
High-performance matrix-matrix multiplications
of very small matrices

I. Masliah2, A. Abdelfattah1, A. Haidar1, S. Tomov1, M. Baboulin2,
J. Falcou2, and J. Dongarra1,3

1 Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA
2 University of Paris-Sud, France

3 University of Manchester, Manchester, UK

Abstract. The use of the general dense matrix-matrix multiplication
(GEMM) is fundamental for obtaining high performance in many sci-
entific computing applications. GEMMs for small matrices (of sizes less
than 32) however, are not sufficiently optimized in existing libraries. In
this paper we consider the case of many small GEMMs on either CPU or
GPU architectures. This is a case that often occurs in applications like
big data analytics, machine learning, high-order FEM, and others. The
GEMMs are grouped together in a single batched routine. We present
specialized for these cases algorithms and optimization techniques to ob-
tain performance that is within 90% of the optimal. We show that these
results outperform currently available state-of-the-art implementations
and vendor-tuned math libraries.

Keywords: GEMM, batched GEMM, small matrices, HPC, autotuning

1 Introduction

Parallelism in todays computer architectures is pervasive not only in sys-
tems from large supercomputers to laptops, but also in small portable devices
like smartphones and watches. Along with parallelism, the level of heterogene-
ity in modern computing systems is also gradually increasing. Multicore CPUs
are combined with discrete high-performance GPUs, or even become integrated
parts with them as a system-on-chip (SoC) like in the NVIDIA Tegra mobile
family of devices. To extract full performance from systems like these, the het-
erogeneity makes the parallel programming for technical computing problems
extremely challenging, especially in modern applications that require fast linear
algebra on many independent problems that are of size O(100) and smaller. Ac-
cording to a recent survey among the Sca/LAPACK and MAGMA users, 40% of
the responders needed this functionality for applications in machine learning, big
data analytics, signal processing, batched operations for sparse preconditioners,
algebraic multigrid, sparse direct multifrontal solvers, QR types of factorizations
on small problems, astrophysics, and high-order FEM. At some point in their ex-
ecution, applications like these must perform a computation that is cumulatively
very large, but whose individual parts are very small; when such operations are

implemented naively using the typical approaches, they perform poorly. To ad-
dress the challenges, we designed a standard for Hybrid Batched BLAS [7], and
developed innovative algorithms [11], data and task abstractions [1], as well as
high-performance implementations based on the standard that are now released
through MAGMA 2.0 [6, 10]. Figure 1 illustrates how the need for batched oper-
ations and new data types arises in areas like linear algebra (Left) and machine
learning (Right). The computational characteristics in these cases are common
to many applications, as already noted: the overall computation is very large
but is made of operations of interest that are in general small, must be batched
for efficiency, and various transformations must be explored to cast the batched
small computations to regular and therefore efficient to implement operations,
e.g., GEMMs. We note that applications in big data analytics and machine
learning target higher dimension and accuracy computational approaches (e.g.,
ab initio-type) that model mutilinear relations, thus, new data abstractions,
e.g., tensors, may be better suited vs. the traditional approach of flattening the
computations to linear algebra on two-dimensional data (matrices). Indeed, we
developed these tensor data abstractions and accelerated the applications using
them significantly [1] compared to other approaches.

n

. i
j

Ai,j,m,n

m

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7
Matrix A in tiled data-layout

as a 4th-order tensor:

// Declare a 4th-order Tensor A on the GPU ︎
Tensor<64, 64, 9, 8, gpu_t> A; ︎

// DSEL design using Einstein notation: repeated  
// index k means a summation/contraction. ︎
// Range of the other indices is full/range as︎
// given through the left assignment operand ︎
A(i, j, m:1..8, n:1..7) -= A(i, k,m,0) * A(k, j,0,n); ︎

A rank-64 update as tensor contraction on index k
(for i = 0..63 for j = 0..63 for m = 1..8 for n = 1..7):

i, j,m,nA − = i,k,m,0A k, j,0,nA
k
∑

Tensor contractions in machine learning (Convolutional Neural Networks in computer vision)

Filters F
Fn

 Output On

n,kO

n,kO = k,iD
i
∑ n,iF

Dk .

Convolution Pooling Convolution Pooling Fully Output
 connected predictions Data D

Convolution of Filters Fi (feature detection) and input image D:
•  For every filter Fn and every channel, the computation for

every pixel value On,k is a tensor contraction:

•  Plenty of parallelism; small operations that must be batched
•  With data “reshape” the computation can be transformed into

a batched GEMM (for efficiency; among other approaches)

chicken 0.4

boat 0.3
person 0.1

dog 0.01

Fig. 1. Left: Example of a 4th-order tensor contractions design using Einstein sum-
mation notation and a Domain Specific Embedded Language (or DSEL). Right:
Illustration of batched computations needed in machine learning.

