
On the existene problem of inompletefatorisation methods,Lapak Working Note 144, UT-CS-99-435Vitor Eijkhout�1 Deember 1999AbstratInomplete fatorisation methods an su�er from breakdown in thatthey may give zero or negative pivots where an exat fatorisation wouldshow only positive pivots. This breakdown e�etively prevents the fatori-sation from being used in iterative methods suh as Conjugate Gradients.We give an overview of strategies that have been proposed to prevent thisbreakdown, and we touh briey on various related issues in inompletefatorisations.1 IntrodutionFor the eÆient solution of sparse linear systems Au = b by an iterative method,the hoie of a proper preonditioner is ruial. A preonditioner is a matrixMthat approximates A, but for whih solving the system Mu = b is omputation-ally heap. In addition, M itself should be easily onstrutable.Sine the original oeÆient matrix A is sparse, people have sought to on-strut sparse fatorisations M = LU � A. The exat LU fatorisation of A isnot sparse, so M is onstruted by a so-alled inomplete fatorisation, wherethe update aij  aij � aikakk�1akj (1)is exeuted subjet to some deision proess.Ideally, the only question onerning inomplete fatorisations would be theirauray. For instane, typially the ondition number �(A) � h�2 where h isthe mesh width, and one would hope that �(M�1A) is smaller, preferably of�This work was supported in part or in whole by Center for Parallel Computation, subon-trat #292-3-54397, and Lawrene Livermore National Laboratory, subontrat #B503913,and Los Alamos National Laboratory, subontrat #D0252-0019-2G, and Los Alamos NationalLaboratory Copmputer Siene Institute (LASCI) through LANL ontrat number 03891-99-23, as part of the prime ontrat (W-7405-ENG-36) between the Department of Energy andthe Regents of the University of California. 1



a lower order than h�2. In pratie, however, it is already hard to guaranteethe existene of the fatorisation. To begin with, if i = j in equation (1), theupdated value of aii an be zero leading to breakdown in the i-th eliminationstep. A negative value of aii is a problem too, sine, if A is positive de�nite, wewant M to be so, and onsequently all pivots of the inomplete fatorisation tobe positive.Inomplete fatorisation methods are well-de�ned for M-matries, but forany other type of matrix, even symmetri positive de�nite ones, they an suf-fer from breakdown of some form or other. A number of remedies have beenproposed, but all su�er from ertain disadvantages. We will give in setions 2and 3 an overview of various fatorisation algorithms, and related issues in thetheory of inomplete fatorisations.We do not give any numerial tests in this report sine it is mostly onernedwith the theoretial aspets of the methods. For omparative tests of the variousmethods we refer the reader to [18℄.2 Overview of earlier fatorisation algorithmsIn this setion we will give an overview of several representative methods foromputation of a fatorisation1M = (DM + LM )DM�1(DM + UM ) (2)of a matrix A = DA + LA + UA: (3)The hoie DM = DA, LM = LA, UM = UA gives the SSOR method (se-tion 2.2); DM 6= DA, LM = LA, UM = UA is alled ILU-D (setion 2.3); thegeneral ase DM 6= DA, LM 6= LA, UM 6= UA desribes all other inomplete LUmethods.2.1 Classifying fatorisation methodsThere are several riteria with whih to distinguish inomplete fatorisationmethods. We will give a few in this subsetion; they are not orthogonal, nor dothey apply to all of the methods presented below.2.1.1 Algorithmi riteriaAs a �rst riterium we onsider the dropping strategy for �ll-in elements. Thisstrategy an be one of the following:positional There is a set S � N2 of matrix positions in whih we don't allow�ll-in, no matter its numerial value. This set an be determined prior tostarting the algorithm, or it an be onstruted adaptively. A ommon1There is more than one mathematially equivalent way to write a fatorisation; we hoosethe form (2) to bring out the symmetry, even though it is not omputationally optimal.2



