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usage data. Such data typically includes successful executions in which the software's func-tionality was exercised without deviation from the speci�cation, and unsuccessful or faultyruns in which the software performed one or more of its tasks incorrectly. Performing atask incorrectly is called a failure event. A software reliability model encapsulates observedsuccess/failure data or other estimates of component reliability within the framework ofprobability models in order to predict patterns of future performance. The probability dis-tributions for the number of failures within a speci�ed time span, the failure interoccurrencetime, and other relevant random variables are often adapted from hardware reliability theory[9] or justi�ed empirically [1, 17].Rare events and extreme values are topics in probability and statistics with application inseveral �elds of science and engineering (cf. [3, 5, 6, 13, 20]). When the necessary conditionsare met, these topics lead to well-de�ned distributions as approximate probability laws thatare relevant in restricted, but important, areas of software reliability analysis. Statistics ofthe extremes has been applied to software reliability by Kaufman et al [14, 15] for an analysisof rare event data (for infrequent, unlikely failures) without requiring a priori knowledge ofits distribution. An application for safety critical software systems is described in [14].By calling failure a rare event [3, 13], we mean here that its probability of occurrenceis greater than zero but smaller by at least several orders of magnitude than non-failureevents in software execution intervals. In this situation, the mean time-to-failure (MTTF)is a large number. Extreme values [5, 6, 13] are the minimum and maximum values amongindependent1, identically distributed (iid) random variables; thus, analysis of the time-to-failure (TTF) may look not only at the MTTF but also at extreme variation above andbelow this mean value in multiple, iid executions of software. This paper concentrates ondescribing the TTF when failure is a rare event.Intuitive de�nitions and convenient computations are attributes of Markov chains forwork with rare events and extreme values. In this paper, a discrete-parameter, �nite-stateMarkov chain [24] is used to represent both software failures (as transitions to a rare fail-state) and usage of the software between failures (as transitions among the ordinary usagestates not involving the fail-state). Other work with Markov chains in software reliabilityincludes computation of the sensitivity of system reliability to a module's reliability via adiscrete-parameter Markov chain [8], generation of test cases for software systems based ona birth-death Markov chain [2], and versions of discrete- and continuous-parameter Markovchains as structural models in software reliability prediction [12]. Markov chains can bedeveloped hierarchically for di�erent levels of representation of software [23], can be used tomodel the interconnection of components [12], facilitate bookkeeping with frequency countsin empirical data [24], and o�er an intuitive de�nition of rare events in terms of a recurrentchain's stationary probability distribution. Generic results in rare events and extreme valuesare not restricted to Markov chains and may, with suitable formulation, apply to otherstochastic models [3, 13]. Other models are not explored here.The requirement that failure be a rare event is not met in all software developmentactivity; however, it is often the case that software evolves into a phase in which it rarelyfails but its past history of failure with nonzero relative frequency, or an estimate of less-than-perfect reliability of some component(s), should not be completely discounted. For1Independent means stochastically independent thoroughout this paper.2



example, failures may be rare events in situations such as the following:� Post-release \beta" versions of software, from which failures have been removed previ-ously, can lead to failure as a rare event. If users of beta versions build up signi�canthistories of successful execution intervals and few faulty runs, then failures may be rareevents when compared with many non-failure execution intervals.� Software components with defects may be embedded in end-user applications. Softwaredevelopers work around known problems, making failure a rare event. We interpretthis to mean that the usage distribution is adjusted to avoid a known defect. If this isachieved, the relative frequency of failure in the total usage history may approach 0.� Growth in usage of widely-distributed, commercial software has been modeled as apower function of calendar time [17]. If the defects that cause customer-reportedfailures are corrected immediately for all users, the software may reach a phase in whichfailure is a rare event in execution intervals for a large, active group of independentusers.Thus, software which receives heavy usage according to established probabilities is a can-didate for the treatment of its failures as rare events. If the likelihood of failure is indeedvery small, then results in rare events and extreme values [3, 13] lead to four probabilitydistributions as approximations under quite general conditions:� The probability law for counts of failures in long execution intervals may be approx-imated as a Poisson distribution. Results of this kind are sometimes said to be aconsequence of the \Poisson law of small numbers" [3]. The Poisson distribution hasbeen introduced in other ways in the software reliability literature and already playsan important role in several software reliability models [9].� The exponential distribution may approximate the probability law for the interoccur-rence time of rare failures in long intervals. This distribution is sometimes assumed forthe TTF in software reliability computations because it is implied by certain empiricalstudies (cf. [1]).� Given a set of random samples of the TTF, the minimum value in the set is a randomvariable bounded away from 0 and its limiting distribution (for number of samplesN ! 1) is Weibull. The Weibull distribution itself has been used or suggested forother phenomena (cf. [17]).� If the distribution of the TTF falls o� fast enough for large values (see subsection 4.1),a counterpart to Weibull for the minimum TTF is Gumbel as the limiting distributionfor the maximum TTF.When conditions for rare events are met, reliability analysis in greater detail with fewerassumptions may be possible, there may be additional justi�cation for using popular Poissonand exponential distributions, and Weibull and Gumbel distributions may also be applicable.This paper discusses aspects of rare events and extreme values in the Markov chain model3



