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1 Introduction

Increasingly, the high-performance computing community is blending parallel and distributed
computing technologies to meet its performance needs. A new architecture, known as The Com-
putational Grid [12], has recently been proposed which frames the software infrastructure that
is required to implement high-performance applications using widely dispersed computational re-
sources. The goal of a Computational Grid is to aggregate ensembles of shared, heterogeneous,
and distributed resources (potentially controlled by separate organizations) to provide computa-
tional “power” to an application program. Applications should be able to draw compute cycles,
network bandwidth, and storage capacity seamlessly from the Grid' in a way analogous to the
way in which household appliances draw electrical power from a power utility.
To realize this vision, the application programming environment must be able to

e leverage all potentially useful resources that the user can access,
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e exploit the heterogeneity of the resource pool to the program’s advantage, and

e manage the effects of dynamically changing resource performance characteristics caused by
contention, reconfiguration, and federated administration.

Researchers have developed several innovative and powerful software infrastructures to support
the Grid paradigm [11, 22, 41, 6] and several pilot projects [18, 26, 33] have been launched
to investigate the efficacy of Grid computing. Each of these technologies, however, is designed
assuming there will be a single, unifying Grid infrastructure installed and functioning on all
available resources. We note, however, that the resource pool available to an application is
generally specific to its user and not a particular infrastructure. A single user may have
access to resources owned by different organizations which do not agree to support
a single, unifying software base on all resources.

In this paper, we describe the design of EveryWare — a user-level software toolkit for writing
Grid programs consisting of three separate software components:

e a portable lingua franca that is designed to allow processes using different infrastructures
and operating systems to communicate,

e a set of performance forecasting libraries that enable an application to make short-term
resource and application performance predictions in near-real time, and

e a distributed state exchange service that allows application components to manage and
synchronize program state in a dynamic environment.

The goal is to allow a user to write Grid programs that combine the best features of different
Grid infrastructures such as Globus [11], Legion [22], Condor [41], or NetSolve [6] as well as the
native functionality provided by Java, Windows N'T, and Unix to the performance advantage of
the application. EveryWare is implemented as a portable set of libraries and processes that can
“oglue” different locally-available infrastructures together so that a program may draw upon these
resources seamlessly. If sophisticated systems such as Globus [11], Legion [22], or Condor [41] are
available, the EveryWare program must be able to use the features provided by those systems
effectively. If only basic operating system functionality is present, however, an EveryWare program
should be able to extract what ever functionality it can, realizing that these resources may be
less effective than those supporting better infrastructure. The ability to leverage all resources
accessible by the user, regardless of installed infrastructure, makes it possible to draw those
resources from separate administrative domains. That is, to treat the user’s accessible resources
as a Computational Grid.

We have implemented a prototype toolkit to test the efficacy of the EveryWare approach.
In an experiment entered as a contestant in the High-Performance Computing Challenge [25]
at SC98 in November of 1998, we were able to use this prototype to leverage Globus [11], Le-
gion [22], Condor [41], NetSolve [6] Grid computing infrastructures, the Java [19] language and
execution environment, native Windows NT [44], and native Unix systems sémultaneously in
a single, globally distributed application. The application, a program that searches for Ramsey
Number counter examples, does not use exhaustive search, but rather requires careful dynamic



scheduling to avoid substantial communication overheads. Moreover, by focusing on enhancing
the interoperability of the resources in our pool, we were able to combine the Tera MTA[42]
and the NT Supercluster[34] - two unique and powerful resources - with a raft of other, more
commonly available systems including parallel supercomputers, PC-based workstations, shared-
memory multiprocessors, and Java-enabled desk-top browsers. With non-dedicated access to all
resources, under extremely heavy load conditions, the EveryWare application was able to sustain
supercomputer performance levels over long periods of time. As such, the Ramsey Number Search
application using EveryWare represents an example of a true Grid program - the computational
“power” of all resources that were available to the application’s user was assessed, managed, and
delivered to the application.

In detailing our Computational Grid experiences, this paper makes three important contribu-
tions.

e [t demonstrates, quantitatively, the potential power of globally distributed Grid computing.

e [t details the real-world experiences we gained using most of the relevant distributed com-
puting technology available to us in the fall of 1998.

e It describes a programming model and methodology for writing Grid programs.

We endeavor to measure, quantitatively, the degree to which the Ramsey Number Search appli-
cation was able to leverage a world-wide Computational Grid by combining disparate software
infrastructures. To use EveryWare effectively, we adopted a programming methodology in which
computational clients request program management functions (scheduling, persistent storage man-
agement, event synchronization, etc.) from application-specific distributed services. We believe
that this programming model will allow newly-developed Grid applications to meet both the
performance and robustness needs of Grid users.

In [12] (page 18), the authors define the criteria for the Computational Grid as the provision
of consistent, dependable, pervasive, and inexpensive compute power to the end user. We present
the results of our study in terms of four quantitative metrics:

1. the sustained computational performance of the entire application,

2. the difference between the performance variability exhibited by the underlying resources
and the performance variability exhibited by the application itself,

3. the overall duration of continuous program execution, and
4. the number of different resource types used by the application.

Metric (1) describes the degree to which the EveryWare application was able to achieve “high-
performance” using a Computational Grid. Application performance is a key motivating factor
for Computational Grids that differentiates it from other distributed computing efforts. Metric
(2) demonstrates how well EveryWare was able to hide underlying performance variance from
the application’s user. Application performance must remain consistent and stable even when the
deliverable performance of individual resources varies or users will turn to other, lower performance



execution platforms. Metric (3) describes the dependability and robustness of the EveryWare
application to host and network failure, and metric (4) quantifies the degree of pervasiveness we
were able to achieve with EveryWare. For the Computational Grid to be pervasive, it must be
able to include as many of the available resources and resource types as possible. We believe that
all four of these metrics are necessary to describe and quantify the degree to which an application
achieves the goals (described in [12]) of Grid computing. In addition, the EveryWare application
we implemented at SC98 used no dedicated resources and required no privileged access. As
the EveryWare application was a guest on the systems it used, the expense associated with its
execution was limited to the cost of a “guest” login on each system. That is, it was inexpensive
to execute since it was able to harvest standard, guest-level priority cycles.

In the next section we describe Computational Grid computing and motivate the design of
EveryWare. In Section 3 we detail the functionality of the EveryWare toolkit and describes the
programming model it implements. Section 4 discusses the Ramsey Number Search application
we used in this experiment and in Section 5, we detail the performance results we were able
to obtain in terms of the four metrics described above. Section 6 describes the relationship of
EveryWare to related research, and we conclude in Section 7 with a description of future research
directions.