hoie is for S to omprise all zero positions of A. This method has theadvantage that storage requirements of the inomplete fatorisation arepreditable.numerial We apply some test to �ll-in values, and anything falling under thethreshold is dropped; elements of suÆient magnitude are aepted. Thismethod has indeterminate storage requirements (see [4℄ for a disussionon how to limit the storage by modifying the threshold parameter), but itis likely to be more aurate than the positional dropping strategy.2.1.2 Pivot repairA further algorithmi issue to onsider is how the method deals with zero ornegative pivots, should they our.The existene question of inomplete LU fatorisations was fully solvedin [34℄ for the ase of M-matries2. This paper and subsequent generalisationssuh as [1℄ established that for M-matries �ll-in an be totally or partially ig-nored, while the M-matrix property is preserved for the remaining submatrix.As a result, all pivots are guaranteed to be positive and no repair strategy isneeded.For other matries than M-matries, even for symmetri positive de�niteones, an inomplete fatorisation an fail in the sense that pivots an beomezero or negative. Kershaw [30℄ gave the following example:0B� 3 �2 0 2�2 3 �2 00 �2 3 �22 0 �2 3 1CAwhih is positive de�nite, but will have a negative fourth pivot in an ILU(0)fatorisation.There are the two hoies to preventing breakdown: one an adopt an ad-hostrategy to opy with non-positive pivots when they arise, or the fatorisationmethod an be designed in suh a way that no breakdown will even our. Wewill see examples of both strategies.2.1.3 Order redution: modi�ed methodsNext, inomplete fatorisations an be distinguished by the fat that they tryto preserve spetral properties of the oeÆient matrix in the preonditionermatrix. While the original matrix satis�es �(A) = O(h�2), simply droppingelements will lead to �(M) = O(1), and onsequently �(M�1A) will be of thesame order as �(A). However, the onstant of proportionality may be substan-tially lowered.2There are several equivalent de�nitions of an M-matrix. For our purpose, the most on-venient one is that A is an M-matrix if it is positive de�nite and has nonpositive o�-diagonalelements. It follows that an M-matrix has positive diagonal elements.3



In order to estimate the ondition of the preonditioned system, one an usethe estimate based on the error matrix R =M �A (see [6℄)�(M�1A) � !�[1 + kA�1kkRk℄where A and C are symmetri positive de�nite, and!� = minf!: (2� !�1)DM �DA is SPDg;(see equations (3) and (2) for the de�nition of DA and DM .) The value of !�is typially O(1): for the ILU fatorisation of the entral di�erene Laplaeproblem it is p2.The so-alled modi�ed inomplete fatorisation methods aim at lowering theorder of the preoditioned system. In their simplest form they replae theonditional exeution of (1) byif �ll is ignored in (i; j) position, aii  aii � aikakk�1akj (4)This is ommonly referred to as `moving �ll to the diagonal', and it an lead toa ondition number of lower order; see setion 2.6.2 for more details. Anotherinterpretation of modi�ed methods is that they fore Av =Mv for some positivevetor v.2.1.4 OrderingA �nal riterium to distinguish inomplete fatorisation algorithms is the order-ing strategy of the unknowns.Symmetri permutations PAP t of the oeÆient matrix ould be used toput o�, or perhaps avoid altogether, problems with zero or negative pivots.In [47℄ the authors explore the idea that an inomplete fatorisation exists if theordering is suh that the fatorisation is exat. From this they derive a suÆientondition on the sparsity patterns of the matrix and the preonditioner.Inomplete fatorisation methods are sensitive to (symmetri) permutationsof the oeÆient matrix. Thus, orderings that inrease the parallelism of thepreonditioner solve may inur a larger number of iterations than the samefatorisation algorithm applied to the matrix under the natural ordering. Thiswas observed in [16℄ and analysed in [15, 14, 19℄.In [13℄ the ordering was hosen, while keeping the maximum �ll level �xed,in suh a way as to minimise the size of �ll elements.In the following subsetions, we will give an overview of various inompleteand modi�ed inomplete fatorisation algorithms, remarking on their existeneproperties and pratial behaviour. We will ignore the issue of the inuene ofthe ordering on the existene of the fatorisation, and onentrate solely on themodi�ation strategy.2.2 SSORThe Symmetri Suessive Over-Relaxation preonditioner is de�ned as theprodut (DA + LA)DA�1(DA + UA), where DA, LA, and UA are the diagonal4