M described in the next section. Section 3 describes a Poisson Approximation for countsof a rare fail-state F in realizations of M and indicates approximation of interoccurrencetimes of F by an exponential distribution. Weibull and Gumbel distributions are discussedin section 4 for the extreme values of interoccurrence times of F , and section 5 illustratescomputation based on the Weibull as the approximate distribution for the minimum TTF.2 Markov Chain ModelAMarkov chain can provide not only a convenient de�nition of software failure as a rare event(as a visit to an abnormal fail-state) but also a direct measure of rarity (using the steady-stateprobabilities of a recurrent chain). We will use the following model and assumptions.Both the software usage distribution and the likelihood of failure are represented by a�nite-state, discrete-parameter, time-homogeneous Markov chain M [10, 16, 24]. M hasat least three states: starting-state S, terminate or end-state H, and fail-state F . Statesequences are realizations of M. A realization from S to �rst occurrence of H representsa single successful execution cycle through the software. A transition from any state to Frepresents a failure of the software at that location in a realization; thus, occurrences of stateF are identi�ed with the failure events.The probabilities on arcs in M may be actual relative frequencies from test or usagedata [24] or may be values estimated for the usage distribution and component reliabilitiesexpected in practice. Note that if no failure occurs in observed data with real software,then arcs to F with frequency count 1 are conservative assumptions in this sense: if statei; i 6= F; has been visited ni times and exited without failure, and if the data-based relativefrequency on each arc is close to the value de�ned by the expected usage, then this dataimplies that the probability of failure at i is not greater than 1=(ni + 1). A conditional casestudy could set the count on an arc from i to F to 1 to give probability piF = 1=(ni + 1),renormalize other pij accordingly, and compute values for this hypothetical situation. If therelative frequencies piF make F a rare state, then the results in this paper are applicable.We require that Markov chain M have (i) all states, including F , reachable from S bypaths with nonzero probability, and (ii) arcs from both F and H to S with pFS = pHS = 1so that both a successful termination in H and an unsuccessful run to F cause an immediatereset/restart in initial state S. This makes M a recurrent chain for studying long-termproperties [10, 16]: the probability of eventually reaching every state from every state is1. A long realization of M will ultimately include all states and, as its length increases,will become statistically typical of the entire chain in the frequencies of occurrence of allstates and arcs. Let P = [pij] denote M's transition probability matrix. M's steady-stateprobability distribution � = [�S; :::; �F ] is the unique solution of � = �P where Pi �i = 1and �i > 0 is the limiting relative frequency of occurrence of state i as a count of transitions2.The mean recurrence time of state i is mii = 1=�i and the mean number of occurrences ofstate j between visits to state i is �j=�i [16].2Count of transitions is a natural reference for computation with chain M. Standard terminology usesthe word time instead of the phrase count of transitions, e.g., recurrence time, interoccurrence time, time of�rst occurrence. 4



A visit to fail-state F must be a rare event, that is, �F must be smaller by at least severalorders of magnitude than �i for any other state i 6= F . Put another way, mean recurrencetime mFF = 1=�F must be larger by orders of magnitude than mii for all i 6= F . mFF islarge but �nite because �F is small but nonzero.To focus on execution intervals between failures, we designate a realization of M fromF to �rst recurrence of F a run. The run-length random variable is the interoccurrencetime of F ; this is the TTF and its mean value mFF is the MTTF. Since pFS = 1, runsare equivalent to realizations from starting-state S to �rst occurrence of F except for theinitial transition F -to-S. The ensemble of all runs is in�nite but has a well-de�ned, discreteprobability distribution assigned by chain M.3 The Poisson Approximation: Counts of Rare Fail-State FTwo basic and enduring number laws in probability are the well-known Gaussian Approxi-mation which is a \Central Limit Theorem" [10] for sample averages, and the less accessiblePoisson Approximation which is a \Law of Small Numbers" [3] for rare, uncommon, un-likely events. Extensive discussion of the Poisson Approximation in numerous applicationsis given in [3]. Po(�) denotes the Poisson distribution with parameter �, that is, the discreteprobability mass function p(k;�) = �kk! e��for k = 0; 1; 2; : : :. Po(�) has mean and variance equal to �. When k is the largest integernot greater than �, p(k;�) has as large a value as it does for any k.Visits to rare state F in recurrent Markov chain M are crucial events. Let randomvariable nF be the number of visits to F in a randomly generated realization of n transitionsstarting in state S. Let L(nF ) be the true probability law of nF . Write � = E(nF ) forthe mean value. Developments in small number laws stress that Po(�) is an approximationof L(nF ) and compute an upper bound on a measure of distance between them. The totalvariational distance dTV [L(nF );Po(�)] is de�ned asdTV [L(nF );Po(�)] = supAjL(nF )(A)� Po(�)(A)jfor events (subsets) A in the sample space [3]. The value is 0 � dTV � 1: With reference to�, �F , and j-step transition probabilities p(j)FF , an explicit bound derived in [3] isdTV [L(nF );Po(�)] � (1� e��)0@�F + 2Xj�1 jp(j)FF � �F j1A :Since �F equals the limiting relative frequency of state F , for large n�F � E(nF )n = �n and � � n�F :5



The approximation L(nF )(k) � (n�F )kk! e�n�Fis for large n and small �F . � � n�F is the approximate parameter for a full sequence ofn transitions, not per transition, and Poisson p(k;n�F ) is the approximate probability of kvisits to F in a full sequence.The interoccurrence times of rare state F in M are iid (due to the Markov property)according to a discrete distribution with mean value mFF . The exponential probability lawExp(�) has a continuous cumulative distribution function (Cdf) of the formFE(t) = Prob(T � t) = 1� exp(� t�)with mean value � for T � 0. If the number of transitions n is very large relative to mFF , thediscrete distribution for the TTF can be approximated by an exponential model as follows.Take any long, random realization of n transitions and mark the visits to non-rare state S.This partitions the realization into subsequences with mean length mSS. Since state F haseither 0 or 1 occurrences in each subsequence, there is an independent Bernoulli trial [10]for each subsequence with probabilitiesp = Prob(1 occurrence of F ), q = Prob(0 occurrences of F ) = 1� pwhere p << q < 1 because F is rare but S is not. But the mean number of occurrences ofF between occurrences of S equals p, that is, for the 0-1 Bernoulli random variable�F�S = 1 � p + 0 � q = p:Given that F has just occurred, let � be the number of subsequences until its next recur-rence. � has a geometric distribution [10]. Cumulative geometric probabilities Pg and theirexponential approximations are:Pg(� � 1) = p � 1� e�p = FE(1);Pg(� � 2) = p + qp � 1� e�2p = FE(2);Pg(� � 3) = p + qp+ q2p � 1� e�3p = FE(3);...where FE(m) is the exponential Cdf, 1 � e�mp: These approximations are based on theexponential series [18] e�mp = 1�mp+ (mp)22! + � � �and inequalities p >> p2 >> p3 >> � � �. The expected value E(�) for the geometricdistribution and for its approximation is 1=p = �S=�F = mFF=mSS , the mean number ofoccurrences of S between occurrences of F . Since the mean subsequence length is mSStransitions, the expected count of transitions between visits to F ismSSE(�) = mSSmFFmSS = mFF6



