
Writing Programs that Run EveryWare on theComputational Grid �University of Tennessee Te
hni
al Report Number UT-CS-99-420http://nws.npa
i.edu/EveryWareRi
h Wolski y John Brevik z Chandra Krintz x Graziano Obertelli {Neil Spring k Alan Su ��August 11, 1999
1 Introdu
tionIn
reasingly, the high-performan
e
omputing
ommunity is blending parallel and distributed
omputing te
hnologies to meet its performan
e needs. A new ar
hite
ture, known as The Com-putational Grid [12℄, has re
ently been proposed whi
h frames the software infrastru
ture thatis required to implement high-performan
e appli
ations using widely dispersed
omputational re-sour
es. The goal of a Computational Grid is to aggregate ensembles of shared, heterogeneous,and distributed resour
es (potentially
ontrolled by separate organizations) to provide
omputa-tional \power" to an appli
ation program. Appli
ations should be able to draw
ompute
y
les,network bandwidth, and storage
apa
ity seamlessly from the Grid1 in a way analogous to theway in whi
h household applian
es draw ele
tri
al power from a power utility.To realize this vision, the appli
ation programming environment must be able to� leverage all potentially useful resour
es that the user
an a

ess,�Supported by the National Partnership for Advan
ed Computational Infrastru
ture (NPACI), NSF grant ASC-9701333, Advan
ed Resear
h Proje
ts Agen
y/ITO under
ontra
t #N66001-97-C-8531, and
a�eine.yUniversity of Tennessee { email: ri
h�
s.utk.eduzUniversity of Calfornia, Berkeley { email: brevik�math.berkeley.eduxUniversity of Calfornia, San Diego { email:
krintz�
s.u
sd.edu{University of Calfornia, San Diego { email: graziano�
s.u
sd.edukUniversity of Washington { email: nspring�
s.washington.edu��University of California, San Diego { email: alsu�
s.u
sd.edu1We will
apitalize the word \Grid" when referring to \Computational Grid" throughout this paper.

� exploit the heterogeneity of the resour
e pool to the program's advantage, and� manage the e�e
ts of dynami
ally
hanging resour
e performan
e
hara
teristi
s
aused by
ontention, re
on�guration, and federated administration.Resear
hers have developed several innovative and powerful software infrastru
tures to supportthe Grid paradigm [11, 22, 41, 6℄ and several pilot proje
ts [18, 26, 33℄ have been laun
hedto investigate the eÆ
a
y of Grid
omputing. Ea
h of these te
hnologies, however, is designedassuming there will be a single, unifying Grid infrastru
ture installed and fun
tioning on allavailable resour
es. We note, however, that the resour
e pool available to an appli
ation isgenerally spe
i�
 to its user and not a parti
ular infrastru
ture. A single user may havea

ess to resour
es owned by di�erent organizations whi
h do not agree to supporta single, unifying software base on all resour
es.In this paper, we des
ribe the design of EveryWare { a user-level software toolkit for writingGrid programs
onsisting of three separate software
omponents:� a portable lingua fran
a that is designed to allow pro
esses using di�erent infrastru
turesand operating systems to
ommuni
ate,� a set of performan
e fore
asting libraries that enable an appli
ation to make short-termresour
e and appli
ation performan
e predi
tions in near-real time, and� a distributed state ex
hange servi
e that allows appli
ation
omponents to manage andsyn
hronize program state in a dynami
 environment.The goal is to allow a user to write Grid programs that
ombine the best features of di�erentGrid infrastru
tures su
h as Globus [11℄, Legion [22℄, Condor [41℄, or NetSolve [6℄ as well as thenative fun
tionality provided by Java, Windows NT, and Unix to the performan
e advantage ofthe appli
ation. EveryWare is implemented as a portable set of libraries and pro
esses that
an\glue" di�erent lo
ally-available infrastru
tures together so that a program may draw upon theseresour
es seamlessly. If sophisti
ated systems su
h as Globus [11℄, Legion [22℄, or Condor [41℄ areavailable, the EveryWare program must be able to use the features provided by those systemse�e
tively. If only basi
 operating system fun
tionality is present, however, an EveryWare programshould be able to extra
t what ever fun
tionality it
an, realizing that these resour
es may beless e�e
tive than those supporting better infrastru
ture. The ability to leverage all resour
esa

essible by the user, regardless of installed infrastru
ture, makes it possible to draw thoseresour
es from separate administrative domains. That is, to treat the user's a

essible resour
esas a Computational Grid.We have implemented a prototype toolkit to test the eÆ
a
y of the EveryWare approa
h.In an experiment entered as a
ontestant in the High-Performan
e Computing Challenge [25℄at SC98 in November of 1998, we were able to use this prototype to leverage Globus [11℄, Le-gion [22℄, Condor [41℄, NetSolve [6℄ Grid
omputing infrastru
tures, the Java [19℄ language andexe
ution environment, native Windows NT [44℄, and native Unix systems simultaneously ina single, globally distributed appli
ation. The appli
ation, a program that sear
hes for RamseyNumber
ounter examples, does not use exhaustive sear
h, but rather requires
areful dynami
2

s
heduling to avoid substantial
ommuni
ation overheads. Moreover, by fo
using on enhan
ingthe interoperability of the resour
es in our pool, we were able to
ombine the Tera MTA[42℄and the NT Super
luster[34℄ - two unique and powerful resour
es - with a raft of other, more
ommonly available systems in
luding parallel super
omputers, PC-based workstations, shared-memory multipro
essors, and Java-enabled desk-top browsers. With non-dedi
ated a

ess to allresour
es, under extremely heavy load
onditions, the EveryWare appli
ation was able to sustainsuper
omputer performan
e levels over long periods of time. As su
h, the Ramsey Number Sear
happli
ation using EveryWare represents an example of a true Grid program - the
omputational\power" of all resour
es that were available to the appli
ation's user was assessed, managed, anddelivered to the appli
ation.In detailing our Computational Grid experien
es, this paper makes three important
ontribu-tions.� It demonstrates, quantitatively, the potential power of globally distributed Grid
omputing.� It details the real-world experien
es we gained using most of the relevant distributed
om-puting te
hnology available to us in the fall of 1998.� It des
ribes a programming model and methodology for writing Grid programs.We endeavor to measure, quantitatively, the degree to whi
h the Ramsey Number Sear
h appli-
ation was able to leverage a world-wide Computational Grid by
ombining disparate softwareinfrastru
tures. To use EveryWare e�e
tively, we adopted a programming methodology in whi
h
omputational
lients request program management fun
tions (s
heduling, persistent storage man-agement, event syn
hronization, et
.) from appli
ation-spe
i�
 distributed servi
es. We believethat this programming model will allow newly-developed Grid appli
ations to meet both theperforman
e and robustness needs of Grid users.In [12℄ (page 18), the authors de�ne the
riteria for the Computational Grid as the provisionof
onsistent, dependable, pervasive, and inexpensive
ompute power to the end user. We presentthe results of our study in terms of four quantitative metri
s:1. the sustained
omputational performan
e of the entire appli
ation,2. the di�eren
e between the performan
e variability exhibited by the underlying resour
esand the performan
e variability exhibited by the appli
ation itself,3. the overall duration of
ontinuous program exe
ution, and4. the number of di�erent resour
e types used by the appli
ation.Metri
 (1) des
ribes the degree to whi
h the EveryWare appli
ation was able to a
hieve \high-performan
e" using a Computational Grid. Appli
ation performan
e is a key motivating fa
torfor Computational Grids that di�erentiates it from other distributed
omputing e�orts. Metri
(2) demonstrates how well EveryWare was able to hide underlying performan
e varian
e fromthe appli
ation's user. Appli
ation performan
e must remain
onsistent and stable even when thedeliverable performan
e of individual resour
es varies or users will turn to other, lower performan
e3

exe
ution platforms. Metri
 (3) des
ribes the dependability and robustness of the EveryWareappli
ation to host and network failure, and metri
 (4) quanti�es the degree of pervasiveness wewere able to a
hieve with EveryWare. For the Computational Grid to be pervasive, it must beable to in
lude as many of the available resour
es and resour
e types as possible. We believe thatall four of these metri
s are ne
essary to des
ribe and quantify the degree to whi
h an appli
ationa
hieves the goals (des
ribed in [12℄) of Grid
omputing. In addition, the EveryWare appli
ationwe implemented at SC98 used no dedi
ated resour
es and required no privileged a

ess. Asthe EveryWare appli
ation was a guest on the systems it used, the expense asso
iated with itsexe
ution was limited to the
ost of a \guest" login on ea
h system. That is, it was inexpensiveto exe
ute sin
e it was able to harvest standard, guest-level priority
y
les.In the next se
tion we des
ribe Computational Grid
omputing and motivate the design ofEveryWare. In Se
tion 3 we detail the fun
tionality of the EveryWare toolkit and des
ribes theprogramming model it implements. Se
tion 4 dis
usses the Ramsey Number Sear
h appli
ationwe used in this experiment and in Se
tion 5, we detail the performan
e results we were ableto obtain in terms of the four metri
s des
ribed above. Se
tion 6 des
ribes the relationship ofEveryWare to related resear
h, and we
on
lude in Se
tion 7 with a des
ription of future resear
hdire
tions.2 Computing with Computational GridsThe goal of EveryWare is to enable the
onstru
tion of true Grid programs { ones whi
h draw
omputational power seamlessly from a dynami
ally
hanging resour
e pool. Sin
e the �eld isevolving, a single de�nition of \Computational Grid" has yet to be universally adopted 2. In thiswork, we will use the following de�nition.Computational Grid A heterogenous, shared, and federated
olle
tion of
omputational re-sour
es that are linked together by a network that supports interpro
ess
ommuni
ation.By \shared" we mean that it is impra
ti
al to dedi
ate all of the resour
es in a ComputationalGrid to a single appli
ation for an appre
iable amount of time. The term \federated" means thatea
h resour
e is expe
ted to have a lo
al resour
e manager, and no single overar
hing resour
emanagement poli
y
an be imposed on all resour
es.The resour
es housed at the National Partnership for Advan
ed Computational Infrastru
ture(NPACI) and National Computational S
ien
e Allian
e (NCSA)
onstitute examples of Computa-tional Grids under our de�nition. At these
enters, ma
hines and storage devi
es of various typesare internetworked. Ea
h resour
e is managed by its own resour
e manager (e.g. bat
h s
heduler,intera
tive priority me
hanism, et
.) and it is not generally possible to dedi
ate all resour
es (andthe network links that inter
onne
t them) at either site to a single appli
ation. Moreover, it ispossible to
ombine NPACI and NCSA resour
es together to form a larger Computational Grid,that has the same
hara
teristi
s. In this larger
ase, it is not even possible to mandate that auniform software infrastru
ture be present at all potentially useful exe
ution sites.2In [12℄, the authors de�ne Computational Grids in terms of a set of
riteria that must be met. We addressthese
riteria in our work, but prefer the de�nition provided herein for the purpose of illustration4