2 Computing with Computational Grids

The goal of EveryWare is to enable the construction of true Grid programs — ones which draw
computational power seamlessly from a dynamically changing resource pool. Since the field is
evolving, a single definition of “Computational Grid” has yet to be universally adopted 2. In this
work, we will use the following definition.

Computational Grid A heterogenous, shared, and federated collection of computational re-
sources that are linked together by a network that supports interprocess communication.

By “shared” we mean that it is impractical to dedicate all of the resources in a Computational
Grid to a single application for an appreciable amount of time. The term “federated” means that
each resource is expected to have a local resource manager, and no single overarching resource
management policy can be imposed on all resources.

The resources housed at the National Partnership for Advanced Computational Infrastructure
(NPACI) and National Computational Science Alliance (NCSA) constitute examples of Computa-
tional Grids under our definition. At these centers, machines and storage devices of various types
are internetworked. Each resource is managed by its own resource manager (e.g. batch scheduler,
interactive priority mechanism, etc.) and it is not generally possible to dedicate all resources (and
the network links that interconnect them) at either site to a single application. Moreover, it is
possible to combine NPACI and NCSA resources together to form a larger Computational Grid,
that has the same characteristics. In this larger case, it is not even possible to mandate that a
uniform software infrastructure be present at all potentially useful execution sites.

’In [12], the authors define Computational Grids in terms of a set of criteria that must be met. We address
these criteria in our work, but prefer the definition provided herein for the purpose of illustration



To effectively exploit a Computational Grid, a program must be able to

1. leverage concurrency for execution performance,
2. manage the resource heterogeneity of the underlying system to the advantage of the program,
3. run ubiquitously on all of the resources its user may legally access, and

4. tolerate dynamic performance variation caused by contention, resource failure, resource ac-
quisition, and local management policy.

Other work has met these requirements to different degrees. AppLeS [4] (Application Level
Scheduling) agents have been able to meet these requirements in environments where a single
infrastructure is present and the scheduling agent does not experience resource failure. An Ap-
pLeS agent dynamically evaluates the performance that all available resources can deliver to its
application, and crafts a schedule that maximizes the application’s overall execution performance.
EveryWare supports this principle in environments where a single scheduling agent can access all
available resources without forming a performance bottleneck (Requirement (4)), but also extends
it to wide-area lossy environments in which several infrastructures may be available. Note also
that the AppLeS agent is a specialized application component that performs a single application
management function: scheduling. EveryWare allows an application programmer to generalize
this notion to other application management functions in the form of application-specific services.
Using the EveryWare toolkit, these services can be implemented for a variety of Grid infrastruc-
tures (Requirement (3)) to meet the performance and robustness needs for widely distributed Grid
applications. The MPI (Message Passing Interface) [10], and PVM (Parallel Virtual Machine) [17]
implementations for networked systems allow distributed clusters of machines to programmed as
a single, “virtual” parallel machine (meeting Requirement (1)). In addition, portable implemen-
tations that do not require privileged (super-user) access for installation or execution [23, 17] are
available (Requirement (3)). However, they do not manage resource heterogeneity on behalf the
program nor do they expose it to the programmer so that it may be managed explicitly. Grid
computing systems such as Globus [11], Legion [22], Condor [41], and HPC-Java [24] include
support for resource heterogeneity as well, but they are not available ubiquitously (Requirement
(3)). As they gain in popularity, we anticipate these systems to be more widely installed and
maintained. However we note that their level of sophistication makes porting them to new and
experimental environments labor intensive. As new architectures become available, it is important
to be able to incorporate them into a Grid quickly. Dynamically schedulable programs that are
capable of tolerating resource performance fluctuations have been developed by the Autopilot [38],
Winner [2] and MARS [16] groups (Requirement (4)). Most of these systems rely on a centralized
scheduler for each application, however, making, them sensitive to network and host failure. If
the scheduler fails or becomes disconnected from the rest of the application, the program is dis-
abled. In addition, having a single scheduling agent impedes scalability as communication with
the scheduler becomes a performance bottleneck.

EveryWare is designed as a portable “toolkit” for linking together program components run-
ning in different environments. Individual program components may use what ever locally avail-
able infrastructure is present. In addition, we provide a low-level “bare-bones” implementation



that is designed to use only basic operating system functionality. In this way, an EveryWare
application does not assume any one, single infrastructure or operating system will be accessible
from every resource. Borrowing from the AppLeS [4] project, EveryWare applications character-
ize all resources in terms of their quantifiable impact on application performance. In this way,
heterogeneity is expressed as the difference in deliverable performance to each application. The
EveryWare toolkit includes support for process replication and performance forecasting so that an
EveryWare application can adapt to dynamically changing resource conditions. We leverage the
Network Weather Service [46, 45] forecasting facilities to provide both heterogeneity management
and adaptive prediction functionalities.

3 The EveryWare Toolkit

To realize the performance offered by the Grid computing paradigm, a program must be ubig-
uitous, adaptive, robust, and scalable. Ubiquity is required because the resources are federated.
The owners of the resources allow them to participate in the Grid, but maintain ultimate au-
thority over their use. As such, the resource pool may change without notice. Resources may
be added, removed, replaced, or upgraded by their owners. In addition, it is difficult to ensure
that all resources owners will install and maintain a single, unifying Grid software infrastructure.
If the program is not compatible with all potentially available Grid infrastructures, operating
systems, and hardware architectures it will not be able to draw some of the “power” that the
Grid can provide. Adaptivity is required to ensure performance. If the resource pool is changing,
or the performance of the resources are fluctuating due to contention, the program must be able
to choose the most profitable resource combination from the resources that are available at any
given time. Similarly, if resources become unavailable due to owner-initiated reclamation, exces-
sive load, or failure, the program must be able to make progress. Scalability, in a Grid setting,
allows the program to use resources efficiently. The greater degree to which the program can be
dispersed, the greater the flexibility the Grid system has in being able to meet the program’s
performance needs.

