Using Model Dataflow Graphs to Reduce the Storage Requirements of
Constraints

Richard L. Halterman and Bradley T. Vander Zanden
University of Tennessee
{hal term, bvz}@s. utk. edu

1 Introduction

Dataflow constraints (also called one-way or spreadsheet-style constedliotgprogrammers to easily specify re-
lationships among programming objects in a natural manner. For examplgyraphical interface they can be used
to center a label within a textbox or to keep the size of a bar in a histogoasistent with a piece of data in an
application. In a syntax-directed editor they can be used to specify typeiobeales or to determine whether or not
a variable has been declared.

Constraints are increasingly being integrated into drawing packagestanfdce developmenttoolkits [18, 19, 11,
10, 14]. Unfortunately, studies of at least two of these toolkitsn&di.8] and Amulet [19] have shown that constraints
can exact a significant storage toll on programs [27]. Ultimately the ¢xectimes of programs managing a large
number of constrained objects suffer since virtual memory must be accessedtitheir storage demands.

One reason constraints require so much storage is that most dataflovandrststems explicitly represent the
relationships among constraints by maintainirgpastraint graph(see Section 2). The edges in these graphs can con-
sume a considerable amount of storage (in Amulet, the system in widdtawe performed our test implementation,
each constraint dependency is represented by a forward edge and a backward edgeykabtirefuires 12 bytes of
storage). In applications that use thousands of constraints, the spetered by dependencies can limit the number
of objects that can be created.

In this paper we present a solution to the dependency problem that isdratezlobservation that objects that use
the same constraints have the same constraint graph. Consequerntly) gtere a pattern of a constraint subgraph, a
model constraint graphin a common place and then use the pattern to derive explicit dependendiesand. Since
thousands of objects may be created from the same prototypical objedgiagessavings can be considerable.

Our solution is inspired by the Reps al. idea of using supertree-subtree graphs to implicitly represent a aorstr
graph [20]. However, Reps dealt with restricted types of constraint grapti restricted types of edits whereas our
problem deals with arbitrary constraint graphs and arbitrary edits. ecoestly, while our solution incorporates the
Reps,et. al. idea of supertree-subtree graphs to reduce the number of explicit depergjeve also support explicit
dependencies that do not conform to our modeling scheme. A more detailed onpmatween the two problems is
presented in Section 6.

Our experiments show that over 50% of the explicit dependencies in mplitatpns can be eliminated with

model dependencies.

2 Background

2.1 Composite Objects

The constraints described in this paper are implemented in the contexhpbsiie objects. Aomposite objeds an
object made up of parts consisting of other objects[9]. For examplaré&illustrates a simple composite object, a

labeled box consisting of a text string enclosed within a rectangle.

Labeled_Box
owner owner
Knoxvill e Cfa'm/ ;(5
Rectangle Text
(a) A labeled box (b) The labeled box composition diagram

Figure 1: A labeled box object (a) and its structural components (b)

Each component of the labeled box hast , t op, wi dt h, andhei ght instance variablesorattributes Thel abel
part also has a text string and font attributes. The labeled box has namméergto its childrenf(r anme andl abel)
and the children have named pointers to their paremtg}). (See Figure 1b.) These pointers allow the labeled box

to access instance variables in its parts and the parts to access instance varthbieparent and in their siblings.

2.2 Constraints

Definition. A one-way dataflow constraiig a formula in which the value of the variable on the left side is deitezd

by the value of the expression on the right side. For example,dhssfof the labeled box in Figure 1 should be slightly
larger than the text label, and the label should be centered within the fRaguee 2a shows the constraints that specify
these relationships.

More formally, a one-way constraint is a formula of the form

V:C(va P, p27"'7pn)

whereC is an arbitrary functionpg throughp, are the parameters to this function, anid the variable to which the
function’s result is assigned. If the value of gmyis changed during the program’s executiga value is automatically
recomputed. Note thathas no reciprocal influence on apyas far as this constraint is concerned; hence,dnis-
way.

