
The `weighted modi�ation' inompletefatorisation method,Lapak Working Note 145, UT-CS-99-436Vitor Eijkhout�1 Deember 1999AbstratInomplete fatorisation methods su�er from possible breakdown inthe sense that pivots an beome zero or negative. We propose a newfatorisation that does not su�er from this defet, and that preservesseveral other useful properties. In numerial tests this method is seen tobe more reliable than existing methods.1 IntrodutionFor the eÆient solution of sparse linear systems Au = b by an iterative method,the hoie of a proper preonditioner is ruial. A preonditioner is a matrixMthat approximates A, but for whih solving the system Mu = b is omputation-ally heap. In addition, M itself should be easily onstrutable.Sine the original oeÆient matrix A is sparse, people have sought to on-strut sparse fatorisations M = LU � A. The exat LU fatorisation of A isnot sparse, so M is onstruted by a so-alled inomplete fatorisation, wherethe update aij  aij � aikakk�1akj (1)is exeuted subjet to some deision proess.Ideally, the only question onerning inomplete fatorisations would be theirauray. For instane, typially the ondition number �(A) � h�2 where h isthe mesh width, and one would hope that �(M�1A) is smaller, preferably ofa lower order than h�2. In pratie, however, it is already hard to guaranteethe existene of the fatorisation. To begin with, if i = j in equation (1), the�This work was supported in part or in whole by Center for Parallel Computation, subon-trat #292-3-54397, and Lawrene Livermore National Laboratory, subontrat #B503913,and Los Alamos National Laboratory, subontrat #D0252-0019-2G, and Los Alamos NationalLaboratory Copmputer Siene Institute (LASCI) through LANL ontrat number 03891-99-23, as part of the prime ontrat (W-7405-ENG-36) between the Department of Energy andthe Regents of the University of California. 1



updated value of aii an be zero leading to breakdown in the i-th eliminationstep. A negative value of aii is a problem too, sine, if A is positive de�nite, wewantM to be so in order to guarantee the appliability of iterative methods suhas Conjugate Gradients, and onsequently we need all pivots of the inompletefatorisation to be positive.Inomplete fatorisation methods are well-de�ned for M-matries, but forany other type of matrix, even symmetri positive de�nite ones, they an su�erfrom breakdown of some form or other. A number of remedies have been pro-posed, but all su�er from ertain disadvantages. In a ompanion paper [5℄ wehave presented the an overview of existing methods, with the emphasis on howthey takle the existene problem.In this paper we propose a new method: the `weighted modi�ation' al-gorithm. The name derives from the fat that a �ll element in position (i; j)is multiplied by a fator based on weighing aii and ajj before it is moved tothe diagonal. In another departure from ommon algorithms, the weighted �llis added to both aii and ajj . This new algorithm is �rst of all guaranteednot to break down for matries with positive diagonal elements, a lass thatontains the positive de�nite matries. Seondly, it satis�es several MILU-likeonservation properties in the ase of symmetri matries, de�nite matries, orM-matries.We onlude by reporing omparative tests on M-matries, symmetri posi-tive de�nite non-M-matries, and nonsymmetri positive de�nite matries, show-ing the relative eÆieny of the various inomplete fatorisation methods andthe severity of their breakdown problems.2 The `weighted modi�ation' fatorisation al-gorithmThere are several matrix properties we want to onserve in devising a, positionalor numerial, dropping strategy.1. Any symmetry of the original matrix should be preserved.2. The fatorisation should be well-de�ned in the sense