To e�e
tively exploit a Computational Grid, a program must be able to1. leverage
on
urren
y for exe
ution performan
e,2. manage the resour
e heterogeneity of the underlying system to the advantage of the program,3. run ubiquitously on all of the resour
es its user may legally a

ess, and4. tolerate dynami
 performan
e variation
aused by
ontention, resour
e failure, resour
e a
-quisition, and lo
al management poli
y.Other work has met these requirements to di�erent degrees. AppLeS [4℄ (Appli
ation LevelS
heduling) agents have been able to meet these requirements in environments where a singleinfrastru
ture is present and the s
heduling agent does not experien
e resour
e failure. An Ap-pLeS agent dynami
ally evaluates the performan
e that all available resour
es
an deliver to itsappli
ation, and
rafts a s
hedule that maximizes the appli
ation's overall exe
ution performan
e.EveryWare supports this prin
iple in environments where a single s
heduling agent
an a

ess allavailable resour
es without forming a performan
e bottlene
k (Requirement (4)), but also extendsit to wide-area lossy environments in whi
h several infrastru
tures may be available. Note alsothat the AppLeS agent is a spe
ialized appli
ation
omponent that performs a single appli
ationmanagement fun
tion: s
heduling. EveryWare allows an appli
ation programmer to generalizethis notion to other appli
ation management fun
tions in the form of appli
ation-spe
i�
 servi
es.Using the EveryWare toolkit, these servi
es
an be implemented for a variety of Grid infrastru
-tures (Requirement (3)) to meet the performan
e and robustness needs for widely distributed Gridappli
ations. The MPI (Message Passing Interfa
e) [10℄, and PVM (Parallel Virtual Ma
hine) [17℄implementations for networked systems allow distributed
lusters of ma
hines to programmed asa single, \virtual" parallel ma
hine (meeting Requirement (1)). In addition, portable implemen-tations that do not require privileged (super-user) a

ess for installation or exe
ution [23, 17℄ areavailable (Requirement (3)). However, they do not manage resour
e heterogeneity on behalf theprogram nor do they expose it to the programmer so that it may be managed expli
itly. Grid
omputing systems su
h as Globus [11℄, Legion [22℄, Condor [41℄, and HPC-Java [24℄ in
ludesupport for resour
e heterogeneity as well, but they are not available ubiquitously (Requirement(3)). As they gain in popularity, we anti
ipate these systems to be more widely installed andmaintained. However we note that their level of sophisti
ation makes porting them to new andexperimental environments labor intensive. As new ar
hite
tures be
ome available, it is importantto be able to in
orporate them into a Grid qui
kly. Dynami
ally s
hedulable programs that are
apable of tolerating resour
e performan
e
u
tuations have been developed by the Autopilot [38℄,Winner [2℄ and MARS [16℄ groups (Requirement (4)). Most of these systems rely on a
entralizeds
heduler for ea
h appli
ation, however, making, them sensitive to network and host failure. Ifthe s
heduler fails or be
omes dis
onne
ted from the rest of the appli
ation, the program is dis-abled. In addition, having a single s
heduling agent impedes s
alability as
ommuni
ation withthe s
heduler be
omes a performan
e bottlene
k.EveryWare is designed as a portable \toolkit" for linking together program
omponents run-ning in di�erent environments. Individual program
omponents may use what ever lo
ally avail-able infrastru
ture is present. In addition, we provide a low-level \bare-bones" implementation5

that is designed to use only basi
 operating system fun
tionality. In this way, an EveryWareappli
ation does not assume any one, single infrastru
ture or operating system will be a

essiblefrom every resour
e. Borrowing from the AppLeS [4℄ proje
t, EveryWare appli
ations
hara
ter-ize all resour
es in terms of their quanti�able impa
t on appli
ation performan
e. In this way,heterogeneity is expressed as the di�eren
e in deliverable performan
e to ea
h appli
ation. TheEveryWare toolkit in
ludes support for pro
ess repli
ation and performan
e fore
asting so that anEveryWare appli
ation
an adapt to dynami
ally
hanging resour
e
onditions. We leverage theNetwork Weather Servi
e [46, 45℄ fore
asting fa
ilities to provide both heterogeneity managementand adaptive predi
tion fun
tionalities.3 The EveryWare ToolkitTo realize the performan
e o�ered by the Grid
omputing paradigm, a program must be ubiq-uitous, adaptive, robust, and s
alable. Ubiquity is required be
ause the resour
es are federated.The owners of the resour
es allow them to parti
ipate in the Grid, but maintain ultimate au-thority over their use. As su
h, the resour
e pool may
hange without noti
e. Resour
es maybe added, removed, repla
ed, or upgraded by their owners. In addition, it is diÆ
ult to ensurethat all resour
es owners will install and maintain a single, unifying Grid software infrastru
ture.If the program is not
ompatible with all potentially available Grid infrastru
tures, operatingsystems, and hardware ar
hite
tures it will not be able to draw some of the \power" that theGrid
an provide. Adaptivity is required to ensure performan
e. If the resour
e pool is
hanging,or the performan
e of the resour
es are
u
tuating due to
ontention, the program must be ableto
hoose the most pro�table resour
e
ombination from the resour
es that are available at anygiven time. Similarly, if resour
es be
ome unavailable due to owner-initiated re
lamation, ex
es-sive load, or failure, the program must be able to make progress. S
alability, in a Grid setting,allows the program to use resour
es eÆ
iently. The greater degree to whi
h the program
an bedispersed, the greater the
exibility the Grid system has in being able to meet the program'sperforman
e needs.The EveryWare toolkit is
omposed of three separate software
omponents: a portable linguafran
a that allows pro
esses using di�erent infrastru
tures and operating systems to
ommuni-
ate, a set of performan
e fore
asting servi
es and libraries that enable an appli
ation to makeshort-term resour
e and appli
ation performan
e predi
tions in near-real time, and a distributedstate ex
hange servi
e that allows appli
ation
omponents to manage and syn
hronize programstate in a dynami
 environment. Figure 1 depi
ts the relationship between these
omponents.Appli
ation
omponents that are written to use di�erent Grid infrastru
ture features
an
om-muni
ate amongst themselves, with the EveryWare state ex
hange servi
e, and with other multi-infrastru
ture servi
es su
h as the Network Weather Servi
e [46℄ using the lingua fran
a. Dynami
fore
asting libraries (small triangles in the �gure)
an be loaded with appli
ation
omponents di-re
tly. These libraries, in
onjun
tion with the performan
e fore
asts provided by the NWS,permit the program to anti
ipate performan
e
hanges and adapt exe
ution a

ordingly. Thedistributed state-ex
hange servi
es provide a me
hanism for syn
hronizing and and repli
atingimportant program state to ensure robustness and s
alability.6

Grid Infrastructure
Grid Infrastructure

NWS
Forecasting

Service

EveryWare
State-Exchange

Service

GG

GG

GG

GG

lingua franca

adaptive
forecasting

libraries

Gossip
process

application
component

application
component

Figure 1: EveryWare ComponentsThe toolkit we have implemented is stri
tly a prototype designed to expose the relevant pro-gramming issues. As su
h, we do not des
ribe the spe
i�
 APIs supported by ea
h
omponent(we expe
t them to
hange dramati
ally in our future implementations). Rather, in this se
tion,we motivate and des
ribe the fun
tionality of ea
h EveryWare
omponent and dis
uss our over-all implementation strategy. Our intention is to use the prototype �rst to implement a varietyof appli
ations so that we may determine what fun
tionality is required, and then to provide a\user-friendly" implementation of EveryWare for publi
 release.3.1 Lingua Fran
aWe implemented the lingua fran
a using C and TCP/IP so
kets. To ensure portability, we triedto limit the implementation to use only the most \vanilla" features of these two te
hnologies. Forexample, we did not use non-blo
king so
ket I/O nor did we rely upon keep-alive signals to informthe system about end-to-end
ommuni
ation failure. In our experien
e, the semanti
s asso
iatedwith these two useful features are vendor, and in some
ases, operating system release-level spe
i�
.We tried to avoid
ontrolling the portability of EveryWare through C prepro
essor
ags wheneverpossible so that the system
ould be ported qui
kly to new ar
hite
tures and environments.7

