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Abstract—In many network applications, accurate traffic mea-
surement is critical for bandwidth management and detecting
security threats such as DoS (Denial of Service) attacks. In
such cases, traffic is usually modeled as a collection of flows,
which are identified based on certain features such as IP address
pairs. One central problem is to identify those “heavy hitter”
flows, which account for a large percentage of total traffic, e.g.,
at least 0.1% of the link capacity. However, the challenge for
this goal is that keeping an individual counter for each flow is
too slow, costly, and non-scalable. In this paper, we describe a
novel data structure called the Probabilistic Bloom Filter (PBF),
which extends the classical bloom filter into the probabilistic
direction, so that it can effectively identify heavy hitters. We
analyze the performance, tradeoffs, and capacity of this data
structure, as well as developing two extensions to improve its
accuracy and flexibility. Our study also investigates how to
calibrate this data structure’s parameters, where we prove our
developed method achieves the Nash Equilibrium using game
theory. We use real network traces collected on a web query
server and a backbone router to test the performance of the
PBF, and demonstrate that this method can accurately keep track
of all objects’ frequencies, including websites and flows, so that
heavy hitters can be identified with constant time computational
complexity and low memory overhead.

Index Terms—Network Measurement, Traffic Analysis, Data
Structures, Bloom Filter.

I. INTRODUCTION

In managing today’s complex Internet backbones, accurate
traffic monitoring and measurements are crucial for many
applications, including short-term purposes such as security
needs (e.g., detecting traffic hot-spots, intrusions, and cyber-
attacks) and long-term traffic engineering purposes (e.g.,
rerouting common traffic, expanding the capacity for fre-
quently chosen links) [1], [2], [3]. One central problem in
such applications is to identify heavy hitters, i.e., those most
frequent flows, by keeping track of flow frequencies based
on real-time traffic. Given that the number of flows between
commercial end host pairs can be extremely large [1], [4],
however, keeping a counter for each flow usually requires more
memory than available on limited hardware resources, such as
routers. Existing methods have addressed this problem through
sampling and counting, such as NetFlow [5], where one of N
packets is sampled and counted. However, such methods can
only sample a small portion of the entire traffic, leading to
inaccurate results and over- or under-estimates.

Given such challenges, in this paper, we address the problem
on how we can efficiently construct estimates for the frequen-

cies of all traffic flows so that heavy hitters can be identified.
To this end, we aim to build an approximate histogram of all
traffic flows with limited memory space, so that we can easily
identify whether a flow is “heavy” when it is encountered in
the ongoing traffic. The key assumption in our approach is that,
for traffic management purposes, approximate knowledge on
flows’ frequency is already sufficient to identify heavy flows,
as long as the frequency estimates can provide reliable upper
and lower bounds associated with their most likely values.
On the other hand, for some flows, if we need to obtain their
accurate frequencies, we can add a few extra counters to serve
such needs separately.

Our work in this paper is enabled by extending a compact,
hashing-based data structure called the bloom filter. A Bloom
Filter (BF) is a data structure that is designed to answer a
query on whether an element exists in a set. Its basic idea is
to hash an element to k different locations in a bit array, and
sets these locations to all 1s when inserting this element to the
set. Being a randomized method, it allows for false positives,
but the space savings often outweigh its drawbacks. BFs were
originally introduced for database applications, but recently
they have received great attention also in the networking area
(see [6], [7] as two surveys).

Based on the bloom filter, we investigate how to store
frequency estimations, rather than set memberships. Note that
previous work has addressed the “accurate” version of this
problem by proposing counting bloom filters (CBF) [8], [6],
[7], where the bit vector is replaced by a counter vector. The
cost is that the CBF design usually consumes memory space
that is one order of magnitude higher than the original BF. In
this paper, as we are concerned with the constrained memory
of devices such as routers, our extension is still based on bit
vectors rather than counter vectors. Specifically, we present a
probabilistic version of the bloom filter and its operations, so
that we can provide estimates of flow frequencies using a small
amount of memory, based on which we can provide reliable
identification of heavy hitter flows. Formally, we define the
problem as follows: given a multi-set S, we would like to
identify those items that appear for more than f times. Note
that items may be provided in a stream, as is the case of traffic
flows, where IP addresses in headers are used to denote flows.

The central idea of our design, by extending the classical
bloom filter, is it performs probabilistic counting operations.
Therefore, we call this new data structure as the Probabilistic
Bloom Filter (PBF). The key difference is that whenever an
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item is inserted, instead of flipping the hash locations from 0 to
1, we flip them with a pre-set probability of p. Such a paradigm
shift does not need any extra memory space compared to the
standard bloom filter. Hence, it is still highly compact and
feasible to implement on memory-constrained devices. We
then model the performance of the PBF rigorously through
probabilistic analysis, and we outline our major contributions
as follows:

• We present the Probabilistic Bloom Filter, which al-
lows non-deterministic queries on item existence and
frequency in data sets. We provide the PBF’s APIs and
demonstrate how they can be used by applications.

• We quantitatively study the performance of the PBF
through analytical approaches, where we derive closed-
form results regarding its capacity, overhead, and perfor-
mance.

• We extend the PBF into two variants: a counting PBF (C-
PBF) and a time-decaying PBF (T-PBF), for additional
application needs.

• We study the parameter selection of the PBF and its
two variants, and we develop an algorithm that proves
to achieve the Nash Equilibrium using game theory.

• We evaluate the performance of the PBF with realistic In-
ternet traffic datasets collected from a web query dataset
and a backbone router for one hour of time to demonstrate
its effectiveness.

We emphasize that our approach is fundamentally prob-
abilistic and approximate. In fact, it cannot always return
accurate estimations, and may, if poorly designed, fail to
identify heavy hitters in three ways: it can miss some large
flows, it can wrongly insert some small flows to the report, or
it may give an inaccurate estimate of some large flows. We
call these three types of errors: false negatives, false positives,
and counting errors. We demonstrate the intricate tradeoffs
between performance and overhead: the higher the requirement
of accuracy, the more memory overhead the design will incur
in practice. Our work also quantifies such tradeoffs through
theoretical analysis.

While our evaluations are based on network-related datasets
such as web query logs and traffic traces, the methods in
this paper should be general enough to be applied to several
domains. Indeed, counting the number of events based on their
types in large-scale datasets is a widely used building block
for data analysis in computational sciences. For example, the
recent discovery of the Higgs boson using the LHC [9], [10]
draws conclusions based on statistical analysis for collected
particle collision events. Properly configured versions of PBFs
can be applied for such purposes when TB scale of streaming
data need to be analyzed in nearly real time under computa-
tional and memory constraints.

The remainder of this paper is organized as follows: We
survey related work in Section II. The problem formulation
and design are described in Section III. The extensions of
the PBF are presented in Section IV, and the performance
evaluation is given in Section VI. We provide conclusions in
Section VII.

II. RELATED WORK

In this section, we describe the related work in three parts:
first, the original Bloom Filter design, then, its variants, and
finally, recent progress on traffic flow sampling and counting
in Internet routers.

The bloom filter, which is proposed by Burton H. Bloom in
1970 [11], is a space-efficient randomized data structure that
answers the question on whether an element is in a set. There
are two basic operations: insert and query. Its space efficiency
is achieved at the cost of false positives (an element is claimed
to be inside a set when it is not). The accuracy of a bloom filter
depends on the filter size m, the number of hash functions k,
and the number of inserted elements n. The false negatives (an
element is reported as not in a set when it is) never happens.
Although originally conceived for database applications, the
bloom filter recently has also received great attention in the
networking area [6], [7], [12], [13], [14], [15], [16], [17], [18].

