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tor Eijkhout�1 De
ember 1999Abstra
tIn
omplete fa
torisation methods su�er from possible breakdown inthe sense that pivots 
an be
ome zero or negative. We propose a newfa
torisation that does not su�er from this defe
t, and that preservesseveral other useful properties. In numeri
al tests this method is seen tobe more reliable than existing methods.1 Introdu
tionFor the eÆ
ient solution of sparse linear systems Au = b by an iterative method,the 
hoi
e of a proper pre
onditioner is 
ru
ial. A pre
onditioner is a matrixMthat approximates A, but for whi
h solving the system Mu = b is 
omputation-ally 
heap. In addition, M itself should be easily 
onstru
table.Sin
e the original 
oeÆ
ient matrix A is sparse, people have sought to 
on-stru
t sparse fa
torisations M = LU � A. The exa
t LU fa
torisation of A isnot sparse, so M is 
onstru
ted by a so-
alled in
omplete fa
torisation, wherethe update aij  aij � aikakk�1akj (1)is exe
uted subje
t to some de
ision pro
ess.Ideally, the only question 
on
erning in
omplete fa
torisations would be theira

ura
y. For instan
e, typi
ally the 
ondition number �(A) � h�2 where h isthe mesh width, and one would hope that �(M�1A) is smaller, preferably ofa lower order than h�2. In pra
ti
e, however, it is already hard to guaranteethe existen
e of the fa
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updated value of aii 
an be zero leading to breakdown in the i-th eliminationstep. A negative value of aii is a problem too, sin
e, if A is positive de�nite, wewantM to be so in order to guarantee the appli
ability of iterative methods su
has Conjugate Gradients, and 
onsequently we need all pivots of the in
ompletefa
torisation to be positive.In
omplete fa
torisation methods are well-de�ned for M-matri
es, but forany other type of matrix, even symmetri
 positive de�nite ones, they 
an su�erfrom breakdown of some form or other. A number of remedies have been pro-posed, but all su�er from 
ertain disadvantages. In a 
ompanion paper [5℄ wehave presented the an overview of existing methods, with the emphasis on howthey ta
kle the existen
e problem.In this paper we propose a new method: the `weighted modi�
ation' al-gorithm. The name derives from the fa
t that a �ll element in position (i; j)is multiplied by a fa
tor based on weighing aii and ajj before it is moved tothe diagonal. In another departure from 
ommon algorithms, the weighted �llis added to both aii and ajj . This new algorithm is �rst of all guaranteednot to break down for matri
es with positive diagonal elements, a 
lass that
ontains the positive de�nite matri
es. Se
ondly, it satis�es several MILU-like
onservation properties in the 
ase of symmetri
 matri
es, de�nite matri
es, orM-matri
es.We 
on
lude by reporing 
omparative tests on M-matri
es, symmetri
 posi-tive de�nite non-M-matri
es, and nonsymmetri
 positive de�nite matri
es, show-ing the relative eÆ
ien
y of the various in
omplete fa
torisation methods andthe severity of their breakdown problems.2 The `weighted modi�
ation' fa
torisation al-gorithmThere are several matrix properties we want to 
onserve in devising a, positionalor numeri
al, dropping strategy.1. Any symmetry of the original matrix should be preserved.2. The fa
torisation should be well-de�ned in the sense that, given a positivede�nite matrix, all pivots should be positive. In fa
t, the method we areproposing satis�es a stronger 
ondition, namely that it will yield positivepivots if the original matrix has a positive diagonal.3. The spe
trum is not to be disturbed too mu
h; in parti
ular, we want thedropping strategy to redu
e to MILU for M-matri
es.4. Applying the fa
torisation to an M-matrix should yield an M-matrix.In this report we will give a novel in
omplete fa
torisation algorithm that satis-�es these 
riteria. We do this in two steps: �rst we des
ribe a 
areful method foreliminating �ll elements, then we in
orporate that in a full-
edged fa
torisationalgorithm. 2



