
Writing Programs that Run EveryWare on theComputational Grid �University of Tennessee Tehnial Report Number UT-CS-99-420http://nws.npai.edu/EveryWareRih Wolski y John Brevik z Chandra Krintz x Graziano Obertelli {Neil Spring k Alan Su ��August 11, 1999
1 IntrodutionInreasingly, the high-performane omputing ommunity is blending parallel and distributedomputing tehnologies to meet its performane needs. A new arhiteture, known as The Com-putational Grid [12℄, has reently been proposed whih frames the software infrastruture thatis required to implement high-performane appliations using widely dispersed omputational re-soures. The goal of a Computational Grid is to aggregate ensembles of shared, heterogeneous,and distributed resoures (potentially ontrolled by separate organizations) to provide omputa-tional \power" to an appliation program. Appliations should be able to draw ompute yles,network bandwidth, and storage apaity seamlessly from the Grid1 in a way analogous to theway in whih household applianes draw eletrial power from a power utility.To realize this vision, the appliation programming environment must be able to� leverage all potentially useful resoures that the user an aess,�Supported by the National Partnership for Advaned Computational Infrastruture (NPACI), NSF grant ASC-9701333, Advaned Researh Projets Ageny/ITO under ontrat #N66001-97-C-8531, and a�eine.yUniversity of Tennessee { email: rih�s.utk.eduzUniversity of Calfornia, Berkeley { email: brevik�math.berkeley.eduxUniversity of Calfornia, San Diego { email: krintz�s.usd.edu{University of Calfornia, San Diego { email: graziano�s.usd.edukUniversity of Washington { email: nspring�s.washington.edu��University of California, San Diego { email: alsu�s.usd.edu1We will apitalize the word \Grid" when referring to \Computational Grid" throughout this paper.

� exploit the heterogeneity of the resoure pool to the program's advantage, and� manage the e�ets of dynamially hanging resoure performane harateristis aused byontention, reon�guration, and federated administration.Researhers have developed several innovative and powerful software infrastrutures to supportthe Grid paradigm [11, 22, 41, 6℄ and several pilot projets [18, 26, 33℄ have been launhedto investigate the eÆay of Grid omputing. Eah of these tehnologies, however, is designedassuming there will be a single, unifying Grid infrastruture installed and funtioning on allavailable resoures. We note, however, that the resoure pool available to an appliation isgenerally spei� to its user and not a partiular infrastruture. A single user may haveaess to resoures owned by di�erent organizations whih do not agree to supporta single, unifying software base on all resoures.In this paper, we desribe the design of EveryWare { a user-level software toolkit for writingGrid programs onsisting of three separate software omponents:� a portable lingua frana that is designed to allow proesses using di�erent infrastruturesand operating systems to ommuniate,� a set of performane foreasting libraries that enable an appliation to make short-termresoure and appliation performane preditions in near-real time, and� a distributed state exhange servie that allows appliation omponents to manage andsynhronize program state in a dynami environment.The goal is to allow a user to write Grid programs that ombine the best features of di�erentGrid infrastrutures suh as Globus [11℄, Legion [22℄, Condor [41℄, or NetSolve [6℄ as well as thenative funtionality provided by Java, Windows NT, and Unix to the performane advantage ofthe appliation. EveryWare is implemented as a portable set of libraries and proesses that an\glue" di�erent loally-available infrastrutures together so that a program may draw upon theseresoures seamlessly. If sophistiated systems suh as Globus [11℄, Legion [22℄, or Condor [41℄ areavailable, the EveryWare program must be able to use the features provided by those systemse�etively. If only basi operating system funtionality is present, however, an EveryWare programshould be able to extrat what ever funtionality it an, realizing that these resoures may beless e�etive than those supporting better infrastruture. The ability to leverage all resouresaessible by the user, regardless of installed infrastruture, makes it possible to draw thoseresoures from separate administrative domains. That is, to treat the user's aessible resouresas a Computational Grid.We have implemented a prototype toolkit to test the eÆay of the EveryWare approah.In an experiment entered as a ontestant in the High-Performane Computing Challenge [25℄at SC98 in November of 1998, we were able to use this prototype to leverage Globus [11℄, Le-gion [22℄, Condor [41℄, NetSolve [6℄ Grid omputing infrastrutures, the Java [19℄ language andexeution environment, native Windows NT [44℄, and native Unix systems simultaneously ina single, globally distributed appliation. The appliation, a program that searhes for RamseyNumber ounter examples, does not use exhaustive searh, but rather requires areful dynami2

sheduling to avoid substantial ommuniation overheads. Moreover, by fousing on enhaningthe interoperability of the resoures in our pool, we were able to ombine the Tera MTA[42℄and the NT Superluster[34℄ - two unique and powerful resoures - with a raft of other, moreommonly available systems inluding parallel superomputers, PC-based workstations, shared-memory multiproessors, and Java-enabled desk-top browsers. With non-dediated aess to allresoures, under extremely heavy load onditions, the EveryWare appliation was able to sustainsuperomputer performane levels over long periods of time. As suh, the Ramsey Number Searhappliation using EveryWare represents an example of a true Grid program - the omputational\power" of all resoures that were available to the appliation's user was assessed, managed, anddelivered to the appliation.In detailing our Computational Grid experienes, this paper makes three important ontribu-tions.� It demonstrates, quantitatively, the potential power of globally distributed Grid omputing.� It details the real-world experienes we gained using most of the relevant distributed om-puting tehnology available to us in the fall of 1998.� It desribes a programming model and methodology for writing Grid programs.We endeavor to measure, quantitatively, the degree to whih the Ramsey Number Searh appli-ation was able to leverage a world-wide Computational Grid by ombining disparate softwareinfrastrutures. To use EveryWare e�etively, we adopted a programming methodology in whihomputational lients request program management funtions (sheduling, persistent storage man-agement, event synhronization, et.) from appliation-spei� distributed servies. We believethat this programming model will allow newly-developed Grid appliations to meet both theperformane and robustness needs of Grid users.In [12℄ (page 18), the authors de�ne the riteria for the Computational Grid as the provisionof onsistent, dependable, pervasive, and inexpensive ompute power to the end user. We presentthe results of our study in terms of four quantitative metris:1. the sustained omputational performane of the entire appliation,2. the di�erene between the performane variability exhibited by the underlying resouresand the performane variability exhibited by the appliation itself,3. the overall duration of ontinuous program exeution, and4. the number of di�erent resoure types used by the appliation.Metri (1) desribes the degree to whih the EveryWare appliation was able to ahieve \high-performane" using a Computational Grid. Appliation performane is a key motivating fatorfor Computational Grids that di�erentiates it from other distributed omputing e�orts. Metri(2) demonstrates how well EveryWare was able to hide underlying performane variane fromthe appliation's user. Appliation performane must remain onsistent and stable even when thedeliverable performane of individual resoures varies or users will turn to other, lower performane3

exeution platforms. Metri (3) desribes the dependability and robustness of the EveryWareappliation to host and network failure, and metri (4) quanti�es the degree of pervasiveness wewere able to ahieve with EveryWare. For the Computational Grid to be pervasive, it must beable to inlude as many of the available resoures and resoure types as possible. We believe thatall four of these metris are neessary to desribe and quantify the degree to whih an appliationahieves the goals (desribed in [12℄) of Grid omputing. In addition, the EveryWare appliationwe implemented at SC98 used no dediated resoures and required no privileged aess. Asthe EveryWare appliation was a guest on the systems it used, the expense assoiated with itsexeution was limited to the ost of a \guest" login on eah system. That is, it was inexpensiveto exeute sine it was able to harvest standard, guest-level priority yles.In the next setion we desribe Computational Grid omputing and motivate the design ofEveryWare. In Setion 3 we detail the funtionality of the EveryWare toolkit and desribes theprogramming model it implements. Setion 4 disusses the Ramsey Number Searh appliationwe used in this experiment and in Setion 5, we detail the performane results we were ableto obtain in terms of the four metris desribed above. Setion 6 desribes the relationship ofEveryWare to related researh, and we onlude in Setion 7 with a desription of future researhdiretions.2 Computing with Computational GridsThe goal of EveryWare is to enable the onstrution of true Grid programs { ones whih drawomputational power seamlessly from a dynamially hanging resoure pool. Sine the �eld isevolving, a single de�nition of \Computational Grid" has yet to be universally adopted 2. In thiswork, we will use the following de�nition.Computational Grid A heterogenous, shared, and federated olletion of omputational re-soures that are linked together by a network that supports interproess ommuniation.By \shared" we mean that it is impratial to dediate all of the resoures in a ComputationalGrid to a single appliation for an appreiable amount of time. The term \federated" means thateah resoure is expeted to have a loal resoure manager, and no single overarhing resouremanagement poliy an be imposed on all resoures.The resoures housed at the National Partnership for Advaned Computational Infrastruture(NPACI) and National Computational Siene Alliane (NCSA) onstitute examples of Computa-tional Grids under our de�nition. At these enters, mahines and storage devies of various typesare internetworked. Eah resoure is managed by its own resoure manager (e.g. bath sheduler,interative priority mehanism, et.) and it is not generally possible to dediate all resoures (andthe network links that interonnet them) at either site to a single appliation. Moreover, it ispossible to ombine NPACI and NCSA resoures together to form a larger Computational Grid,that has the same harateristis. In this larger ase, it is not even possible to mandate that auniform software infrastruture be present at all potentially useful exeution sites.2In [12℄, the authors de�ne Computational Grids in terms of a set of riteria that must be met. We addressthese riteria in our work, but prefer the de�nition provided herein for the purpose of illustration4

