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tor Eijkhout�1 De
ember 1999Abstra
tIn
omplete fa
torisation methods 
an su�er from breakdown in thatthey may give zero or negative pivots where an exa
t fa
torisation wouldshow only positive pivots. This breakdown e�e
tively prevents the fa
tori-sation from being used in iterative methods su
h as Conjugate Gradients.We give an overview of strategies that have been proposed to prevent thisbreakdown, and we tou
h brie
y on various related issues in in
ompletefa
torisations.1 Introdu
tionFor the eÆ
ient solution of sparse linear systems Au = b by an iterative method,the 
hoi
e of a proper pre
onditioner is 
ru
ial. A pre
onditioner is a matrixMthat approximates A, but for whi
h solving the system Mu = b is 
omputation-ally 
heap. In addition, M itself should be easily 
onstru
table.Sin
e the original 
oeÆ
ient matrix A is sparse, people have sought to 
on-stru
t sparse fa
torisations M = LU � A. The exa
t LU fa
torisation of A isnot sparse, so M is 
onstru
ted by a so-
alled in
omplete fa
torisation, wherethe update aij  aij � aikakk�1akj (1)is exe
uted subje
t to some de
ision pro
ess.Ideally, the only question 
on
erning in
omplete fa
torisations would be theira

ura
y. For instan
e, typi
ally the 
ondition number �(A) � h�2 where h isthe mesh width, and one would hope that �(M�1A) is smaller, preferably of�This work was supported in part or in whole by Center for Parallel Computation, sub
on-tra
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e Livermore National Laboratory, sub
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t #D0252-0019-2G, and Los Alamos NationalLaboratory Copmputer S
ien
e Institute (LASCI) through LANL 
ontra
t number 03891-99-23, as part of the prime 
ontra
t (W-7405-ENG-36) between the Department of Energy andthe Regents of the University of California. 1



a lower order than h�2. In pra
ti
e, however, it is already hard to guaranteethe existen
e of the fa
torisation. To begin with, if i = j in equation (1), theupdated value of aii 
an be zero leading to breakdown in the i-th eliminationstep. A negative value of aii is a problem too, sin
e, if A is positive de�nite, wewant M to be so, and 
onsequently all pivots of the in
omplete fa
torisation tobe positive.In
omplete fa
torisation methods are well-de�ned for M-matri
es, but forany other type of matrix, even symmetri
 positive de�nite ones, they 
an suf-fer from breakdown of some form or other. A number of remedies have beenproposed, but all su�er from 
ertain disadvantages. We will give in se
tions 2and 3 an overview of various fa
torisation algorithms, and related issues in thetheory of in
omplete fa
torisations.We do not give any numeri
al tests in this report sin
e it is mostly 
on
ernedwith the theoreti
al aspe
ts of the methods. For 
omparative tests of the variousmethods we refer the reader to [18℄.2 Overview of earlier fa
torisation algorithmsIn this se
tion we will give an overview of several representative methods for
omputation of a fa
torisation1M = (DM + LM )DM�1(DM + UM ) (2)of a matrix A = DA + LA + UA: (3)The 
hoi
e DM = DA, LM = LA, UM = UA gives the SSOR method (se
-tion 2.2); DM 6= DA, LM = LA, UM = UA is 
alled ILU-D (se
tion 2.3); thegeneral 
ase DM 6= DA, LM 6= LA, UM 6= UA des
ribes all other in
omplete LUmethods.2.1 Classifying fa
torisation methodsThere are several 
riteria with whi
h to distinguish in
omplete fa
torisationmethods. We will give a few in this subse
tion; they are not orthogonal, nor dothey apply to all of the methods presented below.2.1.1 Algorithmi
 
riteriaAs a �rst 
riterium we 
onsider the dropping strategy for �ll-in elements. Thisstrategy 
an be one of the following:positional There is a set S � N2 of matrix positions in whi
h we don't allow�ll-in, no matter its numeri
al value. This set 
an be determined prior tostarting the algorithm, or it 
an be 
onstru
ted adaptively. A 
ommon1There is more than one mathemati
ally equivalent way to write a fa
torisation; we 
hoosethe form (2) to bring out the symmetry, even though it is not 
omputationally optimal.2