Constraint Graphs. The network of variables and constraint objects and their associated retagisriorm a
constraint graph. The vertices of a constraint graph are constraints dadlesr A variable has a directed edge to
a constraint if the constraint uses that variable as a parameter. A conkaaiatdirected edge to a variable if the

constraint computes that variable. Many systems also maintain backward edgpsittt from constraints to their

Labeled_Box

label:
--Width depends on the label's text string and the display font
C, width = self.conpute_width(self.text,

sel f.font)

--Label is centered horizontally within its owner label

C, left = self.owner.left
+ sel f.owner. width/2 left
- self.width/2
frame

i

frame: Coxt
ex
--Frame is slightly wider than the label it encloses /
C3 width = self.owner.|abel .width + 10 ~— font
(a) Constraint equations (b) Constraint graph

Figure 2: Labeled box constraint equations and constraint graph

input variables. These backward edges allow dependencies to be removed ifrainbisstieleted. Figure 2b shows
the constraint graph for the labeled box equations in Figure 2a (batkp®are omitted).

Constraint Satisfaction. In this paper anark-sweeglgorithm is used for constraint satisfaction. A mark-sweep
algorithm has two phases: 1)naark phase in which all constraints that depend on a changed variable are marked
i nval i d, and 2) asweepphase in which constraints are brought up-to-date by evaluatingdneiulas [5, 20, 12, 25].

The mark phase is our primary interest in this paper, since it uses tiftodatdges in the constraint graph to determine

which constraints must be markealval i d.

2.3 Editing Model

Our editing model is similar to one supported by a prototype-itgtanodel [4, 15]. An application can create
instances of any object. All attributes, parts, and formulas associatetheitibject are inherited by the new instance.
The original object is called thgrototypeof the new instance.

Until an object is instanced, the following editing operations are pezchi

parts may be added to the object

parts may be removed from the object

o formulas may be added to instance variables

o formulas may be removed from instance variables
Once an object is instanced, we assume that no further editing operatigresienitted on that object.

While the system we describe in this paper uses the prototype-instantts, our techniques would work equally
well under the class-instance model. The task would even be easier since stateslly specifies an object and the

class may not be dynamically edited.

3 The Model Dependency Paradigm

As noted in the previous section, an instance object inherits a ppafstgonstraints, and by extension, its constraint
graph. In a conventional constraint system, storage for this cortsiyraiph is duplicated for each new instance. In
contrast, our scheme stores a model constraint graph in the prototypgeindtances consult this graph to derive
information about their own dependencies. Unlike a conventional comsggstem, they do not maintain explicit
dependencies. Instead, the dependencies are implicit.

The relationships that currently can be expressed with model dependeratigteiELF, CHI LD, PARENT, and

SI BLI NG Figure 3 shows how these relationships are defined.

SELF

- SELF represents a dependency from one variable to

7 \ another within the same object

A Vo < w PARENT represents a dependency from a variable in
N \\ a part to a variable in its owner

CHI LD |
\ / CHI LD represents a dependency from a variable in
v . / PARENT an object to a variable in one of its parts
B X C y SI BLI NG represents a dependency between a variable

\ in one part to a variable in another part where

A \S\I BLING /l both parts have a common owner

Composite object A has variables v and w and parts B and C.
Object B has variable x, and object C has variable y.

Figure 3: Model edge relationships
A model dependency consists of either a two-tuple or a three-tuple épatgents a path in the composition

hierarchy from a given variable to its dependent variable. Given an instaniadlear of objectA and a model

dependency edge, the actual dependent variglslen be resolved as follows:

Edge Resolution of actual dependent variable
(SELF, x) w is the variable in objeck namedx
(PARENT, Xx) w is the variable namexlin A’'s parent object

(CHILD, x, y) w is the variable namegwithin a part ofA namedx
(SIBLING x,y) wis the variable namegwithin a part namea of A's parent object

In the case of the labeled box examplabel . wi dt h would have the model dependency edqéSELF, |eft),
(SIBLING frame, width)}, which are derived from the formulas defined for constrainta G.