The EveryWare toolkit is composed of three separate software components: a portable lingua
franca that allows processes using different infrastructures and operating systems to communi-
cate, a set of performance forecasting services and libraries that enable an application to make
short-term resource and application performance predictions in near-real time, and a distributed
state exchange service that allows application components to manage and synchronize program
state in a dynamic environment. Figure 1 depicts the relationship between these components.
Application components that are written to use different Grid infrastructure features can com-
municate amongst themselves, with the EveryWare state exchange service, and with other multi-
infrastructure services such as the Network Weather Service [46] using the lingua franca. Dynamic
forecasting libraries (small triangles in the figure) can be loaded with application components di-
rectly. These libraries, in conjunction with the performance forecasts provided by the NWS,
permit the program to anticipate performance changes and adapt execution accordingly. The
distributed state-exchange services provide a mechanism for synchronizing and and replicating
important program state to ensure robustness and scalability.
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Figure 1: EveryWare Components

The toolkit we have implemented is strictly a prototype designed to expose the relevant pro-
gramming issues. As such, we do not describe the specific APIs supported by each component
(we expect them to change dramatically in our future implementations). Rather, in this section,
we motivate and describe the functionality of each EveryWare component and discuss our over-
all implementation strategy. Our intention is to use the prototype first to implement a variety
of applications so that we may determine what functionality is required, and then to provide a
“user-friendly” implementation of EveryWare for public release.

3.1 Lingua Franca

We implemented the lingua franca using C and TCP/IP sockets. To ensure portability, we tried
to limit the implementation to use only the most “vanilla” features of these two technologies. For
example, we did not use non-blocking socket I/O nor did we rely upon keep-alive signals to inform
the system about end-to-end communication failure. In our experience, the semantics associated
with these two useful features are vendor, and in some cases, operating system release-level specific.
We tried to avoid controlling the portability of EveryWare through C preprocessor flags whenever
possible so that the system could be ported quickly to new architectures and environments.



Similarly, we chose not to rely upon XDR [31] for data type conversion for fear that it would
not be readily available in all environments. Another important decision was to strictly limit our
use of signals. Unix signal semantics are somewhat detailed and we did not want to hinder the
portability to non-Unix environments (e.g. Java and Window NT). More immediately, many of
the currently available Grid communication infrastructures such as Legion [22] and Nexus [14] take
over the user-level signal mechanisms to facilitate message delivery. Lastly, we avoided the use of
threads throughout the architecture as differences in thread semantics and thread implementation
quality has been a source of incompatibility in many of our previous Grid computing efforts.

Above the socket level, we implemented rudimentary packet semantics to enable message
typing and delineate record boundaries within each stream-oriented TCP communication. Our
approach takes its inspiration from the publicly available implementation of netperf [27]. How-
ever, the actual implementation of the messaging layer comes directly from the current Network
Weather Service (NWS) [46], where it has been stress-tested in a variety of Grid computing
environments.

3.2 Forecasting Services

We also borrowed and enhanced the NWS forecasting modules for EveryWare. To make perfor-
mance forecasts, the NWS applies a set of light-weight time series forecasting methods and dy-
namically chooses the technique that yields the greatest forecasting accuracy over time (see [45]
for a complete description of the NWS forecasting methodology). The NWS collects performance
measurements from Grid computing resources (CPUs, networks, etc.) and uses these forecasting
techniques to predict short-term resource availability. For EveryWare, however, we needed to be
able to predict the time required to perform arbitrary but repetitive program events. Our strategy
was to manually instrument the various EveryWare components and application modules with
timing primitives, and then pass the timing information to the forecasting modules to make pre-
dictions. We refer to this process as dynamic benchmarking as it uses benchmark techniques (e.g.
timed program events) perturbed by ambient load conditions to make performance predictions.

For example, we used the forecasting modules and dynamic benchmarking to predict the
response time of each EveryWare state-exchange server. We instrumented each server to record
the time required to get a response to a request made to each of the other servers, for each message
type. To do so, we identified each place in the server code where a request-response pair occurred,
and tagged each of these “events” with an identifier consisting of address where the request was
serviced, and the message type of the request. By forecasting how quickly a server would respond
to each type of message, we were able to dynamically adjust the message time-out interval to
account for ambient network and CPU load conditions. This dynamic time-out discovery proved
crucial to overall program stability. Using the alternative of statically determined time-outs, the
system frequently misjudged the availability (or lack thereof) of the different EveryWare state-
management servers causing needless retries and dynamic reconfigurations (see subsection 3.3
below for a discussion of EveryWare state-exchange functionality).

In general, the forecasting services and dynamic benchmarking allow both the EveryWare
toolkit, and the application using it, to dynamically adapt itself to changing load and perfor-
mance response conditions. We trimmed down and adapted the NWS forecasting subsystem so



that it may be loaded as a library with application and EveryWare code. We also added a tag-
ging methodology so that arbitrary program events could be identified and benchmarked. We
used standard timing mechanisms available on each system to generate time stamps and event
timings. However, we anticipate that more sophisticated profiling systems such as Paradyn [32]
and Pablo [9] could be incorporated to yield higher-fidelity measurements.

3.3 Distributed State Exchange Service

To function in the current Grid computing environments, a program must be robust with respect
to resource performance failure while at the same time able to leverage a variety of different
target architectures. EveryWare provides a distributed state exchange service that can be used in
conjunction with application-level checkpointing to ensure robustness. EveryWare state-exchange
servers (called Gossips) allow application processes to register for state synchronization. The
synchronizing application component must register a contact address, a unique message type,
and a function that allows a Gossip to compare the “freshness” of two different messages having
the same type. All application components wishing to use Gossip service must also export a
state-update method for each message type they wish to synchronize.

Once registered, an application component periodically receives a request from a Gossip pro-
cess to send a fresh copy of its current state (identified by message type). The Gossip compares
that state (using the previously registered comparator function) with the latest state message
received from other application components. When the Gossip detects that a particular message
is out-of-date, it sends a fresh state update to the application component that originated the
out-of-date message.

To allow the system to scale, we rely on three assumptions. First, that the Gossip processes
cooperate as a distributed service. Second, that the number of application components wishing
to synchronize is small. Lastly, that the granularity of synchronization events is relatively coarse.
Cooperation between Gossip processes is required so that the workload associated with the syn-
chronization protocol may be evenly distributed. Gossips dynamically partition the responsibility
for querying and updating application components amongst themselves. For the SC98 experiment,
we stationed several Gossips at well-known addresses around the country. When an application
component registered, it was assigned a responsible Gossip within the pool of available Gossips
whose job it was to keep that component synchronized.

In addition, we allowed the Gossip pool to fluctuate. New Gossip processes registered them-
selves with one of the well-known sites and were announced to all other functioning Gossips.
Within the Gossip pool, we used the NWS clique protocol [46] (a token-passing protocol based
on leader-election [15, 1]) to manage network partitioning and Gossip failure. The clique protocol
allows a clique of processes to dynamically partition itself into subcliques (due to network or host
failure) and then merge when conditions permit. The EveryWare Gossip pool uses this protocol
to reconfigure itself and rebalance the synchronization load dynamically in response to changing
conditions.