2.1 Elimination of �ll-inLet the framework for a fa
torisation algorithm be given as in �gure 1. Notefor k = 1; : : :for j > kfor k < i < jpro
ess �ll elements (i; j) and (j; i)pro
ess diagonal �ll element (j; j)Figure 1: The main ijk loop of an in
omplete fa
torisation algorithm.that the inner loops des
ribe only half of the index spa
e fi; j > kg: the inner-most loop body ta
kles simultaneously the �ll in (i; j) and (j; i) positions.In this se
tion we des
ribe an algorithm for eliminating the o�-diagonal �llelements in (i; j) and (j; i) elements by added weighted 
ombinations of themto the (i; i) and (j; j) diagonal elements.Consider then the 2� 2 blo
kA � A[i;j℄ = � aii aijaji ajj � :1. Let �x = jaij j=paiiajj ; �y = jajij=paiiajj :(This 
omparison against a geometri
 mean of diagonal elements was alsoused in [1℄.)2. If �x � 1, 
hoose 0 < �x < 1 and de�ne x = sign(aij)�xpaiiajj ; oth-erwise, x = aij . Likewise, if �y � 1, 
hoose 0 < �y < 1 and de-�ne y = sign(aji)�ypaiiajj ; otherwise, y = aji.The quantities x and y will be the fra
tion of the �ll that is moved to thediagonal. We 
all the 
ases �x � 1, �y � 1 `degenerate', sin
e they 
orre-spond to the 
ase where the �ll elements are too large to be moved withoutmaking the modi�ed fa
torisation inde�nite. In pra
ti
al appli
ations weexpe
t �x; �y < 1 (and as shown below, this is guaranteed to be the 
asefor spd matri
es); the introdu
tion of x; y serves to keep the algorithmwell-de�ned when we positionally drop large o�-diagonal elements.3. For positional dropping, de
ide to drop aij and aji based on some sparsityset; for numeri
al dropping,� drop aij if jaij j � 
paiiajj ,� drop aji if jajij � 
paiiajj .where 
 < 1 is some drop toleran
e fra
tion.3



4. LetFx = 0��x2q aiiajj aij0 �x2qajjaii 1A ; Fy = 0��y2q aiiajj 0aji �y2qajjaii 1A ; (2)and F = Fx+Fy; we modify A A�Fx if aij is to be dropped, A A�Fyif aji is to be dropped, and A A� F if both are to be dropped.We give the algorithm in �gure 2.let � < 1let mij = aikakk�1akj and mji = ajkakk�1akilet �x = jmij j=paiiajj and �y = jmjij=paiiajjif �x < 1 then x = mijelse x = sign(mij)�paiiajjif �y < 1 then y = mjielse y = sign(mji)�paiiajjlet fxi = �xpaii=ajj=2, fxj = �xpajj=aii=2, and fyi = �ypaii=ajj=2, fyj = �ypajj=aii=2aii  aii � fxi � fyiajj  ajj � fxj � fyjFigure 2: The algorithm for weighted motion of �ll elements to the diagonal.Theorem 1 The above algorithm satis�es the four 
riteria given at the start ofse
tion 2:1. Symmetry is preserved in the sense that, with numeri
al dropping, aij =aji implies that both elements are dropped or a

epted together. Withpositional dropping, symmetry depends on that of the sparsity set.2. If the original matrix has positive diagonal elements, so have A � Fx,A� Fy, and A� F .3. If �x; �y < 1, the modi�
ation F = Fx + Fy is semi-de�nite, with a zeroeigenvalue in the 
ase of symmetry. The modi�
ation is negative semi-de�nite if the o�-diagonal elements of A are non-positive, positive semi-de�nite if they are non-negative.4. In the 
ase of symmetry, the modi�
ation preserves the produ
t with theve
tor v = (pajj ;paii)t. This ve
tor is pointwise positive, and, in the
ase of non-degenerate modi�
ation, Av is pointwise positive too.Proof. The dropping 
riterium obviously preserves symmetry, sin
e aij and ajiare 
ompared to the same value 
paiiajj , so their being equal implies that weeliminate both aij and aji. 4



