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we call synthetic ethology.) Brie
y, we may say that communication is inherentlymeaningful if it has some actual or potential relevance to the agents.However, Burghardt [1] has de�ned communication as \the phenomenon of oneorganism producing a signal that, when responded to by another organism, conferssome advantage (or the statistical probability of it) to the signaler or his group."Therefore communication acquires its primary, natural meaning through the selectiveadvantage it has conferred on the communicators through their evolution. (Hence,ecologically valid investigations of communication must take place in the agents' nat-ural environment or something close to it.) Thus we may conclude that meaningfulcommunication must be investigated in an evolutionary context, and that if inher-ently meaningful communication is to emerge in arti�cial systems, it will do so in acontext of synthetic evolution.2 Experimental Design2.1 Synthetic WorldIf we are to design an synthetic world in which genuine communication can be ex-pected to emerge, then we must begin by asking what sort of world will make thislikely. For communication to emerge, it must have some selective advantage, such asallowing the agents to coordinate their behavior more e�ectively.One way to accomplish this is to give a reproductive advantage to agents thatcoordinate their behavior, for example, when the behavior of one agent A is appro-priate to a situation known only to the second agent B. We can think of this situationeither as being some aspect of B's internal state (so it is not observable by A), or asbeing some external situation perceivable by B but out of A's range of perception.Of course, these analogies are ultimately irrelevant; all that matters are the formalstructures of perceivability and selection. Since our goal has been to design an exper-iment that is as simple as possible while still exhibiting the phenomenon of interest(communication), these conditions of coordination have been established in a simpleway.These conditions are created by giving each agent a local environment, the stateof which is perceivable by that agent but by no other. Of course the state can besimple or complex, but in these experiments we have kept it very simple. Further-more, although one could use any sort of process to determine the states of the localenvironments, we set them randomly, which makes it as di�cult as possible for anagent's local-environment state to be predicted by the other agents.Our goal is to select for coordinated behavior among the agents and our hope isthat communication will emerge as a way of accomplishing this. Therefore we selectfor an action that corresponds to the local environment of another agent. That is, ifthe local environment of agent B is in state �, and a di�erent agent A acts in a wayappropriate to �, then we say that A and B have cooperated and we give them some2



reproductive advantage. In accord with our goal of keeping the experiment as simpleas possible, we have interpreted \acting in a way appropriate to �" to be a simplematch with �. That is, A has succeeded in cooperating with B when it manages (bywhatever means) in matching the state of B's local environment.There are many ways in which such cooperation could be made to a�ect repro-ductive advantage; we have taken the simple approach of awarding a point of abstractcredit to each agent that cooperates every time it cooperates. Agents are more likelyto reproduce if they have accrued more credit and they are more likely to die if theyhave accrued less. Cooperation need not be limited to pairs of agents, and so ingeneral if several agents A1; : : : ; An match B's local environment state, then all n+1agents will be awarded credit (n points for the emitter B, 1 point for each of theactors A1; : : : ; An. Other variations include imposing credit penalties for unsuccessfulattempts to cooperate (i.e. mistaken attempts to match the other's local environmentstate).Clearly, communication will never emerge if it is physically impossible in the sim-ulated world. In particular there must be some potential medium of communicationand the agents must have the physical capability to alter and sense the state of thatmedium. (We say \must" because in these experiments the mechanisms of syntheticevolution are incapable of evolving new sensory or e�ector organs, so we must takethese as givens. We do not, however, give them any speci�c function, such as com-munication.)Therefore, in these experiments we provide the synthetic world with a global en-vironment whose state can be sensed and altered by all the agents. By \sensed" wemean that an agent's behavior may depend on the state of the global environment,and by \altered" we mean that an agent's behavior can modify the state of the globalenvironment. As with the local environments, the state of the global environmentmay be simple or complex in structure, but in the experiments described below ithas been kept as simple as possible. Because communication takes place in time, forexample by a signal that varies through time, we must allow temporal variations ofthe global environment's state; that is, the agents can cause it to change throughtime and can sense those variations through time.As a consequence of the foregoing, we can see that the agents must have a behav-ioral control mechanism with the following faculties:1. ability to respond to the state of its local environment,2. ability to respond to the state of the global environment,3. ability to alter the state of the global environment,4. internal memory or other mechanism for responding to and in
uencing thetime-course of the global state,5. ability to attempt cooperative activity with other agents.3