The assumptions about synchronization count and granularity are more restrictive. Because
each Gossip does a pair-wise comparison of application component state, N? comparisons are
required for N application components. Moreover, if the overhead associated with state synchro-



nization cannot be amortized by useful computation, performance will suffer. We believe that
the prototype state-exchange protocol can be substantially optimized, (or replaced by a more so-
phisticated mechanism) and careful engineering can reduce the cost of state synchronization over
what we were able to achieve. However, we hasten to acknowledge that not all applications or
application classes will be able to use EveryWare effectively for Grid computation. Indeed, it is an
interesting and open research question as to whether large-scale, tightly synchronized application
implementations will be able to extract performance from Computational Grids, particularly if the
Grid resource performance fluctuates as much as we have typically observed [47, 45]. EveryWare
does not allow any application to become an effective Grid application. Rather, it facilitates
the deployment of applications whose characteristics are Grid suitable so that they may draw
computational power ubiquitously from a set of fluctuating resources.

Similarly, the consistency model required by the application program dramatically affects
its suitability as an EveryWare application, in particular, and as a Grid application in general.
The development of a high-performance state replication facilities that implement tight bounds on
consistency is an active area of research. EveryWare does not attempt to solve the distributed state
consistency problem for all consistency models. Rather, it specifies the inclusion of replication and
synchronization facilities as a constituent service. For the application that describe in the next
Section (Section 4), we implemented a loosely consistent service based on the Gossip protocol.
Other, more tightly synchronized services can be incorporated, each with its own performance
characteristics. We note, however, that applications having tight consistency constraints are, in
general, difficult to distribute while maintaining acceptable performance levels. EveryWare is not
intended to change the suitability of these programs with respect to Grid computing, but rather
enables their implementation and deployment at what ever performance level they can attain.

3.4 The EveryWare Programming Model

An EveryWare application is structured as a set of computational clients that request run-time
management services from a set of application-specific servers. Figure 2 depicts the structure
of an application. Application clients (denoted “A” in the figure) can execute in a number of
different environments, such as NetSolve [6], Globus [11], Legion [22], Condor [41], etc. They
communicate with application-specific scheduling servers (marked “S” in the figure) to receive
scheduling directives dynamically. Persistent state managers tuned for the application (denoted by
“P” in the figure) control and protect any program state that must survive host or network failure.
Application performance logging servers (marked “L”) allow arbitrary messages to be logged by
the application. Finally, all application components use the EveryWare Gossip service (marked
“G”) to synchronize state. To anticipate load changes, the various application components consult
the Network Weather Service (NWS) — a distributed dynamic performance forecasting service
for Computational Grids [46, 45, 35].

This application architecture offers several advantages. First, the overall program can be
constructed incrementally. Since the EveryWare toolkit is robust, new clients and servers can be
added, old ones removed or improved, etc. while the application itself continues to execute. Since
we do not have to restart the application every time we wish to add a new program component,
we can improve and evolve the running application dynamically. Another advantage is that it
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allows us to implement infrastructure-specific clients that can get the best possible performance
by running in “native” mode. Since the clients need only speak the protocol required by each
server, we do not need to put a complete software veneer between the computational code and
the native infrastructure.

Note that the EveryWare programming model fundamentally different from that used by
most procedure oriented Grid infrastructures such as NetSolve [6], Legion [22], and CORBA [36].
These infrastructures typically support applications structured as a single controlling client that
makes method or remote-procedure calls to remote computational servers (or remote objects, if
the infrastructure is object-oriented). Under the EveryWare programming model, computation
is centered at the clients and program control is coordinated by a set of cooperating application-
specific servers. This novel application structure allows EveryWare applications is meet the “con-
sistent” and “dependable” qualitative criteria described in [12] by offering greater scalability and
robustness than a single-client approach.
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4 Example Application: Ramsey Number Search

The application we chose to implement to test the effectiveness of EveryWare attempts to improve
the known bounds of classical Ramsey numbers. The n** classical or symmetric Ramsey number
R, = R, ;, is the smallest number % such that any complete two-colored graph on k vertices must
contain a complete one-colored subgraph on n of its vertices. It can be proven in a few minutes
that R3 = 6; it is already a non-trivial result that R4 = 18, and the exact values of higher R,, are
unknown.

Observe that to show that a certain number j is a lower bound for R,, one might try to
produce a particular two-colored complete graph on (5 — 1) vertices that has no one-colored
complete subgraph on any n of its vertices. We will refer to such a graph as a “counter-example”
for the n'” Ramsey number. Our goal was to find new lower bounds for Ramsey numbers by
finding counter-examples.

This application was especially attractive as a first test of EveryWare because of its loose
synchronization requirements and its resistance to exhaustive search. For example, if one wishes
to find a new lower bound for Rj, one must search in the space of complete two-colored graphs
on 43 vertices, since the known lower bound is currently 43 ( [37]). Since such a graph has
(423) = 903 edges, there are 2993 > 1027 different two-colored graphs on 43 vertices. Even if one
could examine 10'? configurations every second, an exhaustive search would take over 10%°° years.

Therefore, we must use heuristic techniques to control the search process. Note that this
combinatoric complexity makes exhaustive search techniques like those employed in cryptographic
factoring [28, 5] ineffective. Rather, the process of counter-example identification is related to
distributed “branch-and-bound” state-space searching.

4.1 Application Clients

Our goal was to create a dynamically changing population of computational processes executing
different heuristics. Heuristic design is an active area of research in combinatorics [37]. As such,
we designed the application to be able to incorporate different heuristic algorithms concurrently,
each of which implemented as a single application client. The clients would then use the lingua
franca to communicate with a set of application servers to receive scheduling directives and state
management services.

The heuristics that we used all involved directed search, by which we mean the following: On
the search space of two-colored complete graphs of a particular size, there is a numerical “score”
which assigns to each graph the degree to which it fails to be a counter-example in some suitable
sense. There is also a set of manipulations called “moves” (transformations) that one can perform
on a particular graph to produce other graphs. The algorithm, then, is roughly to start with an
arbitrary graph and perform a sequence of moves with a view toward lowering the score by each
successive move. Note that in any such heuristic, it is necessary to provide some possibility of
making a move which worsens the score; otherwise, there is the danger that the search will get
trapped at a local minimum which is not a global minimum.