The next problem is preserving positive diagonal entries. The diagonal ele-ments of A� F are positive, sin
e, for instan
e,aii+ x+ y2 r aiiajj � aii� jxj+ jyj2 r aiiajj > aii� �paiiajjr aiiajj = (1� �)aii > 0:where � = maxf�x; �y ; 
g < 1.Then, the determinant of F = Fx + Fy isjF j = 12r aiiajj (x+ y)12rajjaii (x + y)� aijaji = 14(x+ y)2 � aijaji= 14(x � y)2 � (aijaji � xy):Thus, if �x; �y < 1, we have aijaji = xy and 
onsequently F is semi-de�nite,with both eigenvalues non-negative if the o�-diagonal elements are non-positive,and vi
e versa. In the 
ase of symmetry, and with �x = �y for degeneratemodi�
ation, F has a zero eigenvalue.For the positive ve
tor v = (pajj ;paii)t we haveAv = � aiipajj + aijpaiiajjpaii + ajipajj �so Av > 0 if �aij < paiiajj ; �aji < paiiajj ;whi
h is true in the non-degenerate 
ase or for positive o�-diagonal elements.Now, Fv = � x�y2 paiiy�x2 pajj �so, in the 
ase of symmetry, (A� F )v = Av.Qed.Lemma 2 If the matrix is symmetri
 positive de�nite, there will be no degen-erate modi�
ation.Proof. For a positive de�nite matrix A, the determinant aiiajj � aijaji of A ispositive. For a symmetri
 matrix this impliesaij = aji < paiiajj ;so that the 
onditions for degenera
y are not met. Qed.2.2 Preserving the M-matrix propertyThe problem in using the weighted �ll-elimination strategy given above lies inpreserving the M-matrix property during the fatorisation. In traditional modi-�ed methods the positive ve
tor v to be used in the modi�
ation (usually taken5



as v = (1; 1; : : :)t) is determined a priori, whereas the weighted modi�
ationstrategy 
onstru
ts it a posteriori: eliminating �ll elements in positions (i; j)and (j; i) �xes the ratio of vi=vj .It is then possible to �nd 
ontradi
tory demands on the elements of v, e.g.,when eliminating �ll elements (i1; j1), (i2 = j1; j2), (i3 = j2; j3 = i1). The �rsttwo steps determine the ratios vi1=vj1 and vi2=vj2 , leaving no degree of freedomfor vi3=vj3 . We repair this by keeping tra
k of the 
omponents of v that havebeen `�xed into pla
e' in this manner, and we skip 
ertain elimination steps ifne
essary. This 
onditional exe
ution of the �ll statements, in e�e
t, makes thealgorithm a 
ross between modi�ed LU and SSOR.Additionally, we must make the diagonal �ll-in step 
ontingent upon thatrow having had its o�-diagonal �ll moved. Performing the diagonal �ll stepregardless would make the method subje
t to the breakdown seen in the un-modi�ed ILU methods. Figure 3 gives an algorithm; it is theoreti
ally fullyfix 0, dia 1for kfor j > kfor k < i < jif fix(i) = 0 or fix(j) = 0eliminate �ll in (i; j) and (j; i) lo
ations as des
ribed in �gure 2,set fix(i) 1, fix(j) 1.else set dia(i) = dia(j) = 0if dia(j) = 1ajj  ajj � ajkakk�1akj .Figure 3: Altered inner fa
torisation loop to preserve M-matrix property.guaranteed to preserve the M-matrix property.2.3 Fine tuningThe main problem with in
omplete fa
torisations, giving rise to non-positivepivots, is that �ll subtra
ted from the diagonal usually is positive, thereby de-
reasing the diagonal element. While in exa
t fa
torisation there are theoreti
alguarantees that the diagonal will never be de
reased below zero, in in
ompletemethods it raises the possibility of nonpositive pivots.In some 
ases su
h as 
onve
tion-dominated problems, however, �ll elementsare often negative, and they in
rease the size of the diagonal element. (This ob-servation 
an be taken to be basis of the methods of Jennings and Malik [9℄, andof Robert [13℄.) Thus, for positive �ll elements there is no need for the elaborateweighing strategy, and we do not have to make the diagonal �ll 
onditional asdes
ribed in the previous subse
tion.The over-spe
i�
ation argument above implies that we have to ignore 
ertain6