There are many mechanisms that can satisfy these requirements, including recurrentneural networks, �nite state machines, traditional programs, and rule-based systemssuch as classi�er systems.One of our goals has been to study the evolution of language, and one of thecharacteristics of language is that it is a cultural phenomenon transmitted throughlearning. Therefore, in some of our experiments we allow our agents to learn, whichmeans that there is some means for automatic adaptation of their behavioral controlmechanisms. Reinforcement, unsupervised and supervised learning are all possiblemechanisms for behavioral adaptation.2.2 Synthetic EvolutionAs remarked in section 1, ecological validity requires that inherently meaningful com-munication be investigated in its \natural" environment, that is, in the environmentin which it has evolved. This implies that the emergence of communication mustoccur in the context of synthetic evolution, which allows the behavioral mechanismsof the agents to evolve in accord with the selective pressures of the synthetic world.Our basic approach is straight-forward.Each agent has a genetic string that encodes its genotype. When an agent iscreated this string is used to create the agent's phenotype, which represents its be-havioral mechanism. In some cases the agent's phenotype can change by means oflearning or other forms of adaptation.Recall that agents are awarded credit for successful cooperation; this credit is usedto in
uence the probability of an agent reproducing or dying. In our experiments re-production is sexual. Two agents are chosen as parents, with reproductive preferencegiven to agents that have accrued more credit. Their genetic strings are combined bya simpli�ed model of biological crossover with a low probability of random mutation;the result becomes the genetic string of the o�spring.Agents may also die, which means that their phenotypes are removed from thepopulation; agents with less credit are more likely to die than those with more credit.In the experiments to be described we have kept the population size constant with aone-for-one replacement rule: an agent must die for each that is born.2.3 Data CollectionWe collect various kinds of data to track the emergence of communication and tostudy its evolving structure. Since we select for cooperation and cooperation is (bydesign) di�cult in the absence of communication, an important variable is the amountof cooperation in the population. Therefore, we measure the average number of coop-erations in a given interval of time (i.e., the average credit accrued in that interval);this quanti�es the degree of coordination in the agents' behavior.We are especially interested in the emergence of communication as a collective4



behavior of the population, that is, we want to study the emergent communication asmanifested by the population as a whole and evolving through time. To understandthis we can, for example, measure correlations between the apparent signals andexternal (local environment) states and between them and the internal (memory)states of the agents. In this sense we (as observers) can discover the meanings createdby the agents for their (inherently meaningful) signals.There are several statistics that may be computed. For example, if the globalenvironment is being used sometimes as a medium for communicating the local-environment state, then there should be a correlation between local- and global-environment states when successful cooperations take place. In the absence of commu-nication there should be no systematic relation between global- and local-environmentstates. One way to quantify this is to count the fraction of times each pair occurssimultaneously with a cooperation. The resulting probability matrix has maximumentropy (re
ecting its lack of order), when the signals have no systematic meaning,and the entropy decreases as the signal use becomes more regular. This is one way inwhich we can quantify the emergence of a communication system. Another statisticof deviation from randomness is the coe�cient of variation, which is the standarddeviation in units of the mean (V = �=�).We may also gather relevant statistics of the population of agents that supportsthe communication system. For example, to better understand the structure of thepopulations we may compute statistics on the weight matrices of neural nets or onthe transition tables of �nite state machines.2.4 Experimental ControlsOne of the advantages of studying communication through synthetic evolution is thedegree of experimental control that it permits. I will mention a few examples.Certainly, when compared with the study of communication in nature, one ofthe advantages is that we can have complete control of the genetic structure of thepopulation. For example, we can run two simulations under di�erent conditionswith genetically identical populations, or we can seed the population with selectedgenotypes for particular experimental purposes. In addition, since learning can beenabled or disabled, we can compare situations in which the agents are able to learnor not, or in which they have di�erent adaptive mechanisms or parameters. Further,if some interesting phenomenon appears in a simulation, we can rerun it and makeinterventions for the sake of the investigation.One form of control that we have found especially useful is the external suppressionof the possibility of communication: by frequent randomization of the state of theglobal environment (e�ectively raising its noise level) we can prevent it from beingused for communication and thereby prevent communication from emerging. Thispermits comparison of population behavior under conditions in which communicationcan and cannot evolve. 5



Finally, one of the advantages of our approach is that the behavioral mechanism iscompletely available for analysis. At any point during the simulation we may subjectany individual agent or the entire population to analysis, thus relating the internalbehavioral mechanisms to the structure and evolution of the emergent communicationsystem.3 Series 1: One-symbol Communication by FSMs3.1 SetupThe �rst series of experiments investigated the simplest form of single-symbol com-munication. The local-environment state � was drawn from a small discrete set �of size L = j�j. In most of these experiments � = f0; : : : ; L � 1g, where L = 8.Likewise, the global environment state 
 was drawn from a discrete set � of the samesize, G = j�j = L. In practice, � = f0; : : : ; 7g.The behavioral control mechanism was a �nite state machine (FSM) with oneinternal state (and hence no memory). We chose �nite state machines because they area simple behavioral model that has the potential of both generating and recognizingsequential signals (although that potential was not exploited in the �rst series ofexperiments). Thus, each machine's transition table had GL entries for each possiblecombination of global- and local-environment states.The �nite state machine can respond in only two ways: to emit (or signal) byaltering the global-environment state or to act by attempting to match another ma-chine's local-environment state. (Recall that a machine's local environment is notunder its control.) In e�ect, each table entry represents one of two kinds of rules. Anemission rule has the form: (
; �) =) emit(
0);where (
; �) is the current global/local state and emit(
0) makes 
0 the new (altered)global state. Similarly, an action rule has the form:(
; �) =) act(�0);where act(�0) attempts to match �0 to the local environment of another machine.Thus a machine has G + L possible responses, encoded as an integer in the range0; : : : ; G+ L� 1.Observe that a machine's response always depends on both the global state and itslocal state. This means that its response to a given signal is context-dependent, for itis potentially di�erent in each local situation in which it may �nd itself. Therefore, itwill not automatically respond to a signal in the same way in all situations, althoughit may evolve to do so; therefore the machines face a di�cult evolutionary challenge(more on this in section 6.1). 6