There is a lack of sufficient optimizations on the batched GEMMs needed
and targeted in this paper. We show this in comparison to vendor libraries like
CUBLAS for NVIDIA GPUs and MKL for Intel multicore CPUs. Related work
on GEMM and its use for tensor contractions [1] target only GPUs and for
very small sizes (16 and below). Batched GEMM for fixed and variable sizes in
the range of O(100) and smaller were developed in [2]. The main target here is
multicore CPUs and GPUs for sizes up to 32.

2 Contributions to the Field

The evolution of semiconductor technology is dramatically transforming the
balance of future computer systems, producing unprecedented changes at every
level of the platform pyramid. From the point of view of numerical libraries,
and the myriad of applications that depend on them, three challenges stand out:
1) the need to exploit unprecedented amounts of parallelism; 2) the need to
maximize the use of data locality and vectorized operations; and 3) the need to

cope with component heterogeneity. Below, we highlight our main contributions
related to the algorithm’s design and optimization strategies aimed at addressing
these challenges on multicore CPU and GPU architectures:

Exploit Parallelism and Vector Instructions: Clock frequencies are ex-
pected to stay constant, or even decrease to conserve power; consequently, as
we already see, the primary method of increasing computational capability of
a chip will be to dramatically increase the number of processing units (cores),
which in turn will require an increase of orders of magnitude in the amount
of concurrency that routines must be able to utilize as well as increasing the
computational capabilities of the floating point units by extending it to the clas-
sical Streaming SIMD Extensions set (SSE-1, to SSE-4) in the earlier 2000, and
recently to Advanced Vector Extensions (AVX, AVX-2, AVX-3). We developed
specific optimization techniques that demonstrate how to use the many cores
(currently multisocket 10 − 20 cores for the Haswell CPU and 15 × 192 CUDA
cores for the K40 GPU) to get optimal performance. The techniques and kernels
developed are fundamental and can be used elsewhere.

Hierarchical Communication Techniques that Maximizes the use of
Data Locality: Recent reports (e.g., [8]) have made it clear that time per
flop, memory bandwidth, and communication latency are all improving, but at
exponentially different rates. So computation on very small matrices, that can
be considered as computation-bound on old processors, is, –today and in the
future– communication-bound and depends from the communication between
levels of the memory hierarchy. We demonstrate that, performance is indeed
harder to get on new manycore architectures unless hierarchical communications
and optimized memory management are considered in the design. We show that,
only after we developed multilevel memory design, our implementations reach
optimal performance.

Performance Analysis and Autotuning: We demonstrate the theoretical
maximal performance bounds that could be reached for computation on very
small matrices. We studied various instructions and performance counters, as
well as proposed a template design with different tunable parameters in order
to evaluate the effectiveness of our implementation and optimize it to reach the
theoretical limit.

3 Experimental hardware

All experiments are done on an Intel multicore system with two 10-cores Intel
Xeon E5-2650 v3 (Haswell) CPUs, and a Kepler Generation Tesla K40c GPU.
Details about the hardware are illustrated in Figure 2. We used gcc compiler
5.3.0 for our CPU code (with options -std=c++14 -O3 -avx -fma), as well as the
icc compiler from the Intel suite 2016.0.109, and the BLAS implementation from
MKL (Math Kernel Library) 16.0.0 [13]. We used CUDA Toolkit 7.5 for the GPU.
For the CPU comparison with the MKL library we used two implementations: 1)
An OpenMP loop statically or dynamically unrolled among the cores (we choose

the best results), where each core computes one matrix-matrix product at a
time using the optimized sequential MKL dgemm routine, and (2) The batched
dgemm routine that has been recently added to the MKL library.

s i z e

registers

 L1 cache

L3 cache

CPU main
memory

GPU main
 memory

Remote CPU main memory

total per core

256 KB

2.5 MB

 2.5 GB

 …
GBs

256 GB

12 GB

 25 MB

2.5 GB

 …
TBs

 time
cycles (0.43 ns)
 for 64 Bytes

 1

4

 > 40

 > 180

 > 280

11 GB/s

 68 GB/s

B

LA
S,

 B

at
ch

ed
 B

LA
S

L2 cache

32 KB 320 KB

 11

20

 6 GB/s (Cray Gemini)

Intel Xeon E5-2650 v3 (Haswell; 10 cores) 2.30GHz core NVIDIA K40c GPU (2,880 CUDA cores) CUDA 745 MHz core

s i z e

registers

 L1 cache &
shared memory

L2 cache

GPU main memory

CPU main memory

Remote CPU main memory

total “per core”

