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Abstract

While a variety of checkpointing techniques and systems have been documented for long-running pro-

grams, they are typically not available for programmers that are non systems experts. This paper details a

project that integrates three technologies, NetSolve, Starfish, and IBP, for the seamless integration of fault-

tolerance into long-running applications. We discuss the design and implementation of this project, and

present performance results executing on both local and wide-area networks.

1 Introduction

Checkpointing and rollback recovery is a well-studied research area for enabling long-running applications to be

fault-tolerant. Many basic checkpointing algorithms [EAWJ99,MS99] and optimization techniques [Pla99] have

been developed for uniprocessor and parallel computing systems, and several checkpointing libraries and systems

have been implemented [EZ92, HKW95, PBKL95, TL95, WHV+95, Ste96, CPL97, RS97, AF99]. However, for

the typical scientific user, actually using a checkpointingsystem is a difficult task. All systems require the user to
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Figure 1: The structure of NetSolve applications

port a library and recompile or relink their code subject to anumber of restrictions imposed by the library. These

restrictions range from strong typing of the source code [RS97] to restricted file I/O [PBKL95, CPL97] to static

linking of runtime libraries [AF99], to restricted communication patterns [CPL97]. One restriction shared by all

checkpointers is that no connections to the outside world may be open while checkpointing is underway.

Because of all of these factors, few scientific users actually employ checkpointing in their applications. This

paper describes a research project whose goal is to embed checkpointing seamlessly into long-running applica-

tions for scientific programmers. To achieve this goal, we combine three software systems, NetSolve [CD97a],

Starfish [AF99], and IBP [PBE+99]. In this experience report, we describe each software piece and how the

pieces are integrated, focusing on the important design decisions. These are:� A user interface with few complexities.� An efficient checkpoint library that is fairly simple to embed into server code, and whose restrictions do

not limit the user’s application.� A checkpointing storage substrate that facilitates restart and migration across administrative domains, and

automatic garbage collection.

We close with a few performance studies in a variety of local and wide area settings.



2 The Components

The system is based on three components: NetSolve, Starfish,and IBP. We first describe these components.

2.1 NetSolve [CD97a]

NetSolveis a brokered remote procedure call (RPC) environment as depicted in Figure 1. The user is termed a

client, and is typically executing code on a PC or laptop. When the client wishes to perform a computationally

complex task, he or she makes a NetSolve client call, specifying the name of the task, plus the arguments. The

NetSolve client software (linked to the client in the form ofa library) manages the completion of this task, which

we will refer to as a “service.”

First anagentis contacted with a query (step 1), specifying the service name and the size of the arguments.

The agent maintains information on a collection of computational servers, which may be uniprocessors, mul-

tiprocessors, massively parallel machines, Condor workstation pools [TL95], etc. This information consists of

machine parameters (speed, memory, available software), plus current load information. The agent returns an

ordered list of candidate servers to the client (step 2), whothen picks a server (typically the first on the list) and

initiates a RPC to that server (step 3). The server performs the service, and completes the RPC, returning the

results to the client (step 4).

Although not depicted in Figure 1, there may be multiple agents managing overlapping server pools. Addi-

tionally, servers may span multiple geographic and administrative domains, of which the clients may or may not

be a part. One of NetSolve’s strengths is the wide variety of clients that it supports. The NetSolve client code may

be linked with C, C++ and Fortran, running on both Unix and Windows platforms. Additionally, it may be used

from within the popular scientific toolkits Matlab and Mathematica, and from Microsoft Excel. The NetSolve

release contains server software for dense and sparse linear algebra routines and other commonly-used scientific

codes (e.g. ARPACK, FitPack, ItPack, MinPack, FFTPACK, LAPACK, QMR, etc.). Users may configure servers

to run custom code as well with the aid of some Java tools [CD97b].

2.2 Starfish [AF99]

Starfish is a transparent checkpointing library originally developed to embed fault-tolerance and migration into

MPI applications. The Starfish checkpointing mechanism is astandard core dump mechanism that has served

as the basis for many checkpointers (see papers by Tannenbaum [TL95] and Plank [PBKL95] for throrough

discussions of these types of checkpointers). Starfish checkpoints periodically, triggering checkpoints by timer

interrupts.

