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Abstract

Numerous probability distributions are used in the estimation of software reliabil-
ity. Typically, these distributions arise from assumptions together with actual suc-
cess/failure data collected during testing or field-usage. Statistics of the extremes has
been applied by Kaufman et al for software reliability analysis when failure is an in-
frequent, unlikely occurrence—a so-called rare event. When applicable, these statistics
give powerful results concerning limiting distributions without the assumption of ini-
tial distributions often imposed in existing reliability models. This paper combines (¢)
results in rare events and extreme values with (i7) a finite-state, discrete-parameter,
recurrent Markov chain which incorporates both the failures as rare events (as tran-
sitions to a rare fail-state) and usage of the software between failures (as transitions
among ordinary usage-states not involving the fail-state). Four distributions arise nat-
urally as approximations for the chain, namely: the “Poisson law of small numbers”
gives an explicit error-bound on a Poisson Approzimation for count of occurrences of
a rare fail-state in long intervals of software usage; the interoccurrence time of the rare
fail-state (the time-to-failure or TTF) has an approximately exponential distribution;
and the Weibull and Gumble distributions, respectively, are the limiting distributions
of the minimum and maximum values (the extreme values) in independent samples
of the TTF. Results are illustrated by examples, including y? goodness-of-fit tests for
samples and approximate distributions.

Keywords: exponential, extreme values, Gumbel, Markov chain, Poisson, rare event,
software reliability, Weibull

1 Introduction

The field of software reliability deals with the probabilistic estimation and prediction of
software quality by combining stochastic models with statistical analysis of testing and field-
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usage data. Such data typically includes successful executions in which the software’s func-
tionality was exercised without deviation from the specification, and unsuccessful or faulty
runs in which the software performed one or more of its tasks incorrectly. Performing a
task incorrectly is called a failure event. A software reliability model encapsulates observed
success/failure data or other estimates of component reliability within the framework of
probability models in order to predict patterns of future performance. The probability dis-
tributions for the number of failures within a specified time span, the failure interoccurrence
time, and other relevant random variables are often adapted from hardware reliability theory
[9] or justified empirically [1, 17].

Rare events and extreme values are topics in probability and statistics with application in
several fields of science and engineering (cf. [3, 5, 6, 13, 20]). When the necessary conditions
are met, these topics lead to well-defined distributions as approximate probability laws that
are relevant in restricted, but important, areas of software reliability analysis. Statistics of
the extremes has been applied to software reliability by Kaufman et al [14, 15] for an analysis
of rare event data (for infrequent, unlikely failures) without requiring a priori knowledge of
its distribution. An application for safety critical software systems is described in [14].

By calling failure a rare event [3, 13], we mean here that its probability of occurrence
is greater than zero but smaller by at least several orders of magnitude than non-failure
events in software execution intervals. In this situation, the mean time-to-failure (MTTF)
is a large number. Frtreme values [5, 6, 13] are the minimum and maximum values among
independent’, identically distributed (7id) random variables; thus, analysis of the time-to-
failure (TTF) may look not only at the MTTF but also at extreme variation above and
below this mean value in multiple, iid executions of software. This paper concentrates on
describing the T'TF when failure is a rare event.

Intuitive definitions and convenient computations are attributes of Markov chains for
work with rare events and extreme values. In this paper, a discrete-parameter, finite-state
Markov chain [24] is used to represent both software failures (as transitions to a rare fail-
state) and usage of the software between failures (as transitions among the ordinary usage
states not involving the fail-state). Other work with Markov chains in software reliability
includes computation of the sensitivity of system reliability to a module’s reliability via a
discrete-parameter Markov chain [8], generation of test cases for software systems based on
a birth-death Markov chain [2], and versions of discrete- and continuous-parameter Markov
chains as structural models in software reliability prediction [12]. Markov chains can be
developed hierarchically for different levels of representation of software [23], can be used to
model the interconnection of components [12], facilitate bookkeeping with frequency counts
in empirical data [24], and offer an intuitive definition of rare events in terms of a recurrent
chain’s stationary probability distribution. Generic results in rare events and extreme values
are not restricted to Markov chains and may, with suitable formulation, apply to other
stochastic models [3, 13]. Other models are not explored here.

The requirement that failure be a rare event is not met in all software development
activity; however, it is often the case that software evolves into a phase in which it rarely
fails but its past history of failure with nonzero relative frequency, or an estimate of less-
than-perfect reliability of some component(s), should not be completely discounted. For

! Independent means stochastically independent thoroughout this paper.



example, failures may be rare events in situations such as the following:

o Post-release “beta” versions of software, from which failures have been removed previ-
ously, can lead to failure as a rare event. If users of beta versions build up significant
histories of successful execution intervals and few faulty runs, then failures may be rare
events when compared with many non-failure execution intervals.

e Software components with defects may be embedded in end-user applications. Software
developers work around known problems, making failure a rare event. We interpret
this to mean that the usage distribution is adjusted to avoid a known defect. If this is
achieved, the relative frequency of failure in the total usage history may approach 0.

o Growth in usage of widely-distributed, commercial software has been modeled as a
power function of calendar time [17]. If the defects that cause customer-reported
failures are corrected immediately for all users, the software may reach a phase in which
failure is a rare event in execution intervals for a large, active group of independent
users.