as required. This exponential approximation for the TTF does not depend on the detailedstructure of M beyond the requirement for a 0-1 count of F 's between visits to S.Example 1: A high level, �ve-state Markov chain for operation of three windows in agraphical user-interface is given in [23]. Here, the fail-state F shown in �gure 1 has beenadded as a sixth state to represent failure events associated with state C, e.g., as failuresactually observed during testing or as an estimate of less-than-perfect reliability of a softwarecomponent. The transition probabilities pij for the ordinary usage-states i 6= F; j 6= Frepresent the usage distribution, except that pCA = 1 is reduced by small probability pCF .For the range 0 < pCF � 10�3, we compute 0 < �F � 1:43� 10�4 and �nd that all other �'shave relatively stable values. Speci�cally for pCF = 10�4, the stationary distribution vectoris � = [�S; �A; �B; �C; �H; �F ]= [0:14278; 0:42843; 0:14283; 0:14283; 0:14276; 1:42689 � 10�5];the vector of mean recurrence times is[mSS; :::;mFF ] = [ 1�S ; :::; 1�F ]= [7:00400; 2:33412; 7:00119; 7:00120; 7:00470; 7:00821 � 104];the vector of the expected number of occurrences of states between visits to non-rare stateS is ��S = [1; 3:0007; 1:0004; 1:0004; 0:9999; 0:0001];and the vector of the expected number of occurrences between visits to rare state F is��F = 104 � [1:0006; 3:0025; 1:001; 1:001; 1:0005; 0:0001]:For pCF = 10�5, these vectors are� = [0:14277; 0:42844; 0:14284; 0:14284; 0:14276; 1:42693 � 10�6];[mSS; :::;mFF ] = [7:00445; 2:33406; 7:00102; 7:00102; 7:00452; 7:00803 � 105];��S = [1; 3:001; 1:0005; 1:0005; 0:99999; 9:9949 � 10�6];and ��F = 105 � [1:0005; 3:0025; 1:001; 1:001; 1:0005; 0:00001]respectively.The mean recurrence time of state S is mSS � 7. n = 7 � 104 transitions correspondto about 104 average sequences from S to S. We �x n at 7 � 104 and evaluate the PoissonApproximation of L(nF ) for four values of pCF : 10�4, 10�5, 10�6, and 10�7.7
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HFigure 1: 6-state Markov chain M.p46 � dTV � p(0;�) p(1;�) p(2;�) p(3;�) p(4;�)10�4 1 9:03� 10�6 0.3679 0.3679 0.1839 0.0613 0.015310�5 0.1 1:36� 10�7 0.9048 0.0905 0.0045 1:51 � 10�4 3:77 � 10�610�6 0.01 1:42� 10�9 0.99 0.0099 4:95 � 10�5 1:65 � 10�7 4:13 � 10�1010�7 0:001 1:43 � 10�11 0.999 9:99 � 10�4 5 � 10�7 1:67 � 10�10 4:16 � 10�14Table 1: Poisson Approximation for Example 1Table 1 lists parameter � � 7�F � 104, the upper bound on dTV , and Poisson p(k;�) fork = 0; 1; 2; 3; 4. For pCF = 10�4, rare state F has steady-state probability �F � 1:43 � 10�5and the upper bound 0:903 � 10�5 is about the same order of magnitude. For pCF = 10�5,visits to F are more rare and the upper bound 1:36� 10�7 is an order of magnitude smallerthan �F � 1:43 � 10�6: The MTTF ranges from mFF � 7 � 104 for pCF = 10�4 to mFF �7� 107 for pCF = 10�7.The upper bound on dTV is one kind of measure of the suitability of the Poisson Approxi-mation. �2 goodness-of-�t tests can be applied to sample data and approximate distributionsas a di�erent kind of measure. See the Appendix for a brief summary of this classic statisticaltest. The approximate distributions we are studying are hypothesized in the tests here. Thebinary outcome of each test is solely to reject or not to reject the hypothesis based on thestatistic computed and the level of signi�cance speci�ed.Example 2: Sample data was obtained by using random-number generator rand in MAT-LAB (R) to simulate M for 7 � 104 transitions starting in state S. Visits to state F werethen counted. The experiment was repeated 1000 times for pCF = 10�4 and for pCF = 10�5.For pCF = 10�4, the 1000 samples were grouped into �ve classes: C1 for count 0, C2 forcount 1, C3 for count 2, C4 for count 3, and C5 for count � 4. Table 3 in the Appendixlists observed frequencies fi, expected frequencies 1000pi, and �2-residuals for Po(1). The�2 critical value for level of signi�cance 0.1 and 4 (=5-1) degrees of freedom is 7.78. Thestatistic 1.2071 is less than the critical value; therefore, in terms of testing for goodness of�t at signi�cance level 0.1, there is no reason to reject the hypothesis that the Poisson Po(1)models the phenomenon that gave rise to the 1000 samples.For pCF = 10�5, we combine classes at higher counts where expected frequencies are low.8



