
MDVIZ: A Molecular Dynamics Visualization ToolkitWael R. Elwasif �, Jonathan D. Moore y, Peter T. Cummings yz�, and Robert C. Ward �Technical Report UT-CS-99-437 1University of TennesseeDecember 1999Abstract. The paper describes a software package called MDVIZ providing the tools necessary to visualizesimulations of molecular dynamics systems. The toolkit, which uses a client-server approach for maximumexibility, enables on-line or post-processing visualization as well as real-time computational steering. Thetoolkit requires only hardware and software components that are readily available free or for mimimum costto the research community. Few assumptions about the computing environment are made, making MDVIZeasily portable to di�erent platforms and extendable.1 IntroductionThe explosive growth in computing power that took place over the last two decades has providedthe necessary power for simulations of increasingly complicated molecular dynamics systems. Lim-itations on the number of atoms involved in a particular simulation, the complexity of the modelused, and the duration of such a simulation have been constantly removed with the use of morepowerful machines and the increasing availability of large cheap memory modules. An importantelement of the simulation process, interpretation via on-line visualization has been receiving moreattention lately. This surge in interest can be attributed in part to the increasing availability ofpowerful computer graphics systems that can process the large amounts of data involved in con-structing visualization frames at a rate compatible with the human eye's perception of continuousmotion (30 frames per second).�Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301yDepartment of Chemical Engineering, University of Tennessee, Knoxville, TN 37996-2200zDepartment of Chemistry, University of Tennessee, Knoxville, TN 37996-16001Available from: http://www.cs.utk.edu/�library/TechReports.html1



Large simulations are being increasingly carried out on parallel machines that are optimized forscienti�c computing and which do not necessarily have the hardware or software libraries to visualizesimulation results in real time. Some e�orts have gone into developing graphics software librariesfor some of the parallel machines most commonly used for scienti�c computing, e.g. [2{4]. However,the results of such e�orts are usually tuned to a particular machine and extremely di�cult to portto other architectures.Another approach to online visualization has been the use of a dedicated visualization server thatis connected to the machine performing the simulation via fast networks. This approach is becomingincreasingly popular with the development of fast network technologies (e.g. ATM networks andgigabit ethernet). In addition this approach allows visualization to be performed on machines thatare particularly optimized for graphics thus freeing computing resources on the simulating machines(which are typically more expensive.)In this report we describe MDVIZ, a Molecular Dynamics VisualiZation toolkit, that's builtusing a client-server approach for maximum exibility. The toolkit is intended for use in a re-search/educational environment, hence the decision to use only hardware and software componentsthat are readily available for minimal cost to the general research community. The MDVIZ makesfew assumptions about the underlying hardware and software environment, which makes it easilyportable to many platforms. PVM [5] is used to manage the setup of the client-server system aswell as manage inter-process communications.2 Molecular DynamicsIn a molecular dynamics (MD) simulation, the non-linear ordinary di�erential equations of motionfor the dynamics of the molecules of interest are solved using standard numerical methods forinitial-value problems, and the trajectories of the molecules are calculated as a function of time.The text by Allen and Tildesley [6] provides an overview of molecular simulation in general and MDin particular. The input to a MD simulation is typically the set of initial positions and momenta ofthe molecules as well as the parameters specifying the system's thermodynamic state (e.g. densityand temperature). During the course of the simulation, the thermophysical properties (such aspressure, energy, and viscosity) are calculated as time averages from microscopic expressions givenin terms of the positions and momenta of the individual molecules. Visualization of the molecules,either during the simulation or upon its completion, can be extremely helpful in terms of interpretingthe thermophysical data as well as debugging the simulation code itself. In addition, during thecourse of the simulation, one may desire to modify the values of certain parameters governing thesimulation (e.g. temperature and pressure) and visually monitor the e�ects such changes imposeon the simulated system. MDVIZ is designed to provide these capabilities to the general MD user.2