1.33 KB

0.33 KB

0.53 KB

4.27 MB

 21 MB

 …
GBs

12 GB

60 GB

1.5 MB

 64 KB
x15

256 KB
 x15

 …
TBs

 time
cycles (1.34 ns)
to get 4 Bytes

 1

 2

 > 60

> 1,100

 > 3,000

11 GB/s (PCI-E Gen3)

 6 GB/s (Cray Gemini)

 288 GB/s

B
LA

S

G

PU
 B

LA
S,

B
at

ch
ed

 G
PU

 B
LA

S

(16 x 256-bit AVX-2)
0.5 KB 5 KB

Fig. 2. Memory hierarchies of the experimental CPU and GPU hardware

4 Methodology, Design, and Optimization

To evaluate the efficiency of our algorithms we derive theoretical bounds for
the maximum achievable performance Pmax = F/Tmin, where F is the num-
ber of operations needed by the computation and Tmin is the fastest time to
solution. For simplicity, consider C = αAB + βC on square matrices of size n.
We have F ≈ 2n3 and Tmin = minT (TRead(A,B,C) + TCompute(C) + TWrite(C)).
Note that we have to read/write 4n2 elements, or 32n2 Bytes for double pre-
cision (DP) calculations. Thus, if the maximum achievable bandwidth is B (in
Bytes/second), and we assume TCompute(C) → 0 for very small computation,
then Tmin = TRead(A,B,C) + TWrite(C) = 4n2/B in DP. Note that this time is
theoretically achievable if the computation totally overlaps the data transfer and
does not disrupt the maximum rate B of read/write to the GPU memory. Thus,

Pmax =
2n3B

32n2
=
nB

16
in DP.

The achievable bandwidth can be obtained by benchmarks, e.g., using the stream
benchmark and the Intel memory latency checker 3.0 for CPU, and the NVIDIA’s
bandwidthTest for GPU. Our tests show that the practical CPU bandwidth we
are able to achieve using different benchmarks is about 44 GB/s per socket.
On the K40 GPU with ECC on the peak is 180 GB/s, so in that case Pmax is
2.75 n GFlop/s per socket for the CPU and 11.25 n GFlop/s for the K40 GPU.
The curve representing this theoritical maximal limit is denoted by the “upper
bound” line on Figures 5 and 8. Thus, when n = 16 for example, we expect a
theoretical maximum performance of 180 GFlop/s in DP on the K40 GPU.

4.1 Programming Model, Performance Analysis, and Optimization
for CPUs

The design of our code is done using new features of C++ for better re-
usability and adaptability of the code. By using advanced template techniques
we can create high-level interfaces without adding any cost even for small matrix-
matrix products. To do so, we have designed a batch structure which will contain
a C++ vector for the data and static dimensions. By using the C++ constexpr
keyword and integral constants we can make a generic batched code that will
dispatch at compile time the correct version depending on the size of matrices.

The implementation of a matrix-matrix products kernel for very small ma-
trices for CPUs requires specific design and optimisations. As we can store three
double precision matrices of size up to 32 × 32 in the L1 cache of an Intel
Xeon E5-2650 v3 processor, one can expect that any implementation will not
suffer from data cache misses. This can be seen on Figure 5b where the per-
formance of an ijk implementation, which is not cache-aware and cannot be
vectorized, is pretty close to the ikj one. For smaller sizes, the ijk implementa-
tion is even more efficient than the ikj one, as it optimizes the number of stores
(Figure 3a). To obtain a near optimal performance, we conduct an extensive
study over the performance counters using the PAPI [16] tools. Our analysis
concludes that in order to achieve an efficient execution for such computation,
we need to maximize the occupancy and minimize the data traffic while respect-
ing the underlying hierarchical memory design. Unfortunately, today’s compilers
cannot introduce highly sophisticated cache/register based loop transformations
and, consequently, this kind of optimization effort should be studied and imple-
mented by the developer [14]. This includes techniques like reordering the data
so that it can be easily vectorized, reducing the number of instructions so that
the processor spends less time in decoding them, prefetching the data that will
be reused in registers, and using an optimal blocking strategy.