Similarly, we
hose not to rely upon XDR [31℄ for data type
onversion for fear that it wouldnot be readily available in all environments. Another important de
ision was to stri
tly limit ouruse of signals. Unix signal semanti
s are somewhat detailed and we did not want to hinder theportability to non-Unix environments (e.g. Java and Window NT). More immediately, many ofthe
urrently available Grid
ommuni
ation infrastru
tures su
h as Legion [22℄ and Nexus [14℄ takeover the user-level signal me
hanisms to fa
ilitate message delivery. Lastly, we avoided the use ofthreads throughout the ar
hite
ture as di�eren
es in thread semanti
s and thread implementationquality has been a sour
e of in
ompatibility in many of our previous Grid
omputing e�orts.Above the so
ket level, we implemented rudimentary pa
ket semanti
s to enable messagetyping and delineate re
ord boundaries within ea
h stream-oriented TCP
ommuni
ation. Ourapproa
h takes its inspiration from the publi
ly available implementation of netperf [27℄. How-ever, the a
tual implementation of the messaging layer
omes dire
tly from the
urrent NetworkWeather Servi
e (NWS) [46℄, where it has been stress-tested in a variety of Grid
omputingenvironments.3.2 Fore
asting Servi
esWe also borrowed and enhan
ed the NWS fore
asting modules for EveryWare. To make perfor-man
e fore
asts, the NWS applies a set of light-weight time series fore
asting methods and dy-nami
ally
hooses the te
hnique that yields the greatest fore
asting a

ura
y over time (see [45℄for a
omplete des
ription of the NWS fore
asting methodology). The NWS
olle
ts performan
emeasurements from Grid
omputing resour
es (CPUs, networks, et
.) and uses these fore
astingte
hniques to predi
t short-term resour
e availability. For EveryWare, however, we needed to beable to predi
t the time required to perform arbitrary but repetitive program events. Our strategywas to manually instrument the various EveryWare
omponents and appli
ation modules withtiming primitives, and then pass the timing information to the fore
asting modules to make pre-di
tions. We refer to this pro
ess as dynami
 ben
hmarking as it uses ben
hmark te
hniques (e.g.timed program events) perturbed by ambient load
onditions to make performan
e predi
tions.For example, we used the fore
asting modules and dynami
 ben
hmarking to predi
t theresponse time of ea
h EveryWare state-ex
hange server. We instrumented ea
h server to re
ordthe time required to get a response to a request made to ea
h of the other servers, for ea
h messagetype. To do so, we identi�ed ea
h pla
e in the server
ode where a request-response pair o

urred,and tagged ea
h of these \events" with an identi�er
onsisting of address where the request wasservi
ed, and the message type of the request. By fore
asting how qui
kly a server would respondto ea
h type of message, we were able to dynami
ally adjust the message time-out interval toa

ount for ambient network and CPU load
onditions. This dynami
 time-out dis
overy proved
ru
ial to overall program stability. Using the alternative of stati
ally determined time-outs, thesystem frequently misjudged the availability (or la
k thereof) of the di�erent EveryWare state-management servers
ausing needless retries and dynami
 re
on�gurations (see subse
tion 3.3below for a dis
ussion of EveryWare state-ex
hange fun
tionality).In general, the fore
asting servi
es and dynami
 ben
hmarking allow both the EveryWaretoolkit, and the appli
ation using it, to dynami
ally adapt itself to
hanging load and perfor-man
e response
onditions. We trimmed down and adapted the NWS fore
asting subsystem so8

that it may be loaded as a library with appli
ation and EveryWare
ode. We also added a tag-ging methodology so that arbitrary program events
ould be identi�ed and ben
hmarked. Weused standard timing me
hanisms available on ea
h system to generate time stamps and eventtimings. However, we anti
ipate that more sophisti
ated pro�ling systems su
h as Paradyn [32℄and Pablo [9℄
ould be in
orporated to yield higher-�delity measurements.3.3 Distributed State Ex
hange Servi
eTo fun
tion in the
urrent Grid
omputing environments, a program must be robust with respe
tto resour
e performan
e failure while at the same time able to leverage a variety of di�erenttarget ar
hite
tures. EveryWare provides a distributed state ex
hange servi
e that
an be used in
onjun
tion with appli
ation-level
he
kpointing to ensure robustness. EveryWare state-ex
hangeservers (
alled Gossips) allow appli
ation pro
esses to register for state syn
hronization. Thesyn
hronizing appli
ation
omponent must register a
onta
t address, a unique message type,and a fun
tion that allows a Gossip to
ompare the \freshness" of two di�erent messages havingthe same type. All appli
ation
omponents wishing to use Gossip servi
e must also export astate-update method for ea
h message type they wish to syn
hronize.On
e registered, an appli
ation
omponent periodi
ally re
eives a request from a Gossip pro-
ess to send a fresh
opy of its
urrent state (identi�ed by message type). The Gossip
omparesthat state (using the previously registered
omparator fun
tion) with the latest state messagere
eived from other appli
ation
omponents. When the Gossip dete
ts that a parti
ular messageis out-of-date, it sends a fresh state update to the appli
ation
omponent that originated theout-of-date message.To allow the system to s
ale, we rely on three assumptions. First, that the Gossip pro
esses
ooperate as a distributed servi
e. Se
ond, that the number of appli
ation
omponents wishingto syn
hronize is small. Lastly, that the granularity of syn
hronization events is relatively
oarse.Cooperation between Gossip pro
esses is required so that the workload asso
iated with the syn-
hronization proto
ol may be evenly distributed. Gossips dynami
ally partition the responsibilityfor querying and updating appli
ation
omponents amongst themselves. For the SC98 experiment,we stationed several Gossips at well-known addresses around the
ountry. When an appli
ation
omponent registered, it was assigned a responsible Gossip within the pool of available Gossipswhose job it was to keep that
omponent syn
hronized.In addition, we allowed the Gossip pool to
u
tuate. New Gossip pro
esses registered them-selves with one of the well-known sites and were announ
ed to all other fun
tioning Gossips.Within the Gossip pool, we used the NWS
lique proto
ol [46℄ (a token-passing proto
ol basedon leader-ele
tion [15, 1℄) to manage network partitioning and Gossip failure. The
lique proto
olallows a
lique of pro
esses to dynami
ally partition itself into sub
liques (due to network or hostfailure) and then merge when
onditions permit. The EveryWare Gossip pool uses this proto
olto re
on�gure itself and rebalan
e the syn
hronization load dynami
ally in response to
hanging
onditions.The assumptions about syn
hronization
ount and granularity are more restri
tive. Be
auseea
h Gossip does a pair-wise
omparison of appli
ation
omponent state, N2
omparisons arerequired for N appli
ation
omponents. Moreover, if the overhead asso
iated with state syn
hro-9

nization
annot be amortized by useful
omputation, performan
e will su�er. We believe thatthe prototype state-ex
hange proto
ol
an be substantially optimized, (or repla
ed by a more so-phisti
ated me
hanism) and
areful engineering
an redu
e the
ost of state syn
hronization overwhat we were able to a
hieve. However, we hasten to a
knowledge that not all appli
ations orappli
ation
lasses will be able to use EveryWare e�e
tively for Grid
omputation. Indeed, it is aninteresting and open resear
h question as to whether large-s
ale, tightly syn
hronized appli
ationimplementations will be able to extra
t performan
e from Computational Grids, parti
ularly if theGrid resour
e performan
e
u
tuates as mu
h as we have typi
ally observed [47, 45℄. EveryWaredoes not allow any appli
ation to be
ome an e�e
tive Grid appli
ation. Rather, it fa
ilitatesthe deployment of appli
ations whose
hara
teristi
s are Grid suitable so that they may draw
omputational power ubiquitously from a set of
u
tuating resour
es.Similarly, the
onsisten
y model required by the appli
ation program dramati
ally a�e
tsits suitability as an EveryWare appli
ation, in parti
ular, and as a Grid appli
ation in general.The development of a high-performan
e state repli
ation fa
ilities that implement tight bounds on
onsisten
y is an a
tive area of resear
h. EveryWare does not attempt to solve the distributed state
onsisten
y problem for all
onsisten
y models. Rather, it spe
i�es the in
lusion of repli
ation andsyn
hronization fa
ilities as a
onstituent servi
e. For the appli
ation that des
ribe in the nextSe
tion (Se
tion 4), we implemented a loosely
onsistent servi
e based on the Gossip proto
ol.Other, more tightly syn
hronized servi
es
an be in
orporated, ea
h with its own performan
e
hara
teristi
s. We note, however, that appli
ations having tight
onsisten
y
onstraints are, ingeneral, diÆ
ult to distribute while maintaining a

eptable performan
e levels. EveryWare is notintended to
hange the suitability of these programs with respe
t to Grid
omputing, but ratherenables their implementation and deployment at what ever performan
e level they
an attain.3.4 The EveryWare Programming ModelAn EveryWare appli
ation is stru
tured as a set of
omputational
lients that request run-timemanagement servi
es from a set of appli
ation-spe
i�
 servers. Figure 2 depi
ts the stru
tureof an appli
ation. Appli
ation
lients (denoted \A" in the �gure)
an exe
ute in a number ofdi�erent environments, su
h as NetSolve [6℄, Globus [11℄, Legion [22℄, Condor [41℄, et
. They
ommuni
ate with appli
ation-spe
i�
 s
heduling servers (marked \S" in the �gure) to re
eives
heduling dire
tives dynami
ally. Persistent state managers tuned for the appli
ation (denoted by\P" in the �gure)
ontrol and prote
t any program state that must survive host or network failure.Appli
ation performan
e logging servers (marked \L") allow arbitrary messages to be logged bythe appli
ation. Finally, all appli
ation
omponents use the EveryWare Gossip servi
e (marked\G") to syn
hronize state. To anti
ipate load
hanges, the various appli
ation
omponents
onsultthe Network Weather Servi
e (NWS) | a distributed dynami
 performan
e fore
asting servi
efor Computational Grids [46, 45, 35℄.This appli
ation ar
hite
ture o�ers several advantages. First, the overall program
an be
onstru
ted in
rementally. Sin
e the EveryWare toolkit is robust, new
lients and servers
an beadded, old ones removed or improved, et
. while the appli
ation itself
ontinues to exe
ute. Sin
ewe do not have to restart the appli
ation every time we wish to add a new program
omponent,we
an improve and evolve the running appli
ation dynami
ally. Another advantage is that it10

G

G

G
G

S

S

S

A
A

A

A

A

A A A A

A
A

A

S

A

A

A

A

Globus

Netsolve Legion

Condo r

scheduler

gossip

NWS

application tasks P
P

P

L

persistent state
manager

logging
 server

Figure 2: EveryWare Appli
ation Stru
tureallows us to implement infrastru
ture-spe
i�

lients that
an get the best possible performan
eby running in \native" mode. Sin
e the
lients need only speak the proto
ol required by ea
hserver, we do not need to put a
omplete software veneer between the
omputational
ode andthe native infrastru
ture.Note that the EveryWare programming model fundamentally di�erent from that used bymost pro
edure oriented Grid infrastru
tures su
h as NetSolve [6℄, Legion [22℄, and CORBA [36℄.These infrastru
tures typi
ally support appli
ations stru
tured as a single
ontrolling
lient thatmakes method or remote-pro
edure
alls to remote
omputational servers (or remote obje
ts, ifthe infrastru
ture is obje
t-oriented). Under the EveryWare programming model,
omputationis
entered at the
lients and program
ontrol is
oordinated by a set of
ooperating appli
ation-spe
i�
 servers. This novel appli
ation stru
ture allows EveryWare appli
ations is meet the \
on-sistent" and \dependable" qualitative
riteria des
ribed in [12℄ by o�ering greater s
alability androbustness than a single-
lient approa
h.
11

