MDVIZ: A Molecular Dynamics Visualization Toolkit

Wael R. Elwasif *, Jonathan D. Moore T, Peter T. Cummings ™, and Robert C. Ward *

Technical Report UT-CS-99-437 !

University of Tennessee

December 1999

Abstract. The paper describes a software package called MDVIZ providing the tools necessary to visualize
simulations of molecular dynamics systems. The toolkit, which uses a client-server approach for maximum
flexibility, enables on-line or post-processing visualization as well as real-time computational steering. The
toolkit requires only hardware and software components that are readily available free or for mimimum cost
to the research community. Few assumptions about the computing environment are made, making MDVIZ
easily portable to different platforms and extendable.

1 Introduction

The explosive growth in computing power that took place over the last two decades has provided
the necessary power for simulations of increasingly complicated molecular dynamics systems. Lim-
itations on the number of atoms involved in a particular simulation, the complexity of the model
used, and the duration of such a simulation have been constantly removed with the use of more
powerful machines and the increasing availability of large cheap memory modules. An important
element of the simulation process, interpretation via on-line visualization has been receiving more
attention lately. This surge in interest can be attributed in part to the increasing availability of
powerful computer graphics systems that can process the large amounts of data involved in con-
structing visualization frames at a rate compatible with the human eye’s perception of continuous
motion (30 frames per second).

*Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301
"Department of Chemical Engineering, University of Tennessee, Knoxville, TN 37996-2200
{Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600

! Available from: http://www.cs.utk.edu/~library/TechReports.html



Large simulations are being increasingly carried out on parallel machines that are optimized for
scientific computing and which do not necessarily have the hardware or software libraries to visualize
simulation results in real time. Some efforts have gone into developing graphics software libraries
for some of the parallel machines most commonly used for scientific computing, e.g. [2-4]. However,
the results of such efforts are usually tuned to a particular machine and extremely difficult to port
to other architectures.

Another approach to online visualization has been the use of a dedicated visualization server that
is connected to the machine performing the simulation via fast networks. This approach is becoming
increasingly popular with the development of fast network technologies (e.g. ATM networks and
gigabit ethernet). In addition this approach allows visualization to be performed on machines that
are particularly optimized for graphics thus freeing computing resources on the simulating machines
(which are typically more expensive.)

In this report we describe MDVIZ, a Molecular Dynamics VisualiZation toolkit, that’s built
using a client-server approach for maximum flexibility. The toolkit is intended for use in a re-
search /educational environment, hence the decision to use only hardware and software components
that are readily available for minimal cost to the general research community. The MDVIZ makes
few assumptions about the underlying hardware and software environment, which makes it easily
portable to many platforms. PVM [5] is used to manage the setup of the client-server system as
well as manage inter-process communications.

2 Molecular Dynamics

In a molecular dynamics (MD) simulation, the non-linear ordinary differential equations of motion
for the dynamics of the molecules of interest are solved using standard numerical methods for
initial-value problems, and the trajectories of the molecules are calculated as a function of time.
The text by Allen and Tildesley [6] provides an overview of molecular simulation in general and MD
in particular. The input to a MD simulation is typically the set of initial positions and momenta of
the molecules as well as the parameters specifying the system’s thermodynamic state (e.g. density
and temperature). During the course of the simulation, the thermophysical properties (such as
pressure, energy, and viscosity) are calculated as time averages from microscopic expressions given
in terms of the positions and momenta of the individual molecules. Visualization of the molecules,
either during the simulation or upon its completion, can be extremely helpful in terms of interpreting
the thermophysical data as well as debugging the simulation code itself. In addition, during the
course of the simulation, one may desire to modify the values of certain parameters governing the
simulation (e.g. temperature and pressure) and visually monitor the effects such changes impose
on the simulated system. MDVIZ is designed to provide these capabilities to the general MD user.



3 System Components

The MDVIZ server runs on a machine equipped with the required graphics rendering resources to
manage the actual display of simulation frames. The server uses the OpenGL [1,12] graphics library
for rendering. OpenGL is emerging as a de-facto standard for rendering on many platforms with
hardware support available on many graphics display cards. In addition, a free software implemen-
tation of OpenGL is readily available (however it has been our experience that performance of the
software port is not on par with the available hardware implementations in terms of robustness and
speed.) The choice to build the server directly on top of OpenGL allows for maximum portability
to different platforms that may not support some of the layers built on top of OpenGL to enhance
its interface and/or improve overall system performance (e.g. Open Inventor [11]).