To e�etively exploit a Computational Grid, a program must be able to1. leverage onurreny for exeution performane,2. manage the resoure heterogeneity of the underlying system to the advantage of the program,3. run ubiquitously on all of the resoures its user may legally aess, and4. tolerate dynami performane variation aused by ontention, resoure failure, resoure a-quisition, and loal management poliy.Other work has met these requirements to di�erent degrees. AppLeS [4℄ (Appliation LevelSheduling) agents have been able to meet these requirements in environments where a singleinfrastruture is present and the sheduling agent does not experiene resoure failure. An Ap-pLeS agent dynamially evaluates the performane that all available resoures an deliver to itsappliation, and rafts a shedule that maximizes the appliation's overall exeution performane.EveryWare supports this priniple in environments where a single sheduling agent an aess allavailable resoures without forming a performane bottlenek (Requirement (4)), but also extendsit to wide-area lossy environments in whih several infrastrutures may be available. Note alsothat the AppLeS agent is a speialized appliation omponent that performs a single appliationmanagement funtion: sheduling. EveryWare allows an appliation programmer to generalizethis notion to other appliation management funtions in the form of appliation-spei� servies.Using the EveryWare toolkit, these servies an be implemented for a variety of Grid infrastru-tures (Requirement (3)) to meet the performane and robustness needs for widely distributed Gridappliations. The MPI (Message Passing Interfae) [10℄, and PVM (Parallel Virtual Mahine) [17℄implementations for networked systems allow distributed lusters of mahines to programmed asa single, \virtual" parallel mahine (meeting Requirement (1)). In addition, portable implemen-tations that do not require privileged (super-user) aess for installation or exeution [23, 17℄ areavailable (Requirement (3)). However, they do not manage resoure heterogeneity on behalf theprogram nor do they expose it to the programmer so that it may be managed expliitly. Gridomputing systems suh as Globus [11℄, Legion [22℄, Condor [41℄, and HPC-Java [24℄ inludesupport for resoure heterogeneity as well, but they are not available ubiquitously (Requirement(3)). As they gain in popularity, we antiipate these systems to be more widely installed andmaintained. However we note that their level of sophistiation makes porting them to new andexperimental environments labor intensive. As new arhitetures beome available, it is importantto be able to inorporate them into a Grid quikly. Dynamially shedulable programs that areapable of tolerating resoure performane utuations have been developed by the Autopilot [38℄,Winner [2℄ and MARS [16℄ groups (Requirement (4)). Most of these systems rely on a entralizedsheduler for eah appliation, however, making, them sensitive to network and host failure. Ifthe sheduler fails or beomes disonneted from the rest of the appliation, the program is dis-abled. In addition, having a single sheduling agent impedes salability as ommuniation withthe sheduler beomes a performane bottlenek.EveryWare is designed as a portable \toolkit" for linking together program omponents run-ning in di�erent environments. Individual program omponents may use what ever loally avail-able infrastruture is present. In addition, we provide a low-level \bare-bones" implementation5

that is designed to use only basi operating system funtionality. In this way, an EveryWareappliation does not assume any one, single infrastruture or operating system will be aessiblefrom every resoure. Borrowing from the AppLeS [4℄ projet, EveryWare appliations harater-ize all resoures in terms of their quanti�able impat on appliation performane. In this way,heterogeneity is expressed as the di�erene in deliverable performane to eah appliation. TheEveryWare toolkit inludes support for proess repliation and performane foreasting so that anEveryWare appliation an adapt to dynamially hanging resoure onditions. We leverage theNetwork Weather Servie [46, 45℄ foreasting failities to provide both heterogeneity managementand adaptive predition funtionalities.3 The EveryWare ToolkitTo realize the performane o�ered by the Grid omputing paradigm, a program must be ubiq-uitous, adaptive, robust, and salable. Ubiquity is required beause the resoures are federated.The owners of the resoures allow them to partiipate in the Grid, but maintain ultimate au-thority over their use. As suh, the resoure pool may hange without notie. Resoures maybe added, removed, replaed, or upgraded by their owners. In addition, it is diÆult to ensurethat all resoures owners will install and maintain a single, unifying Grid software infrastruture.If the program is not ompatible with all potentially available Grid infrastrutures, operatingsystems, and hardware arhitetures it will not be able to draw some of the \power" that theGrid an provide. Adaptivity is required to ensure performane. If the resoure pool is hanging,or the performane of the resoures are utuating due to ontention, the program must be ableto hoose the most pro�table resoure ombination from the resoures that are available at anygiven time. Similarly, if resoures beome unavailable due to owner-initiated relamation, exes-sive load, or failure, the program must be able to make progress. Salability, in a Grid setting,allows the program to use resoures eÆiently. The greater degree to whih the program an bedispersed, the greater the exibility the Grid system has in being able to meet the program'sperformane needs.The EveryWare toolkit is omposed of three separate software omponents: a portable linguafrana that allows proesses using di�erent infrastrutures and operating systems to ommuni-ate, a set of performane foreasting servies and libraries that enable an appliation to makeshort-term resoure and appliation performane preditions in near-real time, and a distributedstate exhange servie that allows appliation omponents to manage and synhronize programstate in a dynami environment. Figure 1 depits the relationship between these omponents.Appliation omponents that are written to use di�erent Grid infrastruture features an om-muniate amongst themselves, with the EveryWare state exhange servie, and with other multi-infrastruture servies suh as the Network Weather Servie [46℄ using the lingua frana. Dynamiforeasting libraries (small triangles in the �gure) an be loaded with appliation omponents di-retly. These libraries, in onjuntion with the performane foreasts provided by the NWS,permit the program to antiipate performane hanges and adapt exeution aordingly. Thedistributed state-exhange servies provide a mehanism for synhronizing and and repliatingimportant program state to ensure robustness and salability.6

Grid Infrastructure
Grid Infrastructure

NWS
Forecasting

Service

EveryWare
State-Exchange

Service

GG

GG

GG

GG

lingua franca

adaptive
forecasting

libraries

Gossip
process

application
component

application
component

Figure 1: EveryWare ComponentsThe toolkit we have implemented is stritly a prototype designed to expose the relevant pro-gramming issues. As suh, we do not desribe the spei� APIs supported by eah omponent(we expet them to hange dramatially in our future implementations). Rather, in this setion,we motivate and desribe the funtionality of eah EveryWare omponent and disuss our over-all implementation strategy. Our intention is to use the prototype �rst to implement a varietyof appliations so that we may determine what funtionality is required, and then to provide a\user-friendly" implementation of EveryWare for publi release.3.1 Lingua FranaWe implemented the lingua frana using C and TCP/IP sokets. To ensure portability, we triedto limit the implementation to use only the most \vanilla" features of these two tehnologies. Forexample, we did not use non-bloking soket I/O nor did we rely upon keep-alive signals to informthe system about end-to-end ommuniation failure. In our experiene, the semantis assoiatedwith these two useful features are vendor, and in some ases, operating system release-level spei�.We tried to avoid ontrolling the portability of EveryWare through C preproessor ags wheneverpossible so that the system ould be ported quikly to new arhitetures and environments.7