Thus, software which receives heavy usage according to established probabilities is a can-
didate for the treatment of its failures as rare events. If the likelihood of failure is indeed
very small, then results in rare events and extreme values [3, 13] lead to four probability
distributions as approzimations under quite general conditions:

e The probability law for counts of failures in long execution intervals may be approx-
imated as a Poisson distribution. Results of this kind are sometimes said to be a
consequence of the “Poisson law of small numbers” [3]. The Poisson distribution has
been introduced in other ways in the software reliability literature and already plays
an important role in several software reliability models [9].

o The exponential distribution may approximate the probability law for the interoccur-
rence time of rare failures in long intervals. This distribution is sometimes assumed for
the TTF in software reliability computations because it is implied by certain empirical

studies (cf. [1]).

e Given a set of random samples of the T'TF, the minimum value in the set is a random
variable bounded away from 0 and its limiting distribution (for number of samples
N — o) is Weibull. The Weibull distribution itself has been used or suggested for

other phenomena (cf. [17]).

e If the distribution of the TTF falls off fast enough for large values (see subsection 4.1),
a counterpart to Weibull for the minimum TTF is Gumbel as the limiting distribution
for the maximum TTF.

When conditions for rare events are met, reliability analysis in greater detail with fewer
assumptions may be possible, there may be additional justification for using popular Poisson
and exponential distributions, and Weibull and Gumbel distributions may also be applicable.
This paper discusses aspects of rare events and extreme values in the Markov chain model



M described in the next section. Section 3 describes a Poisson Approximation for counts
of a rare fail-state F' in realizations of M and indicates approximation of interoccurrence
times of F' by an exponential distribution. Weibull and Gumbel distributions are discussed
in section 4 for the extreme values of interoccurrence times of F'; and section 5 illustrates
computation based on the Weibull as the approximate distribution for the minimum 7T7TF.

2 Markov Chain Model

A Markov chain can provide not only a convenient definition of software failure as a rare event
(as a visit to an abnormal fail-state) but also a direct measure of rarity (using the steady-state
probabilities of a recurrent chain). We will use the following model and assumptions.

Both the software usage distribution and the likelihood of failure are represented by a
finite-state, discrete-parameter, time-homogeneous Markov chain M [10, 16, 24]. M has
at least three states: starting-state S, terminate or end-state H, and fail-state F'. State
sequences are realizations of M. A realization from S to first occurrence of H represents
a single successful execution cycle through the software. A transition from any state to F
represents a failure of the software at that location in a realization; thus, occurrences of state
F' are identified with the failure events.

The probabilities on arcs in M may be actual relative frequencies from test or usage
data [24] or may be values estimated for the usage distribution and component reliabilities
expected in practice. Note that if no failure occurs in observed data with real software,
then arcs to F' with frequency count 1 are conservative assumptions in this sense: if state
i, 1 # F, has been visited n; times and exited without failure, and if the data-based relative
frequency on each arc is close to the value defined by the expected usage, then this data
implies that the probability of failure at ¢ is not greater than 1/(n; + 1). A conditional case
study could set the count on an arc from ¢ to F' to 1 to give probability p;r = 1/(n; + 1),
renormalize other p;; accordingly, and compute values for this hypothetical situation. If the
relative frequencies p;r make F' a rare state, then the results in this paper are applicable.

We require that Markov chain M have (7) all states, including F', reachable from S by
paths with nonzero probability, and (i¢) arcs from both F' and H to S with prs = pgs = 1
so that both a successful termination in H and an unsuccessful run to F' cause an immediate
reset /restart in initial state S. This makes M a recurrent chain for studying long-term
properties [10, 16]: the probability of eventually reaching every state from every state is
1. A long realization of M will ultimately include all states and, as its length increases,
will become statistically typical of the entire chain in the frequencies of occurrence of all
states and arcs. Let P = [p;;] denote M’s transition probability matrix. M’s steady-state
probability distribution Il = [rg,...,7F| is the unique solution of II = IIP where Y, m; = 1
and m; > 0 is the limiting relative frequency of occurrence of state 7 as a count of transitions?.
The mean recurrence time of state ¢ is my; = 1/m; and the mean number of occurrences of
state j between visits to state ¢ is 7;/m; [16].

ZCount of transitions is a natural reference for computation with chain M. Standard terminology uses
the word time instead of the phrase count of transitions, e.g., recurrence time, interoccurrence time, time of
first occurrence.



A visit to fail-state F' must be a rare event, that is, 7 must be smaller by at least several
orders of magnitude than m; for any other state ¢ # F. Put another way, mean recurrence
time mpp = 1/7mp must be larger by orders of magnitude than my; for all i # F. mpp is
large but finite because mp is small but nonzero.

To focus on execution intervals between failures, we designate a realization of M from
F' to first recurrence of F' a run. The run-length random variable is the interoccurrence
time of F'; this is the TTF and its mean value mpp is the MTTF. Since pps = 1, runs
are equivalent to realizations from starting-state S to first occurrence of F' except for the
initial transition F-to-S. The ensemble of all runs is infinite but has a well-defined, discrete
probability distribution assigned by chain M.

3 The Poisson Approximation: Counts of Rare Fail-
State [

Two basic and enduring number laws in probability are the well-known Gaussian Approxi-
mation which is a “Central Limit Theorem” [10] for sample averages, and the less accessible
Poisson Approximation which is a “Law of Small Numbers” [3] for rare, uncommon, un-
likely events. Extensive discussion of the Poisson Approximation in numerous applications
is given in [3]. Po()) denotes the Poisson distribution with parameter A, that is, the discrete
probability mass function

ks A) = e
for k =0,1,2,.... Po(A) has mean and variance equal to A\. When k is the largest integer

not greater than A, p(k; A) has as large a value as it does for any k.