The server also uses GLUT [8], a free toolkit built on top of OpenGL to provide encapsulation
for some of the functionality in OpenGL and to provide mechanisms for managing display windows
and user interactions, which are not part of OpenGL.

Another free library that is used by the server to enhance its functionality is libtiff [9]. This
library, which is also built on top of OpenGL, allows for the capture of rendered images into tiff
format files for permanent storage. This option allows for generating post-mortem “movies” of
simulations deemed important for presentations or archiving. However, use of this facility causes
degradation in server’s response time and rate of frame rendering.

For purposes of data communication, we adopted PVM because of its support for heterogeneous
machines. At time of MDVIZ implementation, the MPI [7] message passing standard did not offer
support for heterogeneous environments. Since MDVIZ aims at providing support for possibly
many simulation environments communicating with the rendering server, PVM was the natural
choice for this reason. As MPI evolves and incorporates more support for process management and
heterogeneous environments, the communication subsection of MDVIZ could be easily ported to
MPI.

The MDVIZ server provides a flexible interface to allow the user to control the simulation from
the rendering side. This interface is implemented using the scripting language Tcl/Tk [10], which
allows for rapid development and easy customization of the user interface part.

The client side of MDVIZ is not currently implemented as a separate library. The client interacts
with the server via PVM according to the protocol described in section 6. The simulation module
is responsible for setting up necessary data structures for PVM, composing messages according to
the format described in the communication protocol, receiving server responses, interpreting those
responses, and carrying out any actions specified therein. This functionality could be consolidated
into a separate client-side library as part of future releases for ease of use. The Appendix contains
an outline of a generic MD simulation module including the necessary code for interfacing with
MDVIZ.

It is the responsibility of the user to make sure PVM is up and running on the two hosts (the
simulation client and the visualization server)that are involved in the simulation session. Although
PVM allows for dynamic process creation and management, this feature was not used in this early
version of MDVIZ. In future releases, this behavior could be modified to allow for an easier user



interface to the client-server system.

4 What is being displayed?

The MDVIZ server assumes that a client connecting to the server will display frames that correspond
to snapshots of a molecular dynamics simulation involving a collection of molecules over a certain
period of time. It is assumed that the user is conducting simulations involving the behavior of
molecules contained in a rectangular space. The coordinates of this rectangle are used by the
MDVIZ server to position the viewer with respect to the simulation space in a convenient manner.
The locations of molecules involved in the simulation at a particular point in time constitute the
bulk of frame data that the client sends to the server to render a new frame. MDVIZ currently
supports a sphere model of individual atoms rendering. Other models could be supported in future
releases (e.g. ball and stick model).

MDVIZ has a database that incorporates physical properties of atoms of 103 elements. These
properties, which control the rendering of molecules of any particular element, include the radius
and the red, green, and blue color components which combine to give the element a distinct color.
A particular element is accessed through its index in the periodic table of elements. In addition,
MDVIZ allows the user (client) to define up to 11 extra “special” elements at runtime. These
“user-defined” elements could be used to describe a molecule (or a group of molecules) for easy
identification at run time. User defined elements are given indices between 110 and 120 (inclusive).

5 Computational Steering

The current implementation of MDVIZ supports a simple mechanism through which the user can
remotely control certain aspects of the simulation process from the visualization server. The client
(simulation code) sends a list of configurable parameters as part of an initialization message re-
quired by the MDVIZ server. This list includes information that defines the name of the configurable
parameters, their minimum allowable values, their maximum allowable values, and their initial set-
tings. The server passes this information onto the Tcl/Tk GUI module that constructs an interface
(see figures 1- 2) that allows the user to modify the parameters specified in the initialization mes-
sage. The modified values are then conveyed back to the client for use in its running simulation. It
should be noted that the current implementation assumes that certain parameters will not change
during the lifetime of the simulation process (e.g. the number of atoms involved).

6 Client-Server Communication Protocol

In this section, we describe the format of the messages exchanged between the client and the server
and the actions triggered by such messages. We can broadly divide message exchange into two main
stages, initialization and data/parameters exchange. In the following description, some data items
exchanged between the simulation client and the visualization server are not currently used (by the



MdViz Control Panel

Temperature (K) |298.0

Density (g/mL) | 1.0

Sigma (angstroms) |3.1

Epsilon/k (K) [92.5

Charge on H (e) |1.0

H-O-H Angle (degrees) [109.0

O-H Distance (angstroms) |1 0

Quit | Update Simulation |

Figure 1: The graphical user interface of MDVIZ used in conjunction with a simulation of water.



of water.