Similarly, we hose not to rely upon XDR [31℄ for data type onversion for fear that it wouldnot be readily available in all environments. Another important deision was to stritly limit ouruse of signals. Unix signal semantis are somewhat detailed and we did not want to hinder theportability to non-Unix environments (e.g. Java and Window NT). More immediately, many ofthe urrently available Grid ommuniation infrastrutures suh as Legion [22℄ and Nexus [14℄ takeover the user-level signal mehanisms to failitate message delivery. Lastly, we avoided the use ofthreads throughout the arhiteture as di�erenes in thread semantis and thread implementationquality has been a soure of inompatibility in many of our previous Grid omputing e�orts.Above the soket level, we implemented rudimentary paket semantis to enable messagetyping and delineate reord boundaries within eah stream-oriented TCP ommuniation. Ourapproah takes its inspiration from the publily available implementation of netperf [27℄. How-ever, the atual implementation of the messaging layer omes diretly from the urrent NetworkWeather Servie (NWS) [46℄, where it has been stress-tested in a variety of Grid omputingenvironments.3.2 Foreasting ServiesWe also borrowed and enhaned the NWS foreasting modules for EveryWare. To make perfor-mane foreasts, the NWS applies a set of light-weight time series foreasting methods and dy-namially hooses the tehnique that yields the greatest foreasting auray over time (see [45℄for a omplete desription of the NWS foreasting methodology). The NWS ollets performanemeasurements from Grid omputing resoures (CPUs, networks, et.) and uses these foreastingtehniques to predit short-term resoure availability. For EveryWare, however, we needed to beable to predit the time required to perform arbitrary but repetitive program events. Our strategywas to manually instrument the various EveryWare omponents and appliation modules withtiming primitives, and then pass the timing information to the foreasting modules to make pre-ditions. We refer to this proess as dynami benhmarking as it uses benhmark tehniques (e.g.timed program events) perturbed by ambient load onditions to make performane preditions.For example, we used the foreasting modules and dynami benhmarking to predit theresponse time of eah EveryWare state-exhange server. We instrumented eah server to reordthe time required to get a response to a request made to eah of the other servers, for eah messagetype. To do so, we identi�ed eah plae in the server ode where a request-response pair ourred,and tagged eah of these \events" with an identi�er onsisting of address where the request wasservied, and the message type of the request. By foreasting how quikly a server would respondto eah type of message, we were able to dynamially adjust the message time-out interval toaount for ambient network and CPU load onditions. This dynami time-out disovery provedruial to overall program stability. Using the alternative of statially determined time-outs, thesystem frequently misjudged the availability (or lak thereof) of the di�erent EveryWare state-management servers ausing needless retries and dynami reon�gurations (see subsetion 3.3below for a disussion of EveryWare state-exhange funtionality).In general, the foreasting servies and dynami benhmarking allow both the EveryWaretoolkit, and the appliation using it, to dynamially adapt itself to hanging load and perfor-mane response onditions. We trimmed down and adapted the NWS foreasting subsystem so8

that it may be loaded as a library with appliation and EveryWare ode. We also added a tag-ging methodology so that arbitrary program events ould be identi�ed and benhmarked. Weused standard timing mehanisms available on eah system to generate time stamps and eventtimings. However, we antiipate that more sophistiated pro�ling systems suh as Paradyn [32℄and Pablo [9℄ ould be inorporated to yield higher-�delity measurements.3.3 Distributed State Exhange ServieTo funtion in the urrent Grid omputing environments, a program must be robust with respetto resoure performane failure while at the same time able to leverage a variety of di�erenttarget arhitetures. EveryWare provides a distributed state exhange servie that an be used inonjuntion with appliation-level hekpointing to ensure robustness. EveryWare state-exhangeservers (alled Gossips) allow appliation proesses to register for state synhronization. Thesynhronizing appliation omponent must register a ontat address, a unique message type,and a funtion that allows a Gossip to ompare the \freshness" of two di�erent messages havingthe same type. All appliation omponents wishing to use Gossip servie must also export astate-update method for eah message type they wish to synhronize.One registered, an appliation omponent periodially reeives a request from a Gossip pro-ess to send a fresh opy of its urrent state (identi�ed by message type). The Gossip omparesthat state (using the previously registered omparator funtion) with the latest state messagereeived from other appliation omponents. When the Gossip detets that a partiular messageis out-of-date, it sends a fresh state update to the appliation omponent that originated theout-of-date message.To allow the system to sale, we rely on three assumptions. First, that the Gossip proessesooperate as a distributed servie. Seond, that the number of appliation omponents wishingto synhronize is small. Lastly, that the granularity of synhronization events is relatively oarse.Cooperation between Gossip proesses is required so that the workload assoiated with the syn-hronization protool may be evenly distributed. Gossips dynamially partition the responsibilityfor querying and updating appliation omponents amongst themselves. For the SC98 experiment,we stationed several Gossips at well-known addresses around the ountry. When an appliationomponent registered, it was assigned a responsible Gossip within the pool of available Gossipswhose job it was to keep that omponent synhronized.In addition, we allowed the Gossip pool to utuate. New Gossip proesses registered them-selves with one of the well-known sites and were announed to all other funtioning Gossips.Within the Gossip pool, we used the NWS lique protool [46℄ (a token-passing protool basedon leader-eletion [15, 1℄) to manage network partitioning and Gossip failure. The lique protoolallows a lique of proesses to dynamially partition itself into subliques (due to network or hostfailure) and then merge when onditions permit. The EveryWare Gossip pool uses this protoolto reon�gure itself and rebalane the synhronization load dynamially in response to hangingonditions.The assumptions about synhronization ount and granularity are more restritive. Beauseeah Gossip does a pair-wise omparison of appliation omponent state, N2 omparisons arerequired for N appliation omponents. Moreover, if the overhead assoiated with state synhro-9

nization annot be amortized by useful omputation, performane will su�er. We believe thatthe prototype state-exhange protool an be substantially optimized, (or replaed by a more so-phistiated mehanism) and areful engineering an redue the ost of state synhronization overwhat we were able to ahieve. However, we hasten to aknowledge that not all appliations orappliation lasses will be able to use EveryWare e�etively for Grid omputation. Indeed, it is aninteresting and open researh question as to whether large-sale, tightly synhronized appliationimplementations will be able to extrat performane from Computational Grids, partiularly if theGrid resoure performane utuates as muh as we have typially observed [47, 45℄. EveryWaredoes not allow any appliation to beome an e�etive Grid appliation. Rather, it failitatesthe deployment of appliations whose harateristis are Grid suitable so that they may drawomputational power ubiquitously from a set of utuating resoures.Similarly, the onsisteny model required by the appliation program dramatially a�etsits suitability as an EveryWare appliation, in partiular, and as a Grid appliation in general.The development of a high-performane state repliation failities that implement tight bounds ononsisteny is an ative area of researh. EveryWare does not attempt to solve the distributed stateonsisteny problem for all onsisteny models. Rather, it spei�es the inlusion of repliation andsynhronization failities as a onstituent servie. For the appliation that desribe in the nextSetion (Setion 4), we implemented a loosely onsistent servie based on the Gossip protool.Other, more tightly synhronized servies an be inorporated, eah with its own performaneharateristis. We note, however, that appliations having tight onsisteny onstraints are, ingeneral, diÆult to distribute while maintaining aeptable performane levels. EveryWare is notintended to hange the suitability of these programs with respet to Grid omputing, but ratherenables their implementation and deployment at what ever performane level they an attain.3.4 The EveryWare Programming ModelAn EveryWare appliation is strutured as a set of omputational lients that request run-timemanagement servies from a set of appliation-spei� servers. Figure 2 depits the strutureof an appliation. Appliation lients (denoted \A" in the �gure) an exeute in a number ofdi�erent environments, suh as NetSolve [6℄, Globus [11℄, Legion [22℄, Condor [41℄, et. Theyommuniate with appliation-spei� sheduling servers (marked \S" in the �gure) to reeivesheduling diretives dynamially. Persistent state managers tuned for the appliation (denoted by\P" in the �gure) ontrol and protet any program state that must survive host or network failure.Appliation performane logging servers (marked \L") allow arbitrary messages to be logged bythe appliation. Finally, all appliation omponents use the EveryWare Gossip servie (marked\G") to synhronize state. To antiipate load hanges, the various appliation omponents onsultthe Network Weather Servie (NWS) | a distributed dynami performane foreasting serviefor Computational Grids [46, 45, 35℄.This appliation arhiteture o�ers several advantages. First, the overall program an beonstruted inrementally. Sine the EveryWare toolkit is robust, new lients and servers an beadded, old ones removed or improved, et. while the appliation itself ontinues to exeute. Sinewe do not have to restart the appliation every time we wish to add a new program omponent,we an improve and evolve the running appliation dynamially. Another advantage is that it10

G

G

G
G

S

S

S

A
A

A

A

A

A A A A

A
A

A

S

A

A

A

A

Globus

Netsolve Legion

Condo r

scheduler

gossip

NWS

application tasks P
P

P

L

persistent state
manager

logging
 server

Figure 2: EveryWare Appliation Strutureallows us to implement infrastruture-spei� lients that an get the best possible performaneby running in \native" mode. Sine the lients need only speak the protool required by eahserver, we do not need to put a omplete software veneer between the omputational ode andthe native infrastruture.Note that the EveryWare programming model fundamentally di�erent from that used bymost proedure oriented Grid infrastrutures suh as NetSolve [6℄, Legion [22℄, and CORBA [36℄.These infrastrutures typially support appliations strutured as a single ontrolling lient thatmakes method or remote-proedure alls to remote omputational servers (or remote objets, ifthe infrastruture is objet-oriented). Under the EveryWare programming model, omputationis entered at the lients and program ontrol is oordinated by a set of ooperating appliation-spei� servers. This novel appliation struture allows EveryWare appliations is meet the \on-sistent" and \dependable" qualitative riteria desribed in [12℄ by o�ering greater salability androbustness than a single-lient approah.
11