�ll elements. Intuitively, it is more important to handle large elements 
orre
tlythan small elements. Therefore, we sort the elements in a row and 
olumn
urrently being eliminated by magnitude. In pra
ti
al tests we have seen thisto make a 
onsiderable di�eren
e in the number of iterations, up to almost afa
tor of two on the Harwell-Boeing matrix b
sstk03.While the above theory is based on an exa
t move of the { weighted {�ll to the diagonal, in a pra
ti
al appli
ation we multiply the �ll by a fa
torslightly less than one. Su
h a relaxation has been advo
ated for various reasonsin [2, 3, 4, 6, 14℄.We arrive at the inner loop des
ribed in �gure 4;fix 0, dia 1for j > kfor k < i < jlet mij = aikakk�1akj and mji = ajkakk�1akiif mij < 0let fxi = mij and fxj = 0otherwise 
ompute fxi , fxj as in �gure 2 updating fix and dia.if mji < 0let fyi = 0 and fyj = mjiotherwise 
ompute fyi , fyj as in �gure 2, updating fix and dia.aii  aii � fxi � fxjajj  ajj � fxj � fyjif dia(j) = 1 or ajkakk�1akj < 0ajj  ajj � ajkakk�1akj < 0Figure 4: The weighted inner loop, with 
onditionals disabling distribution in`unsafe' 
ases.3 TestsWe ran a number of tests to judge the performan
e of the various fa
torisationmethods. We tested both simple and more 
ompli
ated problems, so that theeÆ
a
y of the pivot repair stategies 
ould be judged, as well as their in
uen
ein 
ases where they would not be needed.In all of the next tables we gave iteration numbers; `inf' denotes that themethod showed no per
eptible 
onvergen
e at a 
ertain 
uto� point, typi
ally1000 iterations; `�1 denotes that the iterative method broke down, typi
allyafter only a few iterations.
7



n SSOR ILU jILU wILU �ILU20 19 17 20 18 1640 35 30 36 31 2380 34 50 68 51 34Table 1: Number of iterations of CG with a 'D'-variant in
omplete fa
torisationon the 5-point Lapla
ian sten
il on an n� n grid.3.1 Numeri
al resultsWe use a number of representative fa
torization methods to solve systems withvarious symmetri
 and nonsymmetri
 
oeÆ
ient matri
es. This methods aredes
ribed in detail in [5℄. In the tables, the following names are used:gILU A modi�ed method pre
eded by Gustafsson's modi�
ation; see [8℄. Thismethod eliminates all positive o�-diagonal elements prior to the (modi�ed)in
omplete fa
torisation.jILU The Jennings and Malik method; see [9℄. This method adds the absolutevalue of �ll to the diagonal.kILU The Kershaw method; see [10℄. This method sets any arising negativepivots to an appropriate positive value. We omitted updating the S
hur
omplement whenever pivot repair was needed.mILU Manteu�el's method; see [11℄. This method adds a suÆ
ient amountto the diagonal to prevent negative pivots; it was implemented as follows.Let v be a ve
tor su
h that vi = maxf0;�Aii +Pj 6=i jAij jg. Sin
e A +diag(v) is (non-stri
tly) diagonally dominant, there is an 0 � � � 1 su
hthat A + diag(v) has a well-de�ned fa
torisation. The algorithm thensu

essively tries � = 0; :1; :2:; 3; : : : . While this is not optimal, at least itillustrates the prin
iple.�ILU Modi�ed ILU; see [7℄.wILU The weighted modi�
ation ILU introdu
ed above.3.2 Symmetri
 positive de�nite M-matri
esOn SPD M-matri
es, ILU and �ILU are well-de�ned. Thus there is no need forrepair strategies. Some repair strategies, su
h as in the Kershaw and Manteu�elmethods, are indeed not invoked. Others, su
h as in the Jennings and Weightedmethod, are always invoked; with these problems we thus only test any possibleperforman
e degradation due to these strategies. Furthermore, the Gustafssonmethod redu
ed to modi�ed in
omplete fa
torisation. We tested two modelproblems: the 5-point Lapla
ian, reported in table 1, and the 9-point fourthorder Lapla
ian, reported in table 2. We used a standard Conjugate Gradient8