that, given a positivede�nite matrix, all pivots should be positive. In fat, the method we areproposing satis�es a stronger ondition, namely that it will yield positivepivots if the original matrix has a positive diagonal.3. The spetrum is not to be disturbed too muh; in partiular, we want thedropping strategy to redue to MILU for M-matries.4. Applying the fatorisation to an M-matrix should yield an M-matrix.In this report we will give a novel inomplete fatorisation algorithm that satis-�es these riteria. We do this in two steps: �rst we desribe a areful method foreliminating �ll elements, then we inorporate that in a full-edged fatorisationalgorithm. 2



2.1 Elimination of �ll-inLet the framework for a fatorisation algorithm be given as in �gure 1. Notefor k = 1; : : :for j > kfor k < i < jproess �ll elements (i; j) and (j; i)proess diagonal �ll element (j; j)Figure 1: The main ijk loop of an inomplete fatorisation algorithm.that the inner loops desribe only half of the index spae fi; j > kg: the inner-most loop body takles simultaneously the �ll in (i; j) and (j; i) positions.In this setion we desribe an algorithm for eliminating the o�-diagonal �llelements in (i; j) and (j; i) elements by added weighted ombinations of themto the (i; i) and (j; j) diagonal elements.Consider then the 2� 2 blokA � A[i;j℄ = � aii aijaji ajj � :1. Let �x = jaij j=paiiajj ; �y = jajij=paiiajj :(This omparison against a geometri mean of diagonal elements was alsoused in [1℄.)2. If �x � 1, hoose 0 < �x < 1 and de�ne x = sign(aij)�xpaiiajj ; oth-erwise, x = aij . Likewise, if �y � 1, hoose 0 < �y < 1 and de-�ne y = sign(aji)�ypaiiajj ; otherwise, y = aji.The quantities x and y will be the fration of the �ll that is moved to thediagonal. We all the ases �x � 1, �y � 1 `degenerate', sine they orre-spond to the ase where the �ll elements are too large to be moved withoutmaking the modi�ed fatorisation inde�nite. In pratial appliations weexpet �x; �y < 1 (and as shown below, this is guaranteed to be the asefor spd matries); the introdution of x; y serves to keep the algorithmwell-de�ned when we positionally drop large o�-diagonal elements.3. For positional dropping, deide to drop aij and aji based on some sparsityset; for numerial dropping,� drop aij if jaij j � paiiajj ,� drop aji if jajij � paiiajj .where  < 1 is some drop tolerane fration.3



4. LetFx = 0��x2q aiiajj aij0 �x2qajjaii 1A ; Fy = 0��y2q aiiajj 0aji �y2qajjaii 1A ; (2)and F = Fx+Fy; we modify A A�Fx if aij is to be dropped, A A�Fyif aji is to be dropped, and A A� F if both are to be dropped.We give the algorithm in �gure 2.let � < 1let mij = aikakk�1akj and mji = ajkakk�1akilet �x = jmij j=paiiajj and �y = jmjij=paiiajjif �x < 1 then x = mijelse x = sign(mij)�paiiajjif �y < 1 then y = mjielse y = sign(mji)�paiiajjlet fxi = �xpaii=ajj=2, fxj = �xpajj=aii=2, and fyi = �ypaii=ajj=2, fyj = �ypajj=aii=2aii  aii � fxi � fyiajj  ajj � fxj � fyjFigure 2: The algorithm for weighted motion of �ll elements to the diagonal.Theorem 1 The above algorithm satis�es the four riteria given at the start ofsetion 2:1. Symmetry is preserved in the sense that, with numerial dropping, aij =aji implies that both elements are dropped or aepted together. Withpositional dropping, symmetry depends on that of the sparsity set.2. If the original matrix has positive diagonal elements, so have A � Fx,A� Fy, and A� F .3. If �x; �y < 1, the modi�ation F = Fx + Fy is semi-de�nite, with a zeroeigenvalue in the ase of symmetry. The modi�ation is negative semi-de�nite if the o�-diagonal elements of A are non-positive, positive semi-de�nite if they are non-negative.4. In the ase of symmetry, the modi�ation preserves the produt with thevetor v = (pajj ;paii)t. This vetor is pointwise positive, and, in thease of non-degenerate modi�ation, Av is pointwise positive too.Proof. The dropping riterium obviously preserves symmetry, sine aij and ajiare ompared to the same value paiiajj , so their being equal implies that weeliminate both aij and aji. 4