Model dependencies are automatically generated frmdel parameter edgessing a process described in Sec-
tion 4.2. A parameter edge specifies a path to each parameter used by a constraxankue, the list of parameter
edges for constraintQOn Figure 2 would be{(PARENT, | eft), (PARENT, width), (SELF, width)}. Every model
dependency constraint must include a list of its parameter edges.

Although the current set of model dependencies allows a programmer &ssx@wide variety of relationships, it
does not suffice to express any arbitrary relationship. Consequeanmtiynplementation allows a programmer to also
use explicit dependency constraints. When a variable’s value is changedydtidation algorithm follows both the

variable’s model dependencies and its explicit dependencies. In this papel&ssnime that a solver's mechanism

for creating explicit dependencies does not have to be altered to accommodigiedeyendencies. This assumption

holds in Amulet, the system in which we have implemented model depermdenci

4 Implementation

4.1 Division of Responsibility

The four edge relationships fall into two distinct groups. B&eF and CH LD relationships can be installed and
resolved independently of any context that an owner provides, so thesensléps are calledontext-independent
relationships. In contrast, boBARENT and S| BLI NG model edges represeavntext-dependemelationships. They
can be resolved correctly only if a parent object is present. In additiorRARENT and S| BLI NG relationships are
intrinsic not to the object but rather to the composite object to wtiiely belong. For example, consider BiBLI NG
relationship fronB. x to C. y in Figure 3. If partB is removed from the composite object and replaced with another
part, the new part will assume tt18BLI NG relationship. Consequently, tt8BLI NG relationship is not intrinsic to
partB, but rather to the composite object to which it belongs.

model constraint graphs
in labeled box prototype

model subtree model constraint graph

in label prototype

left c,
c | abel . left model subtree
/
width text C

1

C, ,width —= left

model supertree for label part font

C
3
width— sibling.frame.w dth

Figure 4: The labeled box’s model constraint graphse€&rs to the corresponding constraint in Figure 3. Note that the
model dependencies for a formula can be distributed across two diffesgitgras is the case for label's €dnstraint.

C> has two references to its ownem(er . | eft andowner . wi dt h) and one reference to itselq| f. wi dt h). The

owner references get resolved irid LD edges that are placed in the owner’s model subtree. The self reference gets
resolved into &ELF edge and is placed in the label's model subtree.

Due to the different nature of these two groups of edges, they are maddfpzdntly. The model constraint
graph stored in the prototype of an object manages 8Blf¥ andCH LD model dependencies. It is known as the
model subtree graptor justmodel subtregsince it represents dataflow relationships within the object itset§ quarts
below. The prototype also holds individual model constraint grégheach of its parts. These graphs stBABENT
andSl| BLI NGdependencies for variables in the parts. They are callpédrtree graphsor justmodel supertregsince
they represent dataflow dataflow relationships to the parent object ord@oditidren of the parent. Figure 4 shows

the collection of model constraint graphs for the labeled box.

When an instance variable is modified, the object’s prototype’s modélesuls consulted to resoh&ELF and
CH LD model dependencies, and then the model supertree for that object, store@iattitype of that object’s owner,
is consulted to determine if afBARENT andSI BLI NG dependencies exist.

In some circumstances it is necessary for model constraints to behaveikeitedependency constraints and
generate explicit dependencies. A model constraint needs to establishtedg@ftiendencies when it is explicitly
added to an object by the application (in contrast to being inherited fremrttotype). In this case the constraint is

not represented in the prototype’s model constraint graph and henceitek@fiendencies must be generated.

4.2 Model Dependency Installation

A model constraint graph is created dynamically for a prototype objectrdtdifne the prototype is instanced. The
parameter edge list for each model constraint in the prototype and itsipasxamined and used to generate an ap-
propriate set of model dependencle§or each parameter edge, the model dependency is formed by simply reversing
the parameter’s path.