Visits to rare state [’ in recurrent Markov chain M are crucial events. Let random
variable np be the number of visits to F'in a randomly generated realization of n transitions
starting in state S. Let L(np) be the true probability law of np. Write A = FE(ng) for
the mean value. Developments in small number laws stress that Po(A) is an approximation
of L(ng) and compute an upper bound on a measure of distance between them. The total
variational distance dry[L(ng),Po(X)] is defined as

drv[£(nr). Po(A)] = sup 4| £{nr)(A) = Po(A)(A)

for events (subsets) A in the sample space [3]. The value is 0 < dpy < 1. With reference to

A, 7, and j-step transition probabilities pgf)?, an explicit bound derived in [3] is

drv[L(np),Po(A)] < (1 —e™) (WF +23 I - 7TFl) :
i1
Since 7 equals the limiting relative frequency of state F', for large n

b A
TE R (nr) =— and A~ nmp.
n n




The approximation
k

Linp)(h) m T s

is for large n and small 7. A &~ nmp is the approximate parameter for a full sequence of

n transitions, not per transition, and Poisson p(k;nmg) is the approximate probability of &
visits to F' in a full sequence.

The interoccurrence times of rare state F' in M are did (due to the Markov property)
according to a discrete distribution with mean value mpp. The exponential probability law
Exp(/) has a continuous cumulative distribution function (Cdf) of the form

Fg(t) =Prob(T <t)=1—exp {—%}
with mean value 3 for T' > 0. If the number of transitions n is very large relative to mpp, the
discrete distribution for the T'T'F can be approximated by an exponential model as follows.
Take any long, random realization of n transitions and mark the visits to non-rare state 5.
This partitions the realization into subsequences with mean length mgg. Since state F' has
either 0 or 1 occurrences in each subsequence, there is an independent Bernoulli trial [10]
for each subsequence with probabilities

p = Prob(1 occurrence of F'), ¢ = Prob(0 occurrences of F')=1—p

where p << ¢ < 1 because F'is rare but S is not. But the mean number of occurrences of
F between occurrences of S equals p, that is, for the 0-1 Bernoulli random variable

s
Ts

Given that F' has just occurred, let v be the number of subsequences until its next recur-
rence. v has a geometric distribution [10]. Cumulative geometric probabilities P, and their
exponential approximations are:

P(r<1) = p=1-—e?=Fg(1),
P(r<2) = ptapm1—e = Fg(2),
Pv<3) = ptap+a’p=1—e =Fp(3),

where Fg(m) is the exponential Cdf, 1 — e™?. These approximations are based on the
exponential series [18]

2
m
oty
and inequalities p >> p* >> p®> >> ---. The expected value E(v) for the geometric

distribution and for its approximation is 1/p = ws/7mr = mpp/mss, the mean number of
occurrences of S between occurrences of F'. Since the mean subsequence length is mgg
transitions, the expected count of transitions between visits to F'is

mrr

mgsFE(v) = mgs = mpp

mss



as required. This exponential approximation for the TTF does not depend on the detailed
structure of M beyond the requirement for a 0-1 count of F’s between visits to 5.

Example 1: A high level, five-state Markov chain for operation of three windows in a
graphical user-interface is given in [23]. Here, the fail-state F' shown in figure 1 has been
added as a sixth state to represent failure events associated with state C, e.g., as failures
actually observed during testing or as an estimate of less-than-perfect reliability of a software
component. The transition probabilities p;; for the ordinary usage-states 1 # F,j # F
represent the usage distribution, except that pcs = 1 is reduced by small probability por.
For the range 0 < por < 1072, we compute 0 < 7 < 1.43 x 10™* and find that all other 7’s
have relatively stable values. Specifically for pcr = 107", the stationary distribution vector
is

H = [7T577TA,7TB,7T077TH,7TF]
= [0.14278,0.42843,0.14283,0.14283,0.14276, 1.42689 x 10‘5],

the vector of mean recurrence times is

1 1
[is,...,mFF] = R
TS TF

= [7.00400,2.33412,7.00119,7.00120, 7.00470, 7.00821 x 10%],

the vector of the expected number of occurrences of states between visits to non-rare state
S s -
— =[1,3.0007, 1.0004, 1.0004, 0.9999, 0.0001],

TS

and the vector of the expected number of occurrences between visits to rare state F' is

i
— = 10* x [1.0006, 3.0025, 1.001, 1.001, 1.0005, 0.0001].

TF

For por = 1077, these vectors are
II = [0.14277,0.42844, 0.14284,0.14284,0.14276, 1.42693 x 107°],
[mss, ...,mpr] = [7.00445,2.33406, 7.00102, 7.00102, 7.00452, 7.00803 x 10°],

II
— = [1,3.001, 1.0005, 1.0005, 0.99999, 9.9949 x 107°],

TS
and "
— =10 x [1.0005, 3.0025,1.001, 1.001, 1.0005, 0.00001]
TF
respectively.

The mean recurrence time of state S is mgs ~ 7. n = 7 x 10* transitions correspond
to about 10* average sequences from S to S. We fix n at 7 x 10* and evaluate the Poisson
Approximation of L(ng) for four values of pop: 107*,107%, 107%, and 107",



Figure 1: 6-state Markov chain M.

Pas A dry < p(0;A)  p(1;A) p(2; M) p(3; ) p(4; )
10T 1 9.03 x 10-°  0.3679  0.3679 0.1839 0.0613 0.0153
1075 | 0.1 1.36 %1077  0.9048  0.0905 0.0045 1.51 x 10~*  3.77 x 106

107 ] 0.01  1.42x107* 0.99 0.0099 4.95 x 107°  1.65 x 1077 4.13 x 10710
10771 0.001  1.43 x 107" 0999 9.99 x 107*  5x 1077  1.67 x 107 4.16 x 107"

Table 1: Poisson Approximation for Example 1

Table 1 lists parameter A & 7Tmp x 10*, the upper bound on dry, and Poisson p(k; ) for
k=0,1,2,3,4. For por = 107*, rare state I has steady-state probability mp ~ 1.43 x 107>
and the upper bound 0.903 x 107> is about the same order of magnitude. For por = 1075,
visits to /' are more rare and the upper bound 1.36 x 107 is an order of magnitude smaller
than 7p &~ 1.43 x 107%. The MTTF ranges from mppr ~ 7 x 10* for pop = 107 to mpp ~
7x 107 for pcp =107". m

The upper bound on dry is one kind of measure of the suitability of the Poisson Approxi-
mation. y? goodness-of-fit tests can be applied to sample data and approximate distributions
as a different kind of measure. See the Appendix for a brief summary of this classic statistical
test. The approximate distributions we are studying are hypothesized in the tests here. The
binary outcome of each test is solely to reject or not to reject the hypothesis based on the
statistic computed and the level of significance specified.