The next problem is preserving positive diagonal entries. The diagonal ele-ments of A� F are positive, sine, for instane,aii+ x+ y2 r aiiajj � aii� jxj+ jyj2 r aiiajj > aii� �paiiajjr aiiajj = (1� �)aii > 0:where � = maxf�x; �y ; g < 1.Then, the determinant of F = Fx + Fy isjF j = 12r aiiajj (x+ y)12rajjaii (x + y)� aijaji = 14(x+ y)2 � aijaji= 14(x � y)2 � (aijaji � xy):Thus, if �x; �y < 1, we have aijaji = xy and onsequently F is semi-de�nite,with both eigenvalues non-negative if the o�-diagonal elements are non-positive,and vie versa. In the ase of symmetry, and with �x = �y for degeneratemodi�ation, F has a zero eigenvalue.For the positive vetor v = (pajj ;paii)t we haveAv = � aiipajj + aijpaiiajjpaii + ajipajj �so Av > 0 if �aij < paiiajj ; �aji < paiiajj ;whih is true in the non-degenerate ase or for positive o�-diagonal elements.Now, Fv = � x�y2 paiiy�x2 pajj �so, in the ase of symmetry, (A� F )v = Av.Qed.Lemma 2 If the matrix is symmetri positive de�nite, there will be no degen-erate modi�ation.Proof. For a positive de�nite matrix A, the determinant aiiajj � aijaji of A ispositive. For a symmetri matrix this impliesaij = aji < paiiajj ;so that the onditions for degeneray are not met. Qed.2.2 Preserving the M-matrix propertyThe problem in using the weighted �ll-elimination strategy given above lies inpreserving the M-matrix property during the fatorisation. In traditional modi-�ed methods the positive vetor v to be used in the modi�ation (usually taken5



as v = (1; 1; : : :)t) is determined a priori, whereas the weighted modi�ationstrategy onstruts it a posteriori: eliminating �ll elements in positions (i; j)and (j; i) �xes the ratio of vi=vj .It is then possible to �nd ontraditory demands on the elements of v, e.g.,when eliminating �ll elements (i1; j1), (i2 = j1; j2), (i3 = j2; j3 = i1). The �rsttwo steps determine the ratios vi1=vj1 and vi2=vj2 , leaving no degree of freedomfor vi3=vj3 . We repair this by keeping trak of the omponents of v that havebeen `�xed into plae' in this manner, and we skip ertain elimination steps ifneessary. This onditional exeution of the �ll statements, in e�et, makes thealgorithm a ross between modi�ed LU and SSOR.Additionally, we must make the diagonal �ll-in step ontingent upon thatrow having had its o�-diagonal �ll moved. Performing the diagonal �ll stepregardless would make the method subjet to the breakdown seen in the un-modi�ed ILU methods. Figure 3 gives an algorithm; it is theoretially fullyfix 0, dia 1for kfor j > kfor k < i < jif fix(i) = 0 or fix(j) = 0eliminate �ll in (i; j) and (j; i) loations as desribed in �gure 2,set fix(i) 1, fix(j) 1.else set dia(i) = dia(j) = 0if dia(j) = 1ajj  ajj � ajkakk�1akj .Figure 3: Altered inner fatorisation loop to preserve M-matrix property.guaranteed to preserve the M-matrix property.2.3 Fine tuningThe main problem with inomplete fatorisations, giving rise to non-positivepivots, is that �ll subtrated from the diagonal usually is positive, thereby de-reasing the diagonal element. While in exat fatorisation there are theoretialguarantees that the diagonal will never be dereased below zero, in inompletemethods it raises the possibility of nonpositive pivots.In some ases suh as onvetion-dominated problems, however, �ll elementsare often negative, and they inrease the size of the diagonal element. (This ob-servation an be taken to be basis of the methods of Jennings and Malik [9℄, andof Robert [13℄.) Thus, for positive �ll elements there is no need for the elaborateweighing strategy, and we do not have to make the diagonal �ll onditional asdesribed in the previous subsetion.The over-spei�ation argument above implies that we have to ignore ertain6



