get_model_dependencies_from_child_graph(self)[ get_model_dependencies_from_owner_graph(self)
6 for each model dependencydep 2 model dependencies :
7 cn dep.get_constraint(self.object)
8 if cn :
9 cn.invalidate()

Figure 7: Invalidation algorithm for a constraint solver that incorporates model dependencies.
get model dependencies from subtree retrieves theSELF and CHILD model dependencies from the vari-
able’s prototype object.get model dependencies from supertree retrieves thePARENT and SIBLING model
dependencies from the prototype of the variable’s owner.get constraint is a method associated with a model
dependency that uses the resolution procedure described in Section 4.3 to return the appropriate constraint.

system is quite heavyweight; it supports a large number of features beyond those provided by most constraint systems.

This makes it an ideal research tool in general, but it makes judging the success of model dependencies difficult when

raw heap space is measured. Counting dependencies instead of raw memory used provides a more accurate picture

of how well model dependencies work.2 As an added benefit the results are truly platform independent; a particular

2There was a tradeoff involved in doing our implementation inAmulet. Most constraint solvers are implemented in far morestreamlined systems
where our results would have led to significant reductions inheap space. Unfortunately, the source code for these systems is typically not publically
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Checkers The traditional board game
Circuit Designer Used to build digital logic networks
Gilt An interface builder that permits the construction of a graphical user interface by direct manipulation
Labeled Box Objects are similar to the one described in Section 1
MathNet Represents arithmetic expressions by a dataflow graph
Network Simulator Simulates message passing in various network configurations
Self Chain Each object uses 25 formulas to control 26 attributes establishing 325 dependencies
Testwidgets Extensive test of menus, dialog boxes, scroll bars, etc.
Tree Editor Graphically represents binary trees for program debugging
Tribox Objects consist of three concentric rectangles governed by12 constraints

Checkers Circuit Gilt LablBox MathNet NetSim SelfChn Widget TreeEd Tribox
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Figure 8: Standard vs. modeled results for a cross section of Amulet applications. Reduction of explicit dependencies
by 60% or more was common, while some specialized benchmarks achieved a greaterthan 90% reduction in the
number of physical dependencies.

operating system’s memory management strategies will not flavor the results.

We tested our modification to the Amulet constraint system on a number ofexisting Amulet applications and on

three specialized benchmark programs. The applications included the samples found in the Amulet distribution and

several other contributed programs. No alterations are required to get existing applications to compile and run under

modeled Amulet. However, we also modified, where possible, the formulas in these test programs to take advantage

of modeled constraints. In all cases the modeled versions behaved identicallyto the original versions. Figure 8

summarizes the results of our experiments.

We have not yet tuned the performance of our model dependency implementation (the standard Amulet implemen-

tation is highly optimized). Nonetheless, our measurements show that the interactive performance of an application

using model dependencies is only about 20% slower than one using explicit dependencies. It is notable that to the

unaided eye, the versions using model dependencies do not exhibit any perceptible loss of interactive performance

compared to their explicit dependency counterparts. This result was expectedbecause previous studies have shown

that redisplay time dominates the cost of all other operations in a graphical application [10, 26].

available nor is it meant to be extended by other researchers. Amulet by design meets both of these latter criteria.
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6 Related Work

As mentioned in Section 1, the model dataflow graph concept was originally applied to attribute grammars by Reps,

et. al.[20] in their work with syntax-directed programming editors. Model graphs are used to represent the dependen-

cies among attributes in the vertices of an attributed, abstract syntax tree. The restricted constraint graphs that arise

from the attribute grammars that generate these trees can be analyzed statically and this information plus the model

graphs obviate the need to explicitly store any explicit dependencies at runtime. Our problem deals with more general

constraint graphs where the relationships among the vertices can be arbitrary; any object can be dependent upon any

other object.

One-way constraints have been applied to other application areas including circuits [1], graphical interfaces [10, 11,

13, 14, 18, 25, 19] and spreadsheets. Multi-way, multi-output dataflow constraint systems have also been developed

for graphical interfaces, including ThingLab [3, 8, 23], Kaleidoscope [7] and MultiGarnet [22, 21, 24]. Multi-way

constraints are more powerful than one-way constraints, but one-way constraints suffice for many applications and in

general are more easily managed by programmers.

Researchers have adopted various approaches to storage optimization for dataflow constraints.Constant propaga-

tion allows some constraints to be removed from the system completely [16, 17]. If all the parameters of a constraint

are constant, the constraint can be evaluated and replaced with the constant result. The elimination of this constraint

may permit the removal of other constraints as well. Since constraints often have multiple dependencies, the savings

in a fairly static system may be significant. Unfortunately, constant propagation has little effect in a dynamic system

where few variables attain a fixed value.

Hudson and Smith greatly reduce the physical storage required for dependencies in certain common graphical

layout relationships using a concept they callµconstraints [14]. Each constraint consists of only four bytes, which

is enough to encode 1) an operation code (e.g., addition, subtraction), 2) a small set of predefined dependencies to

other objects such asparent or first_child, and 3) a predefined set of potential parameter variables, such asleft

or width. Literal dependency edges in the constraint network are dynamically inferredas needed by consulting

µconstraint encodings and the composite object’s physical structure. Like our approach, a programmer may use

standard heavyweight constraints for dependencies that cannot be represented in this encoding scheme. Our approach

differs fromµconstraints in that it does not store any dependency information in an object that can be derived from

its prototype. Also, our scheme does not limit the representable relations to a small set of predetermined parameters

or operations. Likeµconstraints we currently limit the set of model dependencies, but we plan to add aCUSTOM

relationship that allows a programmer to provide arbitrary code to extend the set of model dependency edges. It does

not appear thatµconstraints can be easily extended to handle arbitrary dependency edges.

Freeman-Benson eliminates entirely the storage required for constraint objects and their dependencies by compil-

ing a given constraint network or subnetwork into aplan [6]. A plan consists of a single Smalltalk module and is

created by analyzing the constraint network dataflow, “unwrapping” individual constraint methods, and sequencing

the code that make up these methods into one large procedure that becomes a method in the module. The constraint
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plan approach is ideal for constraint networks with a static structure. Insystems with pointer variables, dynamic edits,

and arbitrary dependency edges, the required analysis may not be possible and dynamic recompilation of the modules

will almost certainly be required even if the analysis can be performed.

7 Conclusions

Model dependencies can significantly reduce the number of explicit dependencies in a constraint graph. This reduction

can in turn reduce the storage requirements of programs that manage a large number of constrained objects. As shown

in Section 8, this savings does not come at a significant cost in performance.

Model dependencies thus provide a useful new mechanism for improving the storage efficiency of one-way,

dataflow constraint systems. Such improvements in storage efficiency may encourage the incorporation of constraints

into the design and evolution of mainstream programming languages, much in the same way garbage collection and

threads have become an integral runtime feature of some modern languages.
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