The genotype of a machine is simply represented by a string of GL genes, eachwith G + L alleles. In these experiments there were 64 genes with 16 alleles. Two-point crossover was used, which means that two numbers �; � were chosen randomlyfrom 1; : : : ; GL. The genetic strings were treated like rings; that is, between � and� the o�spring's genes were copied from one parent, and between � and � from theother. With low probability (0.01) a single randomly selected gene was mutated toa random allele. Population size was kept constant by having the o�spring replace alow-scoring agent.It is necessary to mention a modi�cation to the rules for cooperation: we judge acooperation to have taken place only if an agent's action matches the local-environmentstate of the last emitter. The reason is that with only eight possible local-environmentstates and modest population sizes (e.g. 100), it would be almost certain that any ac-tion would match the local environment of some other agent. Therefore, cooperationwould be easy by \guessing" and there would be little selective pressure toward theemergence of communication. Even with this more restrictive cooperation rule thereis a 1=8 chance of guessing correctly without communication. (Further consequencesof this cooperation restriction are discussed under \Partial Cooperation" in section3.3.)The process of synthetic evolution is organized into three nested cycles. Theoutermost are the breeding cycles, in each of which one agent is chosen to die and twoagents are chosen to breed (producing a single o�spring). Each of the B breedingcycles comprises E = 10 environmental cycles, at the beginning of each of which, allthe local environments are set randomly. (Thus the states of the local environmentscannot be predicted.) Each environmental cycle comprises A = 5 action cycles,during each of which all the agents have an opportunity to respond to the global- andlocal-environment states. In these experiments the agents are serviced cyclically (adecision discussed in section 7).The probability of being selected as a parent was proportional to accrued credit(number of cooperations) in a breeding cycle, while the probability of dying wasinversely related in a simple way to accrued credit (the exact formulas given elsewhere[6, 7]).We investigated a very simple single-case learning rule for these FSMs. When amachine attempts unsuccessfully to cooperate, its transition table is altered to givewhat would have been the correct response in these circumstances. That is, if underconditions (
; �) the machine responded act(�0), but the local environment state ofthe last emitter was �00 6= �0, then the (
; �) entry of the transition table is altered tobe act(�00).We ran our simulations under three di�erent conditions: (1) communication sup-pressed, (2) communication permitted with learning disabled, and (3) communicationpermitted with learning enabled. By \communication suppressed" we mean that arandom signal was written into the global environment after each agent responded,thus preventing the possibility of communication through the global environment. By7



Figure 1: Degree of Coordination �: Communication Suppressed\communication permitted" we mean that the global environment was not random-ized in this way; however, we do nothing directly to facilitate or encourage its usefor communication. By this control we can measure the selective advantage of theemerging communication system.By \learning enabled" or \disabled" we mean that the previously described learn-ing rule is or is not allowed to operate. In the former case the phenotype can divergefrom that determined by the genotype, in the latter it cannot. There are of coursemany other sorts of controls that can be used with these experiments, but even thesefew generate interesting phenomena.In these experiments, the population size was P = 100. The simulations wereusually run for B = 5000 breeding cycles, although some simulations were run formuch longer.3.2 ResultsWe ran a series of more than 100 simulations of this kind; in most cases we rangenetically identical random starting populations under all three conditions. As is tobe expected from simulations of this kind, there is considerable variation from runto run, but all the results are qualitatively the same as those we will describe. Theexperiments are robust and have been replicated in other laboratories [16].When communication is suppressed, the degree of coordination (average level of8



Figure 2: Degree of Coordination �: Communication Permitted with Learning Dis-abledcooperation) stays near to 6.25, the calculated level when the agents are \guessing"[6]; �gure 1 shows how the average number of cooperations per breeding cycle �varies over time (measured in breeding cycles). Although we would expect the degreeof coordination to stay near the chance level, a linear regression analysis shows aslight upward trend, 3:67� 10�5 cooperations/breeding cycle/breeding cycle. This isa stable phenomenon, which will be discussed in section 3.3.Figure 2 shows the evolution of the degree of coordination �, as measured byaverage cooperations per breeding cycle, when communication is not suppressed. Itis apparent to the eye that coordination is increasing much faster than when commu-nication was suppressed, a fact con�rmed by linear regression, for the degree of coor-dination is increasing at a rate of 9:72 � 10�4 cooperations/breeding cycle/breedingcycle, which is 26 times faster than it was when communication was suppressed. Af-ter 5000 breeding cycles the average number of cooperations per cycle has grown to10.28, which is 65% above the level of 6.25 achievable without communication.In �gure 3 we see the result when communication is not suppressed and the agentsare able to learn from their mistakes. First, it is apparent that communication startsat a much higher level than under the two previous condition. This is because aftermaking a mistake an agent has four more opportunities in an environmental cycleto respond correctly before the local environments are re-randomized. Further, thedegree of coordination is increasing much more rapidly than without learning: 3:71�9