In our case, the score assigned to a two-colored graph is simply the number of “violations,” or
complete one-colored subgraphs on n vertices that it possesses; thus a graph is a counter-example
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if and only if its score is 0.

Various algorithms employed used slightly different definitions for their moves. The simplest
and most common was to change the color of a single edge. Thus, for a graph on 43 vertices
possessing 903 edges, there are 903 possible moves that can be made from any given graph. In
other algorithms, a move comprised changing the colors of 3 edges. Still other algorithms worked
in restricted search spaces which partitioned the edges and only considered those graphs for which
all the edges in any given partition were the same color; in such a case a move comprised changing
the colors of all the edges within a particular partition.

The two classes of search heuristics employed were those based on tabu search [37] and sim-
ulated annealing. In a tabu search, the algorithm keeps a list (the tabu list) of a fixed length
recording the most recent moves that have been made. From a given configuration, it examines
all moves not in the tabu list, finds the one that gives the lowest score, and makes and records
this move. The tabu list is in place to avoid loops; in practice, some element of randomness is
necessary in order to avoid large loops. We employed two variants of the tabu search, namely
one that allowed a particular move to be made no more than twice on the list and another that
allowed a particular move onto the list if its last appearance was with a different predecessor.

The simulated annealing heuristic mimics the physical behavior of a mass as it undergoes
cooling; in this case, the score of a configuration is analogous to the temperature of the mass.
Generally, from a given configuration the algorithm chooses a move at random and makes the
move if it results in a lower score; otherwise, it rejects the move and chooses another at random
from the same configuration. However, the algorithm will accept a random move, regardless of
the resulting score, with a small probability that decreases as the score drops; this randomness
has the effect of keeping the algorithm from getting trapped in a local minimum.

4.1.1 Scheduling Service

To schedule the EveryWare Ramsey Number application, we use a collection of cooperating, but
independent scheduling servers to control application execution dynamically. Each computational
client periodically contacts a scheduling server and reports its algorithm type, the IP address of
the machine on which it is running, the progress it has made since it last made a scheduling
decision, and the amount of time that has elapsed since its last contact. Servers are programmed
to issue different control directives based on the type of algorithm the client is executing, how
much progress the client has made, and the most recent computational rate of the client.

In addition, the scheduling servers are responsible for migrating work. Clients report the
number of monochromatic cliques in the graph they are testing when they check in. If the number
is low the server will ask the client for a copy of the graph it is currently considering. If it is
high, the server sends the client a better graph and directs it to continue from a different point in
the search space. The clients are programmed to randomize their starting point in different ways
to prevent the system from dwelling irrevocably in a local minimum. In addition, the thresholds
for identifying a “good” graph (one with a low monochromatic clique count), a bad one, and the
number of times a good one can be migrated to serve as a new starting point in the search space,
are tunable parameters.

The schedulers also make decisions based on dynamic performance forecasting information. If
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a scheduler predicts that a client will be slow based on previous performance, it may choose to
migrate that client’s current workload to a machine that it predicts will be faster. Rather than
basing that prediction solely on the last performance measurement for each client, the scheduler
uses the NWS lightweight forecasting facilities to make its predictions. Note that this methodology
is inspired by some of our previous work in building application-level schedulers (AppLeS) [39, 4].
AppLeS is an agent-based approach in which each application is fitted with a customized ap-
plication scheduler that dynamically manages its execution. For the Ramsey Number Search
application, however, a single scheduling agent would have been insufficient to control the entire
application, both because it would limit the scalability of the application and because the agent
constitutes a single-point-of-failure. We designed an application-specific scheduling service that
forms organized and robust, but dynamically changing groups of cooperating processes that can
make progress if and when the network partitions. As such, we term this type of scheduling
Organized Robust AutoNomous Group Scheduling (ORANGS). ORANGS and AppLeS are, in-
deed, similar in that they use NWS performance forecasts to make application-specific scheduling
decisions. However, the distributed and robust nature of the ORANGS service made it a more
appropriate choice for the Ramsey Number Search application.

Notice that, for the Ramsey Number search application, the scheduling service considers the
use of all available resources. When an application client checks in with a scheduling server, the
server evaluates the client in terms of the performance it will be able to deliver to the application
(using the forecasting services) and decides on the amount and type of work that client should
receive. In all cases, the Ramsey Number search clients receive some amount of work to perform.
For other applications, however, the scheduling service may decide that the use of a particular
resource will hinder rather than aid performance and, hence, should be excluded. Therefore, while
resource selection is not an issue for Ramsey Number search, the EveryWare programming model
supports its implementation.

Schedulers within the scheduling service communicate non-persistent state amongst themselves
via the Gossip service. In particular, the IP addresses and port numbers of all servers are circulated
so that new server instances can be added dynamically. Clients are furnished with a list of active
servers when they make contact so that they can contact alternates in the event of a failed server
communication. Similarly, scheduling servers learn of different Gossip servers, persistent state
managers, and logging servers via Gossip updates.

4.1.2 Persistent State Management Service

To improve robustness, we identify three classes of program state within the application: local,
volatile-but-replicated, and persistent. Local state is state that can be lost by the application due
to machine or network failure (e.g. local variables within each computational client). Volatile-
but-replicated state is passed between processes as a result of Gossip updates, but it is not written
to persistent storage. For example, the up-to-date list of active servers is volatile-but-replicated
state. Persistent state must survive the loss of all active processes in the application. The largest
counter example that the application has yet to find, for example, is check-pointed as persistent
state.

We use a separate persistent state service for three reasons. First, we want to limit the size

14



of the file system footprint left by the application. Many sites restrict the amount of disk storage
a guest user may acquire. By separating the persistent storage functionality, we are able to
dynamically schedule the application’s disk usage according to available capacities.

Secondly, we want to ensure that persistent state is ultimately stored in “trusted” environ-
ments. For example, we maintained a persistent state server at the San Diego Supercomputer
Center because we were assured of regular tape back-ups and industrial quality file system security.

Lastly, we are able to implement run-time sanity checks on all persistent state accesses. If
a process attempts to store a counter example, for example, the persistent state manager first
checks to make sure the stored object is, indeed, a Ramsey counter example for the given problem
size.