�ll elements. Intuitively, it is more important to handle large elements orretlythan small elements. Therefore, we sort the elements in a row and olumnurrently being eliminated by magnitude. In pratial tests we have seen thisto make a onsiderable di�erene in the number of iterations, up to almost afator of two on the Harwell-Boeing matrix bsstk03.While the above theory is based on an exat move of the { weighted {�ll to the diagonal, in a pratial appliation we multiply the �ll by a fatorslightly less than one. Suh a relaxation has been advoated for various reasonsin [2, 3, 4, 6, 14℄.We arrive at the inner loop desribed in �gure 4;fix 0, dia 1for j > kfor k < i < jlet mij = aikakk�1akj and mji = ajkakk�1akiif mij < 0let fxi = mij and fxj = 0otherwise ompute fxi , fxj as in �gure 2 updating fix and dia.if mji < 0let fyi = 0 and fyj = mjiotherwise ompute fyi , fyj as in �gure 2, updating fix and dia.aii  aii � fxi � fxjajj  ajj � fxj � fyjif dia(j) = 1 or ajkakk�1akj < 0ajj  ajj � ajkakk�1akj < 0Figure 4: The weighted inner loop, with onditionals disabling distribution in`unsafe' ases.3 TestsWe ran a number of tests to judge the performane of the various fatorisationmethods. We tested both simple and more ompliated problems, so that theeÆay of the pivot repair stategies ould be judged, as well as their inuenein ases where they would not be needed.In all of the next tables we gave iteration numbers; `inf' denotes that themethod showed no pereptible onvergene at a ertain uto� point, typially1000 iterations; `�1 denotes that the iterative method broke down, typiallyafter only a few iterations.
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n SSOR ILU jILU wILU �ILU20 19 17 20 18 1640 35 30 36 31 2380 34 50 68 51 34Table 1: Number of iterations of CG with a 'D'-variant inomplete fatorisationon the 5-point Laplaian stenil on an n� n grid.3.1 Numerial resultsWe use a number of representative fatorization methods to solve systems withvarious symmetri and nonsymmetri oeÆient matries. This methods aredesribed in detail in [5℄. In the tables, the following names are used:gILU A modi�ed method preeded by Gustafsson's modi�ation; see [8℄. Thismethod eliminates all positive o�-diagonal elements prior to the (modi�ed)inomplete fatorisation.jILU The Jennings and Malik method; see [9℄. This method adds the absolutevalue of �ll to the diagonal.kILU The Kershaw method; see [10℄. This method sets any arising negativepivots to an appropriate positive value. We omitted updating the Shuromplement whenever pivot repair was needed.mILU Manteu�el's method; see [11℄. This method adds a suÆient amountto the diagonal to prevent negative pivots; it was implemented as follows.Let v be a vetor suh that vi = maxf0;�Aii +Pj 6=i jAij jg. Sine A +diag(v) is (non-stritly) diagonally dominant, there is an 0 � � � 1 suhthat A + diag(v) has a well-de�ned fatorisation. The algorithm thensuessively tries � = 0; :1; :2:; 3; : : : . While this is not optimal, at least itillustrates the priniple.�ILU Modi�ed ILU; see [7℄.wILU The weighted modi�ation ILU introdued above.3.2 Symmetri positive de�nite M-matriesOn SPD M-matries, ILU and �ILU are well-de�ned. Thus there is no need forrepair strategies. Some repair strategies, suh as in the Kershaw and Manteu�elmethods, are indeed not invoked. Others, suh as in the Jennings and Weightedmethod, are always invoked; with these problems we thus only test any possibleperformane degradation due to these strategies. Furthermore, the Gustafssonmethod redued to modi�ed inomplete fatorisation. We tested two modelproblems: the 5-point Laplaian, reported in table 1, and the 9-point fourthorder Laplaian, reported in table 2. We used a standard Conjugate Gradient8