In its initial design, the BF did not address the issues
of element duplicates, as it only considers simple sets. No
matter how many times an item appears in a set, it is counted
only once in the constructed BF. Counting Bloom Filters
(CBFs) [8], [6], [7] have been designed to address this issue.
They are based on the same idea as BFs, but they adopted
fixed size counters (also called bins) instead of single bits in
its vector design. When an item is inserted, the corresponding
counters are increased, hence, duplicate information is main-
tained rather than lost. However, CBFs are different from our
approach in that they are fundamentally deterministic, as they
keep accurate counts of the number of duplicates for an item.
Therefore, CBFs require memory overhead that is usually an
order of magnitude higher than common BFs, which makes
them less scalable to many flows. Another related work to ours,
proposed by Shen and others [19], [20], developed the idea
of the Decaying Bloom Filter, which extended the Counting
Bloom Filter to support the removal of stale elements when
new elements are inserted. However, our design does not use as
much memory as the decaying bloom filter for processing the
same amount of data. Finally, Kumar and others [21] proposed
the Space-Code Bloom Filter (SCBF) (later extended to a
multi-resolution version called the MRSCBF), which used a
filter made up of a fixed number of groups of hash functions.
During the insertion operation, one group of hash functions
was randomly chosen for the element. For query, the number
of groups containing the element was counted to estimate the
frequency. However, as only open formulas were provided,
estimating frequency was done by looking up a pre-computed
table, which was very computationally intensive to be built.
Such efforts differ in our work in that we present closed-
form results on modeling the performance of the proposed data
structures. In our evaluation, we compare with both the CBF
and the MRSCBF as they are the state-of-the-art baselines.

In recent years, the bloom filter has been widely used
in network measurements [1]. Estan and others [22] applied
Counting Bloom Filters to traffic measurement problems inside
routers. The approach was based on the simple idea that if
the counter for a flow increases beyond a threshold, it should
be considered as a frequent flow. Zhao and others [23] used
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distributed Bloom Filters to find local icebergs (items whose
frequency is larger than a given threshold), and then estimated
global icebergs in a central server. Finally, Liu and others [24]
proposed the Reversible MultiLayer Hashed Counting Bloom
Filter(RML-HCBF), whose hash functions select a set of
consecutive bits from the original strings as hash values, so
that it may find elephant flows (large and continuous flow)
using the counter values and thresholds. In contrast, the PBF
we propose is based on approximate counting methods rather
than accurate ones, thus saving on the memory overhead and
processing speed.

III. PROBABILISTIC BLOOM FILTER

In this section, we describe the design of the probabilistic
bloom filter (PBF). We first present its programming inter-
faces, followed by the operations between multiple PBFs, and
finally, an analysis of its properties, capacity, and performance.

A. Programming Interfaces

Algorithm 1 The PBF Insert Algorithm
1: procedure INSERT(x) . Insert operation
2: for j = 1→ k do
3: i← hj(x)
4: randomi ← Uniform(0, 1)
5: if randomi < p then
6: Bi ← 1
7: end if
8: end for
9: end procedure

Algorithm 2 The PBF Frequency Query Algorithm
1: procedure FREQUENCY(x) . Frequency test operation
counter ← 0

2: for j = 1→ k do
3: i← hj(x)
4: if Bi == 1 then
5: counter ++
6: end if
7: end for
8: f ← estimation(counter)
9: return f

10: end procedure

The PBF provides two programming APIs, an insert op-
eration and a frequency query operation, as illustrated in
Algorithm 1 and Algorithm 2. For the insert operation, the
primary change compared to a conventional bloom filter is
that it uses a parameter p to decide whether to flip a bit from
0 to 1, when items are inserted. Note that as an optimization,
we do not need to read the bit’s value before we set it to
1, thereby reducing the number of memory accesses for the
insert operation. For the frequency query algorithm, it adds
up the number of 1s in the k bits as determined by the
hashing functions, and uses statistical inference methods to
obtain an approximate frequency of the data item in the data
set. We will describe the details of this estimation operation
in Section III-C.

TABLE I
SYMBOLS USED IN ANALYSIS

f The frequency threshold of heavy-hitter items
k The number of hashing functions
m The length of the bit-vector
n The total number of flows or items in a dataset
p The probability for setting a bit to 1
y The expected number of 1s in the bit-vector
ŷ The observed number of 1s in the bit-vector
θ The probability that a bit has been set to 1

B. Properties of the PBF Operations

There are several operations for multiple PBFs, including
the union and halving of PBFs, which are facilitated by the
bit-vector nature of PBFs. Given two multi-sets S1 and S2,
suppose that they are represented by two PBFs, B1 and B2.
We can calculate the PBF that represents the union set S =
S1 ∪ S2 by taking the OR of their PBFs: B = B1 ∨ B2
assuming that the bit vector length m and the hash functions
are identical. The merged filter B represents the aggregate
frequency of an item belonging to S1 or S2 as belonging to
the set S.

The second operation is halving. If the PBF size m is
divisible by 2, halving allows us to store the original multiset
in a shorter bit vector. This can be achieved by bit-wise ORing
the first and second halves of the PBF’s bit vector together. To
insert or query the new PBF, the range of the hashing functions
also needs to be updated by applying the mod(m/2) operation
to their outputs.

C. Performance Modeling of PBFs

Because the PBF introduces one additional parameter p, it
has different properties compared to the original BF. In this
section, we model the performance of the PBF by studying the
relationship between the frequency of items and the number
of bits that are flipped in the bit vector. Table I shows the
notations we use in the following analysis.

We first consider what happens if there is just one item. We
assume that this item has hashed positions that are distributed
uniformly, as is true for the hashing functions we choose in
our implementation. The probability that it flips a particular
bit is p/m. Therefore, for a given bit, the probability that it
is not set to 1 is given by

1− p

m
. (1)

With the PBF, there are k hashing functions for inserting
any item. Hence, the probability that none of them will set a
specific bit to 1 is given by

(1− p

m
)k. (2)

After inserting n items into the bloom filter, the probability
that a given bit is still zero is going to be

P (n, 0) = (1− p

m
)kn. (3)

Thus, the probability of a bit being set to 1 is

P (n, 1) = 1− (1− p

m
)kn. (4)
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The expected number of 1s of these k bits, denoted as
g(p,m, n, k), is

g(p,m, n, k) = (1− (1− p

m
)kn) ∗ k ≈ (1− e−

kpn
m ) ∗ k. (5)

Note that this approximation for the expected value is true
only when p/m is sufficiently small. This constraint is true
because our picked m is usually large, and p is usually much
smaller than 1. Observe that P (n, 1) exists for every bit
regardless of what items are inserted. Therefore, this value
corresponds to a “background noise”, which means that some
bits will be set due to other items being inserted. Notice
that when m increases, the background noise will decrease.
If n increases, the noise increases. To obtain the frequency
estimation of items, we have to take this noise into account.