A rule-of-thumb for the �2 test is to de�ne the classes so that most expected counts exceed5, but one or two can be less than 5 [6]. Classes are C1 for count 0, C2 for count 1, andC3 for count � 2. Table 4 presents the numbers. The �2 critical value is 4.61 for 2 (=3-1)degrees of freedom and level of signi�cance 0.1. The statistic 1.4229 is less than 4.61, so thehypothesis is not rejected at signi�cance level 0.1.The TTF in this software model is the interoccurrence time of rare fail-state F . The �2goodness-of-�t test can also be applied to the hypothesis that this interoccurrence time hasan exponential distribution. A test can be computed in the following way without an explicitvalue for the parameter � of Exp(�) [11]. Given that N visits to F occur in time interval(0; T ), let random variables T1, T2, : : : ; TN be the interoccurrence times and let randomvariables A1 = T1; A2 = T1 + T2; : : : ; AN = T1 + � � �+ TNbe the waiting times. If the interoccurrence times Ti are iid according to an exponentialdistribution, the waiting times Ai, taken as N unordered samples, are independently anduniformly distributed in (0; T ) [4]. Thus, the interval (0; T ) can be partitioned into k equalsubintervals, each subinterval having length T=k and (due to uniformity) each having N=k asthe expected number of visits. Let fi be the number of visits actually observed in subintervali; then the statistic kXi=1 �fi � Nk �2Nkis approximately �2 with k � 1 degrees of freedom, provided that N � 20 and each fi issu�ciently large [11]. If the statistic is less than the appropriate critical value, the hypothesisof exponential interoccurrence times is not rejected; otherwise, it is rejected.1000 samples of interoccurrence times of rare fail-state F inM in �gure 1 were generatedfor pCF = 10�4 and for pCF = 10�5. Waiting times A1; : : : ; A1000 were then computed.Partitioning into k = 20 equal subintervals gives an expected frequency of 1000pi = 50 persubinterval. See table 5 in the Appendix for the data. The �2 critical value for level ofsigni�cance 0.1 and 19 (=20-1) degrees of freedom is 27.20. As shown in the table, thestatistic is 23.56 for pCF = 10�4 and is 20.04 for pCF = 10�5. At signi�cance level 0.1, thehypothesis of exponential interoccurrence times is not rejected for either value of pCF .4 Distributions of Extreme ValuesEstimation of the MTTF is included in many models of software reliability [19]. Results inextreme values concern the minimum and maximum values of the TTF as random variablesin their own right. Scenarios in which stochastic properties of one or both extreme valuesare of interest include the following.� Evaluation of software for safety critical applications is an important issue. A soft-ware reliability model based on statistics of the extremes for safety critical systems isdeveloped in [14]. 9



� Suppose widely-distributed software has a large base of independent users, the usershave the same usage probabilities, and failure is a rare event. Long-term, statisticalcharacteristics of both shortest and longest TTF provide information about expectedperformance encountered by the ensemble of users as a group.� Suppose a long computation executes in parallel on a network of computers as follows.There is a time requirement: the parallel computation must have uninterrupted timeinterval � simultaneously at every processor in order to complete. Processors usethe same software and have the same usage distribution which includes interactionwith the network. Tasks at di�erent processors are loosely-coupled and are, to a �rstapproximation, independent. A software failure at a processor is a rare event but maybe a consequence of local data or the network. Any software failure before � forcesthe entire computation to restart; but due to randomness in network characteristics, arestarted computation is not likely to be identical to previous attempts, even thoughthe same local data is processed again. A long-run characteristic of interest is thenumber of times on average a computation must restart due to a failure in time lessthan � .4.1 Weibull and Gumbel Distributions in the LimitConsider Markov chain M again as a source of iid runs from F to the �rst recurrence ofF . In extreme value analysis, the distribution of these runs is called the initial distribution.Given a set of runs, let Fmin be the minimum run-length and Fmax the maximumrun-length.Fmin and Fmax are called extreme value random variables.Fmin is nonnegative and has an initial distribution bounded away from 0 in the directionof the extreme by the minimum-length run from F to F . Fmax is nonnegative and has aninitial distribution that is unbounded in the direction of the extreme but, by virtue of theexponential approximation in section 3, has an exponential upper bound (that is, the initialdistribution is of the exponential type [6, 13]). Generic results in limiting distributions forFmin and Fmax in our model are as follows [5, 6, 13].� The probability law of Fmin approaches a Weibull distribution Weib(�; �) with CdfFW (x) = 1� exp(� x�!�) ; � > 0; � > 0:� is the shape parameter: larger (smaller) � implies more (less) peaked density function.Weib(1,�) with � = 1 is in fact the exponential Exp(�) with mean value �. � is the scaleparameter: the distribution depends on � and x through the ratio x=�.� The probability law of Fmax approaches a Gumbel distribution Gumb(�; �) with CdfFG(x) = exp(� exp(�x� �� )) ;1 > � > �1; � > 0:� is the location parameter: association of x with � is of the form x � �. � is the scaleparameter.� In the special case of N samples of extreme values for which the initial distribution for10