3 System ComponentsThe MDVIZ server runs on a machine equipped with the required graphics rendering resources tomanage the actual display of simulation frames. The server uses the OpenGL [1,12] graphics libraryfor rendering. OpenGL is emerging as a de-facto standard for rendering on many platforms withhardware support available on many graphics display cards. In addition, a free software implemen-tation of OpenGL is readily available (however it has been our experience that performance of thesoftware port is not on par with the available hardware implementations in terms of robustness andspeed.) The choice to build the server directly on top of OpenGL allows for maximum portabilityto di�erent platforms that may not support some of the layers built on top of OpenGL to enhanceits interface and/or improve overall system performance (e.g. Open Inventor [11]).The server also uses GLUT [8], a free toolkit built on top of OpenGL to provide encapsulationfor some of the functionality in OpenGL and to provide mechanisms for managing display windowsand user interactions, which are not part of OpenGL.Another free library that is used by the server to enhance its functionality is libti� [9]. Thislibrary, which is also built on top of OpenGL, allows for the capture of rendered images into ti�format �les for permanent storage. This option allows for generating post-mortem \movies" ofsimulations deemed important for presentations or archiving. However, use of this facility causesdegradation in server's response time and rate of frame rendering.For purposes of data communication, we adopted PVM because of its support for heterogeneousmachines. At time of MDVIZ implementation, the MPI [7] message passing standard did not o�ersupport for heterogeneous environments. Since MDVIZ aims at providing support for possiblymany simulation environments communicating with the rendering server, PVM was the naturalchoice for this reason. As MPI evolves and incorporates more support for process management andheterogeneous environments, the communication subsection of MDVIZ could be easily ported toMPI.The MDVIZ server provides a exible interface to allow the user to control the simulation fromthe rendering side. This interface is implemented using the scripting language Tcl/Tk [10], whichallows for rapid development and easy customization of the user interface part.The client side of MDVIZ is not currently implemented as a separate library. The client interactswith the server via PVM according to the protocol described in section 6. The simulation moduleis responsible for setting up necessary data structures for PVM, composing messages according tothe format described in the communication protocol, receiving server responses, interpreting thoseresponses, and carrying out any actions speci�ed therein. This functionality could be consolidatedinto a separate client-side library as part of future releases for ease of use. The Appendix containsan outline of a generic MD simulation module including the necessary code for interfacing withMDVIZ.It is the responsibility of the user to make sure PVM is up and running on the two hosts (thesimulation client and the visualization server)that are involved in the simulation session. AlthoughPVM allows for dynamic process creation and management, this feature was not used in this earlyversion of MDVIZ. In future releases, this behavior could be modi�ed to allow for an easier user3



interface to the client-server system.4 What is being displayed?The MDVIZ server assumes that a client connecting to the server will display frames that correspondto snapshots of a molecular dynamics simulation involving a collection of molecules over a certainperiod of time. It is assumed that the user is conducting simulations involving the behavior ofmolecules contained in a rectangular space. The coordinates of this rectangle are used by theMDVIZ server to position the viewer with respect to the simulation space in a convenient manner.The locations of molecules involved in the simulation at a particular point in time constitute thebulk of frame data that the client sends to the server to render a new frame. MDVIZ currentlysupports a sphere model of individual atoms rendering. Other models could be supported in futurereleases (e.g. ball and stick model).MDVIZ has a database that incorporates physical properties of atoms of 103 elements. Theseproperties, which control the rendering of molecules of any particular element, include the radiusand the red, green, and blue color components which combine to give the element a distinct color.A particular element is accessed through its index in the periodic table of elements. In addition,MDVIZ allows the user (client) to de�ne up to 11 extra \special" elements at runtime. These\user-de�ned" elements could be used to describe a molecule (or a group of molecules) for easyidenti�cation at run time. User de�ned elements are given indices between 110 and 120 (inclusive).5 Computational SteeringThe current implementation of MDVIZ supports a simple mechanism through which the user canremotely control certain aspects of the simulation process from the visualization server. The client(simulation code) sends a list of con�gurable parameters as part of an initialization message re-quired by the MDVIZ server. This list includes information that de�nes the name of the con�gurableparameters, their minimum allowable values, their maximum allowable values, and their initial set-tings. The server passes this information onto the Tcl/Tk GUI module that constructs an interface(see �gures 1- 2) that allows the user to modify the parameters speci�ed in the initialization mes-sage. The modi�ed values are then conveyed back to the client for use in its running simulation. Itshould be noted that the current implementation assumes that certain parameters will not changeduring the lifetime of the simulation process (e.g. the number of atoms involved).6 Client-Server Communication ProtocolIn this section, we describe the format of the messages exchanged between the client and the serverand the actions triggered by such messages. We can broadly divide message exchange into two mainstages, initialization and data/parameters exchange. In the following description, some data itemsexchanged between the simulation client and the visualization server are not currently used (by the4