4 Example Appli
ation: Ramsey Number Sear
hThe appli
ation we
hose to implement to test the e�e
tiveness of EveryWare attempts to improvethe known bounds of
lassi
al Ramsey numbers. The nth
lassi
al or symmetri
 Ramsey numberRn = Rn;n is the smallest number k su
h that any
omplete two-
olored graph on k verti
es must
ontain a
omplete one-
olored subgraph on n of its verti
es. It
an be proven in a few minutesthat R3 = 6; it is already a non-trivial result that R4 = 18, and the exa
t values of higher Rn areunknown.Observe that to show that a
ertain number j is a lower bound for Rn, one might try toprodu
e a parti
ular two-
olored
omplete graph on (j � 1) verti
es that has no one-
olored
omplete subgraph on any n of its verti
es. We will refer to su
h a graph as a \
ounter-example"for the nt h Ramsey number. Our goal was to �nd new lower bounds for Ramsey numbers by�nding
ounter-examples.This appli
ation was espe
ially attra
tive as a �rst test of EveryWare be
ause of its loosesyn
hronization requirements and its resistan
e to exhaustive sear
h. For example, if one wishesto �nd a new lower bound for R5, one must sear
h in the spa
e of
omplete two-
olored graphson 43 verti
es, sin
e the known lower bound is
urrently 43 ([37℄). Sin
e su
h a graph has�432 � = 903 edges, there are 2903 > 10270 di�erent two-
olored graphs on 43 verti
es. Even if one
ould examine 1012
on�gurations every se
ond, an exhaustive sear
h would take over 10250 years.Therefore, we must use heuristi
 te
hniques to
ontrol the sear
h pro
ess. Note that this
ombinatori

omplexity makes exhaustive sear
h te
hniques like those employed in
ryptographi
fa
toring [28, 5℄ ine�e
tive. Rather, the pro
ess of
ounter-example identi�
ation is related todistributed \bran
h-and-bound" state-spa
e sear
hing.4.1 Appli
ation ClientsOur goal was to
reate a dynami
ally
hanging population of
omputational pro
esses exe
utingdi�erent heuristi
s. Heuristi
 design is an a
tive area of resear
h in
ombinatori
s [37℄. As su
h,we designed the appli
ation to be able to in
orporate di�erent heuristi
 algorithms
on
urrently,ea
h of whi
h implemented as a single appli
ation
lient. The
lients would then use the linguafran
a to
ommuni
ate with a set of appli
ation servers to re
eive s
heduling dire
tives and statemanagement servi
es.The heuristi
s that we used all involved dire
ted sear
h, by whi
h we mean the following: Onthe sear
h spa
e of two-
olored
omplete graphs of a parti
ular size, there is a numeri
al \s
ore"whi
h assigns to ea
h graph the degree to whi
h it fails to be a
ounter-example in some suitablesense. There is also a set of manipulations
alled \moves" (transformations) that one
an performon a parti
ular graph to produ
e other graphs. The algorithm, then, is roughly to start with anarbitrary graph and perform a sequen
e of moves with a view toward lowering the s
ore by ea
hsu

essive move. Note that in any su
h heuristi
, it is ne
essary to provide some possibility ofmaking a move whi
h worsens the s
ore; otherwise, there is the danger that the sear
h will gettrapped at a lo
al minimum whi
h is not a global minimum.In our
ase, the s
ore assigned to a two-
olored graph is simply the number of \violations," or
omplete one-
olored subgraphs on n verti
es that it possesses; thus a graph is a
ounter-example12

if and only if its s
ore is 0.Various algorithms employed used slightly di�erent de�nitions for their moves. The simplestand most
ommon was to
hange the
olor of a single edge. Thus, for a graph on 43 verti
espossessing 903 edges, there are 903 possible moves that
an be made from any given graph. Inother algorithms, a move
omprised
hanging the
olors of 3 edges. Still other algorithms workedin restri
ted sear
h spa
es whi
h partitioned the edges and only
onsidered those graphs for whi
hall the edges in any given partition were the same
olor; in su
h a
ase a move
omprised
hangingthe
olors of all the edges within a parti
ular partition.The two
lasses of sear
h heuristi
s employed were those based on tabu sear
h [37℄ and sim-ulated annealing. In a tabu sear
h, the algorithm keeps a list (the tabu list) of a �xed lengthre
ording the most re
ent moves that have been made. From a given
on�guration, it examinesall moves not in the tabu list, �nds the one that gives the lowest s
ore, and makes and re
ordsthis move. The tabu list is in pla
e to avoid loops; in pra
ti
e, some element of randomness isne
essary in order to avoid large loops. We employed two variants of the tabu sear
h, namelyone that allowed a parti
ular move to be made no more than twi
e on the list and another thatallowed a parti
ular move onto the list if its last appearan
e was with a di�erent prede
essor.The simulated annealing heuristi
 mimi
s the physi
al behavior of a mass as it undergoes
ooling; in this
ase, the s
ore of a
on�guration is analogous to the temperature of the mass.Generally, from a given
on�guration the algorithm
hooses a move at random and makes themove if it results in a lower s
ore; otherwise, it reje
ts the move and
hooses another at randomfrom the same
on�guration. However, the algorithm will a

ept a random move, regardless ofthe resulting s
ore, with a small probability that de
reases as the s
ore drops; this randomnesshas the e�e
t of keeping the algorithm from getting trapped in a lo
al minimum.4.1.1 S
heduling Servi
eTo s
hedule the EveryWare Ramsey Number appli
ation, we use a
olle
tion of
ooperating, butindependent s
heduling servers to
ontrol appli
ation exe
ution dynami
ally. Ea
h
omputational
lient periodi
ally
onta
ts a s
heduling server and reports its algorithm type, the IP address ofthe ma
hine on whi
h it is running, the progress it has made sin
e it last made a s
hedulingde
ision, and the amount of time that has elapsed sin
e its last
onta
t. Servers are programmedto issue di�erent
ontrol dire
tives based on the type of algorithm the
lient is exe
uting, howmu
h progress the
lient has made, and the most re
ent
omputational rate of the
lient.In addition, the s
heduling servers are responsible for migrating work. Clients report thenumber of mono
hromati

liques in the graph they are testing when they
he
k in. If the numberis low the server will ask the
lient for a
opy of the graph it is
urrently
onsidering. If it ishigh, the server sends the
lient a better graph and dire
ts it to
ontinue from a di�erent point inthe sear
h spa
e. The
lients are programmed to randomize their starting point in di�erent waysto prevent the system from dwelling irrevo
ably in a lo
al minimum. In addition, the thresholdsfor identifying a \good" graph (one with a low mono
hromati

lique
ount), a bad one, and thenumber of times a good one
an be migrated to serve as a new starting point in the sear
h spa
e,are tunable parameters.The s
hedulers also make de
isions based on dynami
 performan
e fore
asting information. If13

a s
heduler predi
ts that a
lient will be slow based on previous performan
e, it may
hoose tomigrate that
lient's
urrent workload to a ma
hine that it predi
ts will be faster. Rather thanbasing that predi
tion solely on the last performan
e measurement for ea
h
lient, the s
heduleruses the NWS lightweight fore
asting fa
ilities to make its predi
tions. Note that this methodologyis inspired by some of our previous work in building appli
ation-level s
hedulers (AppLeS) [39, 4℄.AppLeS is an agent-based approa
h in whi
h ea
h appli
ation is �tted with a
ustomized ap-pli
ation s
heduler that dynami
ally manages its exe
ution. For the Ramsey Number Sear
happli
ation, however, a single s
heduling agent would have been insuÆ
ient to
ontrol the entireappli
ation, both be
ause it would limit the s
alability of the appli
ation and be
ause the agent
onstitutes a single-point-of-failure. We designed an appli
ation-spe
i�
 s
heduling servi
e thatforms organized and robust, but dynami
ally
hanging groups of
ooperating pro
esses that
anmake progress if and when the network partitions. As su
h, we term this type of s
hedulingOrganized Robust AutoNomous Group S
heduling (ORANGS). ORANGS and AppLeS are, in-deed, similar in that they use NWS performan
e fore
asts to make appli
ation-spe
i�
 s
hedulingde
isions. However, the distributed and robust nature of the ORANGS servi
e made it a moreappropriate
hoi
e for the Ramsey Number Sear
h appli
ation.Noti
e that, for the Ramsey Number sear
h appli
ation, the s
heduling servi
e
onsiders theuse of all available resour
es. When an appli
ation
lient
he
ks in with a s
heduling server, theserver evaluates the
lient in terms of the performan
e it will be able to deliver to the appli
ation(using the fore
asting servi
es) and de
ides on the amount and type of work that
lient shouldre
eive. In all
ases, the Ramsey Number sear
h
lients re
eive some amount of work to perform.For other appli
ations, however, the s
heduling servi
e may de
ide that the use of a parti
ularresour
e will hinder rather than aid performan
e and, hen
e, should be ex
luded. Therefore, whileresour
e sele
tion is not an issue for Ramsey Number sear
h, the EveryWare programming modelsupports its implementation.S
hedulers within the s
heduling servi
e
ommuni
ate non-persistent state amongst themselvesvia theGossip servi
e. In parti
ular, the IP addresses and port numbers of all servers are
ir
ulatedso that new server instan
es
an be added dynami
ally. Clients are furnished with a list of a
tiveservers when they make
onta
t so that they
an
onta
t alternates in the event of a failed server
ommuni
ation. Similarly, s
heduling servers learn of di�erent Gossip servers, persistent statemanagers, and logging servers via Gossip updates.4.1.2 Persistent State Management Servi
eTo improve robustness, we identify three
lasses of program state within the appli
ation: lo
al,volatile-but-repli
ated, and persistent. Lo
al state is state that
an be lost by the appli
ation dueto ma
hine or network failure (e.g. lo
al variables within ea
h
omputational
lient). Volatile-but-repli
ated state is passed between pro
esses as a result of Gossip updates, but it is not writtento persistent storage. For example, the up-to-date list of a
tive servers is volatile-but-repli
atedstate. Persistent state must survive the loss of all a
tive pro
esses in the appli
ation. The largest
ounter example that the appli
ation has yet to �nd, for example, is
he
k-pointed as persistentstate.We use a separate persistent state servi
e for three reasons. First, we want to limit the size14