recurrences of rare state F in Markov chain M is exactly the exponential Exp(mFF ), thenGumb(�; �) for Fmax has parameters [6]� = mFF ln(N) and � = mFFand Weib(�; �) for Fmin reduces to an exponential with parameters [6]� = 1 and � = mFFN :4.2 Maximum-Likelihood Estimates from SamplesEstimation of parameters of Weibull and Gumbel Cdf's from samples is of interest for com-parisons with the theoretical limits described above. In general, �nite sets of samples do not�t the asymptotic formulations perfectly. This section describes maximum-likelihood (ML)estimation and illustrates with data from Markov chain M in �gure 1.Given samples fx1; x2; : : : ; xNg of Fmin, ML-estimates of � and � in Weib(�; �) satisfythe equations [6] 1N NXi=1 lnxi = " NXi=1 x�̂i lnxi# " NXi=1 x�̂i #�1 � 1̂�and �̂ = " 1N NXi=1 x�̂i #��̂ :�̂ may be obtained from the �rst equation by iteration, then �̂ computed by the secondequation. Small N biases the estimate �̂ upwards [6], that is, an unbiased estimate wouldbe smaller. An unbiasing factor is available [21] and ranges from 0.669 to 0.99 as N rangesfrom 5 to 120. Recall that � = 1 in a Weibull Cdf coincides with an exponential Cdf; buteven when � = 1 should be the case, an ML-estimate �̂ precisely equal to 1 is an unlikelyprospect for �nite samples of real data.Given samples fy1; : : : ; yNg of Fmax, the ML-estimates of � and � in Gumb(�; �) satisfy[6] �̂ = �y � " NXi=1 yi exp(�yî� )# " NXi=1 exp(�yî� )#�1and �̂ = ��̂ ln " 1N NXi=1 exp(�yî� )#where �y = PNi=1 yi=N is the sample mean. Small N biases the estimate �̂ downwards [6],that is, an unbiased estimate would be larger.Example 3: Assume that a group of 100 users have runs iid according to Markov chain Min �gure 1. M was simulated using rand in MATLAB (R) to obtain a set of 100 runs, andFmin and Fmax for the set were recorded. The experiment was repeated 64 times to obtainN = 64 samples of both extreme values for pCF = 10�4 and for pCF = 10�5. Details of the�2 goodness-of-�t tests are described in the Appendix. In summary:11



� For pCF = 10�4 and samples of Fmin; Weibull W1 with ML-estimates of parametersis not rejected at level of signi�cance 0.1, but Weibull W2 based on Exp(mFF ) as theexact initial distribution is rejected at signi�cance levels 0.1 and 0.05.� For pCF = 10�5 and Fmin; neither Weibull W3 with ML-estimates nor Weibull W4based on Exp(mFF ) is rejected at level of signi�cance 0.1.� For pCF = 10�4 and Fmax; Gumbel G1 with ML-estimates of parameters is not rejectedat level of signi�cance 0.1, but GumbelG2 based on Exp(mFF ) is rejected at signi�cancelevels 0.1 and 0.05.� For pCF = 10�5 and Fmax, Gumbel G3 with ML-estimates is not rejected at level ofsigni�cance 0.1. Gumbel G4 based on Exp(mFF ) is rejected at level of signi�cance 0.1but is not rejected at reduced signi�cance level 0.05.None of the distributions W1;W3; G1; G3 with ML-estimates of parameters from samples isrejected at level of signi�cance 0.1. DistributionsW2;W4; G2; G4 are based on an assumptionthat an exponential Exp(mFF ) is exactly the initial distribution. W2 and G2 are obtained forstate F being less rare; W4 and G4 are obtained for state F being more rare. At signi�cancelevel 0.1, W2 is rejected but W4 is not; at signi�cance level 0.05, G2 is rejected but G4 is not.We conjecture that one factor in the outcomes of these tests is less error in the exponentialapproximation of the TTF's distribution for more rare F than for less rare F .5 Extreme Value Fmin of Software TTFAnalysis of extreme values is rich in details. We will use the Weibull FW as the approximateCdf for Fmin to compute how often on average the minimum TTF experienced within a groupof runs that are iid according to the same probablity model is not less than � where � is a�xed reference.An occurrence of Fmin > � is called an exceedance of � [3, 6] and its complementFmin � �is called a nonexceedance. As shown in �gure 2, the binary events exceedance and nonex-ceedance de�ne a Bernoulli trial [10] with probabilitiesProb(Fmin > � ) = 1� FW (� ); Prob(Fmin � � ) = FW (� ):Let random variable n� be the number of independent trials from one nonexceedance of �until the next. A standard result [10] is that n� is geometrically distributed with mean valueEW (n� ) = 1=FW (� ). The mean number of times � is exceeded in between nonexceedances isEW (n� )� 1 = 1FW (� ) � 1= 1 � FW (� )FW (� )= Prob(Fmin > � )Prob(Fmin � � ):12
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Figure 2: Illustrating a time-series of iid samples of FminExample 4: Weibulls W1 and W3 above are for a group of 100 runs, say, as experienced by100 independent users with the same usage distribution. W1 is obtained for MTTF = 70082and W3 for MTTF about 10 times longer. For � = 500,FW1(500) = 0:6076; EW1(n500) = 10:6076 = 1:6457FW3(500) = 0:0325; EW3(n500) = 30:7630:Based on W1 for Fmin in the group of 100 users, on average the group experiences 0.6457runs with minimum TTF > 500 in between occurrences of minimum TTF � 500. Based onW3 for Fmin, the comparable �gure is 29.763 runs. Doubling � to 1000 and again to 2000gives EW1(n1000) = 1:1959; EW3(n1000) = 14:2553EW1(n2000) = 1:0312; EW3(n2000) = 6:76056:Rather than a group of di�erent users, W1 or W3 could describe Fmin for blocks of 100runs by a single user. Suppose W3 applies for a single user U who starts up a block of 100tasks every day, each of which executes iid according to M in �gure 1 and each of whichmust have execution-time exceeding � . Then user U will encounter a day with Fmin � �on average about once each month (�30.76 blocks) for � = 500, about once each fortnight(�14.26 blocks) for � = 1000, or about once each week (�6.76 blocks) for � = 2000. Ifuser U voluntarily stops the failure-free executions after � is reached in one day and restartsall tasks the next day, the next sample of Fmin is generated independently according to thesame Cdf FW3 (there is no parameter-estimation with data that is censored by the non-failurestops of software execution [7]). Given that the event Fmin � � does occur, the conditionalmean values of Fmin for the three values of � areEW3(FminjFmin � 500) = 264:9; EW3(FminjFmin � 1000) = 526:5;EW3(FminjFmin � 2000) = 1038:7:13