To implement this functionality, all persistent state objects must be typed. For each persistent
type used in the program, the state manager needs a set of sanity-checks (performed when an
object is accessed) and a comparator operator so that the state may be synchronized by the Gossip
service. We acknowledge that developing this functionality for all Grid applications may not be
possible. However, we note that many Computational Grid infrastructures currently support
mechanisms that can be used to implement the state management functionality we require for
Ramsey Number search. For example, the sanity checks performed by the state manager were
implemented, primarily, to prevent errant or malicious processes from damaging program state.
Instead, Globus authentication mechanisms [13] could be used to provide access control so that
only trusted processes may modify persistent state. Similarly, the Legion class management
system [29] tracks object instances in a way that could be used to identify stale state. We wanted
to ensure that all application components (computational clients and application-specific servers)
would be portable to any environment so we did not choose to rest any of the application’s
functionality on a particular infrastructure. Future versions of the Ramsey Search application
may relax this restriction to further benefit from maturing Computational Grid technologies.

4.1.3 Logging Service

To track the performance of the application dynamically, we implemented a distributed logging
service. Scheduling servers base their decisions, in part, on performance information they receive
from each computational client. Before the information is discarded, it is forwarded to a logging
server so that it can be recorded. Having a separate service, again, allows us to limit and control
the storage load generated by the application. For example, the National Partnership for Ad-
vanced Computational Infrastructure (NPACI) loaned our group a pair of file servers so that we
could capture a performance log that spanned the time of the conference.

As with the persistent state managers and the scheduling servers, the logging servers register
themselves with the Gossip service. Any application process wishing to log performance informa-
tion learns of a logging server through the server list that is circulated. The logging servers do
not register a state synchronization function, however. They use the Gossip service only to join
the running application.
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5 Results

To test the efficacy of our approach, we deployed the Ramsey Number search application on a
globally distributed set of resources during SC98. As part of the test, we entered EveryWare in the
High-performance Computing Challenge [25] (an annual competition held during the conference)
as we believed that the fluctuating loads generated by our competitors would test the capabilities
of our system vigorously.

We instrumented each application client to maintain a running count of the computational
operations it performs so that we could monitor the performance of Ramsey Number search
application. The bulk of the work in each of the heuristics (see Section 4) are integer test and
arithmetic instructions. Since each heuristic has an execution profile that depends largely on the
point in the search space where it is searching, we were unable to rely on static instruction count
estimates. Instead, we inserted counters into each client after every integer test and arithmetic
operation. Since the ratio of instrumentation code to computational code is essentially one-to-
one (one integer increment for every integer operation) the performance estimates we report are
conservative. Moreover, we do not include any instrumentation instructions in the operation
counts nor do we count the instructions in the client interface to EveryWare - only “useful” work
delivered to the application is counted. Similarly, we include all communication delays incurred
by the clients in the elapsed timings. The computational rates we report include all of the
overheads imposed by our software architecture and the ambient loading conditions experienced
by the program during SC98. That is, all of the results we report in this section are conservative
estimates of the sustained performance delivered to the application during the experiment.

5.1 Swustained Execution Performance

As a Computational Grid experiment, we wanted to determine if we could obtain high application
performance levels from widely distributed, heavily used, and non-dedicated computational re-
sources. In Figure 3, we show the sustained execution performance of the entire application during
the twelve-hour period including and immediately preceding the judging of our High-performance
Computing Challenge entry at at SC98 on November 12, 19983. The z — azis shows the time
of day, Pacific Standard Time %, and the y — axis shows the average computational rate over
a five-minute time period. The highest rate that the application was able to sustain was 2.39
billion integer operations between 09:51 and 09:56 during a test an hour before the competition
(right-hand side of the graph). The judging for the competition itself (which required a “live”
demonstration) began at 11:00. As several competing projects were being judged simultaneously,
and many of our competitors were using the same resources we were using, the networks interlink-
ing the resources suddenly experienced a sharp load increase. Moreover, many of the competing
projects required dedicated access for their demonstration. Since we deliberately did not request
dedicated access, our application suddenly lost computational power (as resources we claimed by

3We demonstrated the system for a panel of judges between 11:00 AM and 11:30 AM PST.

“SC98 was held in Orlando, Florida which is in the Eastern time zone. Our logging and report facilities, primarily
located at stable sites on the west coast, used Pacific Standard Time. As such, we report all time-of-day values in
PST.
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Figure 3: Application Speed

other applications) as the communication overheads rose (due to increased communication load).
The sustained performance dropped to 1.1 billion operations as a result. The application was able
to adapt to the performance loss and reorganize itself so that by 11:10 (when the demonstration
actually took place), the sustained performance had climbed to 2.0 billion operations per second.

This performance profile clearly demonstrates the potential power of Computational Grid
computing. With non-dedicated access, under extremely heavy load conditions, the EveryWare
application was able to sustain supercomputer performance levels.

In Figure 4, we show the number of hosts used during the same time period. In this figure,
each data point represents the number hosts checking in during the corresponding five-minute
period®. Note that the maximum host count (266) occurs at 23:51 as we ran a large scale test
of the system the night before the competition. However, the maximum host count does not
correspond to the maximum sustained rate. While we were able to incorporate many new and
powerful resources on the morning of the competition, we lost some of the workstations that were
loaned to us by Condor during the night. Also, these host count numbers are based on unique IP
addresses (and not process id) making them very conservative. Since some systems use the same

’The maximum time between check-ins for any computational client was set to five minutes during the test.
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IP address for all hosts (e.g. the NT Supercluster) the actual host population was much higher.
However, we could not distinguish between multiple processes on different hosts with the same
IP address, and multiple process restarts due to eviction for the combined host population. As a
result, we report the more conservative estimates.

5.2 Performance Response

We also wanted to measure the smoothness of the performance response the application was able to
obtain from the Computational Grid. For the Grid vision to be implemented, an application must
be able to draw “power” uniformly from the Computational Grid as a whole despite fluctuations
and variability in the performance of the constituent resources. In Figures 5 and 6 we compare
the overall performance response obtained by the application (graph (c) in both figures) with
the performance and resource availability provided by each infrastructure. Figure 5 makes this
comparison on a linear scale and Figure 6 shows the same data on a log scale so that the wide
range of performance variability may be observed. In Figures 5a and 6a we detail the number of
cycles we were able to successfully deliver from each Grid infrastructure during the twelve hours
leading up to the competition. Similarly, in Figure 5b, we show the host availability from each
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infrastructure for the same time period. Together, these graphs provide insight into the diversity
of the resources we used in the SC98 experiment.