Figure 1: The graphical user interface of MDVIZ used in conjunction with a simulation of water.5



Figure 2: Visualization by MDVIZ of a simulation of water.
6



server) to a�ect the visualization process. Those items are included for future releases (particularlyof the server side).6.1 InitializationThe initialization process can be further divided into two main steps1. PVM initialization: In this step, the client and the server are connected to form a virtualmachine. This is accomplished by joining a PVM group, conveniently named MDVIZ andsynchronizing with each other afterwards. It is the responsibility of the user to constructa virtual machine that incorporates the host running the simulation and the host wherethe MDVIZ visualization module is to be run. In addition, the user is also responsible forinitiating the simulating process and the visualization server manually, each on its respectivehost.Parameter type Description counttextLineLengthy Integer4 Length of text line 3textLine1y Byte Text linenumFrames Integer4 Total number of frames to bedisplayed 1numSteps y Integer4 Number of frames to beskipped 1simCorner1X Real4 Coordinates of simulation celllower left front corner 1simCorner1Y Real4simCorner1Z Real4simCorner2X Real4 Coordinates of simulation cellupper right back corner 1simCorner2Y Real4simCorner2Z Real4numAtoms Integer4 Total number of atoms in sim-ulation 1numFixedBondsy Integer4 Number of �xed bonds betweenatoms 1�xedBondsFromy Integer4 Indices of atoms at one end of�xed bonds numFixedBonds�xedBondsToy Integer4 Indices of atoms at the otherend of �xed bonds numFixedBondsnumVarPar Integer4 Number of steering parameters 1parNameLength Integer4 Length of parameter name numVarParparName Byte Parameter namecontinued on next page 7



continued from previous pageParameter type Description countparMinVal Real4 Parameter minimum valueparMaxVal Real4 Parameter maximum valueparInitVal Real4 Parameter initial valuenumExtraElem Integer4 Number of user-de�ned ele-ments 1elemIndex Integer Element identifying index numExtraElemelemRed Real4 Red component in elementatom color [0-1]elemGreen Real4 Green component in elementatom color [0-1]elemBlue Real4 Blue component in elementatom color [0-1]elemNameLen Integer4 Length of element nameelementName Byte Element nameelemradius Real4 Element atom radius (inAngstrom)y Parameter not used in current implementationTable 1: Initialization message format2. MDVIZ initialization: In this step, the MDVIZ visualization server con�gures itself forthe client that had just joined the PVM group. This step is initialized by the client, whichsends an initialization message to the server. This message contains information regardingthe simulation environment. The server uses this information to initialize its internal state inanticipation of receiving subsequent frame data. The initialization message is given a PVMmessage ID of 100. The layout of this message is outlined in table 1. It should be noted thattypes given in table 1 correspond to PVM types used in the actual implementation.Upon receipt of the initialization message, the MDVIZ visualization modules spawns a GUI processcon�gured with the computational steering parameters speci�ed in the initialization message. Inaddition, the visualization module initializes its internal state (including the graphics subsystem).As part of the state initialization, an initial setting of the viewer's relative position with respectto the simulation box is chosen for future use in rendering. This position can be adjusted throughkeyboard interface to allow the user to navigate through the simulation scene as will be explainedin section 7. 8