The installation process for each parameter edge type is summarized in¥idiareexample, consider the labeled
box in Figure 2. The constraint;Gwhich centers the label within its owner) is attached toltbiet variable of the
| abel part. G has the parameter edge HSPARENT, | eft), (PARENT, width), (SELF, width)}. These parameter

edges generate the following model dependencies:

Parameter edge Model Dependency edge

(PARENT, left) Add (CH LD, label, left) totheleft vertexinthe model subtree bébel 's owner.
(PARENT, width) Add(CH LD, |abel, left) tothew dth vertexinthe model subtree bébel 's owner.
(SELF, width) Add (SELF, |eft) tothewi dth vertex inl abel 's model subtree.

Figure 6 formalizes the algorithm used to create a model constraint gtaplnvoked the first time a prototype
object is instanced. The polymorplparam i nstal | method called by this algorithm creates an appropriate model
dependency edge and stores it in the correct model constraint graph (eitksabthee or supertree model graph). The
install method is defined for each parameter edge type and implements thiatiost@rocedure outlined in Figure 5.
The install method requires a reference to the object containing the @ionsto that it can locate the appropriate
model constraint graph. In the case of B/RENT andS| BLI NG parameter types, it also needs the object in order to

identify which part name should be included in the model dependencyis pat

4.3 Resolution of Literal Dependencies

Once the model dependencies are installed, an instance can use them to déiditeleppndencies. When a variable

is changed, the resolution algorithm consults the model constraphgrertex representing that variable and uses

1In this paper we are assuming that we can useflaction[2] mechanism to iterate through the instance variablesnaflgect and find the
object’s constraints. However, in a system that does nefgea reflection mechanism, the programmer can manualbifgfbe set of constraints
in an object, for example, by passing them as parametersutacéidn.

Variable to which Parameter edge Installed vertex Dependency edge
formula is attached
vis in object A (SELF, w) Vertex w in A’s model (SELF, v) A v
subtree > B
A .
v is in a part named (PARENT, w) Vertex w in A’s model (CHILD, B, v) ‘ N
B of object A subtree /
»
B v
A v -
vis in object A (CHILD, B, w) Vertex win Bts mpdel (PARENT, v) \
supertree maintained)
by A P
Y B w
e Vertex w in C's model (SIBLING, A, v) B
v is in a part named (SIBLING, C, w) > (A
A of object B supertree maintained / \
by B
Av Cw
> g

Figure 5: Model dependency edge installation. Installed vertex isettex/with which the model dependency edge
is associated. Dependency edge is the model dependency edge generated fiamamntieégp edge.

the stored model path to traverse the object’s structure to find thendept variable. The constraint that determines
that variable’s value can then be invalidated. If the dependent variable caanfmiitd, then the composite object’s
structure has changed (for example, the part has been removed or replaced wigr aad) and no objects are
invalidated. Note that this strategy allows the model dependency scloewwk even when an individual instance
alters its structure. Figure 7 formalizes the resolution algorithm.

To illustrate the resolution algorithm, Iébx be a labeled box and suppose wisdt h attribute is invalidated
(this could occur, for example, as a result of editing the label's texibate). If any explicit dependencies of
box. | abel . wi dt h exist, they will be invalidated in the usual manner as described in Sez@oriNext, the context-
independent model dependencies are located in the model subtbhes foabel (this graph is found in the prototype
object forl abel ; recall Figure 4). The model edge en{r$ELF, |eft) is found. The edge directs the algorithm
to thebox. | abel . | eft variable. The copy of constraint,(eing used to determingox. | abel . [eft’s value is
then invalidated. Finally, the context-dependent model dependencies amllbgatonsulting the model supertree for
| abel , which is found inbox’s prototype object. There the edg8! BLING franme, width) is found. In a manner
similar to the resolution of th8ELF dependency, the edge’s target dependent varfablef r ane. wi dt h is located,

and the appropriate constraint is invalidated.