n SSOR ILU jILU wILU �ILU20 19 18 21 19 1740 31 30 38 34 2480 58 53 71 58 35Table 2: Number of iterations of CG with a 'D'-variant in
omplete fa
torisationon the fourth-order 9-point �nite di�eren
e Lapla
ian sten
il on an n� n grid.n SSOR ILU gILU jILU kILU mILU wILU �ILU20 70 -1 39 113 inf 79 98 -140 199 -1 75 372 inf 252 322 -180 683 -1 147 1063 inf 789 905 -1Table 3: Number of iterations of CG with a 'D'-variant in
omplete fa
torisationon the biharmoni
 
ake problem on an n� n grid.method with a right hand side of all ones; the stopping test was on a relativeredu
tion of 10�6, and the 
uto� point was at 1000 iterations1.We see that the Jennings and Malik method in
reases the number of iter-ations with respe
t to simple ILU; Eijkhout's weighted method gives a slightin
rease in that sense, and it does not grow like modi�ed ILU, in spite of itstheoreti
al resemblan
es.3.3 Symmetri
 positive de�nite non-M-matri
esFor matri
es that are SPD but are not M-matri
es, a full fa
torisation is de-�ned, but an in
omplete fa
torisation need not be. However, ILU and �ILUare not immediately guaranteed to breakdown. In order to get an indi
ationof the likelihood of breakdown, and the eÆ
a
y of methods where existen
e isguaranteed, we tested two sten
ils for the biharmoni
 equation. The iterativemethod was set up as above.In tables 3, 4, 5, and reftab:star1, we give the results for the following twosten
ils:� the `biharmoni
 
ake' sten
il found by multiplying the Lapla
e sten
il byitself, and1In table 3 it was 
lear that one method had almost 
onverged so we reran the test with aslightly higher maximum number of iterations.n SSOR ILU gILU jILU kILU mILU wILU �ILU20 70 -1 45 84 inf 48 70 1540 199 -1 85 282 inf 156 217 2580 683 -1 171 792 inf 491 626 48Table 4: Number of iterations of CG with a level-1 in
omplete fa
torisation onthe biharmoni
 
ake problem on an n� n grid.9



n SSOR ILU gILU jILU kILU mILU wILU �ILU20 52 40 44 79 40 40 88 -140 127 113 88 257 113 113 264 -180 441 375 177 703 375 375 870 -1Table 5: Number of iterations of CG with a 'D'-variant in
omplete fa
torisationon the biharmoni
 star problem on an n� n grid.n SSOR ILU gILU jILU kILU mILU wILU �ILU20 52 -1 40 74 inf 43 69 1840 127 -1 74 234 inf 119 205 3480 441 -1 148 676 inf 416 699 65Table 6: Number of iterations of CG with a level-1 in
omplete fa
torisation onthe biharmoni
 star problem on an n� n grid.� the `biharmoni
 { 9-point { star' sten
il that uses only 
onne
tions alongthe 
oordinate axes.The results allow us to draw the following 
on
lusions:� ILU 
an break down, but need not, as in the 
ase of the star sten
il. Inthe 
ase it does not, the Kershaw and Manteu�el methods 
oin
ide withILU.� Modi�ed ILU is just as risky as ILU on su
h non-M-matri
es.� If ILU breaks down, the Kershaw method o�ers no sola
e; the Jenningsand Malik, Manteu�el and Eijkhout methods do 
onverge, though notne
essarily faster than SSOR.� Gustafsson's method is superior on these problem, due to the fa
t thatafter prepro
essing the redu
ed sten
il is an M-matrix, for whi
h the sub-sequent modi�ed ILU fa
torisation performs very well. We 
an not expe
tthis behaviour to persist beyond this spe
ial 
ase.3.4 Nonsymmetri
 positive de�nite matri
esWe generate a model 
onve
tion-di�usion problem by the �ve-point 
entral dif-feren
e dis
retisation of ��u+ s�v � u = f (3)where �v = (sin�; 
os�)t and s > 0. The matrix from this sten
il may havepositive o�-diagonal 
oeÆ
ients, and may not be diagonally dominant.In a pra
ti
al situation the 
onve
tion part is smaller by a fa
tor of h, sothese adverse properties only hold for matri
es up to a 
ertain size. In our tests10