Example 2: Sample data was obtained by using random-number generator RAND in MAT-
LAB (R) to simulate M for 7 x 10* transitions starting in state S. Visits to state F' were
then counted. The experiment was repeated 1000 times for por = 10* and for pop = 1075,

For por = 107%, the 1000 samples were grouped into five classes: C; for count 0, Cy for
count 1, (5 for count 2, Cy for count 3, and C5 for count > 4. Table 3 in the Appendix
lists observed frequencies f;, expected frequencies 1000p;, and x*-residuals for Po(1). The
x? critical value for level of significance 0.1 and 4 (=5-1) degrees of freedom is 7.78. The
statistic 1.2071 is less than the critical value; therefore, in terms of testing for goodness of
fit at significance level 0.1, there is no reason to reject the hypothesis that the Poisson Po(1)
models the phenomenon that gave rise to the 1000 samples.

For por = 107°, we combine classes at higher counts where expected frequencies are low.



A rule-of-thumb for the y? test is to define the classes so that most expected counts exceed
5, but one or two can be less than 5 [6]. Classes are C for count 0, Cy for count 1, and
(5 for count > 2. Table 4 presents the numbers. The \? critical value is 4.61 for 2 (=3-1)
degrees of freedom and level of significance 0.1. The statistic 1.4229 is less than 4.61, so the
hypothesis is not rejected at significance level 0.1.

The TTF in this software model is the interoccurrence time of rare fail-state /. The y?
goodness-of-fit test can also be applied to the hypothesis that this interoccurrence time has
an exponential distribution. A test can be computed in the following way without an explicit
value for the parameter 3 of Exp(3) [11]. Given that N visits to F occur in time interval
(0,7), let random variables Ty, Ty, ..., Ty be the interoccurrence times and let random
variables

A1:T17 A2:T1‘|'T2, ceey AN:T1—|——|—TN

be the waiting times. If the interoccurrence times T; are iid according to an exponential
distribution, the waiting times A;, taken as N unordered samples, are independently and
uniformly distributed in (0,7") [4]. Thus, the interval (0,7") can be partitioned into k equal
subintervals, each subinterval having length T'/k and (due to uniformity) each having N/k as
the expected number of visits. Let f; be the number of visits actually observed in subinterval
7; then the statistic ,

Ui %)

k
2w
=1

is approximately y? with & — 1 degrees of freedom, provided that N > 20 and each f; is
sufficiently large [11]. If the statistic is less than the appropriate critical value, the hypothesis

==

of exponential interoccurrence times is not rejected; otherwise, it is rejected.

1000 samples of interoccurrence times of rare fail-state " in M in figure 1 were generated
for por = 107 and for por = 107°. Waiting times Ay, ..., Ajppo were then computed.
Partitioning into k& = 20 equal subintervals gives an expected frequency of 1000p; = 50 per
subinterval. See table 5 in the Appendix for the data. The x? critical value for level of
significance 0.1 and 19 (=20-1) degrees of freedom is 27.20. As shown in the table, the
statistic is 23.56 for por = 107* and is 20.04 for por = 107°. At significance level 0.1, the
hypothesis of exponential interoccurrence times is not rejected for either value of pop. m

4 Distributions of Extreme Values

Estimation of the MTTF is included in many models of software reliability [19]. Results in
extreme values concern the minimum and mazimum values of the TTF as random variables
in their own right. Scenarios in which stochastic properties of one or both extreme values
are of interest include the following.

e Evaluation of software for safety critical applications is an important issue. A soft-
ware reliability model based on statistics of the extremes for safety critical systems is
developed in [14].



e Suppose widely-distributed software has a large base of independent users, the users
have the same usage probabilities, and failure is a rare event. Long-term, statistical
characteristics of both shortest and longest TTF provide information about expected
performance encountered by the ensemble of users as a group.

e Suppose a long computation executes in parallel on a network of computers as follows.
There is a time requirement: the parallel computation must have uninterrupted time
interval 7 simultaneously at every processor in order to complete. Processors use
the same software and have the same usage distribution which includes interaction
with the network. Tasks at different processors are loosely-coupled and are, to a first
approximation, independent. A software failure at a processor is a rare event but may
be a consequence of local data or the network. Any software failure before 7 forces
the entire computation to restart; but due to randomness in network characteristics, a
restarted computation is not likely to be identical to previous attempts, even though
the same local data is processed again. A long-run characteristic of interest is the
number of times on average a computation must restart due to a failure in time less
than 7.

4.1 Weibull and Gumbel Distributions in the Limit

Consider Markov chain M again as a source of ¢id runs from I to the first recurrence of
F. In extreme value analysis, the distribution of these runs is called the initial distribution.
Given a set of runs, let F,,;, be the minimum run-length and F,,,, the maximum run-length.
Fonin and F,,.» are called extreme value random variables.

Fnin 1s nonnegative and has an initial distribution bounded away from 0 in the direction
of the extreme by the minimum-length run from F' to F. F,,; is nonnegative and has an
initial distribution that is unbounded in the direction of the extreme but, by virtue of the
exponential approximation in section 3, has an exponential upper bound (that is, the initial
distribution is of the exponential type [6, 13]). Generic results in limiting distributions for
Fomin and F,., in our model are as follows [5, 6, 13].

e The probability law of F,,;, approaches a Weibull distribution Weib(e, 3) with Cdf

Fw(x) zl—exp{— (%)a},a>0,ﬁ>0.