Next, for a certain item that appears f times, it will invoke
the insert API f times. Therefore, the probability for any of
the k bits mapped by hash functions to still be zero is

P (f, 0) = (1− p)f ≈ e−pf , and (6)

the probability of this bit to be 1 is

P (f, 1) = 1− (1− p)f ≈ 1− e−pf . (7)

Again, we assume that p� 1, which is true for our selection
of p values. Clearly, whether a bit is set to 1 is determined
by two factors: the probability that it is set to 1 by an item’s
insert operation as illustrated by P (f, 1), and the probability
of the background noise as illustrated by P (n−f, 1) (in Eq. 4).
These two factors are independent of each other. Therefore,
the probability for an element to remain 0 as (since neither
the background noise nor the repeated items have set it to 1)
is given by

P (n− f, 0)× P (f, 0) ≈ e−
pk(n−f)

m × e−pf . (8)

Next, as each bit can be considered as a Bernoulli exper-
iment, its “success” probability θ can be considered as the
event that a bit has been set as 1. Here we denote that

θ = 1− P (n− f, 0)× P (f, 0) (9)

Therefore, denote the total number of 1s as Y , we have that

Y |θ ∼ Bin(k, θ). (10)

Therefore, we know that E(Y |θ) = kθ and V (Y |θ) =
kθ(1− θ). If we denote the expected number of bits that are
set to 1 in the k mapped bits for an element in the PBF as y,
we have

y = (1− P (n− f, 0)× P (f, 0))× k =

k(1− e−
pk(n−f)

m × e−pf ).
(11)

Based on the observation results for the proportion of bits
that have been set, we can denote its value as ŷ, and define
θ̂ = ŷ/k. We can use θ̂ as an unbiased estimator of θ, and since
θ is derived based on the frequency f , we can then estimate
f as follows (by solving the Equation 11 for f )

f =
knp+m ln

[
1− ŷ

k

]
(k −m)p

. (12)

Next, we calculate the confidence interval for f , by approx-
imating it using a normal distribution based on the central
limit theorem. This is also the so-called Wald Method, whose

formula for confidence interval is given by

θ̂ ± z 1
2
α

√
1

n
θ̂
(
1− θ̂

)
(13)

where θ̂ is the proportion of successes, and z 1
2α

is the critical
z value with a tail area of 1

2α of the standard normal curve.
Based on this formula, we can derive the lower and upper
bounds for f as shown below:

fmin =

knp+m ln

[
k−ŷ
k

+

√
(1− k−ŷ

k )(k−ŷ)
k2

z 1
2
α

]
(k −m)p

(14)

fmax =

knp+m ln

[
k−ŷ
k
−
√

(1− k−ŷ
k )(k−ŷ)
k2

z 1
2
α

]
(k −m)p

(15)

As an illustrative example, suppose we want to filter data
traffic with 100K flows, where frequent flows are defined as
those with a frequency to be at least one percent of the total,
i.e., 1K flows. We pick a bloom filter size of m = 2M bits
(1M = 106), and let k = 1000. We select p as 0.0006 (we
will explain this later in parameter selection). In this case, the
frequent flow is expected to have 467 bits in 1000 bits set as 1.
Conversely, if indeed, 467 bits are set, the estimated number
of flows is 999, with a 95% confidence interval as [905, 1098].
On the other hand, if somehow the value of µ − 2σ = 435
bits are set, the number of estimated flows is 902, with a
95% confidence interval as [813, 995]. Note that, however,
this interval does not contain 1000 as it is a 95% confidence
interval. One may want to use the 99% confidence interval to
capture a larger range. In this case, the 99% interval gives the
bound as [797, 1013], which indeed contains the 1000 in its
range.

D. Selection of Parameters for PBFs

One critical challenge in using the PBF for analyzing
datasets is that it needs to set several parameters properly,
such as m, k, and p. Choosing such parameters improperly
will reduce its capabilities and increase errors. Further, due
to the probabilistic nature of the PBF, its parameters need
to be set differently compared to conventional bloom filters.
Therefore, in this section, we study how to set the parameters
for the PBF, and define its capacity.

Problem Formulation: Given a known number of items n
and the threshold for frequent flows f , how do we choose m,
k, and p properly? Similarly, given m, k, and p, how do we
estimate the PBF’s capacity to handle large n and f?

To answer this question, we first find the constraints for
m, k, and p, and try to optimize the model performance
by minimizing m and k, which correspond to the memory
overhead (m) and computational overhead (k).

The first constraint for choosing the right parameters is
to limit the background noise as shown in Equation 5. As
m increases, the background noise will decrease, assuming a
fixed k. Therefore, to keep the noise below a certain threshold
ε, we require:

g(p,m, n, k)/k ≤ ε,
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so that
m ≥ −knp

log(1− ε) . (16)

Note that we assume that ε is chosen as an appropriately
low threshold, e.g., 0.1.

The second constraint concerns the estimation accuracy as
shown in Equation 12. To ensure the estimation accuracy, the
observed value of ŷ should not be too small or too large
compared to k. Since Equation 11 gives the expected value
of y, we require that the ratio between y and k should lie
between ε and 1− ε, therefore,

ε ≤ k(1− e−
pk(n−f)

m × e−pf )
k

≤ 1− ε. (17)

Based on this result, we can then obtain the estimation range
of f , which is denoted by the lowest f value and the highest
f value that can be accurately estimated, as a function of k,
m, and p as

flowerbound =
knp+ log(1− ε)m

(k −m)p
, (18)

fupperbound =
knp+ log(ε)m

(k −m)p
, (19)

also, observe that the real value of f should be located
within this estimation range, we have that

flowerbound ≤ f ≤ fupperbound. (20)

This formula, therefore, gives the third constraint. To il-
lustrate the meanings of these constraints, especially on how
they affect the choices of p, we consider the following way to
illustrate possible choices of parameter values. To minimize
m, we simply set m as the lower bound, using Equation 16,
i.e., m = −knp

log(1−ε) . Then we can establish the constraints for
p as

− log(1− ε)
n

≤ p ≤ (n− f) log(1− ε)− n log(ε)
nf

. (21)

On the other hand, the value of k can be chosen based on
two considerations. First, if k is too large, it will incur too
much computational overhead. Second, the value of k will
affect the confidence interval calculated in Equations 14 and
15. The reason is that different values of k will lead to different
lower and upper bounds, and their difference will be varying.
To illustrate this, assume that we have chosen p as the upper
bound, and m as the lower bound, and we set ε = 0.1, we can
calculate the ratio between the confidence interval of f to the
estimated f as follows

Ratio =
fmax − fmin

f
.

Assuming f ≤ εn, meaning that the frequency under

estimation is not too large compared to the total number of
items, n, we can find that

Ratio ≈ 0.46 ln

(
0.1 + 0.59

√
1

k

)
− 0.46 ln

(
0.1 − 0.59

√
1

k

)
.

We can verify that under this setting, this ratio decreases
monotonically with k increases. In particular, if we let
Ratio ≤ 1/2, we can find that k ≥ 141. Therefore, we
suggest k must be chosen not lower than 150 to ensure good
performance. Note that this value of k only incurs moderate
computation overhead. Recent research on fast string hashing
algorithms [25] has demonstrated optimized hashing functions
can achieve a hashing throughput of a fraction of a CPU
cycle per byte. Therefore, we can use a k value of larger than
1000 on multi-core workstations without having performance
bottlenecks, as hashing a 100 byte string (e.g., a packet header)
1000 times only takes less than 0.1ms.