4 Example Appliation: Ramsey Number SearhThe appliation we hose to implement to test the e�etiveness of EveryWare attempts to improvethe known bounds of lassial Ramsey numbers. The nth lassial or symmetri Ramsey numberRn = Rn;n is the smallest number k suh that any omplete two-olored graph on k verties mustontain a omplete one-olored subgraph on n of its verties. It an be proven in a few minutesthat R3 = 6; it is already a non-trivial result that R4 = 18, and the exat values of higher Rn areunknown.Observe that to show that a ertain number j is a lower bound for Rn, one might try toprodue a partiular two-olored omplete graph on (j � 1) verties that has no one-oloredomplete subgraph on any n of its verties. We will refer to suh a graph as a \ounter-example"for the nt h Ramsey number. Our goal was to �nd new lower bounds for Ramsey numbers by�nding ounter-examples.This appliation was espeially attrative as a �rst test of EveryWare beause of its loosesynhronization requirements and its resistane to exhaustive searh. For example, if one wishesto �nd a new lower bound for R5, one must searh in the spae of omplete two-olored graphson 43 verties, sine the known lower bound is urrently 43 ([37℄). Sine suh a graph has�432 � = 903 edges, there are 2903 > 10270 di�erent two-olored graphs on 43 verties. Even if oneould examine 1012 on�gurations every seond, an exhaustive searh would take over 10250 years.Therefore, we must use heuristi tehniques to ontrol the searh proess. Note that thisombinatori omplexity makes exhaustive searh tehniques like those employed in ryptographifatoring [28, 5℄ ine�etive. Rather, the proess of ounter-example identi�ation is related todistributed \branh-and-bound" state-spae searhing.4.1 Appliation ClientsOur goal was to reate a dynamially hanging population of omputational proesses exeutingdi�erent heuristis. Heuristi design is an ative area of researh in ombinatoris [37℄. As suh,we designed the appliation to be able to inorporate di�erent heuristi algorithms onurrently,eah of whih implemented as a single appliation lient. The lients would then use the linguafrana to ommuniate with a set of appliation servers to reeive sheduling diretives and statemanagement servies.The heuristis that we used all involved direted searh, by whih we mean the following: Onthe searh spae of two-olored omplete graphs of a partiular size, there is a numerial \sore"whih assigns to eah graph the degree to whih it fails to be a ounter-example in some suitablesense. There is also a set of manipulations alled \moves" (transformations) that one an performon a partiular graph to produe other graphs. The algorithm, then, is roughly to start with anarbitrary graph and perform a sequene of moves with a view toward lowering the sore by eahsuessive move. Note that in any suh heuristi, it is neessary to provide some possibility ofmaking a move whih worsens the sore; otherwise, there is the danger that the searh will gettrapped at a loal minimum whih is not a global minimum.In our ase, the sore assigned to a two-olored graph is simply the number of \violations," oromplete one-olored subgraphs on n verties that it possesses; thus a graph is a ounter-example12

if and only if its sore is 0.Various algorithms employed used slightly di�erent de�nitions for their moves. The simplestand most ommon was to hange the olor of a single edge. Thus, for a graph on 43 vertiespossessing 903 edges, there are 903 possible moves that an be made from any given graph. Inother algorithms, a move omprised hanging the olors of 3 edges. Still other algorithms workedin restrited searh spaes whih partitioned the edges and only onsidered those graphs for whihall the edges in any given partition were the same olor; in suh a ase a move omprised hangingthe olors of all the edges within a partiular partition.The two lasses of searh heuristis employed were those based on tabu searh [37℄ and sim-ulated annealing. In a tabu searh, the algorithm keeps a list (the tabu list) of a �xed lengthreording the most reent moves that have been made. From a given on�guration, it examinesall moves not in the tabu list, �nds the one that gives the lowest sore, and makes and reordsthis move. The tabu list is in plae to avoid loops; in pratie, some element of randomness isneessary in order to avoid large loops. We employed two variants of the tabu searh, namelyone that allowed a partiular move to be made no more than twie on the list and another thatallowed a partiular move onto the list if its last appearane was with a di�erent predeessor.The simulated annealing heuristi mimis the physial behavior of a mass as it undergoesooling; in this ase, the sore of a on�guration is analogous to the temperature of the mass.Generally, from a given on�guration the algorithm hooses a move at random and makes themove if it results in a lower sore; otherwise, it rejets the move and hooses another at randomfrom the same on�guration. However, the algorithm will aept a random move, regardless ofthe resulting sore, with a small probability that dereases as the sore drops; this randomnesshas the e�et of keeping the algorithm from getting trapped in a loal minimum.4.1.1 Sheduling ServieTo shedule the EveryWare Ramsey Number appliation, we use a olletion of ooperating, butindependent sheduling servers to ontrol appliation exeution dynamially. Eah omputationallient periodially ontats a sheduling server and reports its algorithm type, the IP address ofthe mahine on whih it is running, the progress it has made sine it last made a shedulingdeision, and the amount of time that has elapsed sine its last ontat. Servers are programmedto issue di�erent ontrol diretives based on the type of algorithm the lient is exeuting, howmuh progress the lient has made, and the most reent omputational rate of the lient.In addition, the sheduling servers are responsible for migrating work. Clients report thenumber of monohromati liques in the graph they are testing when they hek in. If the numberis low the server will ask the lient for a opy of the graph it is urrently onsidering. If it ishigh, the server sends the lient a better graph and direts it to ontinue from a di�erent point inthe searh spae. The lients are programmed to randomize their starting point in di�erent waysto prevent the system from dwelling irrevoably in a loal minimum. In addition, the thresholdsfor identifying a \good" graph (one with a low monohromati lique ount), a bad one, and thenumber of times a good one an be migrated to serve as a new starting point in the searh spae,are tunable parameters.The shedulers also make deisions based on dynami performane foreasting information. If13

a sheduler predits that a lient will be slow based on previous performane, it may hoose tomigrate that lient's urrent workload to a mahine that it predits will be faster. Rather thanbasing that predition solely on the last performane measurement for eah lient, the sheduleruses the NWS lightweight foreasting failities to make its preditions. Note that this methodologyis inspired by some of our previous work in building appliation-level shedulers (AppLeS) [39, 4℄.AppLeS is an agent-based approah in whih eah appliation is �tted with a ustomized ap-pliation sheduler that dynamially manages its exeution. For the Ramsey Number Searhappliation, however, a single sheduling agent would have been insuÆient to ontrol the entireappliation, both beause it would limit the salability of the appliation and beause the agentonstitutes a single-point-of-failure. We designed an appliation-spei� sheduling servie thatforms organized and robust, but dynamially hanging groups of ooperating proesses that anmake progress if and when the network partitions. As suh, we term this type of shedulingOrganized Robust AutoNomous Group Sheduling (ORANGS). ORANGS and AppLeS are, in-deed, similar in that they use NWS performane foreasts to make appliation-spei� shedulingdeisions. However, the distributed and robust nature of the ORANGS servie made it a moreappropriate hoie for the Ramsey Number Searh appliation.Notie that, for the Ramsey Number searh appliation, the sheduling servie onsiders theuse of all available resoures. When an appliation lient heks in with a sheduling server, theserver evaluates the lient in terms of the performane it will be able to deliver to the appliation(using the foreasting servies) and deides on the amount and type of work that lient shouldreeive. In all ases, the Ramsey Number searh lients reeive some amount of work to perform.For other appliations, however, the sheduling servie may deide that the use of a partiularresoure will hinder rather than aid performane and, hene, should be exluded. Therefore, whileresoure seletion is not an issue for Ramsey Number searh, the EveryWare programming modelsupports its implementation.Shedulers within the sheduling servie ommuniate non-persistent state amongst themselvesvia theGossip servie. In partiular, the IP addresses and port numbers of all servers are irulatedso that new server instanes an be added dynamially. Clients are furnished with a list of ativeservers when they make ontat so that they an ontat alternates in the event of a failed serverommuniation. Similarly, sheduling servers learn of di�erent Gossip servers, persistent statemanagers, and logging servers via Gossip updates.4.1.2 Persistent State Management ServieTo improve robustness, we identify three lasses of program state within the appliation: loal,volatile-but-repliated, and persistent. Loal state is state that an be lost by the appliation dueto mahine or network failure (e.g. loal variables within eah omputational lient). Volatile-but-repliated state is passed between proesses as a result of Gossip updates, but it is not writtento persistent storage. For example, the up-to-date list of ative servers is volatile-but-repliatedstate. Persistent state must survive the loss of all ative proesses in the appliation. The largestounter example that the appliation has yet to �nd, for example, is hek-pointed as persistentstate.We use a separate persistent state servie for three reasons. First, we want to limit the size14