hoi
e is for S to 
omprise all zero positions of A. This method has theadvantage that storage requirements of the in
omplete fa
torisation arepredi
table.numeri
al We apply some test to �ll-in values, and anything falling under thethreshold is dropped; elements of suÆ
ient magnitude are a

epted. Thismethod has indeterminate storage requirements (see [4℄ for a dis
ussionon how to limit the storage by modifying the threshold parameter), but itis likely to be more a

urate than the positional dropping strategy.2.1.2 Pivot repairA further algorithmi
 issue to 
onsider is how the method deals with zero ornegative pivots, should they o

ur.The existen
e question of in
omplete LU fa
torisations was fully solvedin [34℄ for the 
ase of M-matri
es2. This paper and subsequent generalisationssu
h as [1℄ established that for M-matri
es �ll-in 
an be totally or partially ig-nored, while the M-matrix property is preserved for the remaining submatrix.As a result, all pivots are guaranteed to be positive and no repair strategy isneeded.For other matri
es than M-matri
es, even for symmetri
 positive de�niteones, an in
omplete fa
torisation 
an fail in the sense that pivots 
an be
omezero or negative. Kershaw [30℄ gave the following example:0B� 3 �2 0 2�2 3 �2 00 �2 3 �22 0 �2 3 1CAwhi
h is positive de�nite, but will have a negative fourth pivot in an ILU(0)fa
torisation.There are the two 
hoi
es to preventing breakdown: one 
an adopt an ad-ho
strategy to 
opy with non-positive pivots when they arise, or the fa
torisationmethod 
an be designed in su
h a way that no breakdown will even o

ur. Wewill see examples of both strategies.2.1.3 Order redu
tion: modi�ed methodsNext, in
omplete fa
torisations 
an be distinguished by the fa
t that they tryto preserve spe
tral properties of the 
oeÆ
ient matrix in the pre
onditionermatrix. While the original matrix satis�es �(A) = O(h�2), simply droppingelements will lead to �(M) = O(1), and 
onsequently �(M�1A) will be of thesame order as �(A). However, the 
onstant of proportionality may be substan-tially lowered.2There are several equivalent de�nitions of an M-matrix. For our purpose, the most 
on-venient one is that A is an M-matrix if it is positive de�nite and has nonpositive o�-diagonalelements. It follows that an M-matrix has positive diagonal elements.3



In order to estimate the 
ondition of the pre
onditioned system, one 
an usethe estimate based on the error matrix R =M �A (see [6℄)�(M�1A) � !�[1 + kA�1kkRk℄where A and C are symmetri
 positive de�nite, and!� = minf!: (2� !�1)DM �DA is SPDg;(see equations (3) and (2) for the de�nition of DA and DM .) The value of !�is typi
ally O(1): for the ILU fa
torisation of the 
entral di�eren
e Lapla
eproblem it is p2.The so-
alled modi�ed in
omplete fa
torisation methods aim at lowering theorder of the pre
oditioned system. In their simplest form they repla
e the
onditional exe
ution of (1) byif �ll is ignored in (i; j) position, aii  aii � aikakk�1akj (4)This is 
ommonly referred to as `moving �ll to the diagonal', and it 
an lead toa 
ondition number of lower order; see se
tion 2.6.2 for more details. Anotherinterpretation of modi�ed methods is that they for
e Av =Mv for some positiveve
tor v.2.1.4 OrderingA �nal 
riterium to distinguish in
omplete fa
torisation algorithms is the order-ing strategy of the unknowns.Symmetri
 permutations PAP t of the 
oeÆ
ient matrix 
ould be used toput o�, or perhaps avoid altogether, problems with zero or negative pivots.In [47℄ the authors explore the idea that an in
omplete fa
torisation exists if theordering is su
h that the fa
torisation is exa
t. From this they derive a suÆ
ient
ondition on the sparsity patterns of the matrix and the pre
onditioner.In
omplete fa
torisation methods are sensitive to (symmetri
) permutationsof the 
oeÆ
ient matrix. Thus, orderings that in
rease the parallelism of thepre
onditioner solve may in
ur a larger number of iterations than the samefa
torisation algorithm applied to the matrix under the natural ordering. Thiswas observed in [16℄ and analysed in [15, 14, 19℄.In [13℄ the ordering was 
hosen, while keeping the maximum �ll level �xed,in su
h a way as to minimise the size of �ll elements.In the following subse
tions, we will give an overview of various in
ompleteand modi�ed in
omplete fa
torisation algorithms, remarking on their existen
eproperties and pra
ti
al behaviour. We will ignore the issue of the in
uen
e ofthe ordering on the existen
e of the fa
torisation, and 
on
entrate solely on themodi�
ation strategy.2.2 SSORThe Symmetri
 Su