« is the shape parameter: larger (smaller) o implies more (less) peaked density function.
Weib(1,4) with o = 1 is in fact the exponential Exp() with mean value 3. 3 is the scale
parameter: the distribution depends on 3 and z through the ratio z/3.

e The probability law of F,,.. approaches a Gumbel distribution Gumb(y, p) with Cdf

T —

Fg(x):exp{—exp{— M}},oo>u>—oo,,0>0.

i is the location parameter: association of = with p is of the form = — u. p is the scale
parameter.

e In the special case of NV samples of extreme values for which the initial distribution for

10



recurrences of rare state F' in Markov chain M is exactly the exponential Exp(mpg), then
Gumb(y, p) for Foqr has parameters [6]

p=mppIn(N) and p = mpp

and Weib(a, ) for F,,i, reduces to an exponential with parameters [6]

azlandﬁ:%.

4.2 Maximum-Likelihood Estimates from Samples

Estimation of parameters of Weibull and Gumbel Cdf’s from samples is of interest for com-
parisons with the theoretical limits described above. In general, finite sets of samples do not
fit the asymptotic formulations perfectly. This section describes maximum-likelihood (ML)
estimation and illustrates with data from Markov chain M in figure 1.

Given samples {x1,xq,..., 25} of Fin, ML-estimates of o and 3 in Weib(a, ) satisfy
the equations [6]

1 N N N 77t 1
— > Inz; = i Inx; ;| — =
and
: [1§: A‘|_a
==
Ni:l

& may be obtained from the first equation by iteration, then B computed by the second
equation. Small N biases the estimate & upwards [6], that is, an unbiased estimate would
be smaller. An unbiasing factor is available [21] and ranges from 0.669 to 0.99 as N ranges
from 5 to 120. Recall that @ = 1 in a Weibull Cdf coincides with an exponential Cdf; but
even when o = 1 should be the case, an ML-estimate & precisely equal to 1 is an unlikely
prospect for finite samples of real data.

Given samples {y1,...,yn} of Fraz, the ML-estimates of y and p in Gumb(g, p) satisfy
[6]

o= [Sueo{Hf| oo f-4)]
=i e {2}

where § = YN y;/N is the sample mean. Small N biases the estimate p downwards [6],

and

that is, an unbiased estimate would be larger.

Example 3: Assume that a group of 100 users have runs iid according to Markov chain M
in figure 1. M was simulated using RAND in MATLAB (R) to obtain a set of 100 runs, and
Fmin and F,, 4. for the set were recorded. The experiment was repeated 64 times to obtain
N = 64 samples of both extreme values for pcp = 107* and for pcp = 107°. Details of the
x? goodness-of-fit tests are described in the Appendix. In summary:

11



e For por = 107* and samples of F,,;,, Weibull W; with ML-estimates of parameters
is not rejected at level of significance 0.1, but Weibull W5 based on Exp(mpp) as the
exact initial distribution is rejected at significance levels 0.1 and 0.05.

o For por = 107° and F,,;,, neither Weibull W5 with ML-estimates nor Weibull W,
based on Exp(mpp) is rejected at level of significance 0.1.

o For pcr = 107* and F,,,.,, Gumbel GG} with ML-estimates of parameters is not rejected
at level of significance 0.1, but Gumbel GG3 based on Exp(mpp) is rejected at significance
levels 0.1 and 0.05.

o For por = 107° and F,,.., Gumbel G5 with ML-estimates is not rejected at level of
significance 0.1. Gumbel Gi4 based on Exp(mpr) is rejected at level of significance 0.1
but is not rejected at reduced significance level 0.05.

None of the distributions Wy, W3, Gy, G5 with ML-estimates of parameters from samples is
rejected at level of significance 0.1. Distributions Wy, Wy, G5, G4 are based on an assumption
that an exponential Exp(mpp) is exactly the initial distribution. W3 and G5 are obtained for
state F' being less rare; W, and (4 are obtained for state I' being more rare. At significance
level 0.1, W5 is rejected but Wy is not; at significance level 0.05, (G5 is rejected but (G4 is not.
We conjecture that one factor in the outcomes of these tests is less error in the exponential
approximation of the TTF’s distribution for more rare F' than for less rare F'. m

5 Extreme Value F,,;, of Software TTF

Analysis of extreme values is rich in details. We will use the Weibull Fy as the approximate
Cdf for F,.;, to compute how often on average the minimum TTF experienced within a group
of runs that are iid according to the same probablity model is not less than T where 7 is a
fixed reference.

An occurrence of F,,,;, > 7 is called an exceedance of T [3, 6] and its complement F,,.;,, < 7
is called a nonexceedance. As shown in figure 2, the binary events exceedance and noneaz-
ceedance define a Bernoulli trial [10] with probabilities

Prob(Fpin > 7) =1 — Fw(7), Prob(Fpin < 7) = Fw (7).

Let random variable n, be the number of independent trials from one nonexceedance of 7

until the next. A standard result [10] is that n, is geometrically distributed with mean value

Ew(n.;) =1/Fw(7). The mean number of times 7 is exceeded in between nonexceedances is
Ew(n,)—1 = ! 1

1— Fw(T)

Py ()
Prob(Foin > 7)
Prob(Fom < 7)°
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Figure 2: Illustrating a time-series of iid samples of F,;,

Example 4: Weibulls W; and W3 above are for a group of 100 runs, say, as experienced by
100 independent users with the same usage distribution. W is obtained for MTT' I’ = 70082
and W5 for MTTF about 10 times longer. For 7 = 500,

F, (500) = 0.6076,  Eyw, (ns00) = 1.6457

= 0.6076
Fi, (500) = 0.0325,  Eyw, (nse0) = 30.7630.