of the �le system footprint left by the appliation. Many sites restrit the amount of disk storagea guest user may aquire. By separating the persistent storage funtionality, we are able todynamially shedule the appliation's disk usage aording to available apaities.Seondly, we want to ensure that persistent state is ultimately stored in \trusted" environ-ments. For example, we maintained a persistent state server at the San Diego SuperomputerCenter beause we were assured of regular tape bak-ups and industrial quality �le system seurity.Lastly, we are able to implement run-time sanity heks on all persistent state aesses. Ifa proess attempts to store a ounter example, for example, the persistent state manager �rstheks to make sure the stored objet is, indeed, a Ramsey ounter example for the given problemsize.To implement this funtionality, all persistent state objets must be typed. For eah persistenttype used in the program, the state manager needs a set of sanity-heks (performed when anobjet is aessed) and a omparator operator so that the state may be synhronized by the Gossipservie. We aknowledge that developing this funtionality for all Grid appliations may not bepossible. However, we note that many Computational Grid infrastrutures urrently supportmehanisms that an be used to implement the state management funtionality we require forRamsey Number searh. For example, the sanity heks performed by the state manager wereimplemented, primarily, to prevent errant or maliious proesses from damaging program state.Instead, Globus authentiation mehanisms [13℄ ould be used to provide aess ontrol so thatonly trusted proesses may modify persistent state. Similarly, the Legion lass managementsystem [29℄ traks objet instanes in a way that ould be used to identify stale state. We wantedto ensure that all appliation omponents (omputational lients and appliation-spei� servers)would be portable to any environment so we did not hoose to rest any of the appliation'sfuntionality on a partiular infrastruture. Future versions of the Ramsey Searh appliationmay relax this restrition to further bene�t from maturing Computational Grid tehnologies.4.1.3 Logging ServieTo trak the performane of the appliation dynamially, we implemented a distributed loggingservie. Sheduling servers base their deisions, in part, on performane information they reeivefrom eah omputational lient. Before the information is disarded, it is forwarded to a loggingserver so that it an be reorded. Having a separate servie, again, allows us to limit and ontrolthe storage load generated by the appliation. For example, the National Partnership for Ad-vaned Computational Infrastruture (NPACI) loaned our group a pair of �le servers so that weould apture a performane log that spanned the time of the onferene.As with the persistent state managers and the sheduling servers, the logging servers registerthemselves with the Gossip servie. Any appliation proess wishing to log performane informa-tion learns of a logging server through the server list that is irulated. The logging servers donot register a state synhronization funtion, however. They use the Gossip servie only to jointhe running appliation.
15

5 ResultsTo test the eÆay of our approah, we deployed the Ramsey Number searh appliation on aglobally distributed set of resoures during SC98. As part of the test, we entered EveryWare in theHigh-performane Computing Challenge [25℄ (an annual ompetition held during the onferene)as we believed that the utuating loads generated by our ompetitors would test the apabilitiesof our system vigorously.We instrumented eah appliation lient to maintain a running ount of the omputationaloperations it performs so that we ould monitor the performane of Ramsey Number searhappliation. The bulk of the work in eah of the heuristis (see Setion 4) are integer test andarithmeti instrutions. Sine eah heuristi has an exeution pro�le that depends largely on thepoint in the searh spae where it is searhing, we were unable to rely on stati instrution ountestimates. Instead, we inserted ounters into eah lient after every integer test and arithmetioperation. Sine the ratio of instrumentation ode to omputational ode is essentially one-to-one (one integer inrement for every integer operation) the performane estimates we report areonservative. Moreover, we do not inlude any instrumentation instrutions in the operationounts nor do we ount the instrutions in the lient interfae to EveryWare - only \useful" workdelivered to the appliation is ounted. Similarly, we inlude all ommuniation delays inurredby the lients in the elapsed timings. The omputational rates we report inlude all of theoverheads imposed by our software arhiteture and the ambient loading onditions experienedby the program during SC98. That is, all of the results we report in this setion are onservativeestimates of the sustained performane delivered to the appliation during the experiment.5.1 Sustained Exeution PerformaneAs a Computational Grid experiment, we wanted to determine if we ould obtain high appliationperformane levels from widely distributed, heavily used, and non-dediated omputational re-soures. In Figure 3, we show the sustained exeution performane of the entire appliation duringthe twelve-hour period inluding and immediately preeding the judging of our High-performaneComputing Challenge entry at at SC98 on November 12, 19983. The x � axis shows the timeof day, Pai� Standard Time 4, and the y � axis shows the average omputational rate overa �ve-minute time period. The highest rate that the appliation was able to sustain was 2.39billion integer operations between 09:51 and 09:56 during a test an hour before the ompetition(right-hand side of the graph). The judging for the ompetition itself (whih required a \live"demonstration) began at 11:00. As several ompeting projets were being judged simultaneously,and many of our ompetitors were using the same resoures we were using, the networks interlink-ing the resoures suddenly experiened a sharp load inrease. Moreover, many of the ompetingprojets required dediated aess for their demonstration. Sine we deliberately did not requestdediated aess, our appliation suddenly lost omputational power (as resoures we laimed by3We demonstrated the system for a panel of judges between 11:00 AM and 11:30 AM PST.4SC98 was held in Orlando, Florida whih is in the Eastern time zone. Our logging and report failities, primarilyloated at stable sites on the west oast, used Pai� Standard Time. As suh, we report all time-of-day values inPST. 16

Program Performance
5 Minute Averages

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

23
:3

6:
56

0:
36

:5
6

1:
36

:5
6

2:
36

:5
6

3:
36

:5
6

4:
36

:5
6

5:
36

:5
6

6:
36

:5
6

7:
36

:5
6

8:
36

:5
6

9:
36

:5
6

10
:3

6:
56

11
:3

6:
56

Time of Day

In
te

g
e
r

O
p
s.

 P
e
r

S
e
co

n
d

Figure 3: Appliation Speedother appliations) as the ommuniation overheads rose (due to inreased ommuniation load).The sustained performane dropped to 1.1 billion operations as a result. The appliation was ableto adapt to the performane loss and reorganize itself so that by 11:10 (when the demonstrationatually took plae), the sustained performane had limbed to 2.0 billion operations per seond.This performane pro�le learly demonstrates the potential power of Computational Gridomputing. With non-dediated aess, under extremely heavy load onditions, the EveryWareappliation was able to sustain superomputer performane levels.In Figure 4, we show the number of hosts used during the same time period. In this �gure,eah data point represents the number hosts heking in during the orresponding �ve-minuteperiod5. Note that the maximum host ount (266) ours at 23:51 as we ran a large sale testof the system the night before the ompetition. However, the maximum host ount does notorrespond to the maximum sustained rate. While we were able to inorporate many new andpowerful resoures on the morning of the ompetition, we lost some of the workstations that wereloaned to us by Condor during the night. Also, these host ount numbers are based on unique IPaddresses (and not proess id) making them very onservative. Sine some systems use the same5The maximum time between hek-ins for any omputational lient was set to �ve minutes during the test.17

Host Count
5 Minute Intervals

0

50

100

150

200

250

300

23
:3

6:
56

0:
36

:5
6

1:
36

:5
6

2:
36

:5
6

3:
36

:5
6

4:
36

:5
6

5:
36

:5
6

6:
36

:5
6

7:
36

:5
6

8:
36

:5
6

9:
36

:5
6

10
:3

6:
56

11
:3

1:
56

Time of Day

H
o
st

s

Figure 4: Appliation Host CountIP address for all hosts (e.g. the NT Superluster) the atual host population was muh higher.However, we ould not distinguish between multiple proesses on di�erent hosts with the sameIP address, and multiple proess restarts due to evition for the ombined host population. As aresult, we report the more onservative estimates.5.2 Performane ResponseWe also wanted to measure the smoothness of the performane response the appliation was able toobtain from the Computational Grid. For the Grid vision to be implemented, an appliation mustbe able to draw \power" uniformly from the Computational Grid as a whole despite utuationsand variability in the performane of the onstituent resoures. In Figures 5 and 6 we omparethe overall performane response obtained by the appliation (graph () in both �gures) withthe performane and resoure availability provided by eah infrastruture. Figure 5 makes thisomparison on a linear sale and Figure 6 shows the same data on a log sale so that the widerange of performane variability may be observed. In Figures 5a and 6a we detail the number ofyles we were able to suessfully deliver from eah Grid infrastruture during the twelve hoursleading up to the ompetition. Similarly, in Figure 5b, we show the host availability from eah18

Program Performance by Infrastructure Type
5 Minute Averages

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

23:36:56

0:36:56

1:36:56

2:36:56

3:36:56

4:36:56

5:36:56

6:36:56

7:36:56

8:36:56

9:36:56

10:36:56

11:36:56

Time of Day

In
te

ge
r O

ps
. P

er
 S

ec
on

d

Legion
Condor
NT
Globus
Unix
Java
Netsolve

Globus

Java

Condor

NT

Legion

Netsolve

Unix

(a)
Host Count by Infrastructure Type

5 Minute Averages

0

20

40

60

80

100

120

23:36:56

0:36:56

1:36:56

2:36:56

3:36:56

4:36:56

5:36:56

6:36:56

7:36:56

8:36:56

9:36:56

10:36:56

11:31:56

Time of Day

Ho
sts

Legion
Condor
NT
Globus
Unix
Java
Netsolve

Condor NT

Legion

Globus
Unix

Java

Netsolve (b)
Program Performance

5 Minute Averages

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

23:36:56

0:36:56

1:36:56

2:36:56

3:36:56

4:36:56

5:36:56

6:36:56

7:36:56

8:36:56

9:36:56

10:36:56

11:36:56

Time of Day

In
te

ge
r O

ps
. P

er
 S

ec
on

d ()
Figure 5: Sustained Proessing Rate by Infrastruture (a), Host Count by Infrastruture (b), andTotal Sustained Rate ()