Figure 3: Degree of Coordination �: Communication Permitted with Learning En-abled10�3 cooperations/breeding cycle/breeding cycle, which 3.82 times the rate withoutlearning and 100 times the rate when communication was suppressed. After 5000breeding cycles, the degree of coordination has reached 59.84 cooperations/cycle,which is 857% above the level achievable without communication.The preceding results show us that communication has emerged and that it hassigni�cant selective advantage, but it does not tell us much about the structure ofthe emerging communication system. As suggested in section 2.3, we can keep trackof the co-occurrence of local- and global-environment states that occur together insuccessful cooperations. That is, whenever a cooperation takes place we incrementa count corresponding to the state of the global environment and the state of thelocal environment of the last emitter. We cannot be sure from such a co-occurrencethat the global-environment state means the local-environment state, but nonrandomassociations between the two will point in that direction.Since in these experiments we are most interested in the later stages of the evo-lution, we calculate the co-occurrence tables over the last 50 breeding cycles of thesimulation.Table 1 shows the co-occurrence table that resulted when communication wassuppressed.1 Although some structure is apparent, overall the local and global states1 Crumpton [2, App. A] discovered a small error in the calculation of the co-occurrence matrix in10



Table 1: Co-occurrence Matrix: Communication Suppressedsituationsym. 0 1 2 3 4 5 6 70 94 130 133 34 166 0 150 6821 16 105 279 228 261 307 0 1182 0 199 229 12 0 0 161 2743 95 19 93 283 669 89 0 2014 1 97 212 200 112 0 0 05 28 135 84 8 600 215 0 3516 0 0 0 118 59 70 0 6907 0 33 41 0 371 0 0 0Table 2: Co-occurrence Matrix: Communication Permitted with Learning Disabledsituationsym. 0 1 2 3 4 5 6 70 0 0 2825 0 500 20 0 01 206 0 0 505 999 231 2 02 1 0 0 277 39 4935 1 23943 385 1 1 94 0 0 1483 14 0 292 0 0 19 555 0 05 0 0 1291 0 0 144 0 06 494 279 0 403 0 1133 2222 07 140 2659 0 202 962 0 0 0are weakly correlated. The entropy is H = 4:95 bits, which is lower (more ordered)than the calculated maximum entropy Hmax = 6 bits (derivations given elsewhere[6]). The coe�cient of variation is V = 1:27. These numbers will be more meaningfulwhen we compare them to the other two conditions.Now consider the co-occurrence matrix that results when communication is notsuppressed (table 2). The table is visibly more organized than when communicationwas suppressed. This is con�rmed by the coe�cient of variation V = 2:13, which islarger than in the suppressed case, V = 1:27, re
ecting a less-random use of signals.For comparison, Vmin = 0 for a uniform co-occurence matrix and Videal = p7 � 2:65for an \ideal matrix" [7], which has a one-to-one correspondence between local- andglobal-environment states. The entropy H = 3:87 bits, which is closer to the entropyHideal = 3 bits of an ideal co-occurence matrix than it was when communication wasthe communication-suppressed case, which made it appear less structured than it is. Table 1 re
ectsthe corrected calculation; the corresponding tables in prior publications [6, 7, 14] are incorrect.Noble and Cli� [16, table 2] also noted the discrepancy.11



Figure 4: Entropy: Communication Permitted with Learning Disabledsuppressed (H = 4:95 bits). Figure 4, which shows the change of entropy over time,demonstrates the emergence of an ordered communication system in the population.Table 3 shows the co-occurrence matrix that resulted when communication was notsuppressed and the agents were able to learn. The coe�cient of variation is V = 2:39,which is a little larger than in the non-learning case; the entropy is H = 3:91 bits,which is a little larger than in the non-learning case. This is fairly typical: the entropywith learning may be a little larger or smaller than without it.Table 2 shows some of the richness typical of natural communication. For ex-ample symbol 
 = 7 is most often associated with situation � = 1 and vice versa,although it sometimes denotes situation 4, and situation 1 is occasionally representedby symbols 4 and 6. There are also cases of synonymy, for example situation 6 maybe represented by symbols 3 or 6. Further, we �nd ambiguity, for example, symbol4 may represent situations 1 or 5 (or occasionally 4). Such synonymy and ambiguitycould result from individual agents using synonymous or ambiguous symbols, fromthe existence of competing dialects in the population, or from a combination of thetwo, but experiments by Noble and Cli� (discussed in section 7) point to the �rstpossibility.Finally there is asymmetry in symbol use. For example, situation 7 is virtuallyalways denoted by symbol 2, which is however ambiguous, and more commonly de-notes situation 5. Similarly, symbol 5 almost always denotes situation 2, which is12



