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Abstract

While a variety of checkpointing techniques and systeme lmeen documented for long-running pro-
grams, they are typically not available for programmerg #ra non systems experts. This paper details a
project that integrates three technologies, NetSolvefi§ttaand IBP, for the seamless integration of fault-
tolerance into long-running applications. We discuss tesigh and implementation of this project, and

present performance results executing on both local and-atida networks.

1 Introduction

Checkpointing and rollback recovery is a well-studied aesle area for enabling long-running applications to be
fault-tolerant. Many basic checkpointing algorithms [EAS9, MS99] and optimization techniques [Pla99] have
been developed for uniprocessor and parallel computingss and several checkpointing libraries and systems
have been implemented [EZ92, HKW95, PBKL95, TL95, WHb, Ste96, CPL97,RS97, AF99]. However, for

the typical scientific user, actually using a checkpointipgtem is a difficult task. All systems require the user to
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Figure 1: The structure of NetSolve applications

port a library and recompile or relink their code subject tauanber of restrictions imposed by the library. These
restrictions range from strong typing of the source code9[R %o restricted file 1/0O [PBKL95, CPL97] to static
linking of runtime libraries [AF99], to restricted commuation patterns [CPL97]. One restriction shared by all
checkpointers is that no connections to the outside worlgdimesopen while checkpointing is underway.
Because of all of these factors, few scientific users agteaiploy checkpointing in their applications. This
paper describes a research project whose goal is to embekipciieting seamlessly into long-running applica-
tions for scientific programmers. To achieve this goal, walsime three software systems, NetSolve [CD974a],
Starfish [AF99], and IBP [PBE99]. In this experience report, we describe each softwageepand how the

pieces are integrated, focusing on the important desigisides. These are:
e A user interface with few complexities.

e An efficient checkpoint library that is fairly simple to entbato server code, and whose restrictions do

not limit the user’s application.

¢ A checkpointing storage substrate that facilitates reatadt migration across administrative domains, and

automatic garbage collection.

We close with a few performance studies in a variety of local wide area settings.



2 The Components

The system is based on three components: NetSolve, StamfidhBP. We first describe these components.

2.1 NetSolve [CD974]

NetSolveis a brokered remote procedure call (RPC) environment aistéeldn Figure 1. The user is termed a
client, and is typically executing code on a PC or laptop. When tlemativishes to perform a computationally
complex task, he or she makes a NetSolve client call, spagifhe name of the task, plus the arguments. The
NetSolve client software (linked to the client in the formedibrary) manages the completion of this task, which
we will refer to as a “service.”

First anagentis contacted with a query (step 1), specifying the serviceenand the size of the arguments.
The agent maintains information on a collection of compatetl servers, which may be uniprocessors, mul-
tiprocessors, massively parallel machines, Condor watikst pools [TL95], etc. This information consists of
machine parameters (speed, memory, available softwdtes) cprrent load information. The agent returns an
ordered list of candidate servers to the client (step 2), thika picks a server (typically the first on the list) and
initiates a RPC to that server (step 3). The server perfon@seérvice, and completes the RPC, returning the
results to the client (step 4).

Although not depicted in Figure 1, there may be multiple ag@managing overlapping server pools. Addi-
tionally, servers may span multiple geographic and adrmatise domains, of which the clients may or may not
be a part. One of NetSolve’s strengths is the wide varietyients that it supports. The NetSolve client code may
be linked with C, C++ and Fortran, running on both Unix and tidiws platforms. Additionally, it may be used
from within the popular scientific toolkits Matlab and Mathatica, and from Microsoft Excel. The NetSolve
release contains server software for dense and sparsedigedra routines and other commonly-used scientific
codes (e.g. ARPACK, FitPack, ItPack, MinPack, FFTPACK, A&, QMR, etc.). Users may configure servers

to run custom code as well with the aid of some Java tools [@P97

2.2 Starfish [AF99]

Starfish is a transparent checkpointing library originally deveddgo embed fault-tolerance and migration into
MPI applications. The Starfish checkpointing mechanismsgadard core dump mechanism that has served
as the basis for many checkpointers (see papers by Tanmenia®5] and Plank [PBKL95] for throrough
discussions of these types of checkpointers). Starfishkploaats periodically, triggering checkpoints by timer
interrupts.