So far, we have outlined the way we should select param-
eters. To summarize, the procedure is as follows:

Algorithm 3 The PBF Parameter Selection Algorithm
1: procedure SELECT(n,f ) . n and f as known
2: Calculate the bounds for p,

and use its upper bound if possible (Equation 21)

3: Select a modest value for k (assuming k ≥ 150)
4: Calculate the lower bound for m (Equation 16)
5: return p, k, and m
6: end procedure

Note that we require p to be chosen as its upper bound
because a larger p will increase the accuracy of estimation, as
long as this p value does not go beyond its upper bound. We
now use a numerical example to illustrate possible choices for
p, k, and m. Assume that n = 100K and f = 1000. If ε = 0.1,
according to Equation 21, we have 1.05×10−6 ≤ p ≤ 0.0022.
We now evaluate the effects of p. By keeping m bounded
according to Equation 16 and k = 2000 (k can also take any
other constant value), we change the value of p and study
its effects on the confidence interval. The results are shown
in Figure 1. As illustrated, a larger p indeed leads to better
confidence intervals, as long as the value of p does not go over
its upper bound. In fact, the narrowest confidence interval in
Figure 1 is precisely when p = 0.0022. After p goes over
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this upper bound (specified by Equation 21), the confidence
interval becomes larger again. The underlying reason for this
interesting phenomenon is that when p is too large, it will
over-saturates the bit vector too early, hence impairing the
performance of estimations.

Next we investigate the effects of m. Suppose that we have
chosen a moderate value of p for general cases, where p is
chosen as 0.0006. We hope to see how k can affect confidence
intervals, by changing k from 200 to 8000. As shown in
Figure 2, a larger k will lead to better confidence intervals, at
the cost of more computational overhead.

Finally, we illustrate the effects of p on θ, which is the
percentage of the 1s in the k bits after all flows are inserted.
Figure 3 shows the results. Observe that as long as p is chosen
according to Equation 21, θ will be bounded by [ε, 1−ε], which
is expected. On the other hand, if p is larger than the upper
bound, θ will be over-saturated; if p is lower than the lower
bound, θ will be under-saturated.

E. The Maximum Estimating Frequency

Once the PBF parameters are chosen, given properly chosen
p, k, and m, one critical problem is its estimation errors. Given
that our goal of this paper is to identify heavy-hitters, we
are most concerned about the errors that are caused by over-
saturation of bit vectors, i.e., when the frequency of the flow
is too high. Motivated by this observation, we next define the
“Maximum Estimating Frequency (MEF)”, which is defined
as follows:

Maximum Estimating Frequency (MEF): Given a set of
PBF parameters, what is the maximum value of f that it can
still estimate accurately, where the k bit vector is at most
saturated for 1− ε?

To derive MEF, we use Equation 19, and replace m with
the result from Equation 16. Therefore, the maximum value
that f can reach is given by

fMEF =
n(log(1− ε)− log(ε))

np+ log(1− ε) . (22)

In reality, for specific PBF settings, the value of p is only
a single value. Hence, if we set p as a constant, for a large n,
we then have

lim
n→+∞

fMEF =
log(1− ε)− log(ε)

p
.

Hence, this approximation can be used to estimate the real
MEF that a PBF setting can handle. If ε = 0.1, the capacity
is roughly 2.2/p. For example, if p = 0.001, this PBF can
count up to cardinality of around 2, 200. For all items with a
frequency above this threshold, the PBF can still report that
they are at least 2, 200, but their real value is not reported due
to bit vector saturations.

IV. EXTENSIONS OF THE PBF

In this section, we describe two extensions of the PBF for
potential applications: a counting PBF (C-PBF) and a time-
decaying PBF (T-PBF).

A. C-PBF: Counting PBF Design
In this section, we introduce the C-PBF, a counting variant

of the PBF that extends its capability with more memory
usage. The idea of the C-PBF is simple: it replaces each bit in
the PBF with a w-bit counter. Whenever an item is inserted,
instead of deciding on whether flipping one bit from 0 to 1,
it will determine with a probability of p whether to increase
this w-bit counter. Formally, this updated algorithm is shown
in Algorithm 4.

Algorithm 4 C-PBF Insert Algorithm
1: procedure INSERT(x) . Insert operation
2: for j = 1→ k do
3: i← hj(x)
4: Counteri ← B[i]
5: randomi ← Uniform(0, 1)
6: if randomi < p then
7: Counteri = Counteri + 1
8: end if
9: end for

10: end procedure

We can now derive the performance of the C-PBF. Observe
that for each counter, it may be updated by two sources: the
background noise caused by other items and the insertion
operations of the frequent flows. Therefore, if we denote these
two sources with two random variables X1 and X2, we have

X1 ∼ Bin(k(n− f), p/m), (23)

X2 ∼ Bin(f, p), (24)

where X = X1+X2. In this scenario, we can use the Poisson
distribution to approximate these two distributions, so that the
sum of the distributions will remain Poisson. In that case, the
size of counter is bounded as maxmi=1 log2(Xi). Based on this
result, considering that we observe k counters (assuming k
hashing functions), we can denote their values as xi, where
i ∈ [1, k]. We can then use the average of these observations
on xi to estimate the MLE of f as

f̂ =
knp−mx̂
(k −m)p

, where x̂ =
∑n

i=1
xi/n. (25)

B. Selection of Parameters for C-PBF
Although C-PBF uses counters for predicting the element

frequencies, it is still critical to choose proper ranges for m,
k, and p to increase prediction capabilities and reduce errors.
The problem we need to solve is formulated as follows: given
a known number of items and the threshold for frequent flows
f , how do we choose m, k, and p properly? The same as what
we discussed in PBF, to answer this question, we also need to
find the constraints for m, k, and p to optimize its performance
by minimizing m and k to achieve minimal memory overhead
(m) and computational overhead (k).

Similar to PBF, limiting the background noise is the first
constraint for choosing the right parameters. For a fixed k,
the background noise will decrease, while m increases. In that
case, to keep the background noise below a certain threshold
ε′, we need

Bin(kn, p/m)

2s
< ε′, (26)
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so that

m >
knp

2sε′
. (27)

On the other hand, as the memory is limited in networking
devices, the size of the C-PBF is bounded by the memory
capacity c and the counter size s. For a fixed counter size s,
the size of m should be bounded as

knp

2sε′
< m ≤ c

s
. (28)

Secondly, to ensure the prediction accuracy, we should
not under-saturate or over-saturate the counter. Therefore, we
require that its ratio of the maximum counter value should lie
between ε′ and 1− ε′, so we have

ε′ ≤
kn p

m
+ fp

2s
≤ 1− ε′. (29)

Assume that ε′ is chosen as an appropriately low threshold,
e.g., 0.1, with the second constraint, we can obtain the
prediction range of f as a function of k, m, and p as:

flowerbound =
knp−m2sε′

(k −m)p
, (30)

fupperbound =
knp−m2s(1− ε′)

(k −m)p
. (31)

Next, if we assume that the real value of f should be located
within this prediction range, we have

flowerbound ≤ f ≤ fupperbound. (32)

In that case, when we minimize m and set up m > knp
2sε′ ,

we can establish the constraints for p as:

2sε′

n
< p ≤ f2sε′ + n2s − 2n2sε′

fn
(33)

Finally, the value of k needs to be carefully selected. If k is
too large, it would incur too much computation overhead, so is
the background noise, as the probability of different elements
mapping to the same filter bucket would be large. However,
if k is too small, the deviation of counter values would be
large. Now, assume that p = f2sε′+n2s−2n2sε′

fn , m = knp
2sε′ , and

ε′ = 0.1, then the ratio between the confidence interval of f
to the predicted f is

Ratio =
fmax − fmin

f
. (34)

Assume f ≤ nε′, as we know that the counter value is
following the Poisson Distribution with a parameter of λ,
where the E(X) = V ar(X) = λ, then

Xmax = (λ+ 1)(1− 1

9(λ+ 1)
+

1.96

3
√
λ+ 1

)3, (35)

Xmin = λ(1− 1

9λ
− 1.96

3
√
λ
)3, (36)

then

fmax =
2sε′ ∗ n−Xmaxn

2sε′ − n f2sε′+n2s−2n2sε′

fn

, (37)

fmin =
2sε′ ∗ n−Xminn

2sε′ − n f2sε′+n2s−2n2sε′

fn

. (38)

In that case, we can find that

Ratio =
Xmin −Xmax

2sε′ −X , (39)

as

λ = fp+
k(n− f)p

m
= 2s(1− ε′), (40)

Then

Ratio = −1.25(
0.9(1− 0.123457

2s
− 0.688674

2
s
2

)32s

2s
−

(1 + 0.9 ∗ 2s)(1 + 0.653333√
1+0.9∗2s −

0.123457
1.11111+2s

)3

2s
). (41)

Interestingly, observe from the above result, we observe that
the performance metric Ratio is not affected by k, i.e., they
are independent. In that case, we choose k = m

n ln 2, which
is the same as what has been done in the classical BF.