Table 3: Co-occurrence Matrix: Communication Permitted with Learning Enabledsituationsym. 0 1 2 3 4 5 6 70 3908 29172 1287 12281 2719 1132 93 38361 191 634 107 1039 0 0 2078 02 4675 1306 0 37960 85 410 7306 266113 0 410 0 0 0 126 1306 3044 0 0 353 62 575 1268 420 5195 36 0 46 469 0 0 0 266 1075 156 0 0 0 951 0 10867 0 73 54 0 2764 135 461 102Table 4: Summary of Order MeasuresCommunication/LearningMeasurement Random N/N Y/N Y/Y IdealCoe�cient of Variation, V 0 1.27 2.13 2.39 2.65Entropy, H (bits) 6 4.95 3.87 3.91 3however mostly denoted by symbol 0.The values of the entropy and coe�cient of variation in each of the three condi-tions, along with their extreme values, are collected in table 4. Overall it is apparentthat not suppressing communication allows the emergence of an organized communi-cation system, regardless of whether the agents are capable of learning.3.3 Partial CooperationWe must pause to consider a phenomenon we call partial cooperation (inaccuratelytermed \pseudo-cooperation" in some earlier reports) [7, 14]. Recall (section 3.1,p. 7) that we have placed a restriction on cooperation | an actor must match thelocal state of the last emitter | since otherwise chance cooperations will be much tooeasy. However, this restriction creates a loophole in the scoring algorithm, which thepopulation may evolve to exploit. Speci�cally, the agents may coadapt to emit andact in only a subset (�0 � �) of the local-environment states. This strategy raisesthe chances of a correct guess to 1=j�0j from 1=j�j. The evolution of the populationto exploit the loophole explains the slow increase in the degree of coordination whencommunication is suppressed (�gure 1); it also explains why in long simulations theagents communicate about a decreasing subset of the situations. It is genuine coopera-tion, but occurs without the bene�t of communication by restricting the opportunitiesfor potential cooperation. In spite of these di�culties, we kept the cooperation re-13



striction, since it facilitated the emergence of communication in shorter simulations.(See section 7 for Noble and Cli�'s investigation of this phenomenon.)4 Series 2: Two-symbol Communication by FSMs4.1 SetupA second series of experimentswas intended to investigate the possibility of �nite-statemachines evolving the ability to generate and recognize sequential signals (sequencesof global-environment states used for communication). We accomplished this bycreating an arti�cial world in which the number of local-environment states is greaterthan the number of global-environment states, so a single symbol (global-environmentstate) cannot uniquely specify a situation (local-environment state). That is, sinceG < L there is no map from � onto �, although there are maps from �� onto �.We decided to begin with local environments that could be expressed by twosymbols; that is, there are maps from �2 onto �, so G2 � L. In this case we choseG = 4 and L = 8, so two symbols are more than enough to express the local states.Obviously, if the agents are to be able to recognize or generate sequential signals,they must have some memory by means of which to control their sequential behavior.Therefore, in this series of experiments the agents were �nite state machines (FSMs)with S = 4 possible internal memory states. That is, we gave them the minimummemory necessary to remember a global-environment state (S = G). Let � be theinternal state space, so S = j�j; in practice � = f0; : : : ; S � 1g.These machines are de�ned in e�ect by a set of behavioral rules of the form(�; 
; �) =) (�0; R)for all possible � 2 �; 
 2 �; � 2 �. In practice, the rules are represented by atransition table of SGL entries, indexed by (�; 
; �). Each table entry contains thepair (�0; R), where �0 2 � is the new internal state and R is a response, eitheremit(
0) or act(�0), as before. Thus, a table entry must encode S(G+L) possibilities.In practice we represent this as a pair of numbers, one in the range 0; : : : ; S � 1, theother in the range 0; : : : ; G+L� 1. Similarly, the genotype is represented by a stringof SGL genes, each chosen from S(G + L) alleles. In these experiments there were128 genes with 48 alleles.Except for the di�erence in genetic structure, the mechanismof synthetic evolutionwas essentially the same as in the �rst series of experiments (section 3). However,we did try several variations of the selection strategy, such as imposing a penalty forfailed attempts to cooperate and making the probability of selection proportional tothe square of the number of cooperations per breeding cycle. The nested breeding,environmental and action cycles were also similar, except that the simulations weregenerally run longer: 104 to 2 � 105 breeding cycles. Learning was implemented by14



Table 5: Co-occurrence Matrix: Communication Permitted with Learning Disabledsituationsym. 0 1 2 3 4 5 6 70/0 31 22 42 0 144 0 0 01/0 26 15 62 0 175 0 0 02/0 119 23 44 0 47 0 0 03/0 8 9 18 0 31 0 0 00/1 0 54 106 2 74 59 516 01/1 0 33 174 3 423 227 1979 02/1 0 23 65 17 139 74 125 03/1 0 1 24 0 48 96 51 00/2 50 4 4 366 7 0 8 421/2 35 9 0 32 1 0 6 442/2 52 76 0 112 7 0 13 1353/2 52 6 1 215 2 0 2 780/3 0 2 13 17 0 3 0 01/3 0 66 19 6 0 4 0 02/3 0 33 61 27 0 2 0 03/3 0 39 38 8 0 0 0 0a similar single-case algorithm: if the rule (�; 
; �) =) [�0; act(�0)] was applied butthe correct action was �00, then the rule is changed to (�; 
; �) =) [�0; act(�00)]. Forexperimental purposes, as before, communication can be suppressed by randomizingthe global environment state, and learning can be enabled or disabled. Further, thepopulation size was P = 100 and the mutation rate was 0:01, as in the �rst series.4.2 ResultsTable 5 shows the co-occurrence matrix resulting from a typical simulation, whichran for 104 breeding cycles (communication unsuppressed, learning disabled). Whena successful cooperation takes place, we increment the table entry corresponding tothe local-environment state (column) and to the last two global-environment states(row). There is obvious structure in the matrix. For example, the table falls into 4�4submatrices of similar degrees of coordination, which means that successful coopera-tions tend to be more sensitive to the most recent of the two symbols, rather than tothe �rst of the two. For example, local-environment state 5 is usually expressed bysignals of the form X1 (that is 01, 11, 21, or 31). This suggests that the machinesare not making full use of their memory capacity. Nevertheless, the agents sometimesmake full use of the expressive power of two symbols. For example, 00, 10 and 30usually mean local state 4, but 20 usually means local state 0, so here the machines15