This checkpointeris a library to be linked with Solaris-edprograms. No recompilation of any source code is



required. Starfish implements the copy-on-write optinmiaafEJZ92, PBKL95] so that the act of checkpointing
may be overlapped with the execution of server code. Liketroasckpointers, Starfish imposes restrictions on

file 1/0, requires static linking of shared libraries, andlpbits the use of interprocess communication.

2.3 IBP [PBE*99]

TheInternet Backplane Protocol (IBR% a mechanism for managing storage on the wide area. |BRrseave
daemons that provide local storage (disk, tape and physieaiory) to remote clients that link the IBP client
library. IBP is useful for checkpointing applications besa it allows programs to store their checkpoints into
a remote storage entity, perhaps one in a different admatiig® domain. Therefore if the machine executing
the program fails and remains inoperative for a long periitihee, the program may be restored on a separate
machine, again perhaps in a different administrative domai

IBP has two features that enable it to serve storage on the avish as a networking resource:

e There are no user-defined namesiBP clients allocate storage, and if the allocation is sasfig, then it
returns threeapabilitiesto the client— one each for reading, writing, and managenémtse capabilities
are text strings, and may be viewed as server-defined namiefstorage. The elimination of user-defined
names facilitates scalability, since no global namespaeé#to be maintained. To make an IBP client call

for reading, writing or management, the client must prefemserver with the proper capability.

e Storage may be constrained to beolatileor time-limited. An important issue when serving local storage
to remote clients is being able to reclaim the storage. IBResg may be configured so that the storage
allocated to IBP clients igolatile, meaning it can go away at any time, tome-limited meaning that it

goes away after a specified time period.

The transient nature of IBP storage leads us to refer to the o BP storage as buffers.

3 Putting it all Together

The structure of NetSolve with checkpointing is depictedrigure 2. In a nutshell, the NetSolve servers are
linked with Starfish and store their checkpoints in IBP brgfeWhen a server fails, the computation is rolled
back to the most recent checkpoint and restored on a newrséfte client receives results from whichever
server completes the computation. In such a way, the clieag @p executing fault-tolerant and migratable code
by simply linking with the NetSolve client library.

There is much more detail in the implementation. We first desdhe exact client-agent-server interaction.

The agent must be aware of server architectures, and whistheserver code for a particular computational
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Figure 2: NetSolve with checkpointing

service has been linked with the Stafish library. This infation is returned to the client as part of the response
to the client’s initial query. If the client selects a sertleat is enabled with checkpointing, then as part of the
RPC initiation, the server allocates an IBP buffer on a neadover. We call this buffer the “naming buffer.” The
capabilities of the naming buffer are returned to the client

When the server initiates a checkpoint, it first allocatelBdhbuffer for the checkpoint. This is a time-limited
allocation for some fixed period of time greater than the kpemt interval. When the checkpointis stored in the
IBP buffer, the capabilities of this buffer are stored intiaening buffer, and if necessary, the previous checkpoint
buffer is deleted.

The original NetSolve distribution has failure detectiowl grimitive fault-tolerance. Server failures (which
may be defined as excessive load) are detected by the NetSmaes and/or the agent. When a failure is
detected, the client is contacted and instructed to retarservice on a new server. With checkpointing, the
client can select a server with the same architecture asitfled server, which can then roll the computation back
to the most recent checkpoint. The client presents this reves with the capabilities of the naming buffer,
which allow the new server to find the checkpoint buffer arefad the computation. Obviously, this new server
may continue checkpointing as well. If there is no servet taa restart the computation from the checkpoint,
then the client selects the best available server to reabdomputation from the beginning.