19

infrastruture for the same time period. Together, these graphs provide insight into the diversityof the resoures we used in the SC98 experiment.Spei�ally, Condor supports a dynami loan-and-relaim resoure usage model. Users agreeto loan idle workstations to the Condor system for use by other proesses. When a user-spei�edkeyboard ativity or load threshold is exeeded, the resoure is delared busy and any Condorjobs that are running at the time are evited. Note that Condor proessing power and hostount utuated through the night and then fell o� as the day began in Wisonsin and userativity aused their workstations to be relaimed. For Java, the performane trajetory was theopposite. We �tted the Java applets with the neessary logging features at approximately 4:30 AM,although we had a small number of test hosts running before then. At approximately 8:00 AM, weannouned the availability of the Java implementation and soliited partiipation from \friendly"sites. In addition, we began to exeute the Java applet using HotJava [20℄ on workstations thathad been brought to SC98 for general use by onferene attendees. At about the same time,Legion (whih had been down sine approximately midnight) beame available again and theappliation immediately began to take advantage of the newly available resoures. Our Globusutilization, however, was low until just after the ompetition ended at 11:30 AM, when it suddenlyspiked. The Globus group entered the High-performane Computing Challenge with two separateentries. As we did not request dediated aess or speial aess priority for the demonstration,our appliation was able to leverage these resoures only after higher-priority Globus proesses�nished. NetSolve gave us aess to the student workstation laboratories and several resouresin the Innovative Computing Laboratory at the University of Tennessee. We deteted a bugin the performane logging portion of the NetSolve implementation at approximately 8:00 AM,hene we have no reliable performane numbers to report for the period before then. The bulk ofthe NT hosts we were able to leverage ame from the Superlusters [40℄ loated at the NationalComputational Siene Alliane (NCSA) and in the the Computer Systems Arhiteture Group [7℄(CSAG) loated at the University of California, San Diego. These systems used bath queues toprovide spae-shared aess to their proessors. Unix host ount remained relatively onstantthroughout the experiment, but performane jumped at the end as the Tera MTA (the fastestUnix host) was added to the resoure pool.In Figure 5 we reprodue Figure 3 for the purpose of omparison. Figure 6 shows this samedata on a log sale. By omparing graphs (a) and (b) to () on eah sale we expose the degree towhih EveryWare was able to realize the Computational Grid paradigm. Despite utuationsin the deliverable performane and host availability provided by eah infrastruture,the appliation itself was able to draw power from the overall resoure pool rela-tively uniformly. As suh, we believe the EveryWare example onstitutes the �rst appliationto be written that suessfully demonstrates the potential of high-performane ComputationalGrid omputing. It is one of the �rst examples of a truly adaptive Grid program. For thisaomplishment, the EveryWare experiment was awarded \Best Aeleration" at SC98 by theHigh-performane Computing Challenge panel of judges.
20

Program Performance by Infrastructure Type
5 Minute Averages

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

23:36:56

0:36:56

1:36:56

2:36:56

3:36:56

4:36:56

5:36:56

6:36:56

7:36:56

8:36:56

9:36:56

10:36:56

11:36:56

Time of Day

In
te

ge
r O

ps
. P

er
 S

ec
on

d

Legion
Condor
NT
Globus
Unix
Java
Netsolve

Globus

Java

Condor

NT Legion

Netsolve

Unix (a)
Host Count by Infrastructure Type

5 Minute Averages

1

10

100

1000

23:36:56

0:36:56

1:36:56

2:36:56

3:36:56

4:36:56

5:36:56

6:36:56

7:36:56

8:36:56

9:36:56

10:36:56

11:31:56

Time of Day

Ho
sts

Legion
Condor
NT
Globus
Unix
Java
NetsolveCondor NT

Legion

Globus

Unix

Java

Netsolve

(b)
Total Program Performance

5 Minute Averages

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

23:36:56

0:36:56

1:36:56

2:36:56

3:36:56

4:36:56

5:36:56

6:36:56

7:36:56

8:36:56

9:36:56

10:36:56

11:36:56

Time of Day

In
te

ge
r O

ps
. P

er
 S

ec
on

d ()
Figure 6: Log Sale { Sustained Proessing Rate by Infrastruture (a), Host Count by Infrastru-ture (b), and Total Sustained Rate ()

21

5.3 Aggregate PerformaneFigure 7 shows the total number of integer operations the appliation was able to obtain during thetwelve hours before the ompetition (on a log sale). With the exeption of Java and NetSolve, all
Total Cycle Count by Infrastructure Type

1

10

100

1000

10000

100000

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

Condor Legion Globus Netsolve NT Java Unix

Infrastructure

In
te

ge
r O

pe
ra

tio
ns

 P
er

fo
rm

ed

Figure 7: Total Cyle Count by Infrastrutureinfrastrutures were within an order of magnitude in terms of the yles they delivered. InterpretedJava applet performane was typially between 3 and 5 times slower than native binary exeution,and the NetSolve omputational servers were shared by other NetSolve jobs and student projets.5.4 RobustnessWe also wished to measure the robustness of our approah. High-performane omputer usersoften omplain about appliation sensitivity to resoure failure in distributed environments. Fig-ure 8a shows the total number of hosts ontrolled by eah infrastruture that were used by theappliation during the twelve hours leading up to the ompetition and Figure 8b shows the num-ber of proesses the system used during the same period. Comparing the two gives an indiationof the proess failure and restart rate during the experiment. Eah omputational lient was pro-grammed to run inde�nitely so, in the absene of proess failure, the number of proesses wouldequal the number of hosts. We implemented several \ad-ho" proess restart mehanisms for theenvironments in whih they were not automati. However, most of the proess restarts were dueeither to deliberate termination on our part while debugging, or dynami resoure relamationby resoure owners. On the Condor system, we ran eah omputational lient as a \vanilla" jobwhih is terminated without notie when the resoure on whih it is running is relaimed, andsubsequently restarted when another suitable resoure is free. It is interesting that, despite themidweek daytime usage, proess restart due to resoure relamation was relatively infrequent inthe Condor environment during the experiment. The Globus omparison illustrates the power ifthe GRAM interfae [11℄. Globus allows all proesses to be launhed and terminated through asingle GRAM request. During the time leading up to the ompetition, we were improving and22

Total Host Count by Infrastructure Type

0

50

100

150

200

250

Condor Legion Globus Netsolve NT Java Unix

Infrastructure

Nu
m

be
r o

f H
os

ts (a)
Total Process Count by Infrastructure Type

0

100

200

300

400

500

600

700

Condor Legion Globus Netsolve NT Java Unix

Infrastructure

Nu
m

be
r o

f P
ro

ce
ss

es (b)
Figure 8: Total Host Count by Infrastruture (a), Total Proess Count by Infrastruture (b)debugging our Globus implementation. Having a single ontrol point allowed us to restart largebathes of proesses easily. Under Legion, the onept of proess is not de�ned. Instead, lass\instanes" move between bloked and running states (and vie versa) so we simply report thenumber of instanes we used during the demonstration. As a result this level of proess restartativity is an estimate. The numbers are aurate for the Globus, Condor, and Unix environmentsbut somewhat ambiguous for the other infrastrutures. Despite the level of proess failure we wereable to detet, however, we were able to obtain the sustained proessing rates shown in Figure 3during the same time period.Indeed, EveryWare and the appliation design we used proved to be quite robust. In Fig-ure 9 we show host ounts over �ve-minute intervals during the 17 days prior to the judging onNovember 12. Some portion of the appliation was exeuting, more or less ontinuously duringthe entire period (there are no horizontal gaps in the �gure). As we onentrated our initial e�ortson developing the EveryWare toolkit and new Ramsey searh heuristis, we did not add perfor-mane logging to the running system until Otober 26. The program had atually been runningontinuously sine early June of 1998, however we only have performane data dating from theend of Otober. Note that we were able to add, and then ompletely revise, the performane23

16 Day Host Count,
5 Minute Intervals

1

10

100

1000

H
o
st

 C
o
u
n
t

Oct. 26, 1998 Nov. 2, 1998 Nov. 11, 1998

Figure 9: Sixteen-day Host Countslogging servie while the program was in exeution.5.5 Resoure DiversityFor the Computational Grid paradigm to sueed, all useful resoures must be aessible bythe appliation. Metaphorially speaking, all pro�table methods of power generation must beusable by any power onsumer. Figure 10 ompares the deliverable performane from the fastesthost ontrolled by eah infrastruture. The values not only benhmark our ode on variousarhitetures, but provide insight into the wide range of resoure options we were able to leverageduring the experiment. In eah ase, we attempted to use the native, vendor-spei� C ompiler(as opposed to GNU g) with all optimization apabilities enabled. On the left-hand side ofthe �gure, we ompare the best performane from eah infrastruture. The fastest Unix mahinewas the Tera MTA [42℄. We report only the single proessor performane, however the Terawas also able to automatially parallelize the ode and ahieve an almost linear speed-up on twoproessors. The fastest NT-based mahine was was loated at the University of Wisonsin, but weare unable to determine its arhitetural harateristis. An unknown partiipant downloaded theNT binary from the EveryWare home page when we announed that the system was operational24