Figure 5: Entropy of Two-symbol Communication (Learning Disabled)are using the �rst symbol to modify the meaning of the second. Furthermore, orderis signi�cant, since 02 usually denotes local state 3 and only occasionally 0.Nevertheless, in this series of experiments we never observed the agents evolvingto make full use of their communicative potential. We can see this in �gure 5, whichshows the decrease of entropy H as communication evolves; it begins at Hmax = 7,re
ecting total disorder, and decreases to about H = 4:5, which is still substantiallymore disordered than the Hideal = 3 of a \perfect" two-symbol communication system.The entropy appears to have stopped decreasing after about 5000 breeding cycles,so we can see that longer simulations are not likely to help (nor did they, in ourexperiments).It appears that two-symbol communication cannot fully self-organize, at leastunder the conditions investigated in these experiments. We can understand why byconsidering the task that the agents must evolve the ability to solve. Recall thatin each action cycle, all of the machines are allowed to respond as determined bythe global environment 
, their local environment � and their internal state �. Themachines are serviced cyclically, which means that once a machine emits a symbol, itwill have to wait while all the other machines are serviced before it has an opportunityto emit a second symbol. Consider what must take place for a machineA to signal itslocal environment �� to another machine B by means of the symbol sequence 
1
2.First, whatever the internal state � of machine A and whatever the state 
 of the16



global environment, machine A must have a rule (�; 
; ��) =) [�1; emit(
1)]. Second,supposing that no machine between A and B has altered the global environment,whatever the internal state �0 of machine B and whatever the state �0 of its localenvironment, machine B must have a rule (�0; 
1; �0) =) [�00; R]. If R is act(�0),then (a) it is attempting to cooperate prematurely, and will succeed only if �0 = ��by chance. On the other hand, if R is emit(
0), then (b) it will change (unlessperchance 
0 = 
1) the global environment, destroying the chances of any othermachines responding to A (or of B doing so on later action cycles). Third, machineAmust have a rule (�1; 
00; ��) =) [�2; emit(
2)], where 
 00 is the global state resultingfrom the last machine to emit before the second servicing of A (as conditioned by itsown internal and local states and by the global state). Fourth, again supposing thatno machine between A and B has altered the global state, machine B must have arule (�00; 
2; �0) =) [�000; act(��)]. The emergence of this degree of coordination maybe too much to expect, and it is perhaps surprising that we observed as much use oftwo-symbol signals as we did.5 Series 3: Paired Symbol Emission by FSMs5.1 SetupThe di�culty of evolving two-symbol communication led my student Joseph Crump-ton to consider a modi�cation of the experimental design [2]. Because of the likelihoodof two-symbol signals being disrupted by intervening emissions, he decided to giveeach agent two chances to respond in each action cycle. Notice that Crumpton'smachines do not simply emit a pair of symbols emit(
1
2); rather it is still necessarythat the machines use their internal state to control the generation or recognition ofsequential signals. In an action cycle each machine is allowed to cycle twice beforeproceeding to the next machine. The global-environment state comprises two sym-bols, which we may call the �rst and second components of the global state. On the�rst of a machine's cycles it is senses the �rst component and can change the �rstcomponent by emission; on the second cycle it senses the second component and canchange the second component by emission. On both cycles, the machine's responseis, as before, dependent on its internal and local-environment states. Furthermore, inaddition to emitting or attempting to cooperate, Crumpton's machines are allowedto do nothing, so that they are not forced to emit or attempt to cooperate whilewaiting for a second symbol. As in the second series of our experiments (section 4),Crumpton used S = 4; G = 4; L = 8; P = 100, but ran the simulation for 6 � 104breeding cycles. The selection, breeding and learning processes are also the same asin the earlier experiments. 17