When the computation completes, the server returns thésesuhe client and deletes all IBP buffers. Note,



however, that if other errors occur, such as NetSolve agénré, client failure, or NetSolve system shutdown,
the time-limited nature of the IBP buffer allocation will k& sure that spare checkpoint files are eventually
deleted.

As stated above in section 2.2, Starfish places restricthionthe programs that it checkpoints. The only
restriction that is a potential problem for NetSolve se@ie is the prohibition on external connections. While
performing a computation, a server only needs to have an opemection to the client when performing the
initial RPC interactions and when delivering the resultfugd, Starfish does not start checkpointing until the
initial RPC interations are over, and it stops once the setzgts delivering results. Typically, NetSolve server
codes perform only basic file I/O operations, which are cheokable by standard means [PBKL95].

The selection of checkpointing interval and checkpointBig servers is performed by the agent. The optimal
checkpoint interval may be approximated by a simple fumctibcheckpoint overhead and failure rate [Vai97,
PE98], which are both parameters that the agent can estiifeserver proximity currently estimated using
static metrics. A test implementation of NetSolve integsathe Network Weather Service [WSH99] into the
NetSolve system so that the agent can make more accuratetfmesl of computation server performance and

IBP server proximity.

4 Benefits of This Architecture

There are several benefits that this design has in terms fofrpemnce, functionality and deployability:

e The user is insulated from checkpointing details.In the best case, the user is employing NetSolve to
perform common computations such as dense linear algebrthis case, the NetSolve server setup is
trivial, and the user can unknowingly receive the benefiteenfote computation and checkpointing even
while using Excel on a Windows-based laptop. This is a leVeleployability that is typically unheard of

in scientific programming.

e The user’s program can have outside connectiondAll checkpointing systems restrict connections out-
side the scope of the programming environment. In other syasthile checkpointing systems typically
work when all processors are part of the same programmirtgrsy@or example through the use of PVYM
or MPI [CCG" 95, Ste96, AF99]), they only allow programs to interact vtttk outside world by check-
pointing (or logging) beforeachinteraction [EZ94, EAWJ99]. With NetSolve, the client manjtiate
a service while maintaining other external connectionsis Blrvice can checkpoint, fail, rollback, and
continue to operate correctly irrespective of the statdefdient and its connections to other processing

elements. This even works if the client starts the servigm@awonously (i.e. in the background while



it performs other tasks). Thus, NetSolve’s restricted paogning model achieves a clean separation of

client and server that allows the server to checkpoint wthiéeclient does other things.

e Migration can occur across the wide area. NetSolve and IBP both manage resources from different
administrative domains, serving cycles and storage tonpiatey unrelated users and applications. With
checkpointing to IBP, it is possible to migrate these se&wiftom one domain to another, so long as the

server machine architectures are identical.

o It will work in a lent-resource environment. Similarly to the above, NetSolve and IBP are both able to
manage spare resources (computation and storage) thdirhdagen their usage. In particular, processors
may be revoked due to ownership, and storage may impose itinits bn allocation. The inclusion of
checkpointing into the NetSolve system means that theseiress may be employed by remote computa-

tions. This funcationality is similar to that provided byet@ondor project [TL95].

e Storage ownership is separated from the computation. Pruyne and Livny have noted that strate-
gic placement of checkpoints at locations external to thmpidation processors can improve perfor-
mance [PL96]. The use of IBP in NetSolve is identical to the ascheckpointing servers in [PL96]

and should improve performance similarly.

5 Performance Case Studies

We briefly detail three performance case studies. In eachesfe, we have a NetSolve client running Matlab,
a NetSolve agent, two NetSolve servers and one IBP serveurating on different machines. The Matlab
client makes a NetSolve call to tidenatmul service (matrix multiplication), which gets serviced byeaof the
NetSolve servers. The server checkpoints to the IBP seamergither it completes without failure, or it fails.
When the failure is detected, the second server takes awsetirice, reading from the checkpoint, and completes
the service.