6.2 Exchanging frame dataUpon completion of the initialization process, the MDVIZ server enters into a loop that controls dataexchange with the client as well as possible user input either by controlling the display environmentor by modifying the steering parameters. Frames are displayed asynchronously, where the serversignals to the client its readiness to display further frames after rendering the previous frame. Thissignal takes the form of an acknowledgment message that instructs the client to send a new frameto display and/or update one or more steering parameter. The decision as to which frame to senddepends on the simulation and visualization requirements.The client may choose to continue with the simulation process up to the point where it needsto display a new frame, at which time it may go into a waiting loop which periodically probesthe PVM subsystem for server messages (this would be the case if regularly spaced frames arerequired.) Another alternative would be for the client to continue with the simulation process, whileperiodically probing for the server response. This scenario may result in frames being displayed atpossibly highly irregular intervals, since the user at the visualization end can interactively freezea particular frame for further inspection for an extended period of time before requesting furtherframes as will be explained in section 7.The following tables outline the format of these two types of messages exchanged between theclient and the server. The format of the message containing frame data is shown in Table 2, whilethe format of the acknowledgment message is shown in Table 3. Frame data message is given aPVM message id of 200, while the acknowledgment message has a PVM message id of 300.Parameter type Description countframeTimey Real4 Frame time (in �Sec) 1simCorner1X Real4 Coordinates of simulation cell 1simCorner1Y Real4 lower left front cornersimCorner1Z Real4simCorner2X Real4 Coordinates of simulation cell 1simCorner2Y Real4 upper right back cornersimCorner2Z Real4numTransBondsy Integer4 Number of transient bonds be-tween atoms 1atomIndex Integer4 List of atom indices numAtomsatomXPos Real4 atomXPos[i] = x-position ofatom atomIndex[i] numAtomsatomYPos Real4 atomY Pos[i] = y-position ofatom atomIndex[i] numAtomsatomZPos Real4 atomZPos[i] = z-position ofatom atomIndex[i] numAtomscontinued on next page 9



continued from previous pageParameter type Description countatomType Integer4 atomType[i] = Index of ele-ment to which atom i belongs numAtomsatomMoly Integer4 atomMol[i] = Index ofmolecule to which atom ibelongs numAtomstransBondsFromy Integer4 Indices of atoms at one end oftransient bonds numTransBondstransBondsToy Integer4 Indices of atoms at the otherend of transient bonds numTransBondstransBondsColory integer4 Color indices for respectivetransitional bonds numTransBondsy Parameter not used in current implementationTable 2: Frame data message formatParameter type Description countnumChgPar Integer4 Number of changed steering parameters 1chgParIdx Integer4 Index of changed steering parameter numChgParchgParVal Real4 New value of steering parameterTable 3: Acknowledgment message format7 Interaction with running visualizationsThe MDVIZ server allows the user to control not only the con�gurable parameters conveyed bythe client as part of the initialization message, but also the visual aspects of the displayed framesthemselves. The user can freeze a particular frame for further inspection, navigate through thedisplayed frame for di�erent angles of view, and save frames to permanent storage for futurecompression into a movie using a variety of available software packages.In this release of MDVIZ, user interaction is done mainly through keyboard entries. This featurecould be changed in future releases to allow for other types of controls (e.g. mouse control). Inwhat follows we describe the actions that can be initiated by the user at startup and during thevisualization process itself. 10



Figure 3: Command line window where MDVIZ is invoked and the mode of operation is speci�ed.7.1 InitializationAs part of the startup process, the user is given the ability to specify the initial mode of thevisualization process (see �gure 3). Currently two modes are supported, frame mode; in whichthe user needs to explicitly request every subsequent frame, and continuous mode; in which a newframe is fetched and displayed as soon as the server is done displaying the preceeding frame. Inaddition, the user is given the choice of saving displayed frames to permanent storage or not. Ifthe user chooses to save the visualization session, each frame will be saved in a �le with the nameframei.tif, where i is the frame sequence number.7.2 Frame display control and navigationThe user can navigate through the displayed frame by controlling the target point in the display. Thetarget point is de�ned to be the point a�ected by changes initiated by the user during a visualizationsession. Currently MDVIZ supports two target points, the viewer's position and the viewing targetposition. By changing the viewer`s position, the user is able to move about the displayed scenewhile keeping the focus of view on the same spot. On the other hand, by changing the viewingtarget, the user directs his attention at di�erent zones in the display while maintaining a �xedposition. The ability to control both these points give users the exibility to explore interestingzones in the simulation cell easily. The di�erent actions that can be applied to target points as wellas other controls available to the user are outlined in table 4. The capability of viewing a simulationfrom di�erent points of view is illustrated in �gure 4 containing visualizations of a con�ned alkanelubricant. 11