5.2 ResultsIn a typical simulation run, Crumpton found that the number of cooperations perbreeding cycle increased to 65 in the �rst 104 breeding cycles; it remained between65 and 70 for the remaining 5� 104 breeding cycles of the simulation, although therewas a slight elevation in the average level after t = 3�104 cycles. This is signi�cantlyhigher than the 23 cooperations/breeding cycle obtained in the earlier experiments(analysis of variance p < 0:01). Similarly, the entropy decreased to about 5.1 bitsin the �rst 104 breeding cycles; after a slight elevation between t = 2 � 104 andt = 3 � 104, the entropy stabilized at H = 5 bits for the remaining 3 � 104 cycles.This was not signi�cantly di�erent from the entropy achieved in the second series ofexperiments (section 4).For each local-environment state, Crumpton considered the symbol pair most com-monly used in successful cooperations; such a pair might be said to express that state(perhaps ambiguously), and so we'll refer to it as an expressive pair. For example, ina typical run he found �ve expressive pairs (11, 22, 32, 33, 34), which means that theeight environment states could not be expressed unambiguously. The average he mea-sured (4.3) was not signi�cantly di�erent from that found in the earlier experiments(4.0).Crumpton was especially interested in non-repeating symbol use, that is, signals ofthe form XY , which require the use of memory in their generation and recognition, asopposed to signals of the form XX, which do not. For example, of the �ve expressivepairs (11, 22, 32, 33, 34), two are non-repeating (32, 34). In his experimentsCrumptonfound an average of 1.4 non-repeating pairs, which is signi�cantly higher (p < 0:01)than the 0.3 of the earlier series of experiments (section 4), thus showing that themachines were making better use of the representational resources of the medium.Crumpton used his experimental design to investigate several other properties ofcommunication in his synthetic world. For example, he found signi�cant di�erences inentropy and degree of coordination for population sizes P = 50; 100; 200; 400 and 800.(The P = 800 case was exceptional in many respects, which Crumpton attributesto the population being too big for communication to have stabilized in the 6 �104 breeding cycles of his experiments.) In general, larger populations achieved ahigher degree of coordination, but P = 100 led to the most use of expressive andnon-repeating pairs. Degree of coordination was found to be signi�cantly negativelycorrelated with entropy, as would be expected.Crumpton also investigated di�ering amounts of memory for the agents (S =2; 3; 4; 5; 6). With regard to degree of coordination and entropy, smaller numbers ofinternal states were better, but this was found to be deceptive, since with S = 2 or3 the eight situations were being represented by an average of three expressive pairs,whereas with S = 4 they were represented by an average of four expressive pairs.That is, in the former cases the agents were achieving higher degrees of coordinationby cooperating in a smaller subset of the situations (as was discussed in section 3.3,p. 13). 18



Crumpton ran a series of experiments in which there were two \species" of agents:the usual ones, and a breed of memoryless \competitors" who received credit forblocking cooperation by matching the last emitter's local environment.2 It was hopedthat the competitors would push the communicators to use pairs of symbols. Theresult, however, was a signi�cantly lower (p < 0:01) degree of coordination (48) andsigni�cantly less (p < 0:03) use of non-repeating symbols (0.4). He observed that thecompetitors either dominated the population or had very little e�ect.Crumpton investigated a number of other variations (including variations in learn-ing rule and placement of o�spring in the population), that did not lead to signi�-cant di�erences in degree of coordination, entropy, or the use of expressive and non-repeating pairs of symbols.6 Series 4: One-symbol Communication by NeuralNetworks6.1 MotivationThere are at least two limitations to the FSM behavioral control mechanisms usedin the preceding experiments. First, one of the important problems in the evolutionof language is the emergence of discrete signal types from a continuum of states[7, 8, 9, 10, 11]. (Steels has addressed this problem directly as part of his investigationof symbol grounding [17, 18].)Second, since FSMs have in e�ect a separate rule (i.e. transition table entry) foreach possible combination of internal, global and local state, they have no inherent ca-pacity to generalize. For example (and ignoring internal state for now), to consistentlysignal 
 for situation �, the machine must have in e�ect the rule (�; �) =) emit(
),where \�" means \don't care" (i.e. any possible global state). However, conventionalFSMs do not permit rules of this form (although alternative rule-based models, suchas classi�er systems, do). Therefore, the FSM must acquire (through evolution orlearning) a rule (
0; �) =) emit(
) for every possible global-environment state 
0.The situation is even worse when the machines have internal state too. This problemis aggravated by the fact that the size of the table, and hence of the genetic strings,increases with the product of the sizes of the state spaces, so there is no economy forthe machines in discovering general rules.We originally made the decision to use FSMs because they include no a priorimodel of general rules, but this same characteristic means that the population has amuch more di�cult evolutionary problem to solve. Hence, it seemed appropriate toinvestigate behavioral control mechanisms more capable of representing and learning2That is, if a competitor was able to match the last emitter's local environment, it preventedthe signaller and any communicating responders from getting credit, and it received credit for everysuch blocked communication. 19