essive Over-Relaxation pre
onditioner is de�ned as theprodu
t (DA + LA)DA�1(DA + UA), where DA, LA, and UA are the diagonal4



and stri
t upper and lower triangular parts of the 
oeÆ
ient matrix A. Clearly,
onstru
ting this fa
torisation 
arries zero 
ost. At most, one wants to 
omputeand store DA�1 expli
itly. This fa
torisation also has the pleasant propertythat the question of well-de�nedness of the fa
torisation is trivially satis�ed3.Therefore, some people advo
ate using variants of SSOR as pre
onditioner for
ompli
ated problems [32℄.On the downside, this pre
onditioner will be less e�e
tive than in
ompletefa
torisation methods when the latter exist. Introdu
tion of a relaxation param-eter 
an alleviate this [2, Ch. 1℄, but the 
al
ulation of the optimal relaxationparameter is usually nontrivial.2.3 Types of ILU fa
torisations: ILU-D, ILU(0), ILU(r),ILU(k)There are various types of ILU methods. In the simplest type, not only is all�ll-in ignored, but only diagonal nonzero elements of the matrix are ever altered:if i = j: aij  aij � aikakk�1akj (5)This method has the important pra
ti
al property that the pre
onditioner largelyre-uses the matrix elements. Pra
ti
al impli
ations are that only one ve
tor'sworth of elements needs to be stored, and that an eÆ
ient implementation ofthe solution step is possible [22℄, whi
h 
ombines it with the matrix produ
t,giving a substantial redu
tion of the operation 
ount. The name ILU-D for thisfa
torisation was 
oined in [40℄.Slightly more elaborately, the ILU(0) fa
torisation ignores all �ll-in, butallows modi�
ation of o�-diagonal nonzeros:if aij 6= 0: aij  aij � aikakk�1akj (6)The storage needed for this fa
torisation equals that of the original 
oeÆ
ientmatrix.The ILU-D and ILU(0) methods are identi
al for 
ertain matri
es, one 
om-mon 
ase being that of the 
entral di�eren
e operator on a regular grid. Moregeneral, they are identi
al if there are no triangles in the matrix graph.In the general 
ase, �ll-in 
an be a

epted or dis
arded in any position. If athreshold parameter r is used, for instan
e as inif jaij j � raii: aij  aij � aikakk�1akj ; (7)we 
all this a `numeri
al dropping strategy', and term the method ILU(r).If the notion of level is applied to �ll-in, the method is 
alled ILU(k):initially: 8i;j : `ij = 0; (8)3We will 
all a fa
torisation well-de�ned if, when applied to a (symmetri
) positive de�nitematrix, it yields a (symmetri
) positive de�nite pre
onditioner. We will not 
onsider theinde�nite 
ase in this paper. 5