Figure 2: Visualization by MDVIZ of a simulation



server) to affect the visualization process. Those items are included for future releases (particularly
of the server side).

6.1 Initialization

The initialization process can be further divided into two main steps

1. PVM initialization: In this step, the client and the server are connected to form a virtual
machine. This is accomplished by joining a PVM group, conveniently named MDVIZ and
synchronizing with each other afterwards. It is the responsibility of the user to construct
a virtual machine that incorporates the host running the simulation and the host where
the MDVIZ visualization module is to be run. In addition, the user is also responsible for
initiating the simulating process and the visualization server manually, each on its respective

host.
Parameter type Description count
textLinelLength} | Integerd | Length of text line 3
textLinelf Byte Text line
numkFrames Integer4 | Total number of frames to be | 1
displayed
numSteps | Integer4 | Number of frames to be |1
skipped
simCornerl1X Reald Coordinates of simulation cell | 1
lower left front corner
simCornerlY Real4
simCorner17 Real4
simCorner2X Reald Coordinates of simulation cell | 1
upper right back corner
simCorner2Y Real4
simCorner27 Real4
numAtoms Integer4 | Total number of atoms in sim- | 1
ulation
numFixedBonds} | Integerd | Number of fixed bonds between | 1
atoms
fixedBondsFromy | Integerd | Indices of atoms at one end of | numFixedBonds
fixed bonds
fixedBondsTof Integer4 | Indices of atoms at the other | numFixedBonds
end of fixed bonds
numVarPar Integer4 | Number of steering parameters | 1
parNamelLength | Integer4d | Length of parameter name numVarPar
parName Byte Parameter name
continued on next page




continued from previous page
Parameter type Description count
parMinVal Reald Parameter minimum value
parMaxVal Reald Parameter maximum value
parlnitVal Reald Parameter initial value
numExtraklem Integer4 | Number of user-defined ele- | 1
ments
elemIndex Integer | Element identifying index numExtraklem
elemRed Reald Red component in element
atom color [0-1]
elemGreen Reald Green component in element
atom color [0-1]
elemBlue Reald Blue component in element
atom color [0-1]
elemNamelen Integer4 | Length of element name
elementName Byte Element name
elemradius Real4 Element atom radius (in
Angstrom)

1 Parameter not used in current implementation

Table 1: Initialization message format

2. MDVIZ initialization: In this step, the MDVIZ visualization server configures itself for
the client that had just joined the PVM group. This step is initialized by the client, which
sends an initialization message to the server. This message contains information regarding
the simulation environment. The server uses this information to initialize its internal state in
anticipation of receiving subsequent frame data. The initialization message is given a PVM
message ID of 100. The layout of this message is outlined in table 1. It should be noted that
types given in table 1 correspond to PVM types used in the actual implementation.

Upon receipt of the initialization message, the MDVIZ visualization modules spawns a GUI process
configured with the computational steering parameters specified in the initialization message. In
addition, the visualization module initializes its internal state (including the graphics subsystem).
As part of the state initialization, an initial setting of the viewer’s relative position with respect
to the simulation box is chosen for future use in rendering. This position can be adjusted through
keyboard interface to allow the user to navigate through the simulation scene as will be explained
in section 7.



6.2 Exchanging frame data

Upon completion of the initialization process, the MDVIZ server enters into a loop that controls data
exchange with the client as well as possible user input either by controlling the display environment
or by modifying the steering parameters. Frames are displayed asynchronously, where the server
signals to the client its readiness to display further frames after rendering the previous frame. This
signal takes the form of an acknowledgment message that instructs the client to send a new frame
to display and/or update one or more steering parameter. The decision as to which frame to send
depends on the simulation and visualization requirements.

The client may choose to continue with the simulation process up to the point where it needs
to display a new frame, at which time it may go into a waiting loop which periodically probes
the PVM subsystem for server messages (this would be the case if regularly spaced frames are
required.) Another alternative would be for the client to continue with the simulation process, while
periodically probing for the server response. This scenario may result in frames being displayed at
possibly highly irregular intervals, since the user at the visualization end can interactively freeze
a particular frame for further inspection for an extended period of time before requesting further
frames as will be explained in section 7.