of the �le system footprint left by the appli
ation. Many sites restri
t the amount of disk storagea guest user may a
quire. By separating the persistent storage fun
tionality, we are able todynami
ally s
hedule the appli
ation's disk usage a

ording to available
apa
ities.Se
ondly, we want to ensure that persistent state is ultimately stored in \trusted" environ-ments. For example, we maintained a persistent state server at the San Diego Super
omputerCenter be
ause we were assured of regular tape ba
k-ups and industrial quality �le system se
urity.Lastly, we are able to implement run-time sanity
he
ks on all persistent state a

esses. Ifa pro
ess attempts to store a
ounter example, for example, the persistent state manager �rst
he
ks to make sure the stored obje
t is, indeed, a Ramsey
ounter example for the given problemsize.To implement this fun
tionality, all persistent state obje
ts must be typed. For ea
h persistenttype used in the program, the state manager needs a set of sanity-
he
ks (performed when anobje
t is a

essed) and a
omparator operator so that the state may be syn
hronized by the Gossipservi
e. We a
knowledge that developing this fun
tionality for all Grid appli
ations may not bepossible. However, we note that many Computational Grid infrastru
tures
urrently supportme
hanisms that
an be used to implement the state management fun
tionality we require forRamsey Number sear
h. For example, the sanity
he
ks performed by the state manager wereimplemented, primarily, to prevent errant or mali
ious pro
esses from damaging program state.Instead, Globus authenti
ation me
hanisms [13℄
ould be used to provide a

ess
ontrol so thatonly trusted pro
esses may modify persistent state. Similarly, the Legion
lass managementsystem [29℄ tra
ks obje
t instan
es in a way that
ould be used to identify stale state. We wantedto ensure that all appli
ation
omponents (
omputational
lients and appli
ation-spe
i�
 servers)would be portable to any environment so we did not
hoose to rest any of the appli
ation'sfun
tionality on a parti
ular infrastru
ture. Future versions of the Ramsey Sear
h appli
ationmay relax this restri
tion to further bene�t from maturing Computational Grid te
hnologies.4.1.3 Logging Servi
eTo tra
k the performan
e of the appli
ation dynami
ally, we implemented a distributed loggingservi
e. S
heduling servers base their de
isions, in part, on performan
e information they re
eivefrom ea
h
omputational
lient. Before the information is dis
arded, it is forwarded to a loggingserver so that it
an be re
orded. Having a separate servi
e, again, allows us to limit and
ontrolthe storage load generated by the appli
ation. For example, the National Partnership for Ad-van
ed Computational Infrastru
ture (NPACI) loaned our group a pair of �le servers so that we
ould
apture a performan
e log that spanned the time of the
onferen
e.As with the persistent state managers and the s
heduling servers, the logging servers registerthemselves with the Gossip servi
e. Any appli
ation pro
ess wishing to log performan
e informa-tion learns of a logging server through the server list that is
ir
ulated. The logging servers donot register a state syn
hronization fun
tion, however. They use the Gossip servi
e only to jointhe running appli
ation.
15

5 ResultsTo test the eÆ
a
y of our approa
h, we deployed the Ramsey Number sear
h appli
ation on aglobally distributed set of resour
es during SC98. As part of the test, we entered EveryWare in theHigh-performan
e Computing Challenge [25℄ (an annual
ompetition held during the
onferen
e)as we believed that the
u
tuating loads generated by our
ompetitors would test the
apabilitiesof our system vigorously.We instrumented ea
h appli
ation
lient to maintain a running
ount of the
omputationaloperations it performs so that we
ould monitor the performan
e of Ramsey Number sear
happli
ation. The bulk of the work in ea
h of the heuristi
s (see Se
tion 4) are integer test andarithmeti
 instru
tions. Sin
e ea
h heuristi
 has an exe
ution pro�le that depends largely on thepoint in the sear
h spa
e where it is sear
hing, we were unable to rely on stati
 instru
tion
ountestimates. Instead, we inserted
ounters into ea
h
lient after every integer test and arithmeti
operation. Sin
e the ratio of instrumentation
ode to
omputational
ode is essentially one-to-one (one integer in
rement for every integer operation) the performan
e estimates we report are
onservative. Moreover, we do not in
lude any instrumentation instru
tions in the operation
ounts nor do we
ount the instru
tions in the
lient interfa
e to EveryWare - only \useful" workdelivered to the appli
ation is
ounted. Similarly, we in
lude all
ommuni
ation delays in
urredby the
lients in the elapsed timings. The
omputational rates we report in
lude all of theoverheads imposed by our software ar
hite
ture and the ambient loading
onditions experien
edby the program during SC98. That is, all of the results we report in this se
tion are
onservativeestimates of the sustained performan
e delivered to the appli
ation during the experiment.5.1 Sustained Exe
ution Performan
eAs a Computational Grid experiment, we wanted to determine if we
ould obtain high appli
ationperforman
e levels from widely distributed, heavily used, and non-dedi
ated
omputational re-sour
es. In Figure 3, we show the sustained exe
ution performan
e of the entire appli
ation duringthe twelve-hour period in
luding and immediately pre
eding the judging of our High-performan
eComputing Challenge entry at at SC98 on November 12, 19983. The x � axis shows the timeof day, Pa
i�
 Standard Time 4, and the y � axis shows the average
omputational rate overa �ve-minute time period. The highest rate that the appli
ation was able to sustain was 2.39billion integer operations between 09:51 and 09:56 during a test an hour before the
ompetition(right-hand side of the graph). The judging for the
ompetition itself (whi
h required a \live"demonstration) began at 11:00. As several
ompeting proje
ts were being judged simultaneously,and many of our
ompetitors were using the same resour
es we were using, the networks interlink-ing the resour
es suddenly experien
ed a sharp load in
rease. Moreover, many of the
ompetingproje
ts required dedi
ated a

ess for their demonstration. Sin
e we deliberately did not requestdedi
ated a

ess, our appli
ation suddenly lost
omputational power (as resour
es we
laimed by3We demonstrated the system for a panel of judges between 11:00 AM and 11:30 AM PST.4SC98 was held in Orlando, Florida whi
h is in the Eastern time zone. Our logging and report fa
ilities, primarilylo
ated at stable sites on the west
oast, used Pa
i�
 Standard Time. As su
h, we report all time-of-day values inPST. 16

Program Performance
5 Minute Averages

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

23
:3

6:
56

0:
36

:5
6

1:
36

:5
6

2:
36

:5
6

3:
36

:5
6

4:
36

:5
6

5:
36

:5
6

6:
36

:5
6

7:
36

:5
6

8:
36

:5
6

9:
36

:5
6

10
:3

6:
56

11
:3

6:
56

Time of Day

In
te

g
e
r

O
p
s.

 P
e
r

S
e
co

n
d

Figure 3: Appli
ation Speedother appli
ations) as the
ommuni
ation overheads rose (due to in
reased
ommuni
ation load).The sustained performan
e dropped to 1.1 billion operations as a result. The appli
ation was ableto adapt to the performan
e loss and reorganize itself so that by 11:10 (when the demonstrationa
tually took pla
e), the sustained performan
e had
limbed to 2.0 billion operations per se
ond.This performan
e pro�le
learly demonstrates the potential power of Computational Grid
omputing. With non-dedi
ated a

ess, under extremely heavy load
onditions, the EveryWareappli
ation was able to sustain super
omputer performan
e levels.In Figure 4, we show the number of hosts used during the same time period. In this �gure,ea
h data point represents the number hosts
he
king in during the
orresponding �ve-minuteperiod5. Note that the maximum host
ount (266) o

urs at 23:51 as we ran a large s
ale testof the system the night before the
ompetition. However, the maximum host
ount does not
orrespond to the maximum sustained rate. While we were able to in
orporate many new andpowerful resour
es on the morning of the
ompetition, we lost some of the workstations that wereloaned to us by Condor during the night. Also, these host
ount numbers are based on unique IPaddresses (and not pro
ess id) making them very
onservative. Sin
e some systems use the same5The maximum time between
he
k-ins for any
omputational
lient was set to �ve minutes during the test.17

Host Count
5 Minute Intervals

0

50

100

150

200

250

300

23
:3

6:
56

0:
36

:5
6

1:
36

:5
6

2:
36

:5
6

3:
36

:5
6

4:
36

:5
6

5:
36

:5
6

6:
36

:5
6

7:
36

:5
6

8:
36

:5
6

9:
36

:5
6

10
:3

6:
56

11
:3

1:
56

Time of Day

H
o
st

s

Figure 4: Appli
ation Host CountIP address for all hosts (e.g. the NT Super
luster) the a
tual host population was mu
h higher.However, we
ould not distinguish between multiple pro
esses on di�erent hosts with the sameIP address, and multiple pro
ess restarts due to evi
tion for the
ombined host population. As aresult, we report the more
onservative estimates.5.2 Performan
e ResponseWe also wanted to measure the smoothness of the performan
e response the appli
ation was able toobtain from the Computational Grid. For the Grid vision to be implemented, an appli
ation mustbe able to draw \power" uniformly from the Computational Grid as a whole despite
u
tuationsand variability in the performan
e of the
onstituent resour
es. In Figures 5 and 6 we
omparethe overall performan
e response obtained by the appli
ation (graph (
) in both �gures) withthe performan
e and resour
e availability provided by ea
h infrastru
ture. Figure 5 makes this
omparison on a linear s
ale and Figure 6 shows the same data on a log s
ale so that the widerange of performan
e variability may be observed. In Figures 5a and 6a we detail the number of
y
les we were able to su

essfully deliver from ea
h Grid infrastru
ture during the twelve hoursleading up to the
ompetition. Similarly, in Figure 5b, we show the host availability from ea
h18