Based on Wj for F,,;, in the group of 100 users, on average the group experiences 0.6457
runs with minimum 77TF > 500 in between occurrences of minimum 7T7F < 500. Based on
W5 for F.in, the comparable figure is 29.763 runs. Doubling 7 to 1000 and again to 2000
gives

Ew, (n1000) = 1.1959,  Ew, (n1000) = 14.2553
Ek/{/1 (nzooo) = 10312, Ek/{/3 (nzooo) = 676056

Rather than a group of different users, W; or W5 could describe F,,;, for blocks of 100
runs by a single user. Suppose W3 applies for a single user & who starts up a block of 100
tasks every day, each of which executes iid according to M in figure 1 and each of which
must have execution-time exceeding 7. Then user & will encounter a day with F,,;, < 7
on average about once each month (~30.76 blocks) for 7 = 500, about once each fortnight
(~14.26 blocks) for 7 = 1000, or about once each week (~6.76 blocks) for 7 = 2000. If
user U voluntarily stops the failure-free executions after 7 is reached in one day and restarts
all tasks the next day, the next sample of F,,;, is generated independently according to the
same Cdf Fyy, (there is no parameter-estimation with data that is censored by the non-failure
stops of software execution [7]). Given that the event F,;, < 7 does occur, the conditional
mean values of F,,;, for the three values of 7 are

Ew, (Fuin|Fmin < 500) = 264.9,  Ew,(Fin| Fmin < 1000) = 526.5,

Ew, (Fin| Frnin < 2000) = 1038.7.
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If nonexceedance is a rare event for a given 7, then Fyy (7) = 1/Ew(n,) is small and the
exponential series [18] gives as an approximation

o = r-enf (i)}
o

Example 5: For W5 in the example above:

%

1000\ “
Fy,(1000) = 0.0701 and (—) =0.0727,

00\"
Fy,(500) = 0.0325 and (7) = 0.0330,

100\”
Fy,(100) = 0.0053 and (—) = 0.0053.

B

Suppose user U in that example wants 7 as large as possible to average a full year of successful
days (that is, an average of 365 blocks having F,,.;, > 7 in between blocks having F,in, < 7).
An estimate of 7 for Ew,(n,) = 366 is

Q=

1
~8(—)" = 55.945
T ﬁ<366)

where, in fact, 1/Fw,(55.945) = 366.5. m

Example 6: As a final example, suppose that (i) a continuously-executing application
consists of many tasks distributed on a network of processors, (ii) task executions are iid
according to the same Markov chain model with rare fail-state, and (2i2) all current execu-
tions in the block of parallel tasks continue until one fails, at which time the system resets
and all tasks immediately restart in synchronism. Then W=Weib(«, 3), which is the limit-
ing probability law of F,,;,, also approximately describes the system-restart interoccurrence
times. As approximations, the probability that a system-restart does not occur before 7
is 1 — Fw(7) = Prob(Fnm > 7) and the expected number of exceedances of 7 in between
nonexceedances is Ey(n,;) — 1. m

6 Summary and Conclusions

Markov chains have diverse uses in software reliability computations (cf, [2, 8, 12, 24]). Rare
events and statistics of the extremes are applicable to restricted, but important, aspects
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of software reliability analysis (cf, [14, 15]). This paper combines results in rare events
and extreme values with software reliability computations based on a finite-state, discrete-
parameter, recurrent Markov chain M. The chain provides a convenient definition of failure
as a rare event, namely, as a fail-state F' for which the steady-state probability 7z is orders
of magnitude smaller than m; for ordinary usage states ¢ # F.

When applicable, results in rare events and extreme values may provide information
about software reliability, especially in details of likely performance in the long-run. Four
distributions arise naturally as approximations when software failures correspond to visits
to a rare fail-state [’ in M:

e Poisson for count of visits to F' in a long realization.
e Exponential Cdf for interoccurrence time of F' (the TTF).
o Weibull as limiting Cdf for minimum recurrence time of F.

o Gumbel as limiting Cdf for maximum recurrence time of F'.

An upper bound on dry was computed for a Poisson Approximation for Markov chain M in
figure 1. y? goodness-of-fit tests were computed for approximate distributions and random
samples from chain M. For extreme values, the parameters for Weib(«a, 3) and Gumb(y, p)
were computed by ML-estimation from samples and also by assuming an initial exponential
Exp(mpgg) for the TTFE. Outcomes of these tests are compatible with the general proposition
that the more rare the event, the better the approximation. Although our example used a
small Markov chain to demonstrate various computations, the methods apply to chains of
arbitrarily large size.

One significance of the Markov chain model is that it structurally represents the software
system under test or in use in the field, and indirectly represents the software complexity.
If the transition probabilities are obtained from actual frequency counts during testing, an
up-to-date representation of the amount and completeness of testing is provided.

Important contributions of rare events and extreme values are the four distributions listed
above as approximations in the analysis of T'TF, given the basic assumptions set forth. We
believe that the combination of the Markov model and these results is a powerful tool for
aspects of software reliability analysis.

7 Appendix

7.1 The \? Goodness-of-Fit Test

The test is described in numerous references (cf. [6, 11]). Hy is the hypothesis that in-
dependent samples are from a candidate distribution. A statistic is computed to measure
how much the samples disagree with the hypothesis. If disagreement is “significant,” Hy is
rejected; otherwise, it is not.