The following tables outline the format of these two types of messages exchanged between the
client and the server. The format of the message containing frame data is shown in Table 2, while
the format of the acknowledgment message is shown in Table 3. Frame data message is given a
PVM message id of 200, while the acknowledgment message has a PVM message id of 300.

Parameter type Description count
frameTimet Real4 Frame time (in pSec) 1
simCornerlX Real4 Coordinates of simulation cell | 1
simCornerlY Real4 lower left front corner

simCornerlZ Real4

simCorner2X Real4 Coordinates of simulation cell | 1
simCorner2Y Reald upper right back corner

simCorner27 Real4

numTransBondsi | Integerd | Number of transient bonds be- | 1
tween atoms

atomIndex Integer4 | List of atom indices numAtoms

atomXPos Real4 atomX Pos[i] = z-position of | numAtoms
atom atomIndex]i]

atomYPos Real4 atomY Pos[i] = y-position of | numAtoms
atom atomIndex]i]

atomZPos Real4 atomZ Pos[i] = z-position of | numAtoms
atom atomIndex]i]

continued on next page




continued from previous page

Parameter type Description count

atomType Integerd | atomType[i] = Index of ele- | numAtoms
ment to which atom ¢ belongs

atomMol Integerd | atomMol[i] = Index of | numAtoms
molecule to which atom ¢
belongs

transBondskrom7 | Integer4 | Indices of atoms at one end of | numTransBonds
transient bonds

transBondsTof Integer4 | Indices of atoms at the other | numTransBonds
end of transient bonds

transBondsColory | integerd | Color indices for respective | numTransBonds
transitional bonds

1 Parameter not used in current implementation

Table 2: Frame data message format

Parameter | type Description count
numChgPar | Integer4 | Number of changed steering parameters | 1
chgParldx Integer4 | Index of changed steering parameter numChgPar
chgParVal Real4 New value of steering parameter

Table 3: Acknowledgment message format

7 Interaction with running visualizations

The MDVIZ server allows the user to control not only the configurable parameters conveyed by
the client as part of the initialization message, but also the visual aspects of the displayed frames
themselves. The user can freeze a particular frame for further inspection, navigate through the
displayed frame for different angles of view, and save frames to permanent storage for future
compression into a movie using a variety of available software packages.

In this release of MDVIZ, user interaction is done mainly through keyboard entries. This feature
could be changed in future releases to allow for other types of controls (e.g. mouse control). In
what follows we describe the actions that can be initiated by the user at startup and during the
visualization process itself.

10



[ml ]l
dlmenslians
Water

(1 = Yes, 0 = HNo) : 1

ed mode (O Continuous, 1 = Frame)

d frame : 1
I

Figure 3: Command line window where MDVIZ is invoked and the mode of operation is specified.

7.1 Initialization

As part of the startup process, the user is given the ability to specify the initial mode of the
visualization process (see figure 3). Currently two modes are supported, frame mode; in which
the user needs to explicitly request every subsequent frame, and continuous mode; in which a new
frame is fetched and displayed as soon as the server is done displaying the preceeding frame. In
addition, the user is given the choice of saving displayed frames to permanent storage or not. If
the user chooses to save the visualization session, each frame will be saved in a file with the name
framei.tif, where 7 is the frame sequence number.

7.2 Frame display control and navigation

The user can navigate through the displayed frame by controlling the target pointin the display. The
target point is defined to be the point affected by changes initiated by the user during a visualization
session. Currently MDVIZ supports two target points, the viewer’s position and the viewing target
position. By changing the viewer‘s position, the user is able to move about the displayed scene
while keeping the focus of view on the same spot. On the other hand, by changing the viewing
target, the user directs his attention at different zones in the display while maintaining a fixed
position. The ability to control both these points give users the flexibility to explore interesting
zones in the simulation cell easily. The different actions that can be applied to target points as well
as other controls available to the user are outlined in table 4. The capability of viewing a simulation
from different points of view is illustrated in figure 4 containing visualizations of a confined alkane
lubricant.