Specifically, Condor supports a dynamic loan-and-reclaim resource usage model. Users agree
to loan idle workstations to the Condor system for use by other processes. When a user-specified
keyboard activity or load threshold is exceeded, the resource is declared busy and any Condor
jobs that are running at the time are evicted. Note that Condor processing power and host
count fluctuated through the night and then fell off as the day began in Wisconsin and user
activity caused their workstations to be reclaimed. For Java, the performance trajectory was the
opposite. We fitted the Java applets with the necessary logging features at approximately 4:30 AM,
although we had a small number of test hosts running before then. At approximately 8:00 AM, we
announced the availability of the Java implementation and solicited participation from “friendly”
sites. In addition, we began to execute the Java applet using HotJava [20] on workstations that
had been brought to SC98 for general use by conference attendees. At about the same time,
Legion (which had been down since approximately midnight) became available again and the
application immediately began to take advantage of the newly available resources. Our Globus
utilization, however, was low until just after the competition ended at 11:30 AM, when it suddenly
spiked. The Globus group entered the High-performance Computing Challenge with two separate
entries. As we did not request dedicated access or special access priority for the demonstration,
our application was able to leverage these resources only after higher-priority Globus processes
finished. NetSolve gave us access to the student workstation laboratories and several resources
in the Innovative Computing Laboratory at the University of Tennessee. We detected a bug
in the performance logging portion of the NetSolve implementation at approximately 8:00 AM,
hence we have no reliable performance numbers to report for the period before then. The bulk of
the NT hosts we were able to leverage came from the Superclusters [40] located at the National
Computational Science Alliance (NCSA) and in the the Computer Systems Architecture Group [7]
(CSAG) located at the University of California, San Diego. These systems used batch queues to
provide space-shared access to their processors. Unix host count remained relatively constant
throughout the experiment, but performance jumped at the end as the Tera MTA (the fastest
Unix host) was added to the resource pool.

In Figure 5c we reproduce Figure 3 for the purpose of comparison. Figure 6¢ shows this same
data on a log scale. By comparing graphs (a) and (b) to (c) on each scale we expose the degree to
which EveryWare was able to realize the Computational Grid paradigm. Despite fluctuations
in the deliverable performance and host availability provided by each infrastructure,
the application itself was able to draw power from the overall resource pool rela-
tively uniformly. As such, we believe the EveryWare example constitutes the first application
to be written that successfully demonstrates the potential of high-performance Computational
Grid computing. It is one of the first examples of a truly adaptive Grid program. For this
accomplishment, the EveryWare experiment was awarded “Best Acceleration” at SC98 by the
High-performance Computing Challenge panel of judges.
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5.3 Aggregate Performance

Figure 7 shows the total number of integer operations the application was able to obtain during the
twelve hours before the competition (on a log scale). With the exception of Java and NetSolve, all
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Figure 7: Total Cycle Count by Infrastructure

infrastructures were within an order of magnitude in terms of the cycles they delivered. Interpreted
Java applet performance was typically between 3 and 5 times slower than native binary execution,
and the NetSolve computational servers were shared by other NetSolve jobs and student projects.

5.4 Robustness

We also wished to measure the robustness of our approach. High-performance computer users
often complain about application sensitivity to resource failure in distributed environments. Fig-
ure 8a shows the total number of hosts controlled by each infrastructure that were used by the
application during the twelve hours leading up to the competition and Figure 8b shows the num-
ber of processes the system used during the same period. Comparing the two gives an indication
of the process failure and restart rate during the experiment. Each computational client was pro-
grammed to run indefinitely so, in the absence of process failure, the number of processes would
equal the number of hosts. We implemented several “ad-hoc” process restart mechanisms for the
environments in which they were not automatic. However, most of the process restarts were due
either to deliberate termination on our part while debugging, or dynamic resource reclamation
by resource owners. On the Condor system, we ran each computational client as a “vanilla” job
which is terminated without notice when the resource on which it is running is reclaimed, and
subsequently restarted when another suitable resource is free. It is interesting that, despite the
midweek daytime usage, process restart due to resource reclamation was relatively infrequent in
the Condor environment during the experiment. The Globus comparison illustrates the power if
the GRAM interface [11]. Globus allows all processes to be launched and terminated through a
single GRAM request. During the time leading up to the competition, we were improving and
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debugging our Globus implementation. Having a single control point allowed us to restart large
batches of processes easily. Under Legion, the concept of process is not defined. Instead, class
“instances” move between blocked and running states (and vice versa) so we simply report the
number of instances we used during the demonstration. As a result this level of process restart
activity is an estimate. The numbers are accurate for the Globus, Condor, and Unix environments
but somewhat ambiguous for the other infrastructures. Despite the level of process failure we were
able to detect, however, we were able to obtain the sustained processing rates shown in Figure 3
during the same time period.

Indeed, EveryWare and the application design we used proved to be quite robust. In Fig-
ure 9 we show host counts over five-minute intervals during the 17 days prior to the judging on
November 12. Some portion of the application was executing, more or less continuously during
the entire period (there are no horizontal gaps in the figure). As we concentrated our initial efforts
on developing the EveryWare toolkit and new Ramsey search heuristics, we did not add perfor-
mance logging to the running system until October 26. The program had actually been running
continuously since early June of 1998, however we only have performance data dating from the
end of October. Note that we were able to add, and then completely revise, the performance
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logging service while the program was in execution.

5.5 Resource Diversity

For the Computational Grid paradigm to succeed, all useful resources must be accessible by
the application. Metaphorically speaking, all profitable methods of power generation must be
usable by any power consumer. Figure 10 compares the deliverable performance from the fastest
host controlled by each infrastructure. The values not only benchmark our code on various
architectures, but provide insight into the wide range of resource options we were able to leverage
during the experiment. In each case, we attempted to use the native, vendor-specific C compiler
(as opposed to GNU gcc) with all optimization capabilities enabled. On the left-hand side of
the figure, we compare the best performance from each infrastructure. The fastest Unix machine
was the Tera MTA [42]. We report only the single processor performance, however the Tera
was also able to automatically parallelize the code and achieve an almost linear speed-up on two
processors. The fastest NT-based machine was was located at the University of Wisconsin, but we
are unable to determine its architectural characteristics. An unknown participant downloaded the
NT binary from the EveryWare home page when we announced that the system was operational
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Figure 10: Host Speeds

on Wednesday morning. The fastest Condor machine was a Pentium P6 running Solaris was also
located at the University of Wisconsin. Single processor Pentium P6 performance was particularly
good (second only to the Tera) for the integer-oriented search heuristics we developed. The
fastest Legion host was a Digital Equipment Corporation Alpha processor running Red Hat Linux,
located at the University of Virginia and the fastest Globus machine was an experimental Convex
V class host located at the Convex development facility in Richardson, Texas. Surprisingly,
the fastest Java execution was faster than the fastest NT, Legion, and Globus machines. An
unknown participant at Kansas State University loaded the applet and executed it using Microsoft
Corporation’s Internet Explorer (the IP address is for a 300Mhz dual-processor (Pentium II)
machine running NT with Explorer). We speculate that a student used some form of just-in-time
compilation technology to achieve the execution performance depicted in the figure, although we
are unable to ascertain how this performance level was reached.