if `ip � k and `pj � k: aij  aij � aipapp�1apjif �ll-in and `ij = 0: `ij  1 +minf`ip; `pjg (9)otherwise: ignore �ll2.4 Kershaw's methodThe breakdown of the in
omplete fa
torisation method 
an be remedied, aswas suggested by Kershaw [30℄, by substituting an arbitrary positive value forzero or negative pivots. While this trivially guarantees the existen
e of thefa
torisation, it is likely to lead to a large 
ondition number for �(M�1A).Choosing the repair value is not trivial: too small a value will give unstablere
urren
es during the solution pro
ess [23, 24℄, so, even while the pre
onditioneris SPD, the iterative method may diverge. Overestimates of the optimal repairvalue will make the pre
onditioner too diagonally dominant, in e�e
t turning itinto a Ja
obi method.Kershaw's 
hoi
e for the repair pivot is mkk =Pj<k jmkj j+Pj>k jmjkj. Asimilar 
hoi
e mkk =Pj<k jmkj j+Pj>k jmkj j. was used by van der Vorst [43℄motivated by 
onsiderations of stability; see se
tion 3.5.2.5 Manteu�el's methodSin
e the main problem with in
omplete fa
torisation is pivots be
oming neg-ative, it makes sense that adding a suÆ
ient number to the diagonal of thematrix will give a well-de�ned fa
torisation.Trivially, adding enough to make the matrix diagonally dominant is a suÆ-
ient 
ondition, but this is likely to lead to an ill-
onditioned system. Manteuf-fel [33℄ proposed to make several attempts at �nding a small enough value of �su
h that A+�I has a well-de�ned fa
torisation M , and whi
h does not give atoo large 
ondition number �(M�1A).2.6 Modi�ed In
omplete LUThe idea of moving �ll-in to the diagonal (equation 4) has been around in variousforms for a long time. Already in [17℄ it was shown that this, when 
ombinedwith small perturbations (see below), 
ould lower the 
ondition number of thepre
onditioned system to O(h�1).2.6.1 Existen
e of MILU fa
torisationsAll the 
onditioning theory for modi�ed methods holds only for symmetri
 ma-tri
es, and the methods are not guaranteed to be well-de�ned for other matri
esthan M-matri
es. Example: the following is a symmetri
 positive de�nite matrix
6



for whi
h MILU is not spd [4℄ for some sparsity patterns:A = 0B� 1 �1 � ���1 (1 + �=2) 0 0� 0 1 0�� 0 0 1 1CAThis matrix is positive de�nite for 0 < � < �1+p2. After one elimination step,the S
hur 
omplement isA2 = 0� �=2 � ��� 1� �2 �2�� �2 1� �21A :Clearly, simply moving the (1; 3) position of the S
hur 
omplement to the diag-onal leads to breakdown of the algorithm.In fa
t, even for M-matri
es the existen
e theory is based on �nding a ve
-tor v > 0 su
h that Mv = Av > 0. Moving �ll-in to the diagonal 
orrespondsto letting v be the ve
tor e = (1; 1; : : :)t, and typi
ally we only have Ae � 0.In a �nite element or �nite di�eren
e 
ontext this means that the rows 
orre-sponding to interior nodes of the domain have zero rowsums. In su
h rows thefa
torisation 
an break down. Thus, the MILU fa
torisation 
an break down forsymmetri
 M-matri
es; see [20, 36℄. The global idea is that modi�ed methodspreserve row sums. Therefore, if a row with zero rowsum is an `endpoint' of thefa
torisation (there are no nodes with a higher number 
onne
ted to it), it willhave a zero pivot.As an example of this, the matrixA = 0� 2 �1 �1�1 1 0�1 0 1 + �1Ais an M-matrix for any � > 0. However, a modi�ed in
omplete fa
torisation willgive a zero pivot after the �rst elimination step. (Using v = e in the de�nitionof the modi�ed fa
torisation, we �nd from the Gershgorin 
ir
le theorems thatin the in
omplete fa
torisation pivots 
an not be
ome negative.)As a heuristi
 statement, one 
an say that under the natural ordering MILUmethods do not break down on M-matri
es, provided Neuman boundaries ofthe domain are not ordered last. When no breakdown o