11



Key | Action Description

qQ | Quit Terminate visualization server
m M | Switch mode Change between single frame and continuous
display mode

n N | Next frame Display next frame (in frame mode)

r Rotate counterclockwise | Rotate the viewer around the point of view
R Rotate clockwise Rotate the viewer around the point of view
X Move along z-axis Increase z-axis coordinate of target point
X Decrease z-axis coordinate of target point
y Move along y-axis Increase y-axis coordinate of target point
Y Decrease y-axis coordinate of target point
z Move along z-axis Increase z-axis coordinate of target point

7 Decrease z-axis coordinate of target point
fF Move forward Move target point forward

b B | Move backward Move target point backwards

s S Switch target point Switch target point between viewer position

and point of view

Table 4: Frame display control actions

8 Future work

This release of MDVIZ lays the required framework for further enhancements in the functionality
of the visualization system. One immediate direction of work would be to encapsulate the comuni-
cation calls on the client side in a separate library that exports an intuitive API to the user of the
simulation code. This step should make it easier for users of the simulation code to use MDVIZ
with little or no knowledge of the details of PVM. Another improvement to the ease-of-use aspect
of the package would be to improve the frame display control mechanism offered in MDVIZ to
provide easier user interface that might employ menu-driven actions and/or mouse control.

The server-side features implemented in the current release of MDVIZ are but a sub-set of those
features that are envisioned to be in future releases. Support for dynamic inter-molecular bonds,
support for different bond representations (e.g. ball and stick representation), support for different
shapes of the simulation cell are but a few of the features that could significantly add to the existing
functionality in MDVIZ.

One important direction of work would be to improve the performance of the visualization server
to reduce frame rendering time. This enhancement is necessary for efficient use of MDVIZ to render
frames containing a large number of molecules at relatively close time intervals. This direction of
work will ultimately require the use of parallel rendering techniques (in space or time) to achieve
the desired improvement in performance.

12



Figure 4: A simulation of a confined alkane lubricant as seen from two different points of view.
User-defined elements are utilized to distinguish between chains that are all chemically identical.

13



9 Conclusion

In this report, we presented the design and implementation details of a distributed molecular
dynamics visualization toolkit that provides support for on-line visualization of dynamic molecular
behavior in a parallelpipe-shaped simulation cell. The toolkit offers a flexible computational steering
capability that allows for visualization server-side control of user-defined simulation parameters.
This tool should prove useful for researchers who use molecular dynamics simulation techniques, in
particular for rapid change in simulation parameters and for generation of simulation videos that
capture a possibly long simulation interval.

References

[1] Opengl Architecture Review Board, Chris Frazier (Editor), and Renate Kempf. Opengl Ref-
erence Manual : The Official Reference Document to Opengl, Version 1.1. Addison-Wesley,
1997.

[2] Thomas W. Crockett. PGL- a parallel graphics library for distributed memory applications.
http://www.icase.edu/reports/interim/29/PGL .html.

[3] Thomas W. Crockett. Beyond the renderer: Software architecture for parallel graphics and
visualization. Technical Report 96-75, Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, 1994.

[4] Thomas W. Crockett. Design considerations for parallel graphics libraries. Technical Report 94-
49, Institute for Computer Applications in Science and Engineering, NASA Langley Research
Center, 1994.

[6] A. Geist, A. Beguelin, J. Dongarra, R. Manchek, W. Jaing, and V. Sunderam. PVM — A
Users’ Guide and Tutorial for Networked Parallel Computing. MIT Press, Boston, 1994.

[6] M. Allen and D. Tildesley. Computer Simulation of Liquids. Oxford University Press, Oxford,
1987.

[7] W. Gropp, E. Lust, and A. Skjellum. Using MPI: Portable parallel programming with the
message passing interface. MIT Press, Boston, 1994.

[8] Mark Kilgard.  OpenGL Utility Toolkit (GLUT). http://reality.sgi.com/opengl/
opengl-links.html#glut.

[9] Sam Leffler. LIBTIFF - TIFF Software Library . http://www.sgi.com/Fun/tiff/tiff-v3.
4betal18/html/.

[10] John K. Ousterhout. T¢l and the Tk Toolkit. Addison-Wesley, 1994.

14



[11] Josie Wernecke. The Inventor Mentor : Programming Object-Oriented 3d Graphics With Open
Inventor, Release 2. Addison-Wesley, 1994.

[12] Mason Woo, Jackie Neider, Tom Davis, , Paula Womack, and Opengl Architecture Review
board. Opengl Programming Guide : The Official Guide to Learning Opengl, Version 1.1.
Addison-Wesley, 1997.