Key Action Descriptionq Q Quit Terminate visualization serverm M Switch mode Change between single frame and continuousdisplay moden N Next frame Display next frame (in frame mode)r Rotate counterclockwise Rotate the viewer around the point of viewR Rotate clockwise Rotate the viewer around the point of viewx Move along x-axis Increase x-axis coordinate of target pointX Decrease x-axis coordinate of target pointy Move along y-axis Increase y-axis coordinate of target pointY Decrease y-axis coordinate of target pointz Move along z-axis Increase z-axis coordinate of target pointZ Decrease z-axis coordinate of target pointf F Move forward Move target point forwardb B Move backward Move target point backwardss S Switch target point Switch target point between viewer positionand point of viewTable 4: Frame display control actions8 Future workThis release of MDVIZ lays the required framework for further enhancements in the functionalityof the visualization system. One immediate direction of work would be to encapsulate the comuni-cation calls on the client side in a separate library that exports an intuitive API to the user of thesimulation code. This step should make it easier for users of the simulation code to use MDVIZwith little or no knowledge of the details of PVM. Another improvement to the ease-of-use aspectof the package would be to improve the frame display control mechanism o�ered in MDVIZ toprovide easier user interface that might employ menu-driven actions and/or mouse control.The server-side features implemented in the current release of MDVIZ are but a sub-set of thosefeatures that are envisioned to be in future releases. Support for dynamic inter-molecular bonds,support for di�erent bond representations (e.g. ball and stick representation), support for di�erentshapes of the simulation cell are but a few of the features that could signi�cantly add to the existingfunctionality in MDVIZ.One important direction of work would be to improve the performance of the visualization serverto reduce frame rendering time. This enhancement is necessary for e�cient use of MDVIZ to renderframes containing a large number of molecules at relatively close time intervals. This direction ofwork will ultimately require the use of parallel rendering techniques (in space or time) to achievethe desired improvement in performance. 12



Figure 4: A simulation of a con�ned alkane lubricant as seen from two di�erent points of view.User-de�ned elements are utilized to distinguish between chains that are all chemically identical.13



9 ConclusionIn this report, we presented the design and implementation details of a distributed moleculardynamics visualization toolkit that provides support for on-line visualization of dynamic molecularbehavior in a parallelpipe-shaped simulation cell. The toolkit o�ers a exible computational steeringcapability that allows for visualization server-side control of user-de�ned simulation parameters.This tool should prove useful for researchers who use molecular dynamics simulation techniques, inparticular for rapid change in simulation parameters and for generation of simulation videos thatcapture a possibly long simulation interval.References[1] Opengl Architecture Review Board, Chris Frazier (Editor), and Renate Kempf. Opengl Ref-erence Manual : The O�cial Reference Document to Opengl, Version 1.1. Addison-Wesley,1997.[2] Thomas W. Crockett. PGL- a parallel graphics library for distributed memory applications.http://www.icase.edu/reports/interim/29/PGL.html.[3] Thomas W. Crockett. Beyond the renderer: Software architecture for parallel graphics andvisualization. Technical Report 96-75, Institute for Computer Applications in Science andEngineering, NASA Langley Research Center, 1994.[4] ThomasW. Crockett. Design considerations for parallel graphics libraries. Technical Report 94-49, Institute for Computer Applications in Science and Engineering, NASA Langley ResearchCenter, 1994.[5] A. Geist, A. Beguelin, J. Dongarra, R. Manchek, W. Jaing, and V. Sunderam. PVM | AUsers' Guide and Tutorial for Networked Parallel Computing. MIT Press, Boston, 1994.[6] M. Allen and D. Tildesley. Computer Simulation of Liquids. Oxford University Press, Oxford,1987.[7] W. Gropp, E. Lust, and A. Skjellum. Using MPI: Portable parallel programming with themessage passing interface. MIT Press, Boston, 1994.[8] Mark Kilgard. OpenGL Utility Toolkit (GLUT). http://reality.sgi.com/opengl/opengl-links.html#glut.[9] Sam Le�er. LIBTIFF - TIFF Software Library . http://www.sgi.com/Fun/tiff/tiff-v3.4beta018/html/.[10] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.14



[11] Josie Wernecke. The Inventor Mentor : Programming Object-Oriented 3d Graphics With OpenInventor, Release 2. Addison-Wesley, 1994.[12] Mason Woo, Jackie Neider, Tom Davis, , Paula Womack, and Opengl Architecture Reviewboard. Opengl Programming Guide : The O�cial Guide to Learning Opengl, Version 1.1.Addison-Wesley, 1997.