If nonexceedance is a rare event for a given � , then FW (� ) = 1=EW (n� ) is small and theexponential series [18] gives as an approximationFW (� ) = 1� exp(� ��!�)�  ��!� :Example 5: For W3 in the example above:FW3(1000) = 0:0701 and  1000� !� = 0:0727;FW3(500) = 0:0325 and  500� !� = 0:0330;FW3(100) = 0:0053 and  100� !� = 0:0053:Suppose user U in that example wants � as large as possible to average a full year of successfuldays (that is, an average of 365 blocks having Fmin > � in between blocks having Fmin � � ).An estimate of � for EW3(n� ) = 366 is� � � � 1366� 1� = 55:945where, in fact, 1=FW3(55:945) = 366:5:Example 6: As a �nal example, suppose that (i) a continuously-executing applicationconsists of many tasks distributed on a network of processors, (ii) task executions are iidaccording to the same Markov chain model with rare fail-state, and (iii) all current execu-tions in the block of parallel tasks continue until one fails, at which time the system resetsand all tasks immediately restart in synchronism. Then W=Weib(�; �), which is the limit-ing probability law of Fmin, also approximately describes the system-restart interoccurrencetimes. As approximations, the probability that a system-restart does not occur before �is 1 � FW (� ) = Prob(Fmin > � ) and the expected number of exceedances of � in betweennonexceedances is EW (n� )� 1:6 Summary and ConclusionsMarkov chains have diverse uses in software reliability computations (cf, [2, 8, 12, 24]). Rareevents and statistics of the extremes are applicable to restricted, but important, aspects14



of software reliability analysis (cf, [14, 15]). This paper combines results in rare eventsand extreme values with software reliability computations based on a �nite-state, discrete-parameter, recurrent Markov chain M. The chain provides a convenient de�nition of failureas a rare event, namely, as a fail-state F for which the steady-state probability �F is ordersof magnitude smaller than �i for ordinary usage states i 6= F .When applicable, results in rare events and extreme values may provide informationabout software reliability, especially in details of likely performance in the long-run. Fourdistributions arise naturally as approximations when software failures correspond to visitsto a rare fail-state F in M:� Poisson for count of visits to F in a long realization.� Exponential Cdf for interoccurrence time of F (the TTF).� Weibull as limiting Cdf for minimum recurrence time of F .� Gumbel as limiting Cdf for maximum recurrence time of F .An upper bound on dTV was computed for a Poisson Approximation for Markov chainM in�gure 1. �2 goodness-of-�t tests were computed for approximate distributions and randomsamples from chain M. For extreme values, the parameters for Weib(�; �) and Gumb(�; �)were computed by ML-estimation from samples and also by assuming an initial exponentialExp(mFF ) for the TTF. Outcomes of these tests are compatible with the general propositionthat the more rare the event, the better the approximation. Although our example used asmall Markov chain to demonstrate various computations, the methods apply to chains ofarbitrarily large size.One signi�cance of the Markov chain model is that it structurally represents the softwaresystem under test or in use in the �eld, and indirectly represents the software complexity.If the transition probabilities are obtained from actual frequency counts during testing, anup-to-date representation of the amount and completeness of testing is provided.Important contributions of rare events and extreme values are the four distributions listedabove as approximations in the analysis of TTF, given the basic assumptions set forth. Webelieve that the combination of the Markov model and these results is a powerful tool foraspects of software reliability analysis.7 Appendix7.1 The �2 Goodness-of-Fit TestThe test is described in numerous references (cf. [6, 11]). H0 is the hypothesis that in-dependent samples are from a candidate distribution. A statistic is computed to measurehow much the samples disagree with the hypothesis. If disagreement is \signi�cant," H0 isrejected; otherwise, it is not.The binary outcome of a test is solely to reject or not to reject H0. The �2 distributionprovides the critical value for this binary decision. This distribution's parameter is the15



number of degrees of freedom. If there are N samples and s parameters for the distributionunder test are estimated from the data, there areN�s�1 degrees of freedom; if no parametersare estimated, there are N �1 degrees of freedom. The critical value is computed for a givenlevel of signi�cance, which is the probability of rejecting H0 when H0 is true. A highersigni�cance level de�nes a more critical test than a lower one. Signi�cance levels 0.1, 0.05,and 0.01 are commonly used in practice.The set of possible values of samples is partitioned into k classes C1; : : : ; Ck where pi isthe probability of an observation in Ci according to the hypothesized distribution, Npi is theexpected number of observations in Ci in N samples, and fi is the frequency of occurrenceof actual samples in Ci. Two rules-of-thumb [6] are (i) the sample size N should be greaterthan 20, and (ii) the classes should be de�ned so that most expected frequencies Npi exceed5, but one or two can be less than 5. The test statistickXi=1 (fi �Npi)2Npiis approximately �2 with the appropriate degrees of freedom. If the statistic is less than theappropriate �2 critical value, H0 is not rejected; otherwise, H0 is rejected because a statisticlarger than the critical value implies, at the given signi�cance level, that the observed dataare not random samples from the hypothesized model.For reference in examples, Table 2 lists �2 critical values for two levels of signi�cance andseveral degrees of freedom.level degrees of freedomof sig. 1 2 3 4 5 6 7 8 9 10 190.10 2.71 4.61 6.25 7.78 9.24 10.65 12.02 13.36 14.68 15.99 27.200.05 3.84 5.99 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31 30.14Table 2: �2 critical values (rounded values from MATLAB (R) function chi2inv)7.2 Tables for Examples 1 and 2 (Section 2)The following tables are referenced in the �2 goodness-of-�t tests in section 2.
16