urs, the modi�
ationentails adding a negative semi-de�nite matrix to a prin
ipal 2� 2 minor of the
oeÆ
ient matrix. Sin
e this matrix, 
all it F , is 
hosen su
h that Fv = 0, withv the positive ve
tor for whi
h Av > 0, this leaves the minor, and 
onsequentlythe fa
torisation, an M-matrix and therefore positive de�nite.2.6.2 A

ura
y of MILU fa
torisationsOften the �ll is multiplied by a parameter less than 1 before being moved tothe diagonal. This is refered to as a `relaxed modi�ed in
omplete fa
torisation';7



see [7, 11, 20, 44℄. Also, some methods perturb the diagonal by adding elementsof order h2 to the diagonal; see [2, 8℄. Su
h (perturbed) modi�ed in
ompletefa
torisation algorithms 
an be proved to give �(M�1A) = O(h�1); see [26,36, 10℄. (There is of 
ourse an equivalen
e of sorts between the relaxed andperturbed modi�ed methods.)An intuitive way of explaining the order redu
tion is to observe that the restmatrix be
omes a zero-rowsum di�eren
e matrix, giving(Ru)i = O(h); 8ifor ve
tors that are C10 (
). Gustafsson [26℄ showed the relation of this 
onditionto a suÆ
ient 
ondition for order redu
tion.Most studies of modi�ed in
omplete fa
torisations impli
itly assume a nat-ural ordering of the unknowns. Dis
ussions of the ordering issue in this 
ontext
an be found in, e.g., [9, 28℄.2.7 Gustafsson's method of modi�ed elementsIn e�e
t the problem with in
omplete fa
torisations of symmetri
 non-M-matri
eslies in the positive o�-diagonal elements. Therefore, Gustafsson [27℄ proposedto eliminate these elements by moving them to the diagonal prior to the fa
tori-sation. (This method was also explored in [3℄.)Sin
e this 
an be 
onsidered a modi�
ation on the element matrix level,spe
i�
ally by adding positive semi-de�nite matri
es, we �nd that the so mod-i�ed matrix Am has a relative 
ondition to the original matrix independent ofthe matrix size: utAu � utAmu � �utAuwhere � > 1 is the maximum relative 
ondition over all element matri
es. The
ru
ial fa
t here is that � is independent of the matrix size.A modi�ed in
omplete fa
torisation M of Am will then give�(M�1A) � ��(M�1Am) = O(h�1):The philosophi
al problem with this method is that it 
an wind up pre-
onditioning the wrong operator. For instan
e, the biharmoni
 operator has asten
il 12 �8 21 �8 20 �8 12 �8 21whi
h after elimination of the positive 
oeÆ
ients be
omes�8�8 32 �8�8 ;8