15



AppendixThis Appendix contains an outline of a genericMD simulation module including the necessarycode for interfacing with MDVIZ.PROGRAM MDinteger N, NSTEP, NMOL, NUMPERMBNDparameter ( N = 768 )parameter ( NMOL = 256 )parameter ( NSTEP = 1 )parameter ( NUMPERMBND = 1 )C N is the number of atoms to be visualizedC NMOL is the number of moleculesC (NMOL=N/(# of atoms per molecule))C NSTEP number of timesteps in simulationC NUMPERMBND is the number of permanent bondsinteger lnonelen, lntwolen, lnthreeleninteger elemNamelenC Lengths of various character variablesparameter ( lnonelen = 7 )parameter ( lntwolen = 1 )parameter ( lnthreelen = 1 )parameter ( elemNamelen = 4)C Various character variables declaredcharacter*lnonelen line1character*lntwolen line2character*lnthreelen line3character*elemNamelen elemNameC Variables for PVMinteger mytid, me, infointeger myinst, target, bufidC Variables related to computational steeringC pnumbr is the number of steered parametersinteger pnumbr, steer1len, steer2lenparameter ( pnumbr = 2 )parameter ( steer1len = 15 )parameter ( steer2len = 14 )C Character variables naming the steered parameterscharacter*steer1len steer1character*steer2len steer2integer pindex(2)

C Min and max allowed values of steered parametersreal pmin(pnumbr), pmax(pnumbr)C Array containing updated steered parametersreal value(pnumbr)C Bond-related variablesinteger bonds, tranzbndinteger permbndfrom(NUMPERMBND)integer permbndto(NUMPERMBND)C Other variablesinteger i, istep, j, be, jmol, natominteger atomnum(N), typenum(N), ack, narrayinteger molenum(N), nframes, framerate, nskipreal coor(6), timesend, timecon, timestepreal RX(N), RY(N), RZ(N), temp, deltC VARIABLES FOR USER-DEFINED ELEMENTS.integer numXelem, elemireal RGB(11,3), elemRC ** JOIN THE PVM GROUP **call pvmfmytid(mytid)call pvmfjoingroup('MDVIZ',myinst)if ( myinst .lt. 0) thencall pvmfexit ( info )stopendifcall pvmfbarrier('MDVIZ',2,info)C ** Find out the tid of MDVIZ **if (myinst.eq.0) thencall pvmfgettid('MDVIZ',1,target)else call pvmfgettid('MDVIZ',0,target)endifC ** Set up MDVIZ parameters **C Text lines to displayline1 = ' Water 'line2 = '-'line3 = '-'16



C Text description of first steering parametersteer1 = 'Temperature (K)'C Text description of second steering parametersteer2 = 'Density (g/mL)'C Max and min values of the steering paramterspmin(1) = 298.0pmax(1) = 600.0pmin(2) = 0.01pmax(2) = 1.0C Define indices of steering parameterspindex(1)=1pindex(2)=2C The current release of MDVIZ does not use theC permanent and transiet bond information, butC future releases will.C Initialize the number of transient bondstranzbnd = 0C The number of permanent bonds to be visualized.bonds=0C The agreed upon standard is to send time to MDVIZC in units microseconds. To do so, timecon shouldC be set to the proper value so thatC istep*timstep*timecon has units of microseconds.timestep = 0.001timecon = 1.0C Send frame to MDVIZ every <framerate> timesteps.framerate = 1C After MDVIZ displays a frame, it should skipC <nskip> frames it receives before displayingC another frame.nskip = 0C The coordinates of the front bottom lefthandC and top rear righthand corners of theC simulation cell.coor(1) = 0.0coor(2) = 0.0coor(3) = 0.0coor(4) = 19.7coor(5) = 19.7