and strit upper and lower triangular parts of the oeÆient matrix A. Clearly,onstruting this fatorisation arries zero ost. At most, one wants to omputeand store DA�1 expliitly. This fatorisation also has the pleasant propertythat the question of well-de�nedness of the fatorisation is trivially satis�ed3.Therefore, some people advoate using variants of SSOR as preonditioner forompliated problems [32℄.On the downside, this preonditioner will be less e�etive than inompletefatorisation methods when the latter exist. Introdution of a relaxation param-eter an alleviate this [2, Ch. 1℄, but the alulation of the optimal relaxationparameter is usually nontrivial.2.3 Types of ILU fatorisations: ILU-D, ILU(0), ILU(r),ILU(k)There are various types of ILU methods. In the simplest type, not only is all�ll-in ignored, but only diagonal nonzero elements of the matrix are ever altered:if i = j: aij  aij � aikakk�1akj (5)This method has the important pratial property that the preonditioner largelyre-uses the matrix elements. Pratial impliations are that only one vetor'sworth of elements needs to be stored, and that an eÆient implementation ofthe solution step is possible [22℄, whih ombines it with the matrix produt,giving a substantial redution of the operation ount. The name ILU-D for thisfatorisation was oined in [40℄.Slightly more elaborately, the ILU(0) fatorisation ignores all �ll-in, butallows modi�ation of o�-diagonal nonzeros:if aij 6= 0: aij  aij � aikakk�1akj (6)The storage needed for this fatorisation equals that of the original oeÆientmatrix.The ILU-D and ILU(0) methods are idential for ertain matries, one om-mon ase being that of the entral di�erene operator on a regular grid. Moregeneral, they are idential if there are no triangles in the matrix graph.In the general ase, �ll-in an be aepted or disarded in any position. If athreshold parameter r is used, for instane as inif jaij j � raii: aij  aij � aikakk�1akj ; (7)we all this a `numerial dropping strategy', and term the method ILU(r).If the notion of level is applied to �ll-in, the method is alled ILU(k):initially: 8i;j : `ij = 0; (8)3We will all a fatorisation well-de�ned if, when applied to a (symmetri) positive de�nitematrix, it yields a (symmetri) positive de�nite preonditioner. We will not onsider theinde�nite ase in this paper. 5



if `ip � k and `pj � k: aij  aij � aipapp�1apjif �ll-in and `ij = 0: `ij  1 +minf`ip; `pjg (9)otherwise: ignore �ll2.4 Kershaw's methodThe breakdown of the inomplete fatorisation method an be remedied, aswas suggested by Kershaw [30℄, by substituting an arbitrary positive value forzero or negative pivots. While this trivially guarantees the existene of thefatorisation, it is likely to lead to a large ondition number for �(M�1A).Choosing the repair value is not trivial: too small a value will give unstablereurrenes during the solution proess [23, 24℄, so, even while the preonditioneris SPD, the iterative method may diverge. Overestimates of the optimal repairvalue will make the preonditioner too diagonally dominant, in e�et turning itinto a Jaobi method.Kershaw's hoie for the repair pivot is mkk =Pj<k jmkj j+Pj>k jmjkj. Asimilar hoie mkk =Pj<k jmkj j+Pj>k jmkj j. was used by van der Vorst [43℄motivated by onsiderations of stability; see setion 3.5.2.5 Manteu�el's methodSine the main problem with inomplete fatorisation is pivots beoming neg-ative, it makes sense that adding a suÆient number to the diagonal of thematrix will give a well-de�ned fatorisation.Trivially, adding enough to make the matrix diagonally dominant is a suÆ-ient ondition, but this is likely to lead to an ill-onditioned system. Manteuf-fel [33℄ proposed to make several attempts at �nding a small enough value of �suh that A+�I has a well-de�ned fatorisation M , and whih does not give atoo large ondition number �(M�1A).2.6 Modi�ed Inomplete LUThe idea of moving �ll-in to the diagonal (equation 4) has been around in variousforms for a long time. Already in [17℄ it was shown that this, when ombinedwith small perturbations (see below), ould lower the ondition number of thepreonditioned system to O(h�1).2.6.1 Existene of MILU fatorisationsAll the onditioning theory for modi�ed methods holds only for symmetri ma-tries, and the methods are not guaranteed to be well-de�ned for other matriesthan M-matries. Example: the following is a symmetri positive de�nite matrix
6