Class Ci Observed frequency fi Expected frequency 1000pi �2-residual (fi�1000pi)21000piC1: count 0 366 367.9 0.0098C2: count 1 379 367.9 0.3349C3: count 2 183 183.9 0.0044C4: count 3 55 61.3 0.6475C5: count � 4 17 19.0 0.2105sum 1000 1000.0 1.2071Table 3: Calculation of �2 statistic for Poisson for pCF = 10�4Class Ci Observed frequency fi Expected frequency 1000pi �2-residual (fi�1000pi)21000piC1: count 0 895 904.8 0.1061C2: count 1 101 90.5 1.2182C3: count � 2 4 4.7 0.0985sum 1000 1000.0 1.4229Table 4: Calculation of �2 statistic for Poisson for pCF = 10�5Subinterval Observed frequency fi �2-residual (fi�50)2501 59/53 1.62/0.182 42/39 1.28/2.423 58/45 1.28/0.504 38/49 2.88/0.025 57/42 0.98/1.286 49/60 0.02/2.007 54/61 0.32/2.428 53/47 0.18/0.189 44/38 0.72/2.8810 38/49 2.88/0.0211 48/54 0.08/0.3212 54/52 0.32/0.0813 61/48 2.42/0.0814 56/38 0.72/2.8815 43/56 0.98/0.7216 59/62 1.62/2.8817 59/53 1.62/0.1818 44/53 0.72/0.1819 39/46 2.42/0.3220 45/55 0.50/0.50sum 1000/1000 23.56/20.04Table 5: Calculation of �2 statistics for Uniform Waiting Times for pCF = 10�4=pCF = 10�517



7.3 Fmin and Weibull Distributions in Example 3 (Section 4)Class Ci Observed frequency fi Expected frequency 64pi �2-residual (fi�64pi)264piC1: � 100 11 11.7253/5.5856 0.0449/5.2484C2: 100+ to 300 14 16.2790/9.7514 0.3191/1.8511C3: 300+ to 500 12 10.8846/8.1235 0.1143/1.8498C4: 500+ to 700 12 7.4646/6.7674 2.7509/4.0459C5: 700+ to 1100 6 8.8135/10.3343 0.8981/1.8178C6: > 1100 9 8.8300/23.4377 0.0033/8.8937sum 64 64.0000/64.0000 4.1353/23.7068Table 6: Calculations of �2 statistics for Weibulls W1=W2 for pCF = 10�4Class Ci Observed frequency fi Expected frequency 64pi �2-residual (fi�64pi)264piC1: � 2 � 103 7 9.4663/10.6841 0.6426/1.2704C2: (2+ to 4)�103 13 9.5367/8.9005 1.2577/1.8882C3: (4+ to 6) �103 7 8.3981/7.4146 0.2328/0.0232C4: (6+ to 8)�103 11 7.1243/6.1769 2.1084/3.7660C5: (8+ to 10)�103 6 5.9191/5.1457 0.0011/0.1418C6: (1+ to 1.4)�104 4 8.7797/7.8577 2.6021/1.8939C7: > 1:4� 104 16 14.7759/17.8205 0.1014/0.1860sum 64 64.0000/64.0000 6.9461/9.1695Table 7: Calculations of �2 statistics for Weibulls W3=W4 for pCF = 10�5For pCF = 10�4, the 64 samples of Fmin have range [5,2912], mean 548.5, and standarddeviation 545.05. Iteration with these samples gives �̂ = 0:9708 as ML-estimate of theWeibull parameter. The unbiasing factor for 64 samples is 0.98 [21], so the unbiased ML-estimate is �̂ = 0:9513. We obtain �̂ = 536:26 and the distribution W1=Weib(�̂; �̂) withmean 548.45 and standard deviation 576.74.Using Exp(mFF ) as the initial distribution for interoccurrence time of rare fail-state Fgives � = 1, � = 1095, and W2= Weib(1,1095) = Exp(1095) with mean value about twicethe sample mean.�2 goodness-of-�t tests were applied to the samples of Fmin and the separate WeibullsW1=W2. (This is not a test of one distribution vs. another as alternate hypotheses.) Sampleswere grouped into six classes by value. See Table 6. Since two parameters are estimatedfrom the data for W1, there are 3 (=6-2-1) degrees of freedom. Consider level of signi�cance0.1. The �2 critical value 6.25 exceeds the statistic 4.1353 for W1; therefore, at signi�cancelevel 0.1, there is no reason to reject the hypothesis that W1 models the phenomenon thatgave rise to the samples. Since no parameters are estimated from the data for W2, thereare 5 (=6-1) degrees of freedom; the critical value 9.24 is less than the statistic 23.7068 for18