15



Appendix

C Min and max allowed values of steered parameters
This Appendix contains an outline of a generic
MD simulation module including the necessary
code for interfacing with MDVIZ. C Array containing updated steered parameters

real value(pnumbr)

real pmin{pnumbr), pmax(pnumbr)

PROGRAM MD
C Bond-related variables
integer N, NSTEP, NMOL, NUMPERMBND
integer bonds, tranzbnd

parameter ( N = 768 ) integer permbndfrom(NUMPERMBND)

parameter ( NMOL = 256 ) integer permbndto (NUMPERMBHD)

parameter ( NSTEP = 1 )

parameter  ( NUMPERMBND = 1 ) C Other variables
C N is the number of atoms to be visualized integer i, istep, j, be, jmol, natom
C WMOL is the number of molecules integer atomnum(ll), typenum(N), ack, narray
C (NMOL=N/(# of atoms per molecule)) integer molenum(ll), nframes, framerate, nskip
C NSTEP number of timesteps in simulation real coor(6), timesend, timecon, timestep
C NUMPERMBHD is the number of permanent bonds real RX(N), RY(N), RZ(W), temp, delt

integer lnonelen, lntwolen, Inthreelen

integer elemllamelen C VARIABLES FOR USER-DEFINED ELEMENTS.
C Lengths of various character variables integer numXelem, elemi
real RGB(11,3), elemR
parameter  ( lnonelen = 7 )
parameter ( lntwolen = 1 ) C ** JOIN THE PVM GROUP #**
parameter ( Ilnthreelen = 1 )
parameter ( elemNamelen = 4) call pvmfmytid(mytid)
C Various character variables declared call pvmfjoingroup(’MDVIZ’ ,myinst)
if ( myinst .1t. 0) then
character*lnonelen linel call pvmfexit ( info )
character*lntwolen line2 stop
character*lnthreelen line3 endif

character*elemlamelen elemName

call pvmfbarrier(’MDVIZ’,2,info)
C Variables for PVM

C ** Find out the tid of MDVIZ *x*
integer mytid, me, info

integer myinst, target, bufid if (myinst.eq.0) then
C Variables related to computational steering call pvmfgettid(CMDVIZ’,1,target)
else
C pnumbr is the number of steered parameters call pvmfgettid(CMDVIZ’,0,target)
integer pnumbr, steerllen, steer2len endif
parameter  ( pnumbr = 2 )
parameter ( steerllen = 15 ) C ** Set up MDVIZ parameters **

parameter ( steer2len = 14 )

C Character variables naming the steered parameters C Text lines to display
character*steerllen steerl linel = ’ Water ’
character*steer2len steer2 line2 = ’=»

line3d = ’-?

integer pindex(2)

16



Q

QaaaaQ

Q

Q

Text description of first steering parameter
steerl = ’Temperature (K)’

Text description of second steering parameter
steer2 = ’Density (g/mL)’

Max and min values of the steering paramters

pmin(1) = 298.0
pmax(1) = 600.0
pmin(2) = 0.01
pmax(2) = 1.0

Define indices of steering parameters

pindex(1)=1
pindex(2)=2

The current release of MDVIZ does not use the

permanent and transiet bond information, but

future releases will.

Initialize the number of transient bonds
tranzbnd = 0

The number of permanent bonds to be visualized.
bonds=0

The agreed upon standard is to send time to MDVIZ

in units microseconds. To do so, timecon should

be set to the proper value so that

istep*timstep*timecon has units of microseconds.

timestep = 0.001
timecon = 1.0

Send frame to MDVIZ every <framerate> timesteps.
framerate = 1
After MDVIZ displays a frame, it should skip
<nskip> frames it receives before displaying
another frame.
nskip = 0
The coordinates of the front bottom lefthand

and top rear righthand corners of the
simulation cell.

coor(1) = 0.0
coor(2) = 0.0
coor(3) = 0.0
coor(4) = 19.7
coor(5) = 19.7

17

Q

Qaaa

coor(6) = 19.7

Total number of frames MDVIZ will be visualizing

nframes = nstep / framerate

Assign atomnum, molenum, and typenum values

Number of elements the user will define.
numXelem = O

Radius in angstroms of the defined elements.
Make this an array if you want to use more than
one radius value.

elemR = 0.5

Names for user-defined elements can be assigned.

elemllamelen = 4
elemllame = ’same’