5 Empirical Test Results

We implemented our model dependency scheme in Amulet [19+éb@sed toolkit used for research and develop-
ment of graphical interfaces that includes a dataflow constraint system ékenthdiscussed here. We additionally
instrumented the Amulet support code so that the number of model ptidiedependencies could be counted. The

criteria for evaluating the merit of model dependencies is the numbepti€xiependencies saved. Amulet’s object

Constraint:
invalid true, if the constraint has been invalidated; otherwideefa
out _var the variable computed by this constraint
model ed true, if the constraint is capable of using model depen@sncitherwise, false
model _par aneters the set of model parameters supplied to the formula uponhathis constraint is based
oj ect :
parts the set of objects that are parts of this composite object
vari abl es the set of instance variables of this object
Vari abl e:
obj ect the object in which this variable resides
invalid true, if the variable has been invalidated; otherwisegfals
explicit_dependencies the set of explicit dependencies associated with the Variab
constraint the constraint that can be used to compute the value of thisbla

Method bj ect. create_nodel _dependency_graph()
1 for each variablear € self. variabl es :

cn « var. constrai nt

if cn. nodel ed =true:

for each parametgrar ame cn. nodel _paraneters :
paraminstal | (self)

for each parpt € self. parts:

pt.create_nodel _dependenci es_graph()

~No ab~hwnN

Figure 6: Model constraint graph creation algorithimst al | is a method that creates a dependency edge from a
parameter edge given an object. All edge subclase$-(PARENT, CH LD, andSI BLI NG) customize the nst al |
method to meet their needs.

Method Constraint.invalidate()
1 ifself.invalid=false:

2 self.invalid+«true

3 self. out _var.invalidate()

Method Vari abl e.invalidate()

1 ifself.invalid=false:

2 self.invalid«+ true

3 for each constraintn € self. expl i ci t .dependenci es :

4 cn.invalidate()

5 model _dependenci es < get _nodel _dependenci es_from chi | d_gr aph(self)
U get _nmodel _dependenci es_f rom owner _gr aph(self)

6 for each model dependendgp € nodel _dependenci es :

7 cn < dep. get _constrai nt (self. obj ect)

8 ifcn:

9 cn.invalidate()

Figure 7: Invalidation algorithm for a constraint solver that incogtes model dependencies.
get _nodel _dependenci es_fromsubtree retrieves theSELF and CH LD model dependencies from the vari-
able’s prototype object.get _nmodel _dependenci es_fromsupertree retrieves thePARENT and Sl BLI NG model
dependencies from the prototype of the variable’s owrgst constrai nt is a method associated with a model
dependency that uses the resolution procedure described in SectionetlBmaine appropriate constraint.

system is quite heavyweight; it supports a large number of featuyesmtiehose provided by most constraint systems.
This makes it an ideal research tool in general, but it makes judging the su€¢oesdal dependencies difficult when
raw heap space is measured. Counting dependencies instead of raw memoryouikss ar more accurate picture

of how well model dependencies workAs an added benefit the results are truly platform independent; a particular

2There was a tradeoff involved in doing our implementatioAtnulet. Most constraint solvers are implemented in far nereamlined systems
where our results would have led to significant reductiorteei@p space. Unfortunately, the source code for these systappically not publically

Checkers The traditional board game
Circuit Designer Used to build digital logic networks
Gilt An interface builder that permits the construction of a gieal user interface by direct manipulatign
Labeled Box Objects are similar to the one described in Section 1
MathNet Represents arithmetic expressions by a dataflow graph
Network Simulator | Simulates message passing in various network configugation
Self Chain Each object uses 25 formulas to control 26 attributes astaby) 325 dependencies
Testwidgets Extensive test of menus, dialog boxes, scroll bars, etc.
Tree Editor Graphically represents binary trees for program debugging
Tribox Objects consist of three concentric rectangles governekPlponstraints
] 59.8% . Standard
] = Modeled
25000
] 62.8% 63.5%
] B,0% 98.4%
20000 sroo |] s08% 243%

] 63.9% (8L0%

Number of Explicit Dependencies
=
42
[=)
o
?