for whih MILU is not spd [4℄ for some sparsity patterns:A = 0B� 1 �1 � ���1 (1 + �=2) 0 0� 0 1 0�� 0 0 1 1CAThis matrix is positive de�nite for 0 < � < �1+p2. After one elimination step,the Shur omplement isA2 = 0� �=2 � ��� 1� �2 �2�� �2 1� �21A :Clearly, simply moving the (1; 3) position of the Shur omplement to the diag-onal leads to breakdown of the algorithm.In fat, even for M-matries the existene theory is based on �nding a ve-tor v > 0 suh that Mv = Av > 0. Moving �ll-in to the diagonal orrespondsto letting v be the vetor e = (1; 1; : : :)t, and typially we only have Ae � 0.In a �nite element or �nite di�erene ontext this means that the rows orre-sponding to interior nodes of the domain have zero rowsums. In suh rows thefatorisation an break down. Thus, the MILU fatorisation an break down forsymmetri M-matries; see [20, 36℄. The global idea is that modi�ed methodspreserve row sums. Therefore, if a row with zero rowsum is an `endpoint' of thefatorisation (there are no nodes with a higher number onneted to it), it willhave a zero pivot.As an example of this, the matrixA = 0� 2 �1 �1�1 1 0�1 0 1 + �1Ais an M-matrix for any � > 0. However, a modi�ed inomplete fatorisation willgive a zero pivot after the �rst elimination step. (Using v = e in the de�nitionof the modi�ed fatorisation, we �nd from the Gershgorin irle theorems thatin the inomplete fatorisation pivots an not beome negative.)As a heuristi statement, one an say that under the natural ordering MILUmethods do not break down on M-matries, provided Neuman boundaries ofthe domain are not ordered last. When no breakdown ours, the modi�ationentails adding a negative semi-de�nite matrix to a prinipal 2� 2 minor of theoeÆient matrix. Sine this matrix, all it F , is hosen suh that Fv = 0, withv the positive vetor for whih Av > 0, this leaves the minor, and onsequentlythe fatorisation, an M-matrix and therefore positive de�nite.2.6.2 Auray of MILU fatorisationsOften the �ll is multiplied by a parameter less than 1 before being moved tothe diagonal. This is refered to as a `relaxed modi�ed inomplete fatorisation';7



see [7, 11, 20, 44℄. Also, some methods perturb the diagonal by adding elementsof order h2 to the diagonal; see [2, 8℄. Suh (perturbed) modi�ed inompletefatorisation algorithms an be proved to give �(M�1A) = O(h�1); see [26,36, 10℄. (There is of ourse an equivalene of sorts between the relaxed andperturbed modi�ed methods.)An intuitive way of explaining the order redution is to observe that the restmatrix beomes a zero-rowsum di�erene matrix, giving(Ru)i = O(h); 8ifor vetors that are C10 (
). Gustafsson [26℄ showed the relation of this onditionto a suÆient ondition for order redution.Most studies of modi�ed inomplete fatorisations impliitly assume a nat-ural ordering of the unknowns. Disussions of the ordering issue in this ontextan be found in, e.g., [9, 28℄.2.7 Gustafsson's method of modi�ed elementsIn e�et the problem with inomplete fatorisations of symmetri non-M-matrieslies in the positive o�-diagonal elements. Therefore, Gustafsson [27℄ proposedto eliminate these elements by moving them to the diagonal prior to the fatori-sation. (This method was also explored in [3℄.)Sine this an be onsidered a modi�ation on the element matrix level,spei�ally by adding positive semi-de�nite matries, we �nd that the so mod-i�ed matrix Am has a relative ondition to the original matrix independent ofthe matrix size: utAu � utAmu � �utAuwhere � > 1 is the maximum relative ondition over all element matries. Theruial fat here is that � is independent of the matrix size.A modi�ed inomplete fatorisation M of Am will then give�(M�1A) � ��(M�1Am) = O(h�1):The philosophial problem with this method is that it an wind up pre-onditioning the wrong operator. For instane, the biharmoni operator has astenil 12 �8 21 �8 20 �8 12 �8 21whih after elimination of the positive oeÆients beomes�8�8 32 �8�8 ;8