general rules.6.2 SetupMy students Rick Stroud and Noel Jerke [15, sec. 2] conducted an exploratory inves-tigation patterned after our �rst series (section 3), but using neural networks insteadof FSMs, and continuous rather than discrete local and global state spaces, speci�-cally, � = [0; 1] = �. Each neural net had two inputs for sensing the states of itslocal environment and the global environment, and two (continuous-valued) outputsrepresenting the emission/action choice (in [�1; 1]) and the emission/action value (in[0; 1]). In addition the nets had a single hidden layer comprising six neurons.The emission/action choice was indicated by the sign of the �rst output. In theemission case the second output becomes the new state of the global environment. Inthe action case the second output is compared to the local environment of the lastemitter; credit is awarded if they di�er by less than 1=8 (in emulation of the L = 8discrete states of the earlier experiments).The overall cycle of synthetic evolution was the same as in the �rst series of experi-ments (section 3). The genetic string represented the connections between the neurons(+1;�1; 0; i.e. excitatory, inhibitory, absent) but not their relative strengths, whichwere adjusted by back-propagation. Generally �ve to ten cycles of back-propagationwere used to train the networks. The emit/act output was trained to �1, dependingon its sign on its �rst response (i.e., its native response was strengthened). Further,when the response was an action, the other output was trained to match the lastemitter's local-environment state. Simulations were run for 104 breeding cycles. Thecontinuous local and global state spaces were each divided into ten bins for compilinga 10� 10 co-occurrence matrix.6.3 ResultsStroud and Jerke observed that communication did not emerge when equal credit wasawarded to the emitter and actor for successful cooperations (as was done in the FSMexperiments), but that it did emerge when the actor was awarded three units and theemitter one. Without this adjustment, they speculated, there was an increase in thetendency of the agents to emit, and therefore an increased probability of emissionsinterfering with each other; the better coordinated populations seemed to have a smallnumber of emitters and a large number of actors. With increasing coordination, thecorresponding co-occurrence matrices displayed an obvious increase of structure, butStroud and Jerke did not quantify it by entropy or other measures. Although Stroudand Jerke did observe an increase in the cooperation of the agents, it seems to haveresulted in part from the \partial cooperation" of the agents exploiting the loopholein the scoring rule (section 3.3), rather than from full-
edged cooperation, for theco-occurrence matrices show cooperations to be taking place in a decreasing subset20



of the local state space.7 Related WorkNoble and Cli� [16] have replicated our �rst series of experiments (section 3) andextended them in a number of ways. Overall their results agreed with ours, but theirexperiments exhibited several discrepancies. First, they measured lower entropy inthe communication-suppressed condition, as did Crumpton [2] when the program wascorrected (footnote 1, page 10). Second, they observed a lower degree of coordinationthan we did when learning was enabled; this has not been explained. Next, theycompared the sequential (cyclic) servicing of the agents that we used with servicingthem in a di�erent random order each time, and they found that the results wereuna�ected except when learning was enabled, in which case coordination increasedmore quickly with random updating (and in fact agreed with the values we mea-sured). Further, they investigated whether synonymy and ambiguity in the emergentcommunication system re
ects the existence of multiple dialects in the population orambiguous symbol usage by individual agents (recall section 3.2, p. 12). The latterinterpretation was supported, since over time the population tends toward genetichomogeneity. Third, they investigated extreme situations in which there were a smallnumber of possible states (L � G � 4). They found that the agents were able toachieve comparatively high coordination by exploiting the loophole in the scoring rule(section 3.3).8 ConclusionsIt will be worthwhile to summarize our results: (1) We have demonstrated consistentlythat inherently meaningful communication can emerge through synthetic evolutionin populations of simple arti�cial agents. (2) This has been demonstrated for agentscontrolled by both �nite state machines and neural networks. (3) The agents canevolve the ability to use single symbols and, to a limited extent, pairs of symbolsexhibiting rudimentary syntax. (4) The communication system evolved by the popu-lation can be studied in its own right as an evolving emergent phenomenon. (5) Theemergent communication systems exhibit some of the richness of natural communica-tion, including ambiguous, synonymous, asymmetric and context-dependent symboluse.We will mention a few opportunities for future work. In nature, communicationmedia are inherently continuous, but some functions of communication are facilitatedby the use of discrete symbols. This implies that the emergence of discrete symbolsfrom continuous phenomena is an important problem that must be solved by theevolution of language [7, 8, 9, 10, 11, 14]. As mentioned above, Steels has initiateda promising investigation of this problem [17, 18]. In addition to explaining the21



emergence of words, such research may illuminate the gradual emergence of the rulesand hierarchical structure characteristic of human language [8, 11]We have already remarked on the limitations of the FSM behavioral model (sec-tion 6.1), but the simple neural nets employed by Stroud and Jerke are not muchbetter. Animals, on the other hand, independent of any communicative abilities theymay have, are able to interpret perceptually complex phenomena and to generatecomplex, 
exible, hierarchically structured motor behaviors. It seems likely that theunderlying neural mechanisms of these behaviors may be recruited and adapted forcommunication, including language. Therefore, we may speculate that our arti�cialagents may need to be similarly endowed with perceptual-motor abilities before theywill evolve complex, structured communication systems. (For this reason, our recentresearch has been directed toward mechanisms for perception and motor control [12].)The experiments we have described involve local environments that are extremelysimple in structure: a small discrete set (e.g. f0; : : : ; 7g) or a simple continuum(e.g. [0; 1]); the communication systems that have evolved to describe them arecorrespondingly simple. Although some of the structure (syntax) of communicationsystems may be emergent phenomena independent of their semantics and pragmatics[3, 4, 5], we expect the complexity of communication to re
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