0- I i i

Checkers Circuit Gilt LablBox MathNet NetSim SelfChn Widget TreeEd Tribox
Values indicate the percentage of dependencies removed

Figure 8: Standard vs. modeled results for a cross section of Amulétaiphs. Reduction of explicit dependencies
by 60% or more was common, while some specialized benchmarks achieved a tireat®0% reduction in the
number of physical dependencies.

operating system’s memory management strategies will not flavor thiésresu

We tested our modification to the Amulet constraint system on a numieigitng Amulet applications and on
three specialized benchmark programs. The applications included the sampidsrf the Amulet distribution and
several other contributed programs. No alterations are required to géhgxapplications to compile and run under
modeled Amulet. However, we also modified, where possible, the fasnnlthese test programs to take advantage
of modeled constraints. In all cases the modeled versions behaved idertiic#ly original versions. Figure 8
summarizes the results of our experiments.

We have not yet tuned the performance of our model dependency impleroeifthé standard Amuletimplemen-
tation is highly optimized). Nonetheless, our measurements show thaitdractive performance of an application
using model dependencies is only about 20% slower than one using egpliendencies. It is notable that to the
unaided eye, the versions using model dependencies do not exhibit anytiiedeps of interactive performance
compared to their explicit dependency counterparts. This result was exjpedadse previous studies have shown

that redisplay time dominates the cost of all other operations in a gra@pplication [10, 26].

available nor is it meant to be extended by other researchenslet by design meets both of these latter criteria.

6 Related Work

As mentioned in Section 1, the model dataflow graph concept was originaligadpp attribute grammars by Reps,
et. al.[20] in their work with syntax-directed programming editors. Mod&ghs are used to represent the dependen-
cies among attributes in the vertices of an attributed, abstract syntax tregedthicted constraint graphs that arise
from the attribute grammars that generate these trees can be analyzed statit#tlg amformation plus the model
graphs obviate the need to explicitly store any explicit dependenciestatiy Our problem deals with more general
constraint graphs where the relationships among the vertices can bargrlztry object can be dependent upon any
other object.

One-way constraints have been applied to other application areas includmi¢sdit], graphical interfaces [10, 11,
13, 14, 18, 25, 19] and spreadsheets. Multi-way, multi-output dataftmstraint systems have also been developed
for graphical interfaces, including ThingLab [3, 8, 23], Kaleidoscogeapl MultiGarnet [22, 21, 24]. Multi-way
constraints are more powerful than one-way constraints, but one-wayaiotssuffice for many applications and in
general are more easily managed by programmers.

Researchers have adopted various approaches to storage optimization fondadafitraintsConstant propaga-
tion allows some constraints to be removed from the system completely716f &ll the parameters of a constraint
are constant, the constraint can be evaluated and replaced with the constanTresalimination of this constraint
may permit the removal of other constraints as well. Since constrairts bétve multiple dependencies, the savings
in a fairly static system may be significant. Unfortunately, constaopaggation has little effect in a dynamic system
where few variables attain a fixed value.

Hudson and Smith greatly reduce the physical storage required for dep@slancertain common graphical
layout relationships using a concept they qalbnstraints [14]. Each constraint consists of only four bytes, which
is enough to encode 1) an operation code (e.g., addition, subtractjam)}rall set of predefined dependencies to
other objects such gmrent orfirst_child, and 3) a predefined set of potential parameter variables, sudf @as
or wi dth. Literal dependency edges in the constraint network are dynamically infesreateded by consulting
pconstraint encodings and the composite object’'s physical structuree diik approach, a programmer may use
standard heavyweight constraints for dependencies that cannot be reprasénitedincoding scheme. Our approach
differs from pconstraints in that it does not store any dependency information in jantdbat can be derived from
its prototype. Also, our scheme does not limit the representableaedatitd a small set of predetermined parameters
or operations. Likguconstraints we currently limit the set of model dependencies, but we pladd aCUSTOM
relationship that allows a programmer to provide arbitrary code neixthe set of model dependency edges. It does
not appear thaiconstraints can be easily extended to handle arbitrary dependency edges.