This checkpointer is a library to be linked with Solaris-based programs. No recompilation of any source code is



required. Starfish implements the copy-on-write optimization [EJZ92,PBKL95] so that the act of checkpointing

may be overlapped with the execution of server code. Like most checkpointers, Starfish imposes restrictions on

file I/O, requires static linking of shared libraries, and prohibits the use of interprocess communication.

2.3 IBP [PBE+99]

The Internet Backplane Protocol (IBP)is a mechanism for managing storage on the wide area. IBP servers are

daemons that provide local storage (disk, tape and physicalmemory) to remote clients that link the IBP client

library. IBP is useful for checkpointing applications because it allows programs to store their checkpoints into

a remote storage entity, perhaps one in a different administrative domain. Therefore if the machine executing

the program fails and remains inoperative for a long period of time, the program may be restored on a separate

machine, again perhaps in a different administrative domain.

IBP has two features that enable it to serve storage on the wide area as a networking resource:� There are no user-defined names.IBP clients allocate storage, and if the allocation is successful, then it

returns threecapabilitiesto the client — one each for reading, writing, and management. These capabilities

are text strings, and may be viewed as server-defined names for the storage. The elimination of user-defined

names facilitates scalability, since no global namespace needs to be maintained. To make an IBP client call

for reading, writing or management, the client must presentthe server with the proper capability.� Storage may be constrained to bevolatile or time-limited. An important issue when serving local storage

to remote clients is being able to reclaim the storage. IBP servers may be configured so that the storage

allocated to IBP clients isvolatile, meaning it can go away at any time, ortime-limited, meaning that it

goes away after a specified time period.

The transient nature of IBP storage leads us to refer to the units of IBP storage as buffers.

3 Putting it all Together

The structure of NetSolve with checkpointing is depicted inFigure 2. In a nutshell, the NetSolve servers are

linked with Starfish and store their checkpoints in IBP buffers. When a server fails, the computation is rolled

back to the most recent checkpoint and restored on a new server. The client receives results from whichever

server completes the computation. In such a way, the client ends up executing fault-tolerant and migratable code

by simply linking with the NetSolve client library.

There is much more detail in the implementation. We first describe the exact client-agent-server interaction.

The agent must be aware of server architectures, and whetherthe server code for a particular computational
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Figure 2: NetSolve with checkpointing

service has been linked with the Stafish library. This information is returned to the client as part of the response

to the client’s initial query. If the client selects a serverthat is enabled with checkpointing, then as part of the

RPC initiation, the server allocates an IBP buffer on a nearby server. We call this buffer the “naming buffer.” The

capabilities of the naming buffer are returned to the client.

When the server initiates a checkpoint, it first allocates anIBP buffer for the checkpoint. This is a time-limited

allocation for some fixed period of time greater than the checkpoint interval. When the checkpoint is stored in the

IBP buffer, the capabilities of this buffer are stored in thenaming buffer, and if necessary, the previous checkpoint

buffer is deleted.

The original NetSolve distribution has failure detection and primitive fault-tolerance. Server failures (which

may be defined as excessive load) are detected by the NetSolveclients and/or the agent. When a failure is

detected, the client is contacted and instructed to restartthe service on a new server. With checkpointing, the

client can select a server with the same architecture as the failed server, which can then roll the computation back

to the most recent checkpoint. The client presents this new server with the capabilities of the naming buffer,

which allow the new server to find the checkpoint buffer and restart the computation. Obviously, this new server

may continue checkpointing as well. If there is no server that can restart the computation from the checkpoint,

then the client selects the best available server to restartthe computation from the beginning.

When the computation completes, the server returns the results to the client and deletes all IBP buffers. Note,



however, that if other errors occur, such as NetSolve agent failure, client failure, or NetSolve system shutdown,

the time-limited nature of the IBP buffer allocation will make sure that spare checkpoint files are eventually

deleted.