The send is intiated and data are packed.
pvmfpack lines are commented out since I have set
bonds=0 temp and delt are the variables that are
steered in this example.

call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

pvmfinitsend( PYMDEFAULT, bufid )
pvmfpack(integer4,lnonelen,1,1,info)
pvmfpack(bytel,linel,lnonelen,1,info)
pvmfpack(integer4,lntwolen,1,1,info)
pvmfpack(bytel,line2,1lntwolen,1,info)
pvmfpack(integer4,lnthreelen,1,1,info)
pvmfpack(bytel,line3,1nthreelen,1,info)
pvmfpack(integer4 ,nframes,1,1,info)
pvmfpack(integer4,nskip,1,1,info)
pvmfpack(reald,coor,6,1,info)
pvmfpack(integer4 ,N,1,1,info)
pvmfpack(integer4,bonds,1,1,info)

pvmfpack(integer4,pnumbr,1,1,info)
pvmfpack(integer4,pindex(1),1,1,info)
pvmfpack(integer4,steerilen,1,1,info)
pvmfpack(bytel,steerl,steerllen,1,info)
pvmfpack(reald,pmin(1),1,1,info)
pvmfpack(reald,pmax(1),1,1,info)
pvmfpack(reald,temp,1,1,info)
pvmfpack(integer4,pindex(2),1,1,info)
pvmfpack(integer4,steer2len,1,1,info)

pvmfpack(reald,pmin(2),1,1,info)
pvmfpack(reald,pmax(2),1,1,info)

Two of the

pvmfpack(integer4,permbndfrom,bonds,1,info)
pvmfpack(integer4,permbndto,bonds,1,info)

pvmfpack(bytel,steer2quit,steer2len,1,info)



aaoaaoaoaaaaaa Q

Q

QaaaaaQ

Q

call pvmfpack(real4,delt,1,1,info)
call pvmfpack(integer4,numXelem,1,1,info)

These lines are used if using user-defined elements

do i = 1, numXelem
elemi = i+109
call pvmfpack(integer4,elemi,1,1,info)
call pvmfpack(reald4,RGB(i,1),1,1,info)
call pvmfpack(reald,RGB(i,2),1,1,info)
call pvmfpack(reald,RGB(i,3),1,1,info)
call
call
call
enddo

pvmfpack(real4,elemR,1,1,info)

Send the initialization data to MDVIZ
call pvmfsend( target, 100, info )
Enter main simulation loop
do 245 istep = 1 , nstep

Simulation code generates position data (RX,RY,RZ)
for the next timestep. This code is not shown
here and is specific to each user. This data
could also be read from a file for a

¢ ‘post-mortem’’ visualization.

0 ) then

if ( mod(istep,framerate) . eq .

timesend=timestep*real(istep)*timecon
*#*+*+* Communicate data to mdviz

call
call
call
call
call
call
call
call
call
call

pvmfinitsend( PYMDEFAULT, bufid )
pvmfpack(real4,timesend,1,1,info)
pvmfpack(real4,coor,6,1,info)
pvmfpack(integer4,tranzbnd,1,1,info)
pvmfpack(integer4,atomnum,l,1,info)
pvmfpack(real4,RX,N,1,info)
pvmfpack(real4,RY,N,1,info)
pvmfpack(real4,RZ,N,1,info)
pvmfpack(integer4,typenum,l,1,info)
pvmfpack(integer4,molenum,l,1,info)

If tranzbnd>0, then you would have lines here
to pack the arrays of [transient bonds from],
[transient bonds to], and [bond color]

call pvmfsend( target, 200, info )

** Receive an acknowledgement from MDVIZ *x*

call pvmfrecv( target, 300, bufid )
call pvmfunpack(integer4,ack,1,1,info)

The value of ack returned by MDVIZ specifies how

pvmfpack(integer4,elemNameLen,1,1,info)
pvmnfpack(bytel,elemllame ,elemlameLen,1,info)

18

C many steered parameters have been changed by the
C user through the gui.

if (ack.gt.0) then

do 24 i=1,ack

call pvmfunpack(integer4,index(i),1,1,info)

call pvmfunpack(real4,value(i),1,1,info)
if (index(i).eq.1) then
temp=value(i)
elseif (index(i).eq.2) then
dens=value(i)
endif
24 continue

endif

245 continue

C Exit PVM
call pvmfexit(info)

stop
end