coor(6) = 19.7C Total number of frames MDVIZ will be visualizingnframes = nstep / framerateC Assign atomnum, molenum, and typenum valuesC Number of elements the user will define.numXelem = 0C Radius in angstroms of the defined elements.C Make this an array if you want to use more thanC one radius value.C elemR = 0.5C Names for user-defined elements can be assigned.elemNameLen = 4elemName = 'same'C The send is intiated and data are packed. Two of theC pvmfpack lines are commented out since I have setC bonds=0 temp and delt are the variables that areC steered in this example.call pvmfinitsend( PVMDEFAULT, bufid )call pvmfpack(integer4,lnonelen,1,1,info)call pvmfpack(byte1,line1,lnonelen,1,info)call pvmfpack(integer4,lntwolen,1,1,info)call pvmfpack(byte1,line2,lntwolen,1,info)call pvmfpack(integer4,lnthreelen,1,1,info)call pvmfpack(byte1,line3,lnthreelen,1,info)call pvmfpack(integer4,nframes,1,1,info)call pvmfpack(integer4,nskip,1,1,info)call pvmfpack(real4,coor,6,1,info)call pvmfpack(integer4,N,1,1,info)call pvmfpack(integer4,bonds,1,1,info)C call pvmfpack(integer4,permbndfrom,bonds,1,info)C call pvmfpack(integer4,permbndto,bonds,1,info)call pvmfpack(integer4,pnumbr,1,1,info)call pvmfpack(integer4,pindex(1),1,1,info)call pvmfpack(integer4,steer1len,1,1,info)call pvmfpack(byte1,steer1,steer1len,1,info)call pvmfpack(real4,pmin(1),1,1,info)call pvmfpack(real4,pmax(1),1,1,info)call pvmfpack(real4,temp,1,1,info)call pvmfpack(integer4,pindex(2),1,1,info)call pvmfpack(integer4,steer2len,1,1,info)call pvmfpack(byte1,steer2quit,steer2len,1,info)call pvmfpack(real4,pmin(2),1,1,info)call pvmfpack(real4,pmax(2),1,1,info)17



call pvmfpack(real4,delt,1,1,info)call pvmfpack(integer4,numXelem,1,1,info)C These lines are used if using user-defined elementsC do i = 1, numXelemC elemi = i+109C call pvmfpack(integer4,elemi,1,1,info)C call pvmfpack(real4,RGB(i,1),1,1,info)C call pvmfpack(real4,RGB(i,2),1,1,info)C call pvmfpack(real4,RGB(i,3),1,1,info)C call pvmfpack(integer4,elemNameLen,1,1,info)C call pvmfpack(byte1,elemName,elemNameLen,1,info)C call pvmfpack(real4,elemR,1,1,info)C enddoC Send the initialization data to MDVIZcall pvmfsend( target, 100, info )C Enter main simulation loopdo 245 istep = 1 , nstepC Simulation code generates position data (RX,RY,RZ)C for the next timestep. This code is not shownC here and is specific to each user. This dataC could also be read from a file for aC ``post-mortem'' visualization.if ( mod(istep,framerate) . eq . 0 ) thentimesend=timestep*real(istep)*timeconC **** Communicate data to mdvizcall pvmfinitsend( PVMDEFAULT, bufid )call pvmfpack(real4,timesend,1,1,info)call pvmfpack(real4,coor,6,1,info)call pvmfpack(integer4,tranzbnd,1,1,info)call pvmfpack(integer4,atomnum,N,1,info)call pvmfpack(real4,RX,N,1,info)call pvmfpack(real4,RY,N,1,info)call pvmfpack(real4,RZ,N,1,info)call pvmfpack(integer4,typenum,N,1,info)call pvmfpack(integer4,molenum,N,1,info)C If tranzbnd>0, then you would have lines hereC to pack the arrays of [transient bonds from],C [transient bonds to], and [bond color]call pvmfsend( target, 200, info )C ** Receive an acknowledgement from MDVIZ **call pvmfrecv( target, 300, bufid )call pvmfunpack(integer4,ack,1,1,info)C The value of ack returned by MDVIZ specifies how

C many steered parameters have been changed by theC user through the gui.if (ack.gt.0) thendo 24 i=1,ackcall pvmfunpack(integer4,index(i),1,1,info)call pvmfunpack(real4,value(i),1,1,info)if (index(i).eq.1) thentemp=value(i)elseif (index(i).eq.2) thendens=value(i)endif24 continueendif245 continueC Exit PVMcall pvmfexit(info)stopend
18