As stated above in section 2.2, Starfish places restrictionson the programs that it checkpoints. The only

restriction that is a potential problem for NetSolve servercode is the prohibition on external connections. While

performing a computation, a server only needs to have an openconnection to the client when performing the

initial RPC interactions and when delivering the results. Thus, Starfish does not start checkpointing until the

initial RPC interations are over, and it stops once the server starts delivering results. Typically, NetSolve server

codes perform only basic file I/O operations, which are checkpointable by standard means [PBKL95].

The selection of checkpointing interval and checkpointingIBP servers is performed by the agent. The optimal

checkpoint interval may be approximated by a simple function of checkpoint overhead and failure rate [Vai97,

PE98], which are both parameters that the agent can estimate. IBP server proximity currently estimated using

static metrics. A test implementation of NetSolve integrates the Network Weather Service [WSH99] into the

NetSolve system so that the agent can make more accurate predictions of computation server performance and

IBP server proximity.

4 Benefits of This Architecture

There are several benefits that this design has in terms of performance, functionality and deployability:� The user is insulated from checkpointing details.In the best case, the user is employing NetSolve to

perform common computations such as dense linear algebra. In this case, the NetSolve server setup is

trivial, and the user can unknowingly receive the benefits ofremote computation and checkpointing even

while using Excel on a Windows-based laptop. This is a level of deployability that is typically unheard of

in scientific programming.� The user’s program can have outside connections.All checkpointing systems restrict connections out-

side the scope of the programming environment. In other words, while checkpointing systems typically

work when all processors are part of the same programming system (for example through the use of PVM

or MPI [CCG+95, Ste96, AF99]), they only allow programs to interact withthe outside world by check-

pointing (or logging) beforeeach interaction [EZ94, EAWJ99]. With NetSolve, the client may initiate

a service while maintaining other external connections. This service can checkpoint, fail, rollback, and

continue to operate correctly irrespective of the state of the client and its connections to other processing

elements. This even works if the client starts the service asynchronously (i.e. in the background while



it performs other tasks). Thus, NetSolve’s restricted programming model achieves a clean separation of

client and server that allows the server to checkpoint whilethe client does other things.� Migration can occur across the wide area. NetSolve and IBP both manage resources from different

administrative domains, serving cycles and storage to potentially unrelated users and applications. With

checkpointing to IBP, it is possible to migrate these services from one domain to another, so long as the

server machine architectures are identical.� It will work in a lent-resource environment. Similarly to the above, NetSolve and IBP are both able to

manage spare resources (computation and storage) that havelimits on their usage. In particular, processors

may be revoked due to ownership, and storage may impose time limits on allocation. The inclusion of

checkpointing into the NetSolve system means that these resources may be employed by remote computa-

tions. This funcationality is similar to that provided by the Condor project [TL95].� Storage ownership is separated from the computation.Pruyne and Livny have noted that strate-

gic placement of checkpoints at locations external to the computation processors can improve perfor-

mance [PL96]. The use of IBP in NetSolve is identical to the use of checkpointing servers in [PL96]

and should improve performance similarly.

5 Performance Case Studies

We briefly detail three performance case studies. In each of these, we have a NetSolve client running Matlab,

a NetSolve agent, two NetSolve servers and one IBP server allrunning on different machines. The Matlab

client makes a NetSolve call to thedmatmul service (matrix multiplication), which gets serviced by one of the

NetSolve servers. The server checkpoints to the IBP server,and either it completes without failure, or it fails.

When the failure is detected, the second server takes over the service, reading from the checkpoint, and completes

the service.

We report results from three separate computing environments: CLUSTER, LOCAL and WIDE. CLUSTER is a

tightly-coupled cluster computing environment. The machines are all dual-processor Sun UltraSPARC-2’s with

256 Mbytes of RAM, connected by a 155 Mbps ATM network. LOCAL is a department-wide environment, where

the NetSolve client and agent are Sun UltraSPARC-1’s, and the other machines are lower-end SparcStation-

5’s. All machines are connected by the Computer Science department’s backbone network at the University of

Tennessee. Finally WIDE is a wide-area, multi-institutional environment where theclient, agent and IBP server

are running on UltraSPARC-1’s at Tennessee, while the NetSolve servers are running on two UltraSPARC-1’s

at Princeton University. Communication between the two institutions is done over the standard Internet. In the



CLUSTER test, the machines are dedicated to the experiment. In all other tests, the machines are undedicated.
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Figure 3: Performance ofdmatmul on the CLUSTER environment.