On the right-hand side of the figure, we show the best single-processor performance of other
interesting and popular machines. The NT Superclusters at UCSD and NCSA generated almost
identical per-node processing rates. A single node of the Cray T3E located at the San Diego
Supercomputer Center was able to run only slightly faster than a single node of the Berkeley
NOW [8]. This comparison surprised us since the T3E is space shared (meaning that each process
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had exclusive access to its processor once it made it through the batch queue) and the NOW
(which is timeshared) was heavily loaded. On the far right-hand side of the figure, we show the
speed of a publicly accessible Apple iMac workstation located in a coffee shop on the UCSD
campus which is typical of the interpreted Java performance we were able to achieve.

In addition to detailing the relative performance of different architectures and infrastructures,
Figure 10 demonstrates the utility of EveryWare. It would not have been possible to include
experimental (and powerful) resources such as the Tera MTA and the NT Superclusters without
the EveryWare toolkit. At the time of the experiment, none of the existing Grid infrastructures
had been ported to either architecture. We were able to port EveryWare to both systems quickly
(under 30 minutes for the Tera) allowing us to couple them with other, more conventional hosts
that did support some form of Grid infrastructure. By providing execution ubiquity, EveryWare
was able to leverage resources that no other Grid computing infrastructure could access. As such,
the Ramsey Number Search application is the first program to couple the Tera MTA,
both NT Superclusters, and the Berkeley NOW with parallel supercomputers such
as the Cray T3E, workstations, and desktop web browsers. We were able to successfully
span the spectrum of available computing platforms with EveryWare.

6 Related Work

EveryWare is a toolkit that allows an application to leverage dynamically a variety of high- and
low-level execution environments for performance. As such, it shares common goals with many
of the infrastructures it leverages. It is similar to Globus [11] in that application components
communicate via different well-defined protocols to obtain Grid “service.” EveryWare extends
this notion, however, by providing a way for the Grid programmer to develop application-specific
protocols and services so that the application (and not just the underlying infrastructure) can be
robust and ubiquitous.

EveryWare supports information hiding and location transparency in the same way object-
oriented systems such as Legion [22] and CORBA [36] do. Application components can be im-
plemented as objects that communicate via remote method invocations. A key difference is that
an EveryWare program can also use messaging protocols at the same time to leverage external
facilities.

EveryWare complements the functionality provided by Condor [41] by providing a robust
messaging layer. In the SC98 experiment, we deployed the Ramsey Number Search application
as a “vanilla” program within the Condor environment. Vanilla Condor programs do not use
the checkpoint and restart facilities nor do they have their system calls redirected. This imple-
mentation strategy allowed a single program to span multiple Condor pools, each containing a
different architecture type. At present, Condor’s checkpointing facilities restrict migration to a
single architecture type, but we wished to leverage all of the architecture types in any resource
pool configured to use Condor. In [3], the authors use Condor to deliver a large number of cycles
over an extended period to a high-throughput application. Our effort differs from this experi-
ment, both in its scope and in its goal. We were able to embed the Condor pools available to
us in a larger, more heterogeneous Computational Grid. Moreover, we were using Condor to
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increase the performance of the application as measured by turn-around time. The application
we chose arrives at its answers faster with the addition of resources if those resources are carefully
scheduled.

EveryWare shares the notion of brokered invocation with NetSolve [6], NINF [33], and NEOS [30].
A scheduling entity chooses resources to use and manages application execution while the applica-
tion executes. For robustness and performance, however, we chose to implement an application-
specific scheduling service for the Ramsey Number Search application. Having a single scheduling
agent for a globally distributed application presents both a performance bottle-neck and a single-
point-of-failure for the application. The state exchange facilities in EveryWare make it possible
to build a distributed scheduling service to avoid these problems. AppLeS [4] takes a similar
single-agent approach to NetSolve, but the agent is tailored to meet the application’s perfor-
mance needs. We extend the application-specific scheduling concept developed for AppLeS by
building a high-performance, robust, and distributed scheduling service for the application.

Prophet [43] is a system designed to schedule SPMD applications on networks of computers.
Originally designed for the Mentat [21] parallel and distributed computing system for local area
deployment, its designers have recently extended it to wide area settings. Unlike EveryWare, how-
ever, it relies on a single ubiquitous infrastructure. Moreover, it does not support the robustness
features and state-exchange functionality provided as part of EveryWare. that

7 Conclusions and Future Work

By leveraging a heterogeneous collection of Grid software and hardware resources, dynamically
forecasting future resource performance levels, and employing relatively simple distributed state
management techniques, EveryWare has enabled the first application implementation that meets
the requirements for Computational Grid computing. In [12](page 18) the authors describe the
criteria that a Computational Grid must fulfill as the provision of pervasive, dependable, consistent,
and inerpensive computing.

e Pervasive — At SC98, we were able to use EveryWare to execute a high-performance,
globally distributed program on machines ranging from the Tera MTA to a web browser
located in a campus coffee shop at UCSD.

e Dependable — The Ramsey Number Search application ran continuously from early June,
1998, until the High-Performance Computing Challenge on November 12, 1998.

e Consistent — During the twelve hours leading up to the competition itself, the application
was able to draw uniform compute power from resources with widely varying availability
and performance profiles.

e Inexpensive — All of the resources used by the Ramsey Number Search application were
non-dedicated and accessed via a non-privileged user login.

To our knowledge, EveryWare is the first Grid software effort that has been able to successfully
meet these criteria, and to demonstrate the degree to which they are met quantitatively.
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We plan to study how EveryWare can be used to implement other Grid applications as part
of our future efforts. In particular, we plan to use it to build Grid versions of a medical imaging
code written at the University of Tennessee, and a data mining application from the University
of Torino. We also plan to extend ORANGS to include storage scheduling directives and memory
constraints. Finally, we plan to leverage our experience with EveryWare to build new Network
Weather Service sensors for different Grid infrastructures.
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