We report results from three separate computing envirotsn€hUSTER, LOCAL and WIDE. CLUSTERis a
tightly-coupled cluster computing environment. The maekiare all dual-processor Sun UltraSPARC-2’s with
256 Mbytes of RAM, connected by a 155 Mbps ATM networkodAL is a department-wide environment, where
the NetSolve client and agent are Sun UltraSPARC-1's, aather machines are lower-end SparcStation-
5's. All machines are connected by the Computer Sciencerthepat’s backbone network at the University of
Tennessee. Finally WE is a wide-area, multi-institutional environment where thient, agent and IBP server
are running on UltraSPARC-1’s at Tennessee, while the NetS®rvers are running on two UltraSPARC-1's

at Princeton University. Communication between the twditingons is done over the standard Internet. In the



CLUSTER test, the machines are dedicated to the experiment. Intedl tésts, the machines are undedicated.
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Figure 3: Performance almatmul on the GQUSTER environment.

Results from the CUSTER environment are displayed in Figure 3. In this and otherlggaphe light shaded
areas are the server times only. The dark areas add theialiergction times. As expected, the @GSTER envi-
ronment exhibits high performance. The ATM network, largggical memories, and copy-on-write optimization
combine for extremely high performance. For example, onXthe: 1000 run, the overhead of checkpointing
every ten seconds on the total client/server transactitvipercent, and the overhead of checkpointing every

ten seconds and absorbing one failure is 26 percent.
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Figure 4: Performance almatmul on the LOCAL environment.

Results from the CUSTER environment are displayed in Figure 4. As would be expedtezlperformance
of the service is slower due to the slower processors. Likewhe performance of checkpointing, recovery, and
the contact with the client are all worse due to the slowargdnnection network. However, in all cases, rolling
back from the checkpoint improves performance over réstaftom the beginning.

Finally, results from the WbE environment are displayed in Figure 5. In these graphs, ldek bboxes are

much larger due to the fact that the input and output matace$eing passed across the Internet. Interestingly,
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Figure 5: Performance afmatmul on the WDE environment.

even though the checkpoints too are being passed acrosstéradt, the checkpoint overhead is negligible
in comparison to the fluctuation due to non-dedicated acc€ssce again, this is due to the copy-on-write
optimization. However, when a recovery is required, theckpeint file must be moved across the Internet before
recovery may begin, resulting in a severe performance pemalhis instance, a restart from the beginning would
perform better than restarting from the checkpoint. Thigeeinent serves to underscore that it is more important
to select the recovering server to be close to the checkpthan it is to select the checkpointing server to be
close to the checkpoints. This is because checkpointskea tsyncronously, while state restoration is by nature

synchronous.

6 Conclusion, Limitations and Deployment

In this paper, we have described a system architecture tinglfault-tolerance and migration to scientific users
who need not be computer systems experts. There are two imaiations to this system. First, if a user is
not making use of the core NetSolve system services (egpdialgebra subroutines) listed in section 2.1, then
the “not an expert” label applies less forcefully, as therumsest learn how to configure the NetSolve servers.
Although this task is made easier by Java-based tools [CD®&7b a level of complexity higher than simply
using NetSolve from Matlab or Excel.

The second limitation is the restriction that the checkpipgand recovering machine must be of the same
architecture. This limitation arises from the fact thatrfi$a is a core-dump style checkpointer. The architecture
of the system could easily be extended to use more portablkpbinting substrates, such as applications that
implement their own checkpointing and rollback recoverytwthe help of libraries such dibft  [HKW95],
or a toolkit that embeds portable checkpoints into arbitpaograms [RS97]. We are exploring using the Porch
toolkit [Str98] to add portable checkpointing to the core8tEve services.



As described above, this checkpointing system has beeringrited and tested. It is anticipated that it will
be included as part of the official NetSolve distributidutd://www.cs.utk.edu/netsolve ) in the year
2000.
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