Program Performance by Infrastructure Type
5 Minute Averages

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

23:36:56

0:36:56

1:36:56

2:36:56

3:36:56

4:36:56

5:36:56

6:36:56

7:36:56

8:36:56

9:36:56

10:36:56

11:36:56

Time of Day

In
te

ge
r O

ps
. P

er
 S

ec
on

d

Legion
Condor
NT
Globus
Unix
Java
Netsolve

Globus

Java

Condor

NT

Legion

Netsolve

Unix

(a)
Host Count by Infrastructure Type

5 Minute Averages

0

20

40

60

80

100

120

23:36:56

0:36:56

1:36:56

2:36:56

3:36:56

4:36:56

5:36:56

6:36:56

7:36:56

8:36:56

9:36:56

10:36:56

11:31:56

Time of Day

Ho
sts

Legion
Condor
NT
Globus
Unix
Java
Netsolve

Condor NT

Legion

Globus
Unix

Java

Netsolve (b)
Program Performance

5 Minute Averages

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

23:36:56

0:36:56

1:36:56

2:36:56

3:36:56

4:36:56

5:36:56

6:36:56

7:36:56

8:36:56

9:36:56

10:36:56

11:36:56

Time of Day

In
te

ge
r O

ps
. P

er
 S

ec
on

d (
)
Figure 5: Sustained Pro
essing Rate by Infrastru
ture (a), Host Count by Infrastru
ture (b), andTotal Sustained Rate (
)

19

infrastru
ture for the same time period. Together, these graphs provide insight into the diversityof the resour
es we used in the SC98 experiment.Spe
i�
ally, Condor supports a dynami
 loan-and-re
laim resour
e usage model. Users agreeto loan idle workstations to the Condor system for use by other pro
esses. When a user-spe
i�edkeyboard a
tivity or load threshold is ex
eeded, the resour
e is de
lared busy and any Condorjobs that are running at the time are evi
ted. Note that Condor pro
essing power and host
ount
u
tuated through the night and then fell o� as the day began in Wis
onsin and usera
tivity
aused their workstations to be re
laimed. For Java, the performan
e traje
tory was theopposite. We �tted the Java applets with the ne
essary logging features at approximately 4:30 AM,although we had a small number of test hosts running before then. At approximately 8:00 AM, weannoun
ed the availability of the Java implementation and soli
ited parti
ipation from \friendly"sites. In addition, we began to exe
ute the Java applet using HotJava [20℄ on workstations thathad been brought to SC98 for general use by
onferen
e attendees. At about the same time,Legion (whi
h had been down sin
e approximately midnight) be
ame available again and theappli
ation immediately began to take advantage of the newly available resour
es. Our Globusutilization, however, was low until just after the
ompetition ended at 11:30 AM, when it suddenlyspiked. The Globus group entered the High-performan
e Computing Challenge with two separateentries. As we did not request dedi
ated a

ess or spe
ial a

ess priority for the demonstration,our appli
ation was able to leverage these resour
es only after higher-priority Globus pro
esses�nished. NetSolve gave us a

ess to the student workstation laboratories and several resour
esin the Innovative Computing Laboratory at the University of Tennessee. We dete
ted a bugin the performan
e logging portion of the NetSolve implementation at approximately 8:00 AM,hen
e we have no reliable performan
e numbers to report for the period before then. The bulk ofthe NT hosts we were able to leverage
ame from the Super
lusters [40℄ lo
ated at the NationalComputational S
ien
e Allian
e (NCSA) and in the the Computer Systems Ar
hite
ture Group [7℄(CSAG) lo
ated at the University of California, San Diego. These systems used bat
h queues toprovide spa
e-shared a

ess to their pro
essors. Unix host
ount remained relatively
onstantthroughout the experiment, but performan
e jumped at the end as the Tera MTA (the fastestUnix host) was added to the resour
e pool.In Figure 5
 we reprodu
e Figure 3 for the purpose of
omparison. Figure 6
 shows this samedata on a log s
ale. By
omparing graphs (a) and (b) to (
) on ea
h s
ale we expose the degree towhi
h EveryWare was able to realize the Computational Grid paradigm. Despite
u
tuationsin the deliverable performan
e and host availability provided by ea
h infrastru
ture,the appli
ation itself was able to draw power from the overall resour
e pool rela-tively uniformly. As su
h, we believe the EveryWare example
onstitutes the �rst appli
ationto be written that su

essfully demonstrates the potential of high-performan
e ComputationalGrid
omputing. It is one of the �rst examples of a truly adaptive Grid program. For thisa

omplishment, the EveryWare experiment was awarded \Best A

eleration" at SC98 by theHigh-performan
e Computing Challenge panel of judges.
20

Program Performance by Infrastructure Type
5 Minute Averages

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

23:36:56

0:36:56

1:36:56

2:36:56

3:36:56

4:36:56

5:36:56

6:36:56

7:36:56

8:36:56

9:36:56

10:36:56

11:36:56

Time of Day

In
te

ge
r O

ps
. P

er
 S

ec
on

d

Legion
Condor
NT
Globus
Unix
Java
Netsolve

Globus

Java

Condor

NT Legion

Netsolve

Unix (a)
Host Count by Infrastructure Type

5 Minute Averages

1

10

100

1000

23:36:56

0:36:56

1:36:56

2:36:56

3:36:56

4:36:56

5:36:56

6:36:56

7:36:56

8:36:56

9:36:56

10:36:56

11:31:56

Time of Day

Ho
sts

Legion
Condor
NT
Globus
Unix
Java
NetsolveCondor NT

Legion

Globus

Unix

Java

Netsolve

(b)
Total Program Performance

5 Minute Averages

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

23:36:56

0:36:56

1:36:56

2:36:56

3:36:56

4:36:56

5:36:56

6:36:56

7:36:56

8:36:56

9:36:56

10:36:56

11:36:56

Time of Day

In
te

ge
r O

ps
. P

er
 S

ec
on

d (
)
Figure 6: Log S
ale { Sustained Pro
essing Rate by Infrastru
ture (a), Host Count by Infrastru
-ture (b), and Total Sustained Rate (
)

21

5.3 Aggregate Performan
eFigure 7 shows the total number of integer operations the appli
ation was able to obtain during thetwelve hours before the
ompetition (on a log s
ale). With the ex
eption of Java and NetSolve, all
Total Cycle Count by Infrastructure Type

1

10

100

1000

10000

100000

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

Condor Legion Globus Netsolve NT Java Unix

Infrastructure

In
te

ge
r O

pe
ra

tio
ns

 P
er

fo
rm

ed

Figure 7: Total Cy
le Count by Infrastru
tureinfrastru
tures were within an order of magnitude in terms of the
y
les they delivered. InterpretedJava applet performan
e was typi
ally between 3 and 5 times slower than native binary exe
ution,and the NetSolve
omputational servers were shared by other NetSolve jobs and student proje
ts.5.4 RobustnessWe also wished to measure the robustness of our approa
h. High-performan
e
omputer usersoften
omplain about appli
ation sensitivity to resour
e failure in distributed environments. Fig-ure 8a shows the total number of hosts
ontrolled by ea
h infrastru
ture that were used by theappli
ation during the twelve hours leading up to the
ompetition and Figure 8b shows the num-ber of pro
esses the system used during the same period. Comparing the two gives an indi
ationof the pro
ess failure and restart rate during the experiment. Ea
h
omputational
lient was pro-grammed to run inde�nitely so, in the absen
e of pro
ess failure, the number of pro
esses wouldequal the number of hosts. We implemented several \ad-ho
" pro
ess restart me
hanisms for theenvironments in whi
h they were not automati
. However, most of the pro
ess restarts were dueeither to deliberate termination on our part while debugging, or dynami
 resour
e re
lamationby resour
e owners. On the Condor system, we ran ea
h
omputational
lient as a \vanilla" jobwhi
h is terminated without noti
e when the resour
e on whi
h it is running is re
laimed, andsubsequently restarted when another suitable resour
e is free. It is interesting that, despite themidweek daytime usage, pro
ess restart due to resour
e re
lamation was relatively infrequent inthe Condor environment during the experiment. The Globus
omparison illustrates the power ifthe GRAM interfa
e [11℄. Globus allows all pro
esses to be laun
hed and terminated through asingle GRAM request. During the time leading up to the
ompetition, we were improving and22

Total Host Count by Infrastructure Type

0

50

100

150

200

250

Condor Legion Globus Netsolve NT Java Unix

Infrastructure

Nu
m

be
r o

f H
os

ts (a)
Total Process Count by Infrastructure Type

0

100

200

300

400

500

600

700

Condor Legion Globus Netsolve NT Java Unix

Infrastructure

Nu
m

be
r o

f P
ro

ce
ss

es (b)
Figure 8: Total Host Count by Infrastru
ture (a), Total Pro
ess Count by Infrastru
ture (b)debugging our Globus implementation. Having a single
ontrol point allowed us to restart largebat
hes of pro
esses easily. Under Legion, the
on
ept of pro
ess is not de�ned. Instead,
lass\instan
es" move between blo
ked and running states (and vi
e versa) so we simply report thenumber of instan
es we used during the demonstration. As a result this level of pro
ess restarta
tivity is an estimate. The numbers are a

urate for the Globus, Condor, and Unix environmentsbut somewhat ambiguous for the other infrastru
tures. Despite the level of pro
ess failure we wereable to dete
t, however, we were able to obtain the sustained pro
essing rates shown in Figure 3during the same time period.Indeed, EveryWare and the appli
ation design we used proved to be quite robust. In Fig-ure 9 we show host
ounts over �ve-minute intervals during the 17 days prior to the judging onNovember 12. Some portion of the appli
ation was exe
uting, more or less
ontinuously duringthe entire period (there are no horizontal gaps in the �gure). As we
on
entrated our initial e�ortson developing the EveryWare toolkit and new Ramsey sear
h heuristi
s, we did not add perfor-man
e logging to the running system until O
tober 26. The program had a
tually been running
ontinuously sin
e early June of 1998, however we only have performan
e data dating from theend of O
tober. Note that we were able to add, and then
ompletely revise, the performan
e23

16 Day Host Count,
5 Minute Intervals

1

10

100

1000

H
o
st

 C
o
u
n
t

Oct. 26, 1998 Nov. 2, 1998 Nov. 11, 1998

Figure 9: Sixteen-day Host Countslogging servi
e while the program was in exe
ution.5.5 Resour
e DiversityFor the Computational Grid paradigm to su

eed, all useful resour
es must be a

essible bythe appli
ation. Metaphori
ally speaking, all pro�table methods of power generation must beusable by any power
onsumer. Figure 10
ompares the deliverable performan
e from the fastesthost
ontrolled by ea
h infrastru
ture. The values not only ben
hmark our
ode on variousar
hite
tures, but provide insight into the wide range of resour
e options we were able to leverageduring the experiment. In ea
h
ase, we attempted to use the native, vendor-spe
i�
 C
ompiler(as opposed to GNU g