that is, a multiple of the Laplaian, a di�erent operator altogether.Although Gustafsson formulated this method on the element matrix level, itan be applied algebraially to a fully formed matrix. The only diÆulty arisesalong the boundary of the domain, where ertain element matrix oeÆientshave gone into forming the right hand side, and hene an not be retrievedfrom the matrix. We then have to apply a heuristi, for instane foring theorresponding rows to have zero rowsums. As an example, performing algebrairemoval on the above biharmoni stenil, the points at distane 2h from theboundary will have rowsums �1.2.8 Jennings and Malik's partial eliminationMoving �ll-in to the diagonal in modi�ed inomplete fatorisations of M-matriesorresponds to adding negative semi-de�nite matries to the original matrix. Inthe M-matrix ase this does not make the matrix inde�nite, but in general thisis not true, potentially leading to inde�nite matries and negative pivots.Jennings and Malik [29℄ proposed to add the absolute size of the �ll elementsto the diagonal. This orresponds to adding positive de�nite or semi-de�nitematries. As this only inreases the diagonal, it is easy to see that the fa-torisation never beomes unde�ned. We note that in the ase where aij andaji are of opposite sign this strategy is theoretially defensible: for suh `signanti-symmetri' matries it redues to MILU. In general however, it guaranteesnothing beyond the mere existene of the fatorisation; in partiular, for themodel ase of M-matries it does not redue to any other method.This method was also proposed by Robert [41℄.2.9 Eijkhout's `weighted modi�ation' methodEijkhout's method aims to onserve the following matrix properties when mak-ing an inomplete fatorisation:1. Any symmetry of the original matrix is to be preserved. Note that thisis not trivial in the ase of threshold dropping, as an be easily seen fromequation (7).2. The fatorisation should be well-de�ned in the sense that, given a matrixwith positive diagonal, all pivots should be positive. Note that this is astronger ondition than the traditional one that pivots should be positivefor matries that are positive de�nite. This makes the method potentiallysuitable for ertain inde�nite systems.3. The spetrum is not to be disturbed too muh, in partiular, the droppingstrategy should redue to some variant of MILU for M-matries.4. Applying the fatorisation to an M-matrix should yield an M-matrix.
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These aims are aomplished by eliminating the o�-diagonal �ll elements in(i; j) and (j; i) elements together by added weighted ombinations of them tothe (i; i) and (j; j) diagonal elements:aii  aii � aijqaii=ajj=2; ajj  ajj � ajiqajj=aii=2:This basi idea is augmented by some heuristis and dynami onditions to skipthe modi�ation in ertain ases.3 Other topis in inomplete fatorisations3.1 H-matriesMost M -matrix theory an easily be generalised to H-matries. (A matrix isan H-matrix if its `omparison matrix' is an M -matrix; basi theory of H-matries an be found in Ostrowski [37℄ and Neumaier [35℄.) For the salarase this generalization was done by Varga et al [45℄, and for the blok ase byPolman [39℄.3.2 Ordering of unknownsSymmetri permutations PAP t of the oeÆient matrix ould be used to put o�,or perhaps avoid altogether, problems with zero or negative pivots. In [47℄ theauthors explore the idea that an inomplete fatorisation exists if the ordering issuh that the fatorisation is exat. From this they derive a suÆient onditionon the sparsity patterns of the matrix and the preonditioner.However, in inomplete fatorisations orderings are usually hosen for otherreasons. As we indiated in setions 2.6.1 and 2.6.2, ertain orderings would notlead to a well-de�ned fatorisation, or would not give the desired auray.Considerations of parallelism or vetorisability may also ditate the orderingof the unknowns, at least to an extent. Du� and Meurant [16℄ reported tests onthe inuene of ordering strategies on the onvergene speed of the onjugategradients method. These results were explained in the model ase by Doi [15℄and more general by Eijkhout [19℄. In [13℄ the ordering was hosen, while keepingthe maximum �ll level �xed, in suh a way as to minimise the size of the �llelements.3.3 Preonditioning from equivalent operatorsOften, the existene problems of inomplete fatorisation methods arise fromthe fat that the disretisation uses higher-order �nite di�erene or �nite ele-ment shemes, or from the asymmetry of the problem. One ould obviate theseproblems by basing the fatorisation on a matrix or an operator related to theoriginal one. Given a matrix A, a related matrix A0, and a preonditioner,auray estimates then follow from equations suh as�(M�1A) � �(M�1A0) � �(A0�1A);10