Results from the CLUSTER environment are displayed in Figure 3. In this and other graphs, The light shaded

areas are the server times only. The dark areas add the clientinteraction times. As expected, the CLUSTER envi-

ronment exhibits high performance. The ATM network, large physical memories, and copy-on-write optimization

combine for extremely high performance. For example, on theN = 1000 run, the overhead of checkpointing

every ten seconds on the total client/server transaction is9.7 percent, and the overhead of checkpointing every

ten seconds and absorbing one failure is 26 percent.
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Figure 4: Performance ofdmatmul on the LOCAL environment.

Results from the CLUSTER environment are displayed in Figure 4. As would be expected,the performance

of the service is slower due to the slower processors. Likewise, the performance of checkpointing, recovery, and

the contact with the client are all worse due to the slower interconnection network. However, in all cases, rolling

back from the checkpoint improves performance over restarting from the beginning.

Finally, results from the WIDE environment are displayed in Figure 5. In these graphs, the black boxes are

much larger due to the fact that the input and output matricesare being passed across the Internet. Interestingly,
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even though the checkpoints too are being passed across the Internet, the checkpoint overhead is negligible

in comparison to the fluctuation due to non-dedicated access. Once again, this is due to the copy-on-write

optimization. However, when a recovery is required, the checkpoint file must be moved across the Internet before

recovery may begin, resulting in a severe performance penalty. In this instance, a restart from the beginning would

perform better than restarting from the checkpoint. This experiment serves to underscore that it is more important

to select the recovering server to be close to the checkpoints than it is to select the checkpointing server to be

close to the checkpoints. This is because checkpoints are taken asyncronously, while state restoration is by nature

synchronous.

6 Conclusion, Limitations and Deployment

In this paper, we have described a system architecture that brings fault-tolerance and migration to scientific users

who need not be computer systems experts. There are two main limitations to this system. First, if a user is

not making use of the core NetSolve system services (e.g. linear algebra subroutines) listed in section 2.1, then

the “not an expert” label applies less forcefully, as the user must learn how to configure the NetSolve servers.

Although this task is made easier by Java-based tools [CD97b], it is a level of complexity higher than simply

using NetSolve from Matlab or Excel.

The second limitation is the restriction that the checkpointing and recovering machine must be of the same

architecture. This limitation arises from the fact that Starfish is a core-dump style checkpointer. The architecture

of the system could easily be extended to use more portable checkpointing substrates, such as applications that

implement their own checkpointing and rollback recovery with the help of libraries such aslibft [HKW95],

or a toolkit that embeds portable checkpoints into arbitrary programs [RS97]. We are exploring using the Porch

toolkit [Str98] to add portable checkpointing to the core NetSolve services.



As described above, this checkpointing system has been implemented and tested. It is anticipated that it will

be included as part of the official NetSolve distribution (http://www.cs.utk.edu/netsolve ) in the year

2000.

7 Acknowledgements

This material is based upon work supported by the National Science Foundation under grants ACI-9876895,

CCR-9703390 and CDA-9529459, and by the Department of Energy under grant DE-FC0299ER25396. The

authors thank Dorian Arnold for help with modifying NetSolve, and Roy Friedman and Jack Dongarra for their

support.



References
[AF99] A. Agbaria and R. Friedman. Starfish: Fault-tolerantdy-

namic MPI programs on clusters of workstations. In8th
IEEE International Symposium on High Performance Dis-
tributed Computing, 1999.

[CCG+95] J. Casas, D. L. Clark, P. S. Galbiati, R. Konuru, S. W. Otto,
R. M. Prouty, and J. Walpole. MIST: PVM with transparent
migration and checkpointing. In3rd Annual PVM Users’
Group Meeting, Pittsburgh, PA, May 1995.

[CD97a] H. Casanova and J. Dongarra. NetSolve: A network server
for solving computational science problems.The Inter-
national Journal of Supercomputer Applications and High
Performance Computing, 11(3):212–223, 1997.