) with all optimization
apabilities enabled. On the left-hand side ofthe �gure, we
ompare the best performan
e from ea
h infrastru
ture. The fastest Unix ma
hinewas the Tera MTA [42℄. We report only the single pro
essor performan
e, however the Terawas also able to automati
ally parallelize the
ode and a
hieve an almost linear speed-up on twopro
essors. The fastest NT-based ma
hine was was lo
ated at the University of Wis
onsin, but weare unable to determine its ar
hite
tural
hara
teristi
s. An unknown parti
ipant downloaded theNT binary from the EveryWare home page when we announ
ed that the system was operational24

Comparison of Fastest Machines

2.23E+07

9.94E+06

1.53E+07

1.16E+07
1.02E+07

1.21E+07

7.93E+067.32E+06

2.67E+06
1.78E+06

8.82E+02
0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

UNIX NT

CONDOR

GLO
BUS

LE
GIO

N
JA

VA

NT S
up

er
clu

ste
r (

NCSA)

NT S
up

er
clu

ste
r (

UCSD)

SDSC (T
3E

)

Ber
ke

ley
 N

OW

Ja
va

 W
eb

 B
ro

wse
r (

iM
ac

)

Integer Ops/ s

Figure 10: Host Speedson Wednesday morning. The fastest Condor ma
hine was a Pentium P6 running Solaris was alsolo
ated at the University of Wis
onsin. Single pro
essor Pentium P6 performan
e was parti
ularlygood (se
ond only to the Tera) for the integer-oriented sear
h heuristi
s we developed. Thefastest Legion host was a Digital Equipment Corporation Alpha pro
essor running Red Hat Linux,lo
ated at the University of Virginia and the fastest Globus ma
hine was an experimental ConvexV
lass host lo
ated at the Convex development fa
ility in Ri
hardson, Texas. Surprisingly,the fastest Java exe
ution was faster than the fastest NT, Legion, and Globus ma
hines. Anunknown parti
ipant at Kansas State University loaded the applet and exe
uted it using Mi
rosoftCorporation's Internet Explorer (the IP address is for a 300Mhz dual-pro
essor (Pentium II)ma
hine running NT with Explorer). We spe
ulate that a student used some form of just-in-time
ompilation te
hnology to a
hieve the exe
ution performan
e depi
ted in the �gure, although weare unable to as
ertain how this performan
e level was rea
hed.On the right-hand side of the �gure, we show the best single-pro
essor performan
e of otherinteresting and popular ma
hines. The NT Super
lusters at UCSD and NCSA generated almostidenti
al per-node pro
essing rates. A single node of the Cray T3E lo
ated at the San DiegoSuper
omputer Center was able to run only slightly faster than a single node of the BerkeleyNOW [8℄. This
omparison surprised us sin
e the T3E is spa
e shared (meaning that ea
h pro
ess25

had ex
lusive a

ess to its pro
essor on
e it made it through the bat
h queue) and the NOW(whi
h is timeshared) was heavily loaded. On the far right-hand side of the �gure, we show thespeed of a publi
ly a

essible Apple iMa
 workstation lo
ated in a
o�ee shop on the UCSD
ampus whi
h is typi
al of the interpreted Java performan
e we were able to a
hieve.In addition to detailing the relative performan
e of di�erent ar
hite
tures and infrastru
tures,Figure 10 demonstrates the utility of EveryWare. It would not have been possible to in
ludeexperimental (and powerful) resour
es su
h as the Tera MTA and the NT Super
lusters withoutthe EveryWare toolkit. At the time of the experiment, none of the existing Grid infrastru
tureshad been ported to either ar
hite
ture. We were able to port EveryWare to both systems qui
kly(under 30 minutes for the Tera) allowing us to
ouple them with other, more
onventional hoststhat did support some form of Grid infrastru
ture. By providing exe
ution ubiquity, EveryWarewas able to leverage resour
es that no other Grid
omputing infrastru
ture
ould a

ess. As su
h,the Ramsey Number Sear
h appli
ation is the �rst program to
ouple the Tera MTA,both NT Super
lusters, and the Berkeley NOW with parallel super
omputers su
has the Cray T3E, workstations, and desktop web browsers. We were able to su

essfullyspan the spe
trum of available
omputing platforms with EveryWare.6 Related WorkEveryWare is a toolkit that allows an appli
ation to leverage dynami
ally a variety of high- andlow-level exe
ution environments for performan
e. As su
h, it shares
ommon goals with manyof the infrastru
tures it leverages. It is similar to Globus [11℄ in that appli
ation
omponents
ommuni
ate via di�erent well-de�ned proto
ols to obtain Grid \servi
e." EveryWare extendsthis notion, however, by providing a way for the Grid programmer to develop appli
ation-spe
i�
proto
ols and servi
es so that the appli
ation (and not just the underlying infrastru
ture)
an berobust and ubiquitous.EveryWare supports information hiding and lo
ation transparen
y in the same way obje
t-oriented systems su
h as Legion [22℄ and CORBA [36℄ do. Appli
ation
omponents
an be im-plemented as obje
ts that
ommuni
ate via remote method invo
ations. A key di�eren
e is thatan EveryWare program
an also use messaging proto
ols at the same time to leverage externalfa
ilities.EveryWare
omplements the fun
tionality provided by Condor [41℄ by providing a robustmessaging layer. In the SC98 experiment, we deployed the Ramsey Number Sear
h appli
ationas a \vanilla" program within the Condor environment. Vanilla Condor programs do not usethe
he
kpoint and restart fa
ilities nor do they have their system
alls redire
ted. This imple-mentation strategy allowed a single program to span multiple Condor pools, ea
h
ontaining adi�erent ar
hite
ture type. At present, Condor's
he
kpointing fa
ilities restri
t migration to asingle ar
hite
ture type, but we wished to leverage all of the ar
hite
ture types in any resour
epool
on�gured to use Condor. In [3℄, the authors use Condor to deliver a large number of
y
lesover an extended period to a high-throughput appli
ation. Our e�ort di�ers from this experi-ment, both in its s
ope and in its goal. We were able to embed the Condor pools available tous in a larger, more heterogeneous Computational Grid. Moreover, we were using Condor to26

in
rease the performan
e of the appli
ation as measured by turn-around time. The appli
ationwe
hose arrives at its answers faster with the addition of resour
es if those resour
es are
arefullys
heduled.EveryWare shares the notion of brokered invo
ation with NetSolve [6℄, NINF [33℄, and NEOS [30℄.A s
heduling entity
hooses resour
es to use and manages appli
ation exe
ution while the appli
a-tion exe
utes. For robustness and performan
e, however, we
hose to implement an appli
ation-spe
i�
 s
heduling servi
e for the Ramsey Number Sear
h appli
ation. Having a single s
hedulingagent for a globally distributed appli
ation presents both a performan
e bottle-ne
k and a single-point-of-failure for the appli
ation. The state ex
hange fa
ilities in EveryWare make it possibleto build a distributed s
heduling servi
e to avoid these problems. AppLeS [4℄ takes a similarsingle-agent approa
h to NetSolve, but the agent is tailored to meet the appli
ation's perfor-man
e needs. We extend the appli
ation-spe
i�
 s
heduling
on
ept developed for AppLeS bybuilding a high-performan
e, robust, and distributed s
heduling servi
e for the appli
ation.Prophet [43℄ is a system designed to s
hedule SPMD appli
ations on networks of
omputers.Originally designed for the Mentat [21℄ parallel and distributed
omputing system for lo
al areadeployment, its designers have re
ently extended it to wide area settings. Unlike EveryWare, how-ever, it relies on a single ubiquitous infrastru
ture. Moreover, it does not support the robustnessfeatures and state-ex
hange fun
tionality provided as part of EveryWare. that7 Con
lusions and Future WorkBy leveraging a heterogeneous
olle
tion of Grid software and hardware resour
es, dynami
allyfore
asting future resour
e performan
e levels, and employing relatively simple distributed statemanagement te
hniques, EveryWare has enabled the �rst appli
ation implementation that meetsthe requirements for Computational Grid
omputing. In [12℄(page 18) the authors des
ribe the
riteria that a Computational Grid must ful�ll as the provision of pervasive, dependable,
onsistent,and inexpensive
omputing.� Pervasive | At SC98, we were able to use EveryWare to exe
ute a high-performan
e,globally distributed program on ma
hines ranging from the Tera MTA to a web browserlo
ated in a
ampus
o�ee shop at UCSD.� Dependable| The Ramsey Number Sear
h appli
ation ran
ontinuously from early June,1998, until the High-Performan
e Computing Challenge on November 12, 1998.� Consistent| During the twelve hours leading up to the
ompetition itself, the appli
ationwas able to draw uniform
ompute power from resour
es with widely varying availabilityand performan
e pro�les.� Inexpensive | All of the resour
es used by the Ramsey Number Sear
h appli
ation werenon-dedi
ated and a

essed via a non-privileged user login.To our knowledge, EveryWare is the �rst Grid software e�ort that has been able to su

essfullymeet these
riteria, and to demonstrate the degree to whi
h they are met quantitatively.27