C. T-PBF: Time-decaying PBF Design

In this section, we introduce the second variant, the T-PBF,
a time-decaying variant of the PBF that allows it to forget
those frequent items that appeared in the distant past. The
idea of the T-PBF is to introduce a new operation, decaying,
which flips bits from 1 to 0 with a probability q over each
time epoch T . This can be considered as an approximation
for the delete operation. Formally, this updated algorithm is
shown in Algorithm 5.

Algorithm 5 T-PBF Decaying Algorithm
1: procedure DECAY(x) . Decay operation
2: for Every T seconds do
3: for j = 1→ k do
4: i← hj(x)
5: if thenB[i] == 1
6: randomi ← Uniform(0, 1)
7: if randomi < q then
8: B[i]← 0
9: end if

10: end if
11: end for
12: end for
13: end procedure

We now demonstrate the long term behavior of the T-PBF.
For simplicity, we consider operations in epochs, and the
decaying operation only occurs at the end of each epoch.

Observe that for each bit, for each epoch, it may either start
with bit 1 or 0. If it starts with 1, it may be flipped to 0 at the
end of the epoch with a probability of q. However, if it starts
with 0, it may be flipped to 1 first with a probability shown
in Equation 11, and then flipped back to 0 with a probability
of q. Therefore, we can use a discrete time Markov chain to
describe these operations. In particular, because the transitions
exhibit different probabilities at the beginning and the end
of each epoch, we can model it with a time-inhomogeneous
chain with a seasonal variation. In this case, we have that the
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seasonal period d = 2, and the transition probability as the
following (assuming n ≥ 0, while 2n and 2n+1 stand for the
index of epochs)

P (2n) =

[ 0 1

0 1− α α
1 0 1

]
, P (2n+ 1) =

[ 0 1

0 1 0
1 β 1− β

]
,

where we have:

α = 1− e−
pk(n−f)

m × e−pf , and (42)
β = q. (43)

To analyze this seasonal chain, we can add a supplementary
variable to create a homogeneous chain. The new chain
contains four states: A(0, a), B(0, b), C(1, a), D(1, b). Its tran-
sition matrix is shown below, followed by the corresponding
Markov chain illustration.

P (n) =


A B C D

A 0 1− α α 0
B 1 0 0 0
C 0 0 0 1
D 0 β 1− β 0



Sastart

Sb

Sc

Sd

1-α

α

1

1

β

1-β

Fig. 4. The Markov Transition for the T-PBF

This Markov chain has four communicating classes, A, B,
C, and D. They are all recurrent classes, as well. In the long
term, this chain has the following stationary distribution:

P (s) =


β

2α+2β
for s ≡ A,

β
2α+2β

for s ≡ B,
α

2α+2β
for s ≡ C,

α
2α+2β

for s ≡ D.

As expected, the results show that in the long term, if a
flow is no longer available, f will decrease to 0, and its α will
quickly converge to 1 − e−

pkn
m , which is smaller. Therefore,

in the long run, most bits will be reset to 0 (as demonstrated
by the increased probability of states A and B in Figure IV-C.
This validates the design of the time-decaying nature of the
T-PBF. On the other hand, if a flow re-appears with a large f ,
its transition will mostly stay in states C and D, which means
that more bits will be set due to the flow existence. Note that
the epoch of the T-PBF can also be dynamic: as the PBF will
lose the ability of prediction when all k bits are set to 1s,

when a large percentage of k bits for any element are set to
1, the decaying process can be triggered.

D. Selection of Parameters for T-PBF

To perform accurate frequency estimations with T-PBF, it is
critical to choose proper values for parameters, such as m, k,
p, and q. As T-PBF extends PBF by introducing one additional
parameter q, and the decaying operations are only triggered at
the end of each period, we can use the same algorithms to
choose the values of m, k, and p, based on what we discussed
in Section III-D. As a result, in the following part, we will
discuss how to choose the value for q.

For an element, at the end of the first epoch, the probability
of a bit is still 1 is

θ
′
1 = θ1 ∗ (1− q), (44)

where theta is as defined in Equation 9.
Then at the end of the second epoch, the probability of a

bit is 1 would be a joint effect of the first two epoch, therefore

θ
′
2 = (θ2 + θ

′
1 − θ2 ∗ θ

′
1) ∗ (1− q). (45)

Finally, at the end of the ep-th epoch, the probability of a
bit is 1 would be

θ
′
ep = (θep +

ep−1∑
i=1

θ
′
i − θep

ep−1∏
i=1

θ
′
i) ∗ (1− q), (46)

as in long term, θep
∏ep−1
i=1 θ

′

i → 0, we can have the estimate
probability as

θ
′
ep ≈

ep∑
i=1

θi(1− q)ep−i. (47)

To guarantee the prediction accuracy, we need to prevent
over-saturating the k bits for any element. Therefore, we need
to make sure that

∀
ep∑
i=1

yi(1− q)ep−i ≤ k(1− ε), (48)

where ep is the number of passing epochs, ε is a threshold
with a small value, and yi is the number of bits set to 1s with
the insertion of an element in the ith epoch. As a result of
above requirements, we can rewrite this equation as

max

ep∑
i=1

y
′
i(1− q)ep−i ≤ k(1− ε), (49)

where y
′

i is the number of 1 generated by the most fre-
quent element to the bit array. By setting y

′

i = ymax =
maxepi=1 maxtj=1 yij , which is the maximum number of 1s set
by the element with the largest frequency in all epochs, so that
t is the number of elements in each epoch, then

ep∑
i=1

ymax(1− q)ep−i ≤ k(1− ε), (50)

then

(1− e−
pk(n−fmax)

m e−pfmax)
1− (1− q)ep

q
≤ 1− ε. (51)
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For a long run, where (1− q)ep → 0, then we have:

1− e−
pk(n−fmax)

m e−pfmax

1− ε ≤ q ≤ 1. (52)

V. PBF PARAMETER SELECTIONS ARE NASH
EQUILIBRIUMS

As discussed in the previous sections, the estimation ac-
curacy of the PBF and the T-PBF would be bad if an
improper combination of parameters is chosen and used. In the
following, we demonstrate that our algorithms for parameter
selection will always lead to Nash equilibriums in practice,
i.e., further adjusting any parameter by itself will not lead
to a better performance [26]. We do not, however, claim
that the parameter selection is globally optimal, as we find
such optimality may depend on the particular application
requirements. Indeed, the tradeoffs between the parameters are
complex, and optimizing for any single global metric out of
context is not particularly meaningful. Our proof is based on
modeling the rules for parameters as the strategies in a non-
cooperative game. Specifically, we prove that:

Theorem 5.1: The parameter selection algorithm for the
PBF (Algorithm 3) outputs a set of parameters that forms a
Nash equilibrium.