The binary outcome of a test is solely to reject or not to reject Hy. The y? distribution
provides the eritical value for this binary decision. This distribution’s parameter is the
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number of degrees of freedom. If there are N samples and s parameters for the distribution
under test are estimated from the data, there are N—s—1 degrees of freedom; if no parameters
are estimated, there are N — 1 degrees of freedom. The critical value is computed for a given
level of significance, which is the probability of rejecting Hy when Hy is true. A higher
significance level defines a more critical test than a lower one. Significance levels 0.1, 0.05,
and 0.01 are commonly used in practice.

The set of possible values of samples is partitioned into k& classes (1, ...,y where p; is
the probability of an observation in C; according to the hypothesized distribution, Np; is the
expected number of observations in C; in N samples, and f; is the frequency of occurrence
of actual samples in C;. Two rules-of-thumb [6] are (i) the sample size N should be greater
than 20, and (i7) the classes should be defined so that most expected frequencies Np; exceed
5, but one or two can be less than 5. The test statistic

(fi = Np;)?
Np;

K3

k
=1

is approximately y? with the appropriate degrees of freedom. If the statistic is less than the
appropriate y? critical value, Hy is not rejected; otherwise, Hy is rejected because a statistic
larger than the critical value implies, at the given significance level, that the observed data
are not random samples from the hypothesized model.

For reference in examples, Table 2 lists x? critical values for two levels of significance and
several degrees of freedom.

level degrees  of  freedom

of sig. | 1 2 3 4 5 6 7 8 9 10 19
0.10 | 2.71 461 6.25 7.78 9.24 10.65 12.02 13.36 14.68 15.99 27.20
0.05 |3.84 599 7.81 9.49 11.07 12,59 14.07 1551 16.92 18.31 30.14

Table 2: \? critical values (rounded values from MATLAB (R) function CHI2INV)

7.2 Tables for Examples 1 and 2 (Section 2)

The following tables are referenced in the y? goodness-of-fit tests in section 2.
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Class C; Observed frequency f; Expected frequency 1000p; y*-residual ﬁ%ﬁ
C1: count 0 366 367.9 0.0098
C5: count 1 379 367.9 0.3349
C5: count 2 183 183.9 0.0044
C4: count 3 55 61.3 0.6475
Cs: count > 4 17 19.0 0.2105
sum 1000 1000.0 1.2071
Table 3: Calculation of y? statistic for Poisson for pcp = 10~*
Class C; Observed frequency f; Expected frequency 1000p; y*-residual W
C1: count 0 895 904.8 0.1061
(y: count 1 101 90.5 1.2182
(C3: count > 2 4 4.7 0.0985
sum 1000 1000.0 1.4229

Table 4: Calculation of x? statistic for Poisson for pop = 107°

Subinterval Observed frequency f; y*-residual w
1 59/53 1.62/0.18
2 42/39 1.28/2.42
3 58/45 1.28/0.50
4 38/49 2.88/0.02
5 57/42 0.98/1.28
6 49/60 0.02/2.00
7 54/61 0.32/2.42
8 53/47 0.18/0.18
9 44/38 0.72/2.88
10 38/49 2.88/0.02
11 48/54 0.08/0.32
12 54 /52 0.32/0.08
13 61/48 2.42/0.08
14 56/38 0.72/2.88
15 43/56 0.98/0.72
16 59/62 1.62/2.88
17 59/53 1.62/0.18
18 44/53 0.72/0.18
19 39/46 2.42/0.32
20 45/55 0.50/0.50

sum 1000/1000 23.56/20.04

Table 5: Calculation of y? statistics for Uniform Waiting Times for pcr = 107 /pop = 107°
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7.3 Fuin and Weibull Distributions in Example 3 (Section 4)

Class C; Observed frequency f; Expected frequency 64p; y*-residual m_GTG;l?"ﬁ
Cy: <100 11 11.7253/5.5856 0.0449/5.2484
Cy: 1007 to 300 14 16.2790/9.7514 0.3191/1.8511
C3: 300" to 500 12 10.8846/8.1235 0.1143/1.8498
C4: 5007 to 700 12 7.4646/6.7674 2.7509/4.0459
Cs: 700" to 1100 6 8.8135/10.3343 0.8981/1.8178
Cs: > 1100 9 8.8300/23.4377 0.0033/8.8937
sum 64 64.0000/64.0000 4.1353/23.7068

Table 6: Calculations of y? statistics for Weibulls W, /W, for pop = 1074

Class C; Observed frequency f; Expected frequency 64p; y*-residual m_GTG;l?"ﬁ
Cp: <2 x10° 7 9.4663/10.6841 0.6426/1.2704
Cy: (2% to 4)x10° 13 9.5367/8.9005 1.2577/1.8882
Cs: (47 to 6) x10? 7 8.3981/7.4146 0.2328/0.0232
Cy: (67 to 8)x107 11 7.1243/6.1769 2.1084/3.7660
Cs: (8% to 10)x10° 6 5.9191/5.1457 0.0011/0.1418
Ce: (17 to 1.4)x10? 4 8.7797/7.8577 2.6021/1.8939
Cri > 1.4 x 104 16 14.7759/17.8205 0.1014/0.1860
sum 64 64.0000/64.0000 6.9461/9.1695

Table 7: Calculations of y? statistics for Weibulls W3 /W, for pop = 107°

For pcp = 107*, the 64 samples of F,,;, have range [5,2912], mean 548.5, and standard
deviation 545.05. Iteration with these samples gives & = 0.9708 as ML-estimate of the
Weibull parameter. The unbiasing factor for 64 samples is 0.98 [21], so the unbiased ML-
estimate is & = 0.9513. We obtain 3 = 536.26 and the distribution Wi=Weib(4, B) with
mean 548.45 and standard deviation 576.74.