where often analyti results hold for �(A0�1A).For instane, one ould base the preonditioner on the symmetri part (A+At)=2 of the oeÆient matrix. This idea was explored in, e.g., [25, 46℄.If the atual PDE operator is known, the preonditionerM an be based ona lower order �nite element disretisation A0. In this ase we have �(A0�1A) =O(1) [2℄. The advantage of this strategy lies in that the lower order disretisationmay very well given an M-matrix, so the existene problem of the preonditioneris solved. For an example of this approah, see[21℄.3.4 O�-diagonal modi�ationAxelsson and Munksgaard [4℄ made, like Jennings and Malik (setion 2.8), theobservation that modi�ation dereases the diagonal elements, thereby possiblymaking the fatorisation inde�nite, was also made. Unlike Jennings and Malik,they proposed not altering the �ll element to be moved, but rather propose toadd it to any positive o�-diagonal element. This method has no theoretialguarantees, and the authors therefore suggest that adding a positive number tothe diagonal (as happens in the methods of Kershaw, setion 2.4, and Manteu�el,setion 2.5) an be used as a �nal remedy.3.5 Stability of the preonditioner solveIf the preonditioner is well-de�ned and gives a small enough rest matrix, thereis still a further ompliation that may lead to slowly or not onverging iterativemethods. By onsidering the solution of the triangular systems as a reurrenerelation, we see that build-up of round-o� error is possible if the roots of theharateristi polynomial are greater than 1 in absolute value.For example, solving Lu = v for a matrix L with onstant diagonals L =(`n; 0; : : : ; 0; `1; d) orresponds to the reurrene dui + `1ui�1 + `nui�n = vi,with a harateristi polynomial dxn + `1xn�1 + `n. The stability of this wasanalysed by Elman [23, 24℄, and found to be equivalent to the fators beingdiagonally dominant.For a short proof, onsider the reurrenea0xi + nXj=1 ajxi�j = fiwith harateristi solutions xi = �i where � is a solution ofa0�i + nXj=1 aj�i�j = 0:Now suppose that the matrix is diagonally non-stritly dominant, that is, a0 �P jaj j. The assumption j�j > 1 gives by1 = ����X aja0��j ���� �X����aja0��j ���� <X����aja0 ����11



a ontradition, therefore the harateristi roots satisfy j�j � 1.Elman's stability ondition was also suggested by van der Vorst [43℄. Itshould be noted that this analysis mostly pertains to problems with slowlyvarying or onstant diagonals.3.6 Blok fatorisationsIn this report we will not onsider blok fatorisation methods. These treat thematrix in terms of larger subbloks than the salar entries, for instane derivingbloks from lines of grid points in the physial domain of the PDE. The salarfatorisation problem often appears in these methods, sine they may requirean approximation to the inverse of the pivot bloks. The interested reader isreferred to [1, 6, 5, 10, 12, 31, 38, 42℄.4 ConlusionWhile ideally an inomplete fatorisation should be judged solely on its aurayproperties, in pratie there is �rst the hurdle of guaranteeing its existene.Various strategies have been proposed to asertain this Some of them, suhas the methods of Gustafsson and of Kershaw, beome e�etively no-ops inthe ases where the lassial algorithms are well-de�ned. Others, suh as themethods of Eijkhout and of Jennings and Malik, are always applied. In eitherase, the repair strategy an have more or less theoretial justi�ation, withonsequent impliations for the approximation auray of the preonditioner.In this paper we have given an overview of the existing methods and severalattendant issues. Sine no set of tests an ever be omprehensive we have notinluded any numerial results in this survey; the reader is referred to [18℄ fornumerial results on the methods disussed here.Referenes[1℄ O. Axelsson. A general inomplete blok-matrix fatorization method. Lin.Alg. Appl., 74:179{190, 1986.[2℄ O. Axelsson and A.V. Barker. Finite element solution of boundary valueproblems. Theory and omputation. Aademi Press, Orlando, Fl., 1984.[3℄ O. Axelsson and L. Yu. Kolotilina. Diagonally ompensated redution andrelated preonditioning methods. Num. Lin. Alg. Appl., 1, 1995.[4℄ O. Axelsson and N. Munksgaard. Analysis of inomplete fatorizationswith �xed storage alloation. In D. Evans, editor, Preonditioning Methods{ Theory and Appliations, pages 265{293. Gordon and Breah, New York,1983. 12
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