n SSOR ILU gILU jILU kILU mILU wILU �ILU20 18 16 12 20 16 16 17 1240 24 23 14 31 23 23 24 14Table 7: Convergen
e results on a 5-point 
onve
tion di�usion sten
il with fa
tor3 upwind, pre
onditioned with a D-variant method on an n� n grid.n SSOR ILU gILU jILU kILU mILU wILU �ILU20 26 15 inf inf 182 inf 25 1240 56 22 inf inf 910 inf 59 13Table 8: Convergen
e results on a 5-point 
onve
tion di�usion sten
il with fa
tor20 upwind, pre
onditioned with a D-variant method on an n� n grid.we have expli
itly let the size of the 
onve
tion part be �xed with respe
t to thedi�usion part. Spe
i�
ally, we used the sten
il�1 �4 �1�4 20 �4�1 �4 �1 + 
 � 1�2 1where 
 = 3 in table 7, and 
 = 20 in table 8. In the latter 
ase, the initialmatrix will already have positive o�-diagonal elements.We used a BiConjugate Gradient method with a right hand side of all ones;the stopping test was on a relative redu
tion of 10�6, and the 
uto� point wasat 1000 iterations.We draw the following 
on
lusions.� On the problem with weak 
onve
tion, all methods 
onverge, and in a verysimilar number of iterations.� Surprisingly, ILU and �ILU 
onverge on the problem with strong 
onve
-tion.� Contrary to the 
ase in table 3, in the strong-
onve
tion problem theKershaw method 
onverged whereas the Jennings and Malik method didnot. However, the 
onvergen
e of the Kershaw method was mu
h slowerthan of the other 
onverging methods.� We note that among the methods that are guaranteed not to break down,only the `weighted modi�
ation' method a
tually 
onverged.3.5 Non-model matri
esWe tested a number of matri
es from the Harwell-Boeing 
olle
tion, both sym-metri
 and nonsymmetri
. From the results in table 9 we draw the following
on
lusions: 11



matrix ssor ILU gILU jILU kILU mILU wILU �ILUb
sstk14 188 33 450 270 33 33 184 -1b
sstk26 885 103 inf 1196 103 103 620 -1gre115 inf inf 56 107 inf 28 105 104gre185 inf 150 199 150 371 172 221 206gre512 157 156 295 129 156 156 127 129orsirr1 184 19 -1 14 inf inf 14 14Table 9: Convergen
e results on various test problems, using a level-1 fa
tori-sation.� In these test problems, we see instan
es of matri
es for whi
h SSOR doesnot 
onverge, or 
onverges slowly. In previous tests, SSOR looked like afairly attra
tive method.� Surprisingly, ILU(1) will 
onverge in some 
ases where there is no theo-reti
al guarantee. In gre115 we have an instan
e of ILU(1) not break-ing down, but also not 
onverging. In orsirr1 we have a matrix whereILU(1) breaks down, but the BiConjugate Gradient method 
onvergesnevertheless. Repairing the breakdown with the Kershaw tri
k leads tonon-
onvergen
e.� The gILU method 
an not normally break down; however, on the orsirr1matrix division by zero o

urs be
ause of zero pivots. This phenomenonwas explained in [6, 12℄.4 Con
lusionThe existen
e problem of in
omplete fa
torisations, that is, the matter of guar-anteeing positive pivots in an in
omplete fa
torisation where a full fa
torisation
arries su
h a guarantee, is a hard one. Several methods exist that will givepositive pivots, but several of them 
an be 
hara
terised as little more thanstop-gap measures. The tests in this paper illustrate that su
h methods 
anhave severe 
onvergen
e problems.We have introdu
ed a new method, the `weighted modi�
ation' fa
torisation,whi
h guarantees positive pivots for any matrix with positive diagonal elements,a stri
t superset of the positive de�nite matri
es. This method is not uniformlyfaster to 
onverge when other methods 
onverge, but it is more robust, 
onverg-ing on every problem where any other method 
onverges. Note that we are notsaying that it will give a 
onverging iterative method on every matrix. Still, wehope to have added one more tri
k to the literature of in
omplete fa
torisationmethods.
12
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