Using Exp(mpr) as the initial distribution for interoccurrence time of rare fail-state F
gives = 1, 8 = 1095, and Wy= Weib(1,1095) = Exp(1095) with mean value about twice
the sample mean.

x? goodness-of-fit tests were applied to the samples of F,.;, and the separate Weibulls
Wi /Ws,. (This is not a test of one distribution vs. another as alternate hypotheses.) Samples
were grouped into six classes by value. See Table 6. Since two parameters are estimated
from the data for Wi, there are 3 (=6-2-1) degrees of freedom. Consider level of significance
0.1. The x? critical value 6.25 exceeds the statistic 4.1353 for Wy; therefore, at significance
level 0.1, there is no reason to reject the hypothesis that W; models the phenomenon that
gave rise to the samples. Since no parameters are estimated from the data for W, there
are b (=6-1) degrees of freedom; the critical value 9.24 is less than the statistic 23.7068 for
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Wy, so Wy is rejected. In fact, Wy is also rejected at the reduced level of significance 0.05
because the y? critical value 11.07 is less than its statistic 23.7068.

For pcr = 1077, the 64 samples of F,,;, have range [23,35712], mean 9559.9, and standard
deviation 8301.7. ML-estimate is & = 1.1613, adjusted to 1.1381 by the unbiasing factor and
giving 3 = 10004. W3=Weib(1.1381,10004) has mean 9550.3 and standard deviation 8410.4.
Assuming initial distribution Exp(mpr) gives o = 1, # = 10950, and W,;=Exp(10950) with
mean value fairly close to the sample mean.

The 64 samples were grouped into seven classes. See Table 7. Consider level of significance
0.1. The critical values are 7.78 for 4 (=7-2-1) degrees of freedom and 10.65 for 6 (=7-1)
degrees of freedom. Critical value 7.78 exceeds W3’s statistic 6.9461 and critical value 10.65
exceeds Wy's statistic 9.1695. Neither W3 nor W, is rejected. m

7.4  Fou and Gumbel Distributions in Example 3 (Section 4)

Class C; Observed frequency f; Expected frequency 64p; %574?")2

?-residual >
3

Cp: <27 x10° 5 6.2966,/16.4534 0.2670/7.9728

Cy: (2.7% t0 3)x10° 7 6.3376/9.9517 0.0692/0.8755
Cs: (3% to 3.3)x10° 8 7.9324/9.5351 0.0006,0.2471
Cy: (3.3% 0 3.6)x10° 11 8.3552/7.9985 0.8372/1.1263
Cs: (3.6 0 3.9)x10° 8 7.7914/6.1483 0.0056/0.5577
Co: (3.9% 0 4.2)x10° 7 6.6685,/4.4631 0.0165/1.4420
Cr: (4.2% o 4.8)x10° 5 9.5246/5.2503 2.1474/0.0119
Cg: > 4.8 x 10° 13 11.0937/4.1993 0.3275/18.4441
sum 64 64.0000,/64.0000 3.6730/30.6775

Table 8: Calculations of y? statistics for Gumbels G /Gy for pep = 10~

Class C; Observed frequency f; Expected frequency 64p; y*-residual m_GTG;l?"ﬁ
Cp: <2.5 % 10° 4 3.1986/10.5076 0.2008/4.0303
Cq: (2.5T to 3)x10° 13 12.6651/15.9003 0.0089/0.5290
Cs: (3% to 3.5)x10° 15 17.5685/15.0706 0.3755/0.0003
Cy: (3.5 to 4)x10° 18 13.8709/10.2697 1.2292/5.8188
Cs: (47 to 4.5)x10° 6 8.2948/5.9238 0.6349/0.0010
Ce: > 4.5 x 10° 8 8.4021/6.3378 0.0192/0.4419
sum 64 64.0000/64.0000 2.4684/10.8214

Table 9: Calculations of y? statistics for Gumbels G5/Gy for pop = 107°

For pcp = 107*, the 64 samples of F,,., have range [203311,667105], mean 3.896 x 10°,
and standard deviation 1.063 x 10°. ML-estimates for parameters of the Gumbel distribution
are p = 84002.79 and & = 3.407 x 10°. Gy=Gumb(fi, p) has mean 3.891 x 10°> and standard
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deviation 1.077 x 10°. Computing parameters as if Exp(mpp) were the initial distribution
for interoccurrence time for rare fail-state F' gives p = 70082 and p = 2.9146 x 10°, in which
case Ga=Gumb(y, p) has mean 3.3192 x 10° and standard deviation 8.9884 x 10*.

The samples were grouped into eight classes by value. See Table 8. Consider significance
level 0.1. (¢4 has ML-estimation of two parameters from the sample data. The critical value
for 5 (=8-2-1) degrees of freedom is 9.24. y? statistic 3.6730 for G, is less than 9.24, so (7 is
not rejected. The second Gumbel (G5 is based on an assumption that the initial distribution
is exactly the exponential Exp(mpr). No parameters are estimated from the data. The
critical value 12.02, for 7 (=8-1) degrees of freedom, is less than the Gy statistic 30.6775;
therefore, statistical evidence rejects (G5 at significance level 0.1. G5 is also rejected at the
reduced level of significance 0.05.

For porp = 1077, the 64 samples have range [2244658,5950128], mean 3.585 x 10°, and
standard deviation 7.917 x 10°. ML-estimates yield Gi3 = Gumb(3.218 x 10°,653981.33) which
has mean 3.595 x 10° and standard deviation 8.388 x 10°. An initial exponential Exp(mpp)
yvields G4=Gumb(2.9146 x 10°,700800) which has mean 3.3191 x 10° and standard deviation
8.9881 x 105.

The samples were grouped into six classes. See Table 9. Consider significance level 0.1.
The critical values are 6.25 for 3 (=6-2-1), and 9.24 for 5 (=6-1), degrees of freedom. G5 is
not rejected but G4 is rejected; however, (G4 is not rejected at the reduced level of significance
0.05 because its statistic 10.8214 is less than the critical value 11.07. m
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