Comparison of Fastest Machines

2.23E+07

9.94E+06

1.53E+07

1.16E+07
1.02E+07

1.21E+07

7.93E+067.32E+06

2.67E+06
1.78E+06

8.82E+02
0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

UNIX NT

CONDOR

GLO
BUS

LE
GIO

N
JA

VA

NT S
up

er
clu

ste
r (

NCSA)

NT S
up

er
clu

ste
r (

UCSD)

SDSC (T
3E

)

Ber
ke

ley
 N

OW

Ja
va

 W
eb

 B
ro

wse
r (

iM
ac

)

Integer Ops/ s

Figure 10: Host Speedson Wednesday morning. The fastest Condor mahine was a Pentium P6 running Solaris was alsoloated at the University of Wisonsin. Single proessor Pentium P6 performane was partiularlygood (seond only to the Tera) for the integer-oriented searh heuristis we developed. Thefastest Legion host was a Digital Equipment Corporation Alpha proessor running Red Hat Linux,loated at the University of Virginia and the fastest Globus mahine was an experimental ConvexV lass host loated at the Convex development faility in Rihardson, Texas. Surprisingly,the fastest Java exeution was faster than the fastest NT, Legion, and Globus mahines. Anunknown partiipant at Kansas State University loaded the applet and exeuted it using MirosoftCorporation's Internet Explorer (the IP address is for a 300Mhz dual-proessor (Pentium II)mahine running NT with Explorer). We speulate that a student used some form of just-in-timeompilation tehnology to ahieve the exeution performane depited in the �gure, although weare unable to asertain how this performane level was reahed.On the right-hand side of the �gure, we show the best single-proessor performane of otherinteresting and popular mahines. The NT Superlusters at UCSD and NCSA generated almostidential per-node proessing rates. A single node of the Cray T3E loated at the San DiegoSuperomputer Center was able to run only slightly faster than a single node of the BerkeleyNOW [8℄. This omparison surprised us sine the T3E is spae shared (meaning that eah proess25

had exlusive aess to its proessor one it made it through the bath queue) and the NOW(whih is timeshared) was heavily loaded. On the far right-hand side of the �gure, we show thespeed of a publily aessible Apple iMa workstation loated in a o�ee shop on the UCSDampus whih is typial of the interpreted Java performane we were able to ahieve.In addition to detailing the relative performane of di�erent arhitetures and infrastrutures,Figure 10 demonstrates the utility of EveryWare. It would not have been possible to inludeexperimental (and powerful) resoures suh as the Tera MTA and the NT Superlusters withoutthe EveryWare toolkit. At the time of the experiment, none of the existing Grid infrastrutureshad been ported to either arhiteture. We were able to port EveryWare to both systems quikly(under 30 minutes for the Tera) allowing us to ouple them with other, more onventional hoststhat did support some form of Grid infrastruture. By providing exeution ubiquity, EveryWarewas able to leverage resoures that no other Grid omputing infrastruture ould aess. As suh,the Ramsey Number Searh appliation is the �rst program to ouple the Tera MTA,both NT Superlusters, and the Berkeley NOW with parallel superomputers suhas the Cray T3E, workstations, and desktop web browsers. We were able to suessfullyspan the spetrum of available omputing platforms with EveryWare.6 Related WorkEveryWare is a toolkit that allows an appliation to leverage dynamially a variety of high- andlow-level exeution environments for performane. As suh, it shares ommon goals with manyof the infrastrutures it leverages. It is similar to Globus [11℄ in that appliation omponentsommuniate via di�erent well-de�ned protools to obtain Grid \servie." EveryWare extendsthis notion, however, by providing a way for the Grid programmer to develop appliation-spei�protools and servies so that the appliation (and not just the underlying infrastruture) an berobust and ubiquitous.EveryWare supports information hiding and loation transpareny in the same way objet-oriented systems suh as Legion [22℄ and CORBA [36℄ do. Appliation omponents an be im-plemented as objets that ommuniate via remote method invoations. A key di�erene is thatan EveryWare program an also use messaging protools at the same time to leverage externalfailities.EveryWare omplements the funtionality provided by Condor [41℄ by providing a robustmessaging layer. In the SC98 experiment, we deployed the Ramsey Number Searh appliationas a \vanilla" program within the Condor environment. Vanilla Condor programs do not usethe hekpoint and restart failities nor do they have their system alls redireted. This imple-mentation strategy allowed a single program to span multiple Condor pools, eah ontaining adi�erent arhiteture type. At present, Condor's hekpointing failities restrit migration to asingle arhiteture type, but we wished to leverage all of the arhiteture types in any resourepool on�gured to use Condor. In [3℄, the authors use Condor to deliver a large number of ylesover an extended period to a high-throughput appliation. Our e�ort di�ers from this experi-ment, both in its sope and in its goal. We were able to embed the Condor pools available tous in a larger, more heterogeneous Computational Grid. Moreover, we were using Condor to26

inrease the performane of the appliation as measured by turn-around time. The appliationwe hose arrives at its answers faster with the addition of resoures if those resoures are arefullysheduled.EveryWare shares the notion of brokered invoation with NetSolve [6℄, NINF [33℄, and NEOS [30℄.A sheduling entity hooses resoures to use and manages appliation exeution while the applia-tion exeutes. For robustness and performane, however, we hose to implement an appliation-spei� sheduling servie for the Ramsey Number Searh appliation. Having a single shedulingagent for a globally distributed appliation presents both a performane bottle-nek and a single-point-of-failure for the appliation. The state exhange failities in EveryWare make it possibleto build a distributed sheduling servie to avoid these problems. AppLeS [4℄ takes a similarsingle-agent approah to NetSolve, but the agent is tailored to meet the appliation's perfor-mane needs. We extend the appliation-spei� sheduling onept developed for AppLeS bybuilding a high-performane, robust, and distributed sheduling servie for the appliation.Prophet [43℄ is a system designed to shedule SPMD appliations on networks of omputers.Originally designed for the Mentat [21℄ parallel and distributed omputing system for loal areadeployment, its designers have reently extended it to wide area settings. Unlike EveryWare, how-ever, it relies on a single ubiquitous infrastruture. Moreover, it does not support the robustnessfeatures and state-exhange funtionality provided as part of EveryWare. that7 Conlusions and Future WorkBy leveraging a heterogeneous olletion of Grid software and hardware resoures, dynamiallyforeasting future resoure performane levels, and employing relatively simple distributed statemanagement tehniques, EveryWare has enabled the �rst appliation implementation that meetsthe requirements for Computational Grid omputing. In [12℄(page 18) the authors desribe theriteria that a Computational Grid must ful�ll as the provision of pervasive, dependable, onsistent,and inexpensive omputing.� Pervasive | At SC98, we were able to use EveryWare to exeute a high-performane,globally distributed program on mahines ranging from the Tera MTA to a web browserloated in a ampus o�ee shop at UCSD.� Dependable| The Ramsey Number Searh appliation ran ontinuously from early June,1998, until the High-Performane Computing Challenge on November 12, 1998.� Consistent| During the twelve hours leading up to the ompetition itself, the appliationwas able to draw uniform ompute power from resoures with widely varying availabilityand performane pro�les.� Inexpensive | All of the resoures used by the Ramsey Number Searh appliation werenon-dediated and aessed via a non-privileged user login.To our knowledge, EveryWare is the �rst Grid software e�ort that has been able to suessfullymeet these riteria, and to demonstrate the degree to whih they are met quantitatively.27