W2, so W2 is rejected. In fact, W2 is also rejected at the reduced level of signi�cance 0.05because the �2 critical value 11.07 is less than its statistic 23.7068.For pCF = 10�5, the 64 samples of Fmin have range [23,35712], mean 9559.9, and standarddeviation 8301.7. ML-estimate is �̂ = 1:1613, adjusted to 1.1381 by the unbiasing factor andgiving �̂ = 10004: W3=Weib(1.1381,10004) has mean 9550.3 and standard deviation 8410.4.Assuming initial distribution Exp(mFF ) gives � = 1, � = 10950, and W4=Exp(10950) withmean value fairly close to the sample mean.The 64 samples were grouped into seven classes. See Table 7. Consider level of signi�cance0.1. The critical values are 7.78 for 4 (=7-2-1) degrees of freedom and 10.65 for 6 (=7-1)degrees of freedom. Critical value 7.78 exceeds W3's statistic 6.9461 and critical value 10.65exceeds W4's statistic 9.1695. Neither W3 nor W4 is rejected.7.4 Fmax and Gumbel Distributions in Example 3 (Section 4)Class Ci Observed frequency fi Expected frequency 64pi �2-residual (fi�64pi)264piC1: � 2:7 � 105 5 6.2966/16.4534 0.2670/7.9728C2: (2.7+ to 3)�105 7 6.3376/9.9517 0.0692/0.8755C3: (3+ to 3.3)�105 8 7.9324/9.5351 0.0006/0.2471C4: (3.3+ to 3.6)�105 11 8.3552/7.9985 0.8372/1.1263C5: (3.6+ to 3.9)�105 8 7.7914/6.1483 0.0056/0.5577C6: (3.9+ to 4.2)�105 7 6.6685/4.4631 0.0165/1.4420C7: (4.2+ to 4.8)�105 5 9.5246/5.2503 2.1474/0.0119C8: > 4:8� 105 13 11.0937/4.1993 0.3275/18.4441sum 64 64.0000/64.0000 3.6730/30.6775Table 8: Calculations of �2 statistics for Gumbels G1=G2 for pCF = 10�4Class Ci Observed frequency fi Expected frequency 64pi �2-residual (fi�64pi)264piC1: � 2:5 � 106 4 3.1986/10.5076 0.2008/4.0303C2: (2.5+ to 3)�106 13 12.6651/15.9003 0.0089/0.5290C3: (3+ to 3.5)�106 15 17.5685/15.0706 0.3755/0.0003C4: (3.5+ to 4)�106 18 13.8709/10.2697 1.2292/5.8188C5: (4+ to 4.5)�106 6 8.2948/5.9238 0.6349/0.0010C6: > 4:5� 106 8 8.4021/6.3378 0.0192/0.4419sum 64 64.0000/64.0000 2.4684/10.8214Table 9: Calculations of �2 statistics for Gumbels G3=G4 for pCF = 10�5For pCF = 10�4, the 64 samples of Fmax have range [203311,667105], mean 3:896 � 105,and standard deviation 1:063�105 . ML-estimates for parameters of the Gumbel distributionare �̂ = 84002:79 and �̂ = 3:407 � 105. G1=Gumb(�̂; �̂) has mean 3:891 � 105 and standard19



deviation 1:077 � 105. Computing parameters as if Exp(mFF ) were the initial distributionfor interoccurrence time for rare fail-state F gives � = 70082 and � = 2:9146� 105; in whichcase G2=Gumb(�; �) has mean 3:3192 � 105 and standard deviation 8:9884 � 104:The samples were grouped into eight classes by value. See Table 8. Consider signi�cancelevel 0.1. G1 has ML-estimation of two parameters from the sample data. The critical valuefor 5 (=8-2-1) degrees of freedom is 9.24. �2 statistic 3.6730 for G1 is less than 9.24, so G1 isnot rejected. The second Gumbel G2 is based on an assumption that the initial distributionis exactly the exponential Exp(mFF ). No parameters are estimated from the data. Thecritical value 12.02, for 7 (=8-1) degrees of freedom, is less than the G2 statistic 30.6775;therefore, statistical evidence rejects G2 at signi�cance level 0.1. G2 is also rejected at thereduced level of signi�cance 0.05.For pCF = 10�5, the 64 samples have range [2244658,5950128], mean 3:585 � 106, andstandard deviation 7:917�105. ML-estimates yieldG3 = Gumb(3:218�106,653981.33) whichhas mean 3:595� 106 and standard deviation 8:388� 105. An initial exponential Exp(mFF )yields G4=Gumb(2:9146� 106,700800) which has mean 3:3191� 106 and standard deviation8:9881 � 105.The samples were grouped into six classes. See Table 9. Consider signi�cance level 0.1.The critical values are 6.25 for 3 (=6-2-1), and 9.24 for 5 (=6-1), degrees of freedom. G3 isnot rejected but G4 is rejected; however,G4 is not rejected at the reduced level of signi�cance0.05 because its statistic 10.8214 is less than the critical value 11.07.References[1] E. N. Adams. Optimizing Preventive Service of Software Products, IBM Jour. Res. Dev.,vol. 28, no. 1, 1984, pp. 2-14.[2] A. Avritzer and E. J. Weyuker. The Automatic Generation of Load Test Suites and theAssessment of the Resulting Software, IEEE Trans. Software Engrg., vol. 21, no. 9, 1995,pp. 705-716.[3] A. D. Barbour, L. Holst, and S. Janson. Poisson Approximation, Clarendon Press(Oxford University), Oxford, UK, 1992.[4] R. E. Barlow and F. Proschan. Mathematical Theory of Reliability, John Wiley & Sons,Inc., NY, 1965. Republished by SIAM, Philadelphia, PA, 1996.[5] R. E. Barlow and F. Proschan. Statistical Theory of Reliability and Life Testing, Holt,Reinhart and Winston, Inc., NY, 1975. Republished by TO BEGINWITH, Silver Spring,MD, 1981.[6] K. V. Bury. Statistical Models in Applied Science, John Wiley & Sons, Inc., NY, 1975.Republished by Robert E. Krieger Pub. Co., Inc., Malabar, FL, 1986.[7] K.-Y. Cai. Censored Software-Reliability Models, IEEE Trans. Reliab., vol. 46, no. 1,1997, pp. 69-75. 20
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