Proof: To prove that the PBF parameter selection algo-
rithm leads to Nash equilibriums, we define a normal form
game as a triple (N, (Si)i∈N , (ci)i∈N ), where
• N is the set of players, and N = 3;
• Si is the set of strategies of the player i. Each player

can choose to follow or not to follow a specific rule
for a parameter (p, m, or k), as specified in Algo-
rithm 3, where S1 = {Follow P,Not Follow P},
S2 = {Follow K,Not Follow K}, and S3 =
{Follow M,Not Follow M};

• S = S1 × S2 × S3 is the set of states;
• a state is s = (s1, ..., s3) ∈ S;
• ci : S → < is the cost function of player i ∈ N . In the

state s player i has a cost of ci(s). The cost is defined
as the difference between the upper and lower estimation
bounds, which represents the estimation accuracy.

In general, the cost value is computed as (based on results
from 18 and 19):

C(p, k,m) = fmax − fmin =
m(ln ε− ln(1− ε))

(k −m)p
. (53)

Based on the Nash Theorem [26], which claims that every
finite normal form game has a mixed Nash equilibrium, the
PBF parameter selection game has a mixed Nash equilibrium.
In that case, in the following part, we will show that the state
as generated in the PBF parameter selection algorithm forms
one Nash equilibrium for the game.

As described in the game, each player has two strategies as
following or not following the rule for a specific parameter. For
player 1, the cost for the game is as shown in Table II. where
FP is the abbreviation of Follow P , and NFP represents
Not Follow P . Other abbreviations follow the same format.
Therefore, the cost for player 2 and player 3 are shown in
Table III and Table IV.

TABLE II
COST FOR PLAYER 1.

(FK,FM) (NFK,FM) (FK,NM) (NK,NM)
FP C(p, k, m) C(p, k’, m) C(p, k, m’) C(p, k’, m’)
NFP C(p’, k, m) C(p’, k’, m) C(p’, k, m’) C(p’, k’, m’)

TABLE III
COST FOR PLAYER 2.

(FP,FM) (NFP,FM) (FP,NFM) (NFP,NFM)
FK C(p, k, m) C(p’, k, m) C(p, k, m’) C(p’, k, m’)
NFK C(p, k’, m) C(p’, k’, m) C(p, k’, m’) C(p’, k’, m’)

Now, we will find the best response strategy of the three
players. Recall that the parameter selections can be summa-
rized as − log(1−ε)

n ≤ p ≤ (n−f) log(1−ε)−n log(ε)
nf , k ≥ 150, and

m ≥ −knp
log(1−ε) . Consequently, we can find the opposite of these

strategies as p′ < − log(1−ε)
n or p′ > (n−f) log(1−ε)−n log(ε)

nf ,
k < 150, and m < −knp

log(1−ε) , as NFP , NFK, and NFM ,
respectively. Let us start from player 1, whose costs for
choosing different strategies are as follows:

C1(FP ) = C(p, k,m) + C(p, k′,m) + C(p, k,m′)

+ C(p, k′,m′),
(54)

C1(NFP ) = C(p′, k,m) + C(p′, k′,m) + C(p′, k,m′)

+ C(p′, k′,m′).
(55)

When the k bits mapped by an element are saturated, we define
the difference between upper and lower bounds of the estimated
frequency as∞, as the PBF can no longer provide an accurate estima-
tion for the frequency. This corresponds to the case that we choose
p′ > (n−f) log(1−ε)−n log(ε)

nf
, where we have C1(NFP ) = ∞, so

C1(NFP ) > C1(FP ). On the other hand, when p′ < − log(1−ε)
n

, we
also have that C1(NFP ) > C1(FP ), as the cost is monotonically
increasing with the decreasing of p. Hence, the best response strategy
for player 1 is Follow P .

Following the same procedure, the costs for player 2 under
different strategies are:

C1(FK) = C(p, k,m) + C(p′, k,m) + C(p, k,m′)

+ C(p′, k,m′),
(56)

C1(NFK) = C(p, k′,m) + C(p′, k′,m) + C(p, k′,m′)

+ C(p′, k′,m′).
(57)

As the cost is monotonically increasing with the decreasing of k,
and k > k′, then we have that C1(FK) < C1(NFK). In that case,
the best response strategy for player 2 is Follow K.

Now let us have a look at player 3, whose costs under different
strategies are as follows:

C1(NFK) = C(p, k′,m) + C(p′, k′,m) + C(p, k′,m′)

+ C(p′, k′,m′).
(58)

C1(FM) = C(p, k,m) + C(p′, k,m) + C(p, k′,m)

+ C(p′, k′,m),
(59)

C1(NFM) = C(p, k,m′) + C(p′, k,m′) + C(p, k′,m′)

+ C(p′, k′,m′).
(60)
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TABLE IV
COST FOR PLAYER 3.

(FP,FK) (NFP,FK) (FP,NFK) (NFP,NFK)
FM C(p,k,m) C(p’,k,m) C(p,k’,m) C(p’,k’,m)
NFM C(p,k,m’) C(p’,k,m’) C(p,k’,m’) C(p’,k’,m’)

As the cost function can be rewritten as C(p, k,m) = ln ε−ln(1−ε)
kp
m
−p

,
we observe that its value will increase with the decrease of m. As
m > m′, we have that C1(NFM) > C1(FM). In that case, the
best response strategy is Follow M for player 3.

Above all, we have proven that
{Follow P, Follow K,Follow M} is a Nash equilibrium
for the game. In another word, the parameter selection algorithm of
PBF is a Nash equilibrium.

Next, we consider the algorithm parameter selection for T-
PBF, and we prove that:

Theorem 5.2: The parameter selection algorithm for the T-
PBF with regard to q generates a Nash equilibrium.

Proof: The proof is similar to the previous proof, by
analyzing the effects of q to the strategies. The detailed proof
is omitted due to space.

VI. EVALUATION

In this section, we evaluate the performance of the PBF and
its extensions, the C-PBF and the T-PBF, using one web query
dataset and one real Internet traffic dataset. We compare the
performance of our proposed algorithms with the following
three baselines, in terms of estimation accuracy and memory
usage:
• Counting Bloom Filter (CBF) [8]: as a well-known ex-

tension of the Bloom Filter, CBF uses counters to replace
bits in each filter bucket. If the frequency of an element
grows large, CBF requires allocation of larger memory
space to hold all counters.

• Multi-Resolution Space-Code Bloom Filter
(MRSCBF) [21]: the second extension, MRSCBF,
employs multiple filters operating at different resolutions,
where the frequency estimation is performed by looking
up this number in a pre-computed lookup table.

• Random Sampled Netflow (RSN) [5]: RSN processes
only one randomly selected packet out of n sequential
packets, and then estimates the frequency for each sam-
pled element based on its individual counter.

We emphasize that our approach is fundamentally proba-
bilistic and approximate. Therefore, it may not be able to
return accurate estimations, and may fail to identify heavy
hitters in three ways: it may give inaccurate estimates, it

may wrongly insert some small flows to the report, and it
may miss some large flows. We call these three types of
errors: estimation errors, false positives, and false negatives.
We define these metrics as following:

• Estimation error ratio: this metric is defined as the dif-
ference, in percentage, between the estimated frequency
and the real frequency.

• False positive ratio: the false-positive ratio is defined as
the percentage of falsely reported heavy-hitters, whose
frequencies are actually below f , among all flows whose
frequencies are lower than f .