n SSOR ILU jILU wILU �ILU20 19 18 21 19 1740 31 30 38 34 2480 58 53 71 58 35Table 2: Number of iterations of CG with a 'D'-variant inomplete fatorisationon the fourth-order 9-point �nite di�erene Laplaian stenil on an n� n grid.n SSOR ILU gILU jILU kILU mILU wILU �ILU20 70 -1 39 113 inf 79 98 -140 199 -1 75 372 inf 252 322 -180 683 -1 147 1063 inf 789 905 -1Table 3: Number of iterations of CG with a 'D'-variant inomplete fatorisationon the biharmoni ake problem on an n� n grid.method with a right hand side of all ones; the stopping test was on a relativeredution of 10�6, and the uto� point was at 1000 iterations1.We see that the Jennings and Malik method inreases the number of iter-ations with respet to simple ILU; Eijkhout's weighted method gives a slightinrease in that sense, and it does not grow like modi�ed ILU, in spite of itstheoretial resemblanes.3.3 Symmetri positive de�nite non-M-matriesFor matries that are SPD but are not M-matries, a full fatorisation is de-�ned, but an inomplete fatorisation need not be. However, ILU and �ILUare not immediately guaranteed to breakdown. In order to get an indiationof the likelihood of breakdown, and the eÆay of methods where existene isguaranteed, we tested two stenils for the biharmoni equation. The iterativemethod was set up as above.In tables 3, 4, 5, and reftab:star1, we give the results for the following twostenils:� the `biharmoni ake' stenil found by multiplying the Laplae stenil byitself, and1In table 3 it was lear that one method had almost onverged so we reran the test with aslightly higher maximum number of iterations.n SSOR ILU gILU jILU kILU mILU wILU �ILU20 70 -1 45 84 inf 48 70 1540 199 -1 85 282 inf 156 217 2580 683 -1 171 792 inf 491 626 48Table 4: Number of iterations of CG with a level-1 inomplete fatorisation onthe biharmoni ake problem on an n� n grid.9



n SSOR ILU gILU jILU kILU mILU wILU �ILU20 52 40 44 79 40 40 88 -140 127 113 88 257 113 113 264 -180 441 375 177 703 375 375 870 -1Table 5: Number of iterations of CG with a 'D'-variant inomplete fatorisationon the biharmoni star problem on an n� n grid.n SSOR ILU gILU jILU kILU mILU wILU �ILU20 52 -1 40 74 inf 43 69 1840 127 -1 74 234 inf 119 205 3480 441 -1 148 676 inf 416 699 65Table 6: Number of iterations of CG with a level-1 inomplete fatorisation onthe biharmoni star problem on an n� n grid.� the `biharmoni { 9-point { star' stenil that uses only onnetions alongthe oordinate axes.The results allow us to draw the following onlusions:� ILU an break down, but need not, as in the ase of the star stenil. Inthe ase it does not, the Kershaw and Manteu�el methods oinide withILU.� Modi�ed ILU is just as risky as ILU on suh non-M-matries.� If ILU breaks down, the Kershaw method o�ers no solae; the Jenningsand Malik, Manteu�el and Eijkhout methods do onverge, though notneessarily faster than SSOR.� Gustafsson's method is superior on these problem, due to the fat thatafter preproessing the redued stenil is an M-matrix, for whih the sub-sequent modi�ed ILU fatorisation performs very well. We an not expetthis behaviour to persist beyond this speial ase.3.4 Nonsymmetri positive de�nite matriesWe generate a model onvetion-di�usion problem by the �ve-point entral dif-ferene disretisation of ��u+ s�v � u = f (3)where �v = (sin�; os�)t and s > 0. The matrix from this stenil may havepositive o�-diagonal oeÆients, and may not be diagonally dominant.In a pratial situation the onvetion part is smaller by a fator of h, sothese adverse properties only hold for matries up to a ertain size. In our tests10