Freeman-Benson eliminates entirely the storage required for constrg@otoand their dependencies by compil-
ing a given constraint network or subnetwork int@lan [6]. A plan consists of a single Smalltalk module and is
created by analyzing the constraint network dataflow, “unwrapping” indalidonstraint methods, and sequencing

the code that make up these methods into one large procedure that becoetbsd imthe module. The constraint

10

plan approach is ideal for constraint networks with a static structuydtems with pointer variables, dynamic edits,
and arbitrary dependency edges, the required analysis may not be posgitdismamic recompilation of the modules

will almost certainly be required even if the analysis can be performed.

7 Conclusions

Model dependencies can significantly reduce the number of explicit dependereiesistraint graph. This reduction
can in turn reduce the storage requirements of programs that manage ailautger of constrained objects. As shown
in Section 8, this savings does not come at a significant cost in perfeaeman

Model dependencies thus provide a useful new mechanism for improvingttinage efficiency of one-way,
dataflow constraint systems. Such improvements in storage efficiency mayrageadhe incorporation of constraints
into the design and evolution of mainstream programming languages) imthe same way garbage collection and

threads have become an integral runtime feature of some modern languages.

References

[1] ALPERN, B., HOOVER, R., ROSEN, B. K., SWEENEY, P. F.,AND ZADECK, F. K. Incremental evaluation of

computational circuits. IACM SIGACT-SIAM’89 Conference on Discrete Algoriti{den. 1990), pp. 32—42.

[2] ARNOLD, K., AND GOSLING, J. The Java Programming Languagaddison-Wesley, Reading, Massachusetts,
1996.

[3] BORNING, A. The programming language aspects of Thinglab; a constraint-edesinulation laboratory.

ACM Transactions on Programming Languages and System$Qct. 1981), 353—-387.

[4] BORNING, A. H. Classes versus prototypes in object-oriented languag@&soteedings of the ACM/IEEE Fall
Joint Computer Conferend@lov. 1986).

[5] DEMERS, A., REPS T., ,AND TEITELBAUM, T. Incremental evaluation for attribute grammars with application
to syntax-directed editors. Rroceedings of the Principles of Programming Languages Confer@hitkams-
burg, VA, Jan. 1981), pp. 105-116.

[6] FREEMAN-BENSON, B. N. A module mechanism for constraints in SmalltaBigplan Notices 249 (Oct.
1989). ACM Conference on Object-Oriented Programming; Systems Laaguemg Applications; OOPSLA
'89.

[7] FREEMAN-BENSON, B. N. Kaleidoscope: Mixing objects, constraints, and imperative @mogring. InOOP-
SLA/ECOOP’90 Conference Proceedirf$890), pp. 77-88.

11

[8] FREEMAN-BENSON, B. N., MALONEY, J.,AND BORNING, A. An incremental constraint solveEommunica-

tions of the ACM 331 (Jan. 1990).

[9] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Patterns: Elements of Reusable Object-

Oriented SoftwareAddison-Wesley, Reading, Massachusetts, 1995.

[10] HiLL, R. D. TheRENDEZVOUSonstraint maintenance system. ACGM SIGGRAPH Symposium on User
Interface Software and Technology, Proceedings UISTAanta, Georgia, Nov. 1993).

[11] HubsoON, S. E. EvaWiteuser’s guide (v1.0). Tech. rep., College of Computing Georgitins of Technology,

Atlanta, Georgia.

[12] HubpsoN, S. E. Incremental attribute evaluation: A flexible algorithm for lapgate. ACM TOPLAS 133
(July 1991), 315-341.