• False negative ratio: the false-negative ratio is defined
as the percentage of falsely un-reported flows, whose
frequencies are actually above f , among all flows whose
frequencies are above f .

A. Dataset A: Web Query Log Analysis

Our first evaluation dataset is a public web query
dataset [27], where web query logs with 20M web queries
are collected from 650K users over a period of three months.
Each web query contains the user ID, searching keyword(s),
a timestamp, and the web link that this user picks. The
daily workload pattern is plotted in Figure 9, which shows
a seven-day repeating pattern on the number of queries per
day. In the following, we will use the PBF and the C-PBF
to detect popular websites and key words, and use T-PBF
to show the trend of the daily query number for the website
http://www.google.com.

Note that due to the limited size of the dataset, this task can
be finished with any conventional method. However, our goal
is to demonstrate that our proposed methods can achieve a
better memory usage while introducing only limited errors.
The limited size of this dataset allows us to evaluate the
performance of these methods easily.

1) Detecting Popular Websites: The dataset includes a total
of 378, 087 websites selected by users, where around 0.45%
of them have a frequency above 100. We define the popular
websites as those that appear for more than 100 times.

To detect popular websites, we first feed the dataset to a PBF
with k = 150, p = 0.001, and m = 6M , where the parameters
are selected based on the method in Section III-D. Note that
the total memory use is only 0.75MB (6M bits). Figure 10
compares the estimated frequency and the real frequency of
the first 500 popular websites. Observe that the estimations are
matching real frequencies closely, with an average estimation
error computed using the formula festimated−freal

freal
as 4.7%.



11

 0

 100000

 200000

 300000

 400000

 500000

 0  10  20  30  40  50  60  70  80  90

Q
ue

ry
 N

um
be

r

Day

Fig. 9. The daily pattern for the web
query dataset [27].

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  100  200  300  400  500

Lo
g(

f)

PBF
Real frequency

Fig. 10. Estimations of frequency
results of the PBF.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  100  200  300  400  500

Lo
g(

f)

C-PBF
Real frequency

Fig. 11. Estimations of frequency
results of the C-PBF.
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Fig. 13. Estimations of frequency
results of the MRSCBF.
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mation.
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Fig. 16. Detect popular key word
with the PBF for the web query
dataset.
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Fig. 17. Detect popular key word
with the C-PBF for the web query
dataset.
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dataset.
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Fig. 19. Detect popular key word
with the MRSCBF for the web query
dataset.
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Fig. 20. Detect popular key word
with the RSN for the web query
dataset.

The primary source of inaccuracies comes from the random-
ness when flipping a bit from 0 to 1. Furthermore, note that
Figure 10 shows the upper and lower bounds of f estimations,
which have much larger errors compared to the estimated value
of f (the estimate of f is calculated based on Equation 12).

We also test the same dataset with the C-PBF, and the
performance is comparable. Specifically, for C-PBF, we set
up k = 50, p = 0.03, m = 0.6M . The counter size of C-
PBF is set to 10 bits, so that the total memory overhead is
the same as PBF. The average estimation error of C-PBF is
4.9%, as shown in Figure 11. With this setting of C-PBF,
the maximum frequency that can be estimated is 34, 105,
according to Equation 25, which is sufficient for this dataset.

Next, we compare the performance of PBF/C-PBF with the
baselines. The first baseline is CBF, where we set it up with
suitable parameters. We choose to set the counter size to be 16
bits to accommodate the most frequent flows. Compared to the
PBF, the CBF consumes 16 times of the memory as the PBF
and C-PBF under similar settings. The advantages of CBF lie
in that it does not provide approximate answers, as demon-
strated by the Figure 12, where no confidence intervals are
plotted. The second baseline is MRSCBF, where we set it up
with l = 32, r = 5, and mi =

kinl
ln 2 , where k = {3, 4, 6, 6, 6}

as mentioned in [21]. As shown in Figure 13, the average
estimation error of MRSCBF is 10.1%, which is twice of the
error of PBF and C-PBF. On the other hand, besides a long
and offline pre-computation phase to get the lookup table, the
MRSCBF takes

∑5
i=1mi = 436, 371, 391 bits memory space,

which is 72.7 times of the memory as the PBF and C-PBF. The

only advantage of MRSCBF is that once the lookup table is
built, it takes a few CPU cycles to estimate the frequency.
In PBF, however, a constant k hashing functions need to be
calculated. The third baseline is RSN, where we randomly
sample one packet out of ten packets. As a result of the low
sample rate, RSN only takes 11, 063, 808 bits memory space,
which is 1.8 times of the memory as the PBF and C-PBF.
According to Figure 14, the average estimation error of RSN
is 11.3%. The major sources of errors are the randomness
of sampling, and frequency estimation based on the sample
counters and the predefined sample rate. Reduced estimation
errors can be achieved, at the cost of taking more memory
space.

2) Detecting Popular Keywords: In this dataset, there are
580, 392 different keywords used for searching websites,
where around 1.69% of them have a frequency above 100.
We define the popular key words as those that appear for more
than 100 times.

To detect popular keywords, we first feed the dataset to a
PBF with k = 150, p = 0.0005, and m = 8M , where the
parameters are selected based on the method in Section III-D.
Note that the total memory use is only 1MB (8M bits).
Figure 16 compares the estimated frequency and the real
frequency of the first 500 popular key words. In general,
the estimations are matching real frequencies closely, with an
average estimation error as 4.9%, where the primary source
of inaccuracies is the randomness when flipping a bit from 0
to 1.

On the other hand, we also test the same dataset with the
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C-PBF, and get a comparable performance. For C-PBF, we set
up k = 50, p = 0.02, m = 0.8M . The counter size of C-PBF
is set to 10 bits, such that the total memory overhead is the
same as PBF. The average estimation error of C-PBF is 3.5%,
as shown in Figure 17. As the maximum frequency that can
be estimated is 34, 105, according to Equation 25, there is no
missing point in the figure.

Next, we compare the performance of PBF/C-PBF with the
baselines. Compare to the first baseline CBF, which is set up
with suitable parameters. We choose to set the counter size to
be 18 bits to accommodate the most frequent flows. Compared
to the PBF, the CBF consumes 18 times of the memory as the
PBF and C-PBF under similar settings, as demonstrated by the
Figure 18. For the second baseline MRSCBF, we also set up
l = 32, r = 5, and mi =

kinl
ln 2 , where k = {3, 4, 6, 6, 6}. As

shown in Figure 19, the average estimation error of MRSCBF
is 9.7%, which is twice of the error of PBF and C-PBF. On the
other hand, besides a long and offline pre-computation phase,
the MRSCBF takes

∑5
i=1mi = 669, 862, 928 bits memory

space, which is 83.7 times of the memory as the PBF and
C-PBF. The only advantage of MRSCBF is that once the
lookup table is built, it takes a few CPU cycles to estimate the
frequency, which is smaller compared to a constant k hashing
functions need to be calculated in PBF. For the third baseline
RSN, we also choose the sample rate as 0.1. As a result of
that, RSN takes 18, 487, 258 bits of memory space, which is
2.3 times of the memory as the PBF and C-PBF. On the other
hand, as shown in Figure 20, the average estimation error of
RSN is 14.2%, which is around three times of the error of
PBF and C-PBF.

3) Frequency Trend of a Popular Website: For the long-
term detection, we can use T-PBF to reveal the trend of
frequency of a popular website. Here we choose Google as our
observing target. For the T-PBF, we set up k = 150, p = 0.001,
m = 6M , and q = 0.8. We trigger the decay operation
every time we finish processing one day’s data. As shown
in Figure 15, in general, T-PBF can estimate the frequency
trend of the Google website well. On the other hand, when
sudden changes occur, T-PBF cannot adapt fast enough due
to the existence of previous epochs’ data, which take time to
cause the filter contents to decay.