n SSOR ILU gILU jILU kILU mILU wILU �ILU20 18 16 12 20 16 16 17 1240 24 23 14 31 23 23 24 14Table 7: Convergene results on a 5-point onvetion di�usion stenil with fator3 upwind, preonditioned with a D-variant method on an n� n grid.n SSOR ILU gILU jILU kILU mILU wILU �ILU20 26 15 inf inf 182 inf 25 1240 56 22 inf inf 910 inf 59 13Table 8: Convergene results on a 5-point onvetion di�usion stenil with fator20 upwind, preonditioned with a D-variant method on an n� n grid.we have expliitly let the size of the onvetion part be �xed with respet to thedi�usion part. Spei�ally, we used the stenil�1 �4 �1�4 20 �4�1 �4 �1 +  � 1�2 1where  = 3 in table 7, and  = 20 in table 8. In the latter ase, the initialmatrix will already have positive o�-diagonal elements.We used a BiConjugate Gradient method with a right hand side of all ones;the stopping test was on a relative redution of 10�6, and the uto� point wasat 1000 iterations.We draw the following onlusions.� On the problem with weak onvetion, all methods onverge, and in a verysimilar number of iterations.� Surprisingly, ILU and �ILU onverge on the problem with strong onve-tion.� Contrary to the ase in table 3, in the strong-onvetion problem theKershaw method onverged whereas the Jennings and Malik method didnot. However, the onvergene of the Kershaw method was muh slowerthan of the other onverging methods.� We note that among the methods that are guaranteed not to break down,only the `weighted modi�ation' method atually onverged.3.5 Non-model matriesWe tested a number of matries from the Harwell-Boeing olletion, both sym-metri and nonsymmetri. From the results in table 9 we draw the followingonlusions: 11



matrix ssor ILU gILU jILU kILU mILU wILU �ILUbsstk14 188 33 450 270 33 33 184 -1bsstk26 885 103 inf 1196 103 103 620 -1gre115 inf inf 56 107 inf 28 105 104gre185 inf 150 199 150 371 172 221 206gre512 157 156 295 129 156 156 127 129orsirr1 184 19 -1 14 inf inf 14 14Table 9: Convergene results on various test problems, using a level-1 fatori-sation.� In these test problems, we see instanes of matries for whih SSOR doesnot onverge, or onverges slowly. In previous tests, SSOR looked like afairly attrative method.� Surprisingly, ILU(1) will onverge in some ases where there is no theo-retial guarantee. In gre115 we have an instane of ILU(1) not break-ing down, but also not onverging. In orsirr1 we have a matrix whereILU(1) breaks down, but the BiConjugate Gradient method onvergesnevertheless. Repairing the breakdown with the Kershaw trik leads tonon-onvergene.� The gILU method an not normally break down; however, on the orsirr1matrix division by zero ours beause of zero pivots. This phenomenonwas explained in [6, 12℄.4 ConlusionThe existene problem of inomplete fatorisations, that is, the matter of guar-anteeing positive pivots in an inomplete fatorisation where a full fatorisationarries suh a guarantee, is a hard one. Several methods exist that will givepositive pivots, but several of them an be haraterised as little more thanstop-gap measures. The tests in this paper illustrate that suh methods anhave severe onvergene problems.We have introdued a new method, the `weighted modi�ation' fatorisation,whih guarantees positive pivots for any matrix with positive diagonal elements,a strit superset of the positive de�nite matries. This method is not uniformlyfaster to onverge when other methods onverge, but it is more robust, onverg-ing on every problem where any other method onverges. Note that we are notsaying that it will give a onverging iterative method on every matrix. Still, wehope to have added one more trik to the literature of inomplete fatorisationmethods.
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