Data Access Optimizations and Loop Transformation Techniques In
our design, we propose to order the iterations of the nested loops in such a
way that we increase locality and expose more parallelism for vectorization. The
matrix-matrix product is an example of perfectly nested loops which means that
all the assignment statements are in the innermost loop. Hence, loop unrolling,
loop peeling, and loop interchange can be useful techniques for such algorithm [4,
5]. These transformations improve the locality and help to reduce the stride of
an array based computation. In our approach, we propose to unroll the two
inner-most loops so that the accesses to matrix B are independent from the loop
order, which also allows us to reorder the computations for continuous access
and improved vectorization. This technique enables us to prefetch and hold some
of the data of B into the SIMD registers. Here, we manage to take advantage
from the knowledge of the algorithm, and based on the principle of locality of
references [12], to optimize both the temporal and spatial data locality.

Register Data Reuse and Locality Similarly to the blocking strategies for
better cache reuse in numerically intensive operations (e.g., large matrix-matrix

products), we focus on register blocking to increase the performance. Our study
concludes that the register reuse ends up being the key factor for performance.
The idea is that when data is loaded into SIMD register, it will be reused as much
as possible before its replacement by new data. The amount of data that can
be kept into registers becomes an important tuning parameter. For example,
an 8 × 8 matrix requires 16 256-bit AVX-2 registers to be completely loaded.
As the targeted hardware consists of only 16 256-bit AVX-2 registers, one can
expect that loading the whole B will not be optimal as we will have to reload the
vectors for A and C. However, if we load only 8 registers for B, which is equal to
4 rows, we can compute a row of C at each iteration and reuse these 8 registers
for each iteration. We propose an auto-tuning process to check all the possible
scenarios and provide the best option. This reduces the number of load, store,
and total instructions from O(n2) to O(n), compared to a classical ijk or ikj
implementation as depicted in Figures 3a, 3b, and 5a, respectively.

Algorithmic Advancements Algorithm 1 is an example of our methodology
for a matrix-matrix product of 16 × 16 matrices. In this pseudo-code, we start
by loading four 256-bit AVX-2 registers with values of B which correspond to
the first row. These registers are reused throughout the algorithm. In the main
loop (Lines 4-14), we start by computing the first values of every multiplication
(stored into a register named M=A×B) based on the prefetched register in line 1.
Then, we iterate on the remaining rows (Lines 7-11) loading B, multiplying each
B by a value of A, and adding the result into M. Once the iteration over a row is
accomplished, the value of M is the final result of A×B and thus, we can load the
initial values of C, multiply by α and β, and store it back before moving toward
the next iteration such a way to minimize the load/store as shown in Figure 3.
Each C ends up being loaded/stored once. We apply this strategy to matrix sizes
ranging from 8 to 32 as for smaller sizes the whole matrix can fit in registers. Dif-
ferent blocking strategies (square versus rectangular) have been studied through
our auto-tuning process in order to achieve the best performance.

1: Load B0, B1, B2, B3
2: Load α, β
3: S = 16
4: for i = 0, 1, ... , S-1 do
5: Load A[i*S]
6: Mi0 = A[i*S] * B0; ... Mi3 = A[i*S] *B3
7: for u = 1, 2, ... , S-1 do
8: Load A[i*S + u]
9: Load Bu0, Bu1, Bu2, Bu3

10: Mi0 += A[i*S+u] * Bu0; ... Mi3 += A[i*S+u] *Bui3
11: end for
12: Mi0 = α Mi0 + β (Load Ci0); ... Mi3 = α Mi3 + β (Load Ci3)
13: Store Mi0, Mi1, Mi2, Mi3
14: end for

Algorithm 1: Generic matrix-matrix product applied to matrices of size 16× 16

0 5 10 15 20 25 30 35

105

106

107

108

Matrix Size

N
um

be
r
of

lo
ad

s

gen load

mkl load

ijk load

ikj load

(a) # of load instructions

0 5 10 15 20 25 30 35

105

106

107

108

Matrix Size

N
um

be
r
of

st
or
es

gen store

mkl store

ijk store

ikj store

(b) # of store instructions

Fig. 3. Performance counters measurement of the memory accesses

Effect of the Multi-threading As described above, operating on matrices of
very small sizes is memory-bound computation and thus, increasing the number
of cores may not always increase the performance since the performance will be
limited by the bandwidth which can be saturated by a few cores. We performed a
set of experiments towards clarifying this behaviour and illustrate our findings in
Figure 