B. Dataset B: Network Measurement Dataset Analysis
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In our second case study, we use PBF to analyze heavy-
hitters from Internet traffic traces. Our evaluation dataset
contains passive traffic traces from CAIDA’s equinix-chicago
and equinix-sanjose monitors on high-speed Internet backbone

links [28]. The dataset spans one hour of activity. First, we
analyze the general traffic pattern of the trace, by counting
the total number of packets collected in each minute. The
traffic patterns are shown in Figure 21. In the following, we
will use the PBF and the C-PBF to detect the heavy hitter
flows, and use the T-PBF to detect the long-term trends of
flow frequencies.

To differentiate between flows, we use pairs of source and
destination IP addresses as the key for each flow. We then
count the frequency of each flow in the whole dataset, where
the results are shown in Figure 22. Observe that most of the
flows have a frequency of only once or twice, but a small
number of flows exist with a large frequency. In our following
experiments, we define a threshold of 1, 000 for those heavy
hitters. These flows account for 0.12% of the total 96, 854, 555
flows, where the maximum frequency is 32, 404, 064.

1) Detecting Heavy Hitter Flows: First, we evaluate the
estimation accuracy of the PBF. We focus on the data traces
of the first 5 minutes when we apply PBF and C-PBF in this
study. Later, we use T-PBF to handle the entire hour of data.
The reason is that networked devices such as routers will most
likely process datasets in a streaming manner, exactly as what
T-PBF does, instead of processing the dataset in one operation.

For the first 5 minutes, there are 187, 116, 831 packets,
which belong to 15, 454, 076 different flows. The number
of flows with a frequency larger than 1, 000 is 13, 569. As
there are limited resources on networking devices, we set
p = 0.00005, k = 4, 000, and m = 800M bits, according to
the method in Section III-D. The comparison between the real
frequency and the estimated frequency of the first 500 frequent
flows (sorted by time) are shown in Figure 23. Observe that
the estimated frequency and the real frequency are almost
perfect matching each other. The only exceptions are those
cases when the PBF loses its estimation ability as it’s k hash
bits are saturated with 1s, leading it to miss certain data points.
However, we argue that such missing points have no effects
on the identification of heavy hitters, as these missing points
correspond to heavy flows with a high certainty.

Next, we use the same first 5 minute data to evaluate the
estimation accuracy of the C-PBF. To fit the C-PBF into
networking devices, we set up the size of the counter to be 10
bits, so that m = 80M , k = 400, and p = 0.0015. As shown
in Figure 24, the C-PBF can estimate the frequency of flows
equally accurately compared to PBF. On average, the estimated
frequency is 3.83% larger than the real frequency, caused by
the inherent approximate nature of C-PBF counting designs.
This accuracy is comparable to the original PBF design.

Next, we compare with the baselines including the CBF,
the MRSCBF, and the RSN. For the CBF method, we set
k = 4000 and m = 800M . As shown in Figure 25, the
estimated frequencies are also close to the real frequencies,
with an average error as 3.76%. However, to prevent counter
overflows, we have to set each counter to occupy 22 bits,
which means that in terms of memory overhead, the CBF
takes 22 times of the memory compared to PBF and C-
PBF to deliver accurate counting performance. For the second
baseline MRSCBF method, we set l = 32, r = 6, and
k = {3, 4, 6, 6, 6, 6} to accommodate the most frequent flows.
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Fig. 31. The false negative ratio of the PBF.

To reduce the computation time of the look-up table, we set the
maximum estimated frequency as 10, 000, which has no effects
on detecting heavy hitter flows. This is why the estimated
frequency is never larger than 10, 000 in the Figure 26.
Excluding the flows with frequencies more than 10, 000, the
average estimation error of MRSCBF is 9.3%, which is more
than twice of the error of PBF and C-PBF. On the other hand,
it needs

∑6
i=1mi = 22, 117, 154, 656 bits of memory to hold

this MRSCBF, which means that the MRSCBF takes 27.6
times of the memory compared to PBF and C-PBF to estimate
flow frequencies. For the RSN method, we set sample rate as
0.1. We can observe from Figure 27 that the average estimation
error is 4.61%. On the other hand, RSN takes 1, 304, 986, 970
bits of memory space for this large dataset, which is 1.63 times
of the memory compared to PBF and C-PBF.

2) Long-term Heavy Flow Detection with T-PBF: We next
investigate the performance of long-term flow detection with
the T-PBF on the whole dataset. For the T-PBF, we set
p = 0.00005, k = 4000, m = 800M , and q = 0.3. The decay
operation is triggered after processing one minute’s traffic data.
We calculated the detected heavy hitter ratio (the number of
detected heavy flows over the total number of flows), the false-
positive ratio, and the false-negative ratio for each period. For
both the false-positive ratio and the false-negative ratio, the

threshold on frequency is set as 1000. As shown in Figure 28,
the detected heavy hitter ratio on average is 6.48% larger than
the real heavy hitter ratio. The source of this inaccuracy comes
from the accumulation of flow frequencies in the previous
periods. In general, the T-PBF works as expected, as we can
observe that it triggers small estimation errors and low memory
overhead.
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Fig. 32. The memory overhead of the PBF with different k values.

3) Effects of Parameter Selections: We next perform ex-
periments to evaluate the effects of k on estimation errors, the
false-positive ratio, and the false-negative ratio. With a given
k, the computational overhead and query delay is constant.
In the experiments, we choose p to be 0.00005 and 0.0001,
respectively, and change k from 200 to 2000 with a step
size 50. The value of m is computed from Equation 16 with
different k and p values. As shown in Figure 29, the estimation
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error decreases with the increasing k values. This observation
is consistent with our theoretical evaluation shown in Figure 2.

On the other hand, as shown in Figure 30, the maximum
false-positive ratio is 0.000009, which is acceptably small. The
false negative ratio shown in Figure 31 has a maximum value
of 0.03, which is also acceptably small. Note that the false
negative ratio is larger than the false-positive ratio, because the
number of heavy hitter flows is much smaller than the number
of non-heavy-hitter flows. We also observe that by increasing
k, the false-positive and false-negative ratios are decreasing.
Finally, with the increasing of k and p, the needed memory size
is increasing as shown in Figure 32. This explains the tradeoff
between the error rates and the memory overhead: a larger
memory overhead typically leads to a better performance.

VII. CONCLUSION

In this paper, we develop the probabilistic bloom filter
(PBF), which extends conventional bloom filters to perform
probabilistic counting operations. We provide the PBF’s APIs
to demonstrate how they can be used by applications, and
quantitatively investigate the performance of the PBF through
analytical approaches. The derived closed-form results answer
our questions regarding the capacity, accuracy, and parameter
selection of the PBF. In particular, we demonstrate the pa-
rameters chosen by our algorithms form Nash equilibriums.
Finally, we also extend the PBF into two variants: a counting
PBF (C-PBF) and a time-decaying PBF (T-PBF), for additional
application needs. Our evaluation results based on two realistic
datasets show that this design outperforms the existing, state-
of-the-art approaches.

To the best of our knowledge, our work in this paper is
the first probabilistic bloom filter that is designed to count
large volume of data with adjustable capacity and accuracy.
We hope our work can stimulate future work in this direction,
and provide a basis for investigations towards better methods
based on probabilistic counting and bloom filters.
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