that is, a multiple of the Lapla
ian, a di�erent operator altogether.Although Gustafsson formulated this method on the element matrix level, it
an be applied algebrai
ally to a fully formed matrix. The only diÆ
ulty arisesalong the boundary of the domain, where 
ertain element matrix 
oeÆ
ientshave gone into forming the right hand side, and hen
e 
an not be retrievedfrom the matrix. We then have to apply a heuristi
, for instan
e for
ing the
orresponding rows to have zero rowsums. As an example, performing algebrai
removal on the above biharmoni
 sten
il, the points at distan
e 2h from theboundary will have rowsums �1.2.8 Jennings and Malik's partial eliminationMoving �ll-in to the diagonal in modi�ed in
omplete fa
torisations of M-matri
es
orresponds to adding negative semi-de�nite matri
es to the original matrix. Inthe M-matrix 
ase this does not make the matrix inde�nite, but in general thisis not true, potentially leading to inde�nite matri
es and negative pivots.Jennings and Malik [29℄ proposed to add the absolute size of the �ll elementsto the diagonal. This 
orresponds to adding positive de�nite or semi-de�nitematri
es. As this only in
reases the diagonal, it is easy to see that the fa
-torisation never be
omes unde�ned. We note that in the 
ase where aij andaji are of opposite sign this strategy is theoreti
ally defensible: for su
h `signanti-symmetri
' matri
es it redu
es to MILU. In general however, it guaranteesnothing beyond the mere existen
e of the fa
torisation; in parti
ular, for themodel 
ase of M-matri
es it does not redu
e to any other method.This method was also proposed by Robert [41℄.2.9 Eijkhout's `weighted modi�
ation' methodEijkhout's method aims to 
onserve the following matrix properties when mak-ing an in
omplete fa
torisation:1. Any symmetry of the original matrix is to be preserved. Note that thisis not trivial in the 
ase of threshold dropping, as 
an be easily seen fromequation (7).2. The fa
torisation should be well-de�ned in the sense that, given a matrixwith positive diagonal, all pivots should be positive. Note that this is astronger 
ondition than the traditional one that pivots should be positivefor matri
es that are positive de�nite. This makes the method potentiallysuitable for 
ertain inde�nite systems.3. The spe
trum is not to be disturbed too mu
h, in parti
ular, the droppingstrategy should redu
e to some variant of MILU for M-matri
es.4. Applying the fa
torisation to an M-matrix should yield an M-matrix.
9



These aims are a

omplished by eliminating the o�-diagonal �ll elements in(i; j) and (j; i) elements together by added weighted 
ombinations of them tothe (i; i) and (j; j) diagonal elements:aii  aii � aijqaii=ajj=2; ajj  ajj � ajiqajj=aii=2:This basi
 idea is augmented by some heuristi
s and dynami
 
onditions to skipthe modi�
ation in 
ertain 
ases.3 Other topi
s in in
omplete fa
torisations3.1 H-matri
esMost M -matrix theory 
an easily be generalised to H-matri
es. (A matrix isan H-matrix if its `
omparison matrix' is an M -matrix; basi
 theory of H-matri
es 
an be found in Ostrowski [37℄ and Neumaier [35℄.) For the s
alar
ase this generalization was done by Varga et al [45℄, and for the blo
k 
ase byPolman [39℄.3.2 Ordering of unknownsSymmetri
 permutations PAP t of the 
oeÆ
ient matrix 
ould be used to put o�,or perhaps avoid altogether, problems with zero or negative pivots. In [47℄ theauthors explore the idea that an in
omplete fa
torisation exists if the ordering issu
h that the fa
torisation is exa
t. From this they derive a suÆ
ient 
onditionon the sparsity patterns of the matrix and the pre
onditioner.However, in in
omplete fa
torisations orderings are usually 
hosen for otherreasons. As we indi
ated in se
tions 2.6.1 and 2.6.2, 
ertain orderings would notlead to a well-de�ned fa
torisation, or would not give the desired a

ura
y.Considerations of parallelism or ve
torisability may also di
tate the orderingof the unknowns, at least to an extent. Du� and Meurant [16℄ reported tests onthe in
uen
e of ordering strategies on the 
onvergen
e speed of the 
onjugategradients method. These results were explained in the model 
ase by Doi [15℄and more general by Eijkhout [19℄. In [13℄ the ordering was 
hosen, while keepingthe maximum �ll level �xed, in su
h a way as to minimise the size of the �llelements.3.3 Pre
onditioning from equivalent operatorsOften, the existen
e problems of in
omplete fa
torisation methods arise fromthe fa
t that the dis
retisation uses higher-order �nite di�eren
e or �nite ele-ment s
hemes, or from the asymmetry of the problem. One 
ould obviate theseproblems by basing the fa
torisation on a matrix or an operator related to theoriginal one. Given a matrix A, a related matrix A0, and a pre
onditioner,a

ura
y estimates then follow from equations su
h as�(M�1A) � �(M�1A0) � �(A0�1A);10