We plan to study how EveryWare
an be used to implement other Grid appli
ations as partof our future e�orts. In parti
ular, we plan to use it to build Grid versions of a medi
al imaging
ode written at the University of Tennessee, and a data mining appli
ation from the Universityof Torino. We also plan to extend ORANGS to in
lude storage s
heduling dire
tives and memory
onstraints. Finally, we plan to leverage our experien
e with EveryWare to build new NetworkWeather Servi
e sensors for di�erent Grid infrastru
tures.8 A
knowledgementsIt is impossible to a
knowledge and thank adequately all of the people and organizations thathelped make the EveryWare demonstration at SC98 a su

ess. As su
h, we miserably fail in theattempt by expressing our gratitude to the AppLeS group at UCSD for enduring weeks of mania
albehavior. In parti
ular, we thank Fran Berman for her moral support during the e�ort, and Mar
ioFaerman, Walfredo Cirne, and Dimitri Zagorod for laun
hing EveryWare on every
on
eivablepubli
 email and Java workstation at SC98 itself. We thank NPACI for supporting our High-performan
e Challenge entry in every way and, in parti
ular, Mike Gannis for enthusiasti
allymaking the NPACI booth at SC98 ground-zero for EveryWare. Rob Pennington at NCSA left nostops unpulled on the NT Super
luster so that we
ould run and run fast, and Charlie Catlett,on
e again, made it all happen at "The Allian
e." We inadequately thank Miron Livny (theprogenitor of Condor and the University of Wis
onsin) for �rst suggesting and then insisting thatEveryWare happen. Henri Casanova, at UCSD, single-handedly ported EveryWare to NetSolveafter an o�-handed mention of the proje
t was
arelessly made by a proje
t member within hisrange of hearing. Steve Fitzgerald, at Cal State Northridge and ISI/USC introdu
ed us to the �nerand more subtle pleasures of Globus, as did Greg Lindahl for analogously hedonisti
 experien
eswith Legion. Brent Gorda and Ken Sedgewi
k at MetaEx
hange Corporation donated entirely toomu
h time, spa
e,
o�ee, good will, more
o�ee, sound advi
e, and patien
e to the e�ort. AllenDowney and the Colby Super
omputer Center provided us with
y
les, en
ouragement, and moreen
ouragement. Cosimo Anglano of Dipartimento di Informati
a, Universit�a di Torino provided uswith inter
ontinental
apabilities and tremendously spirited support. Lastly, we thank EveryOnewho parti
ipated anonymously via our web interfa
e and downloads. We may not know who youare, but we know your IP addresses, and we thank you for helping us through them.Referen
es[1℄ H. Abu-Amara and J. Lokre. Ele
tion in asyn
hronous
omplete networks with intermittent lin kfailures. IEEE Transa
tions on Computers, 43(7):778{788, 1994.[2℄ O. Arndt, B. Freisleben, T. Kielmann, and F. Thilo. S
heduling parallel appli
ations in networks ofmixed unipro
essor/multipro
essor workstations. In Pro
eedings of ISCA 11th Conferen
e on Paralleland Distributed Computing, September 1998.[3℄ J. Basney, M. Livny, and T. Tannenbaum. Deploying a high throughput
omputing
luster. InR. Buyya, editor, High Performan
e Cluster Computing, volume 1,
hapter 5. Prenti
e Hall, 1999.[4℄ F. Berman, R. Wolski, S. Figueira, J. S
hopf, and G. Shao. Appli
ation level s
heduling on distributedheterogeneous networks. In Pro
eedings of Super
omputing 1996, 1996.28

[5℄ The bovine r
5-64 proje
t { http://distributed.net/r
5/.[6℄ H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational S
ien
e Prob-lems. The International Journal of Super
omputer Appli
ations and High Performan
e Computing,1997.[7℄ The
on
urrent systems ar
hite
ture group { http://www-
sag.u
sd.edu/.[8℄ D. Culler, A. Arpa
i-Dusseau, R. Arpa
i-Dusseau, B. Chun, S. Lumetta, A. Mainwaring,R. Martin, C. Yoshikawa, and F. Wong. Parallel
omputing on the berkeley now. Into appear in JSPP'97 (9th Joint Symposium on Parallel Pro
essing), 1997. available fromhttp://now.CS.Berkeley.EDU/Papers2.[9℄ L. DeRose, Y. Zhang, and D. Reed. Svpablo: A multi-language performan
e analysis system. InPro
eedings of 10th International Conferen
e on Computer Performan
e Evaluation, September 1998.[10℄ M. P. I. Forum. Mpi: A message-passing interfa
e standard. Te
hni
al Report CS-94-230, Universityof Tennessee, Knoxville, 1994.[11℄ I. Foster and C. Kesselman. Globus: A meta
omputing infrastru
ture toolkit. International Journalof Super
omputer Appli
ations, 1997.[12℄ I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastru
ture. MorganKaufmann Publishers, In
., 1998.[13℄ I. Foster, C. Kesselman, G. Tsudik, and S. Tue
ke. Se
urity ar
hite
ture for
omputational grids.In Pro
. 5th ACM Conferen
e on Computer and Communi
ations Se
urity Conferen
e, pages 83{92,1998.[14℄ I. Foster, C. Kesselman, and S. Tue
ke. The nexus approa
h to integrating multithreading and
ommuni
ation. Journal of Parallel and Distributed Computing, 1996.[15℄ H. Gar
ia-Molina. Ele
tions in a distributed
omputing system. IEEE Transa
tions on Computers,C-31(1):49{59, Jan 1982.[16℄ J. Gehrinf and A. Reinfeld. Mars - a framework for minimizing the job exe
ution time in a meta
om-puting environment. Pro
eedings of Future general Computer Systems, 1996.[17℄ A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Man
hek, and V. Sunderam. PVM: Parallel VirtualMa
hine A Users' Guide and Tutorial for Networked Parallel Computing. MIT Press, 1994.[18℄ Gusto webpage at http://www-fp.globus.org/testbeds/.[19℄ J. Gosling and H. M
Gilton. The java language environment white paper, 1996.[20℄ J. Gosling and H. M
Gilton. The java language environment white paper;
hapter 10, 1996.[21℄ A. Grimshaw. Easy-to-use obje
t-oriented parallel programming with mentat. IEEE Computer, May1993.[22℄ A. S. Grimshaw, W. A. Wulf, J. C. Fren
h, A. C. Weaver, and P. F. Reynolds. Legion: The nextlogi
al step toward a nationwide virtual
omputer. Te
hni
al Report CS-94-21, University of Virginia,1994.[23℄ W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performan
e, portable implementation of theMPI message passing interfa
e standard. Parallel Computing, 22(6):789{828, Sept. 1996.[24℄ T. Haupt, E. Akarsu, G. Fox, and W. Furmanski. Web based meta
omputing. Te
hni
al Re-port SCCS-834, Syra
use University Northeast Parallel Ar
hite
tures Center, 1999. available fromhttp://www.npa
.syr.edu/te
hreports/html/0800/abs-0834.html.[25℄ The high-performan
e
omputing
hallenge at s
98 { http://www.super
omp.org/s
98/hp

/.[26℄ The nasa information power grid { http://s
ien
e.nas.nasa.gov/pubs/nasnews/97/09/ipg.html.[27℄ R. Jones. http://www.
up.hp.
om/netperf/netperfpage.html. Netperf: a network performan
emonitoring tool.[28℄ A. Lenstra and M. Manasse. Fa
toring by ele
troni
 mail. In Advan
es in Cryptology { EUROCRYPT'89, pages 355{371, 1990.[29℄ M. J. Lewis and A. S. A. Grimshaw. Using dynami

on�gurability to support obje
t-oriented pro-gramming languages and systems in legion. Te
hni
al Report CS-96-19, University of Virginia, 1996.29

[30℄ J. M. M. Ferris, M. Mesnier. Neos and
ondor: Solving optimization problems over the internet.Te
hni
al Report ANL/MCS-P708-0398, Argonne National Laboratory, Mar
h 1998. available fromhttp://www-fp.m
s.anl.gov/ot
/Guide/Te
hReports/index.html.[31℄ S. Mi
rosystems. Xdr: External data representation, 1987. ARPA Working Group Requests forComment DDN Network Information Center, SRI International, Menlo Park, CA, RFC-1014.[32℄ B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R. Irvin, K. Karavani
, K. Kun
hithapadam,and T. Newhall. The paradyn parallel performan
e measurement tools. IEEE Computer, 28(11):37{46,Nov. 1995.[33℄ H. Nakada, H. Takagi, S. Matsuoka, U. Nagashima, M. Sato, and S. Sekigu
hi. Utilizing the metaserverar
hite
ture in the ninf global
omputing system. In High-Performan
e Computing and Networking'98, LNCS 1401, pages 607{616, 1998.[34℄ The nt super
luster at n
sa { http://www.n
sa.uiu
.edu/general/

/nt
luster/.[35℄ The network weather servi
e home page { http://nws.npa
i.edu.[36℄ "OMG". The
omplete formal/98-07-01: The
orba/iiop 2.2 spe
i�
ation, 1998.[37℄ S. Radziszowski. Small ramsey numbers. In Dynami
 Survey DS1 { Ele
troni
 Journal of Combina-tori
s, volume 1, page 28, 1994.[38℄ R. L. Ribler, J. S. Vetter, H. Simit
i, and D. A. Reed. Autopilot: Adaptive
ontrol of distributedappli
ations. In Pro
. 7th IEEE Symp. on High Performan
e Distributed Computing, Aug 1998.[39℄ N. Spring and R. Wolski. Appli
ation level s
heduling: Gene sequen
e library
omparison. In Pro-
eedings of ACM International Conferen
e on Super
omputing 1998, July 1998.[40℄ N. SuperCluster. verb+http://www.n
sa.uiu
.edu/general/

/nt
luster+.[41℄ T. Tannenbaum and M. Litzkow. The
ondor distributed pro
essing system. Dr. Dobbs Journal,February 1995.[42℄ The tera mta { http://www.tera.
om.[43℄ J. Weissman and X. Zhao. S
heduling parallel appli
ations in distributed networks. Con
urren
y:Pra
ti
e and Experien
e, 1(1), 1998.[44℄ Mi
rosoft windows nt operating system { http://www.mi
rosoft.
om/ntserver/nts/te
hdetails/overview/wpglobal.asp/.[45℄ R. Wolski. Dynami
ally fore
asting network performan
e using the net-work weather servi
e. Cluster Computing, 1998. also available fromhttp://www.
s.utk.edu/~ri
h/publi
ations/nws-tr.ps.gz.[46℄ R. Wolski, N. Spring, and J. Hayes. The network weather servi
e: A distributed resour
e perfor-man
e fore
asting servi
e for meta
omputing. Future Generation Computer Systems (to appear),1999. available from http://www.
s.utk.edu/~ri
h/publi
ations/nws-ar
h.ps.gz.[47℄ R. Wolski, N. Spring, and J. Hayes. Predi
ting the
pu availability of time-shared unix systems onthe
omputational grid. In Pro
. 8th IEEE Symp. on High Performan
e Distributed Computing, 1999.available from http://www.
s.utk.edu/~ri
h/publi
ations/nws-
pu.ps.gz.

30