[CD97b] H. Casanova and J. Dongarra. The use of Java in the Net-
Solve project. In15th IMACS World Congress on Scientific
Computation, Modeling and Applied Mathematics, Berlin,
1997.

[CPL97] Y. Chen, J. S. Plank, and K. Li. CLIP: A checkpointingtool
for message-passing parallel programs. InSC97: High Per-
formance Networking and Computing, San Jose, November
1997.

[EAWJ99] E. N. Elnozahy, L. Alvisi, Y-M. Wang, and D. B. Johnson.
A survey of rollback-recoveryprotocols in message-passing
systems. Technical Report CMU-CS-99-148, Carnegie
Mellon University, June 1999.

[EJZ92] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The
performance of consistent checkpointing. In11th Sympo-
sium on Reliable Distributed Systems, pages 39–47, Octo-
ber 1992.

[EZ92] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transpar-
ent rollback-recovery with low overhead, limited rollback
and fast output commit.IEEE Transactions on Computers,
41(5):526–531, May 1992.

[EZ94] E. N. Elnozahy and W. Zwaenepoel. On the use and im-
plementation of message logging. In24th International
Symposium on Fault-Tolerant Computing, pages 298–307,
Austin, TX, June 1994.

[HKW95] Y. Huang, C. Kintala, and Y-M. Wang. Software tools and
libraries for fault tolerance.IEEE Technical Committee on
Operating Systems and Application Environments, 7(4):5–
9, Winter 1995.

[MS99] D. Manivannan and M. Singhal. Quasi-synchronous
checkpointing: Models, characterization and classification.
IEEE Transactions on Parallel and Distributed Systems,
10(7):703–713, July 1999.

[PBE+99] J. S. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and
R. Wolski. The Internet Backplane Protocol: Storage in
the network. InNetStore ’99: Network Storage Symposium.
Internet2, http://dsi.internet2.edu/netstore99, October 1999.

[PBKL95] J. S. Plank, M. Beck, G. Kingsley, and K. Li.Libckpt :
Transparent checkpointing under Unix. InUsenix Winter
Technical Conference, pages 213–223, January 1995.

[PE98] J. S. Plank and W. R. Elwasif. Experimental assessment of
workstation failures and their impact on checkpointing sys-
tems. In28th International Symposium on Fault-Tolerant
Computing, pages 48–57, Munich, June 1998.

[PL96] J. Pruyne and M. Livny. Managing checkpoints for parallel
programs. InWorkshop on Job Scheduling Strategies for
Parallel Processing (IPPS ’96), 1996.

[Pla99] J. S. Plank. Program diagnostics. In John G. Webster, editor,
Wiley Encyclopedia of Electrical and Electronics Engineer-
ing, volume 17, pages 300–310. John Wiley & Sons, Inc.,
New York, 1999.

[RS97] B. Ramkumar and V. Strumpen. Portable checkpointingand
recovery in heterogeneous environments. In27th Interna-
tional Symposium on Fault-Tolerant Computing, pages 58–
97, June 1997.

[Ste96] G. Stellner. CoCheck: Checkpointing and process migra-
tion for MPI. In 10th International Parallel Processing
Symposium, pages 526–531. IEEE Computer Society, April
1996.

[Str98] V. Strumpen. Porch: Portable checkpoint compiler.http:
//theory.lcs.mit.edu/˜porch/ , 1998.

[TL95] T. Tannenbaum and M. Litzkow. The Condor distributed
processingsystem.Dr. Dobb’s Journal, #227:40–48,Febru-
ary 1995.

[Vai97] N. H. Vaidya. Impact of checkpoint latency on overheadra-
tio of a checkpointing scheme.IEEE Transactions on Com-
puters, 46(8):942–947, August 1997.

[WHV+95] Y-M. Wang, Y. Huang, K-P. Vo, P-Y. Chung, and C. Kin-
tala. Checkpointing and its applications. In25th Interna-
tional Symposium on Fault-Tolerant Computing, pages 22–
31, Pasadena, CA, June 1995.

[WSH99] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A distributed resource performance forecasting
service for metacomputing.Future Generation Computer
Systems, 15, 1999.