where often analyti
 results hold for �(A0�1A).For instan
e, one 
ould base the pre
onditioner on the symmetri
 part (A+At)=2 of the 
oeÆ
ient matrix. This idea was explored in, e.g., [25, 46℄.If the a
tual PDE operator is known, the pre
onditionerM 
an be based ona lower order �nite element dis
retisation A0. In this 
ase we have �(A0�1A) =O(1) [2℄. The advantage of this strategy lies in that the lower order dis
retisationmay very well given an M-matrix, so the existen
e problem of the pre
onditioneris solved. For an example of this approa
h, see[21℄.3.4 O�-diagonal modi�
ationAxelsson and Munksgaard [4℄ made, like Jennings and Malik (se
tion 2.8), theobservation that modi�
ation de
reases the diagonal elements, thereby possiblymaking the fa
torisation inde�nite, was also made. Unlike Jennings and Malik,they proposed not altering the �ll element to be moved, but rather propose toadd it to any positive o�-diagonal element. This method has no theoreti
alguarantees, and the authors therefore suggest that adding a positive number tothe diagonal (as happens in the methods of Kershaw, se
tion 2.4, and Manteu�el,se
tion 2.5) 
an be used as a �nal remedy.3.5 Stability of the pre
onditioner solveIf the pre
onditioner is well-de�ned and gives a small enough rest matrix, thereis still a further 
ompli
ation that may lead to slowly or not 
onverging iterativemethods. By 
onsidering the solution of the triangular systems as a re
urren
erelation, we see that build-up of round-o� error is possible if the roots of the
hara
teristi
 polynomial are greater than 1 in absolute value.For example, solving Lu = v for a matrix L with 
onstant diagonals L =(`n; 0; : : : ; 0; `1; d) 
orresponds to the re
urren
e dui + `1ui�1 + `nui�n = vi,with a 
hara
teristi
 polynomial dxn + `1xn�1 + `n. The stability of this wasanalysed by Elman [23, 24℄, and found to be equivalent to the fa
tors beingdiagonally dominant.For a short proof, 
onsider the re
urren
ea0xi + nXj=1 ajxi�j = fiwith 
hara
teristi
 solutions xi = �i where � is a solution ofa0�i + nXj=1 aj�i�j = 0:Now suppose that the matrix is diagonally non-stri
tly dominant, that is, a0 �P jaj j. The assumption j�j > 1 gives by1 = ����X aja0��j ���� �X����aja0��j ���� <X����aja0 ����11



a 
ontradi
tion, therefore the 
hara
teristi
 roots satisfy j�j � 1.Elman's stability 
ondition was also suggested by van der Vorst [43℄. Itshould be noted that this analysis mostly pertains to problems with slowlyvarying or 
onstant diagonals.3.6 Blo
k fa
torisationsIn this report we will not 
onsider blo
k fa
torisation methods. These treat thematrix in terms of larger subblo
ks than the s
alar entries, for instan
e derivingblo
ks from lines of grid points in the physi
al domain of the PDE. The s
alarfa
torisation problem often appears in these methods, sin
e they may requirean approximation to the inverse of the pivot blo
ks. The interested reader isreferred to [1, 6, 5, 10, 12, 31, 38, 42℄.4 Con
lusionWhile ideally an in
omplete fa
torisation should be judged solely on its a

ura
yproperties, in pra
ti
e there is �rst the hurdle of guaranteeing its existen
e.Various strategies have been proposed to as
ertain this Some of them, su
has the methods of Gustafsson and of Kershaw, be
ome e�e
tively no-ops inthe 
ases where the 
lassi
al algorithms are well-de�ned. Others, su
h as themethods of Eijkhout and of Jennings and Malik, are always applied. In either
ase, the repair strategy 
an have more or less theoreti
al justi�
ation, with
onsequent impli
ations for the approximation a

ura
y of the pre
onditioner.In this paper we have given an overview of the existing methods and severalattendant issues. Sin
e no set of tests 
an ever be 
omprehensive we have notin
luded any numeri
al results in this survey; the reader is referred to [18℄ fornumeri
al results on the methods dis
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