[13] HuDsON, S. E. User interface specification using an enhanced spreadsheet AollElransaction on Graph-
ics 13 3 (July 1994), 209-239.

[14] HubpsoN, S. E.,AND SMITH, I. Ultra-lightweight constraints. IACM SIGGRAPH Symposium on User
Interface Software and Technology, Proceedings UIST(S#ttle, Washington, Oct. 1996).

[15] LIEBERMAN, H. Using prototypical objects to implement shared behavior in objéehtad systemsSigplan
Notices 2111 (Nov. 1986), 214-223. ACM Conference on Object-Oriented Pragiag) Systems Languages
and Applications; OOPSLA86.

[16] MALONEY, J., BORNING, A., AND FREEMAN-BENSON, B. Constraint technology for user-interface construc-
tion in ThingLabll. Sigplan Notices 2410 (Oct. 1989). ACM Conference on Object-Oriented Programming
Systems Languages and Applications; OOPSLA '89.

[17] MYERS, B. A., GIUSE, D. A., MICKISH, A., AND KOSBIE, D. Making structured graphics and constraints
practical for large-scale applications. Tech. Rep. CMU-CS-94-150, Sch@alroputer Science, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, May 1994.

[18] MYERS, B. A., GuIsE, D. A., DANNENBERG, R. B., VANDER ZANDEN, B., KosBlg, D. S., FERVIN,
E., MiCKISH, A., AND MARCHAL, P. Garnet: Comprehensive support for graphical highly interactige us
interfaces|EEE Computer 2311 (Nov. 1990).

[19] MYERS, B. A., MCDANIEL, R. G., MILLER, R. C., FERRENCY, A., FAULRING, A., KYLE, B. D., MICKISH,
A., KLIMOVITSKI, A., AND DOANE, P. The Amulet environment: New models for effective user interface

software developmentEEE Transactions on Software Engineering 83June 1997).

[20] ReEPS T., TEITELBAUM, T., AND DEMERS, A. Incremental context-dependent analysis for language-based
editors.ACM Transactions on Programming Languages and Systef§Joly 1983). Conference Record of the
Ninth Annual ACM Symposium on Principles of Programming Languadgsyary, 1982.

12

[21] SANNELLA, M. Skyblue: A multi-way local propagation constraint solver for usgeiface construction. In
ACM SIGGRAPH Symposium on User Interface Software and Techn@agina del Rey, CA, Nov. 1994),
Proceedings UIST'94, pp. 137-146.

[22] SANNELLA, M., AND BORNING, A. Multi-Garnet: Integrating multi-way constraints with Garneech. Rep.

92-07-01, Department of Computer Science and Engineering, Univefafaghington, Sept. 1992.

[23] SANNELLA, M., MALONEY, J., FREEMAN-BENSON, B., AND BORNING, A. Multi-way versus one-way
constraints in user interfaces: Experiences with the DeltaBlue algorBuoftware Practice and Experience,23
5 (1993), 529-566.

[24] VANDER ZANDEN, B. An incremental algorithm for satisfying hierarchies of multi-wagtadlow constraints.

ACM Transactions on Programming Languages and Systerris @&nuary 1996), 30—72.

[25] VANDER ZANDEN, B., MYERS, B. A., GIUSE, D. A., AND SZEKELY, P. Integrating pointer variables into

one-way constraint model&CM Transactions on Computer Human Interactigr2 {June 1994), 161-213.

[26] VANDER ZANDEN, B. T. Optimizing toolkit-generated graphical interfaces.AltiM SIGGRAPH Symposium
on User Interface Software and Technoldd®arina del Rey, California, Nov. 1994), Proceedings UIST'94,
pp. 157-166.

[27] VANDER ZANDEN, B. T., AND VENCKUS, S. A. An empirical study of constraint usage in graphical appli-
cations. InACM SIGGRAPH Symposium on User Interface Software and Techn®mpeedings UIST '96
(Seattle, Washington, Oct. 1996).

13