We plan to study how EveryWare an be used to implement other Grid appliations as partof our future e�orts. In partiular, we plan to use it to build Grid versions of a medial imagingode written at the University of Tennessee, and a data mining appliation from the Universityof Torino. We also plan to extend ORANGS to inlude storage sheduling diretives and memoryonstraints. Finally, we plan to leverage our experiene with EveryWare to build new NetworkWeather Servie sensors for di�erent Grid infrastrutures.8 AknowledgementsIt is impossible to aknowledge and thank adequately all of the people and organizations thathelped make the EveryWare demonstration at SC98 a suess. As suh, we miserably fail in theattempt by expressing our gratitude to the AppLeS group at UCSD for enduring weeks of maniaalbehavior. In partiular, we thank Fran Berman for her moral support during the e�ort, and MarioFaerman, Walfredo Cirne, and Dimitri Zagorod for launhing EveryWare on every oneivablepubli email and Java workstation at SC98 itself. We thank NPACI for supporting our High-performane Challenge entry in every way and, in partiular, Mike Gannis for enthusiastiallymaking the NPACI booth at SC98 ground-zero for EveryWare. Rob Pennington at NCSA left nostops unpulled on the NT Superluster so that we ould run and run fast, and Charlie Catlett,one again, made it all happen at "The Alliane." We inadequately thank Miron Livny (theprogenitor of Condor and the University of Wisonsin) for �rst suggesting and then insisting thatEveryWare happen. Henri Casanova, at UCSD, single-handedly ported EveryWare to NetSolveafter an o�-handed mention of the projet was arelessly made by a projet member within hisrange of hearing. Steve Fitzgerald, at Cal State Northridge and ISI/USC introdued us to the �nerand more subtle pleasures of Globus, as did Greg Lindahl for analogously hedonisti experieneswith Legion. Brent Gorda and Ken Sedgewik at MetaExhange Corporation donated entirely toomuh time, spae, o�ee, good will, more o�ee, sound advie, and patiene to the e�ort. AllenDowney and the Colby Superomputer Center provided us with yles, enouragement, and moreenouragement. Cosimo Anglano of Dipartimento di Informatia, Universit�a di Torino provided uswith interontinental apabilities and tremendously spirited support. Lastly, we thank EveryOnewho partiipated anonymously via our web interfae and downloads. We may not know who youare, but we know your IP addresses, and we thank you for helping us through them.Referenes[1℄ H. Abu-Amara and J. Lokre. Eletion in asynhronous omplete networks with intermittent lin kfailures. IEEE Transations on Computers, 43(7):778{788, 1994.[2℄ O. Arndt, B. Freisleben, T. Kielmann, and F. Thilo. Sheduling parallel appliations in networks ofmixed uniproessor/multiproessor workstations. In Proeedings of ISCA 11th Conferene on Paralleland Distributed Computing, September 1998.[3℄ J. Basney, M. Livny, and T. Tannenbaum. Deploying a high throughput omputing luster. InR. Buyya, editor, High Performane Cluster Computing, volume 1, hapter 5. Prentie Hall, 1999.[4℄ F. Berman, R. Wolski, S. Figueira, J. Shopf, and G. Shao. Appliation level sheduling on distributedheterogeneous networks. In Proeedings of Superomputing 1996, 1996.28

[5℄ The bovine r5-64 projet { http://distributed.net/r5/.[6℄ H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational Siene Prob-lems. The International Journal of Superomputer Appliations and High Performane Computing,1997.[7℄ The onurrent systems arhiteture group { http://www-sag.usd.edu/.[8℄ D. Culler, A. Arpai-Dusseau, R. Arpai-Dusseau, B. Chun, S. Lumetta, A. Mainwaring,R. Martin, C. Yoshikawa, and F. Wong. Parallel omputing on the berkeley now. Into appear in JSPP'97 (9th Joint Symposium on Parallel Proessing), 1997. available fromhttp://now.CS.Berkeley.EDU/Papers2.[9℄ L. DeRose, Y. Zhang, and D. Reed. Svpablo: A multi-language performane analysis system. InProeedings of 10th International Conferene on Computer Performane Evaluation, September 1998.[10℄ M. P. I. Forum. Mpi: A message-passing interfae standard. Tehnial Report CS-94-230, Universityof Tennessee, Knoxville, 1994.[11℄ I. Foster and C. Kesselman. Globus: A metaomputing infrastruture toolkit. International Journalof Superomputer Appliations, 1997.[12℄ I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruture. MorganKaufmann Publishers, In., 1998.[13℄ I. Foster, C. Kesselman, G. Tsudik, and S. Tueke. Seurity arhiteture for omputational grids.In Pro. 5th ACM Conferene on Computer and Communiations Seurity Conferene, pages 83{92,1998.[14℄ I. Foster, C. Kesselman, and S. Tueke. The nexus approah to integrating multithreading andommuniation. Journal of Parallel and Distributed Computing, 1996.[15℄ H. Garia-Molina. Eletions in a distributed omputing system. IEEE Transations on Computers,C-31(1):49{59, Jan 1982.[16℄ J. Gehrinf and A. Reinfeld. Mars - a framework for minimizing the job exeution time in a metaom-puting environment. Proeedings of Future general Computer Systems, 1996.[17℄ A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manhek, and V. Sunderam. PVM: Parallel VirtualMahine A Users' Guide and Tutorial for Networked Parallel Computing. MIT Press, 1994.[18℄ Gusto webpage at http://www-fp.globus.org/testbeds/.[19℄ J. Gosling and H. MGilton. The java language environment white paper, 1996.[20℄ J. Gosling and H. MGilton. The java language environment white paper; hapter 10, 1996.[21℄ A. Grimshaw. Easy-to-use objet-oriented parallel programming with mentat. IEEE Computer, May1993.[22℄ A. S. Grimshaw, W. A. Wulf, J. C. Frenh, A. C. Weaver, and P. F. Reynolds. Legion: The nextlogial step toward a nationwide virtual omputer. Tehnial Report CS-94-21, University of Virginia,1994.[23℄ W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performane, portable implementation of theMPI message passing interfae standard. Parallel Computing, 22(6):789{828, Sept. 1996.[24℄ T. Haupt, E. Akarsu, G. Fox, and W. Furmanski. Web based metaomputing. Tehnial Re-port SCCS-834, Syrause University Northeast Parallel Arhitetures Center, 1999. available fromhttp://www.npa.syr.edu/tehreports/html/0800/abs-0834.html.[25℄ The high-performane omputing hallenge at s98 { http://www.superomp.org/s98/hp/.[26℄ The nasa information power grid { http://siene.nas.nasa.gov/pubs/nasnews/97/09/ipg.html.[27℄ R. Jones. http://www.up.hp.om/netperf/netperfpage.html. Netperf: a network performanemonitoring tool.[28℄ A. Lenstra and M. Manasse. Fatoring by eletroni mail. In Advanes in Cryptology { EUROCRYPT'89, pages 355{371, 1990.[29℄ M. J. Lewis and A. S. A. Grimshaw. Using dynami on�gurability to support objet-oriented pro-gramming languages and systems in legion. Tehnial Report CS-96-19, University of Virginia, 1996.29

[30℄ J. M. M. Ferris, M. Mesnier. Neos and ondor: Solving optimization problems over the internet.Tehnial Report ANL/MCS-P708-0398, Argonne National Laboratory, Marh 1998. available fromhttp://www-fp.ms.anl.gov/ot/Guide/TehReports/index.html.[31℄ S. Mirosystems. Xdr: External data representation, 1987. ARPA Working Group Requests forComment DDN Network Information Center, SRI International, Menlo Park, CA, RFC-1014.[32℄ B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavani, K. Kunhithapadam,and T. Newhall. The paradyn parallel performane measurement tools. IEEE Computer, 28(11):37{46,Nov. 1995.[33℄ H. Nakada, H. Takagi, S. Matsuoka, U. Nagashima, M. Sato, and S. Sekiguhi. Utilizing the metaserverarhiteture in the ninf global omputing system. In High-Performane Computing and Networking'98, LNCS 1401, pages 607{616, 1998.[34℄ The nt superluster at nsa { http://www.nsa.uiu.edu/general//ntluster/.[35℄ The network weather servie home page { http://nws.npai.edu.[36℄ "OMG". The omplete formal/98-07-01: The orba/iiop 2.2 spei�ation, 1998.[37℄ S. Radziszowski. Small ramsey numbers. In Dynami Survey DS1 { Eletroni Journal of Combina-toris, volume 1, page 28, 1994.[38℄ R. L. Ribler, J. S. Vetter, H. Simiti, and D. A. Reed. Autopilot: Adaptive ontrol of distributedappliations. In Pro. 7th IEEE Symp. on High Performane Distributed Computing, Aug 1998.[39℄ N. Spring and R. Wolski. Appliation level sheduling: Gene sequene library omparison. In Pro-eedings of ACM International Conferene on Superomputing 1998, July 1998.[40℄ N. SuperCluster. verb+http://www.nsa.uiu.edu/general//ntluster+.[41℄ T. Tannenbaum and M. Litzkow. The ondor distributed proessing system. Dr. Dobbs Journal,February 1995.[42℄ The tera mta { http://www.tera.om.[43℄ J. Weissman and X. Zhao. Sheduling parallel appliations in distributed networks. Conurreny:Pratie and Experiene, 1(1), 1998.[44℄ Mirosoft windows nt operating system { http://www.mirosoft.om/ntserver/nts/tehdetails/overview/wpglobal.asp/.[45℄ R. Wolski. Dynamially foreasting network performane using the net-work weather servie. Cluster Computing, 1998. also available fromhttp://www.s.utk.edu/~rih/publiations/nws-tr.ps.gz.[46℄ R. Wolski, N. Spring, and J. Hayes. The network weather servie: A distributed resoure perfor-mane foreasting servie for metaomputing. Future Generation Computer Systems (to appear),1999. available from http://www.s.utk.edu/~rih/publiations/nws-arh.ps.gz.[47℄ R. Wolski, N. Spring, and J. Hayes. Prediting the pu availability of time-shared unix systems onthe omputational grid. In Pro. 8th IEEE Symp. on High Performane Distributed Computing, 1999.available from http://www.s.utk.edu/~rih/publiations/nws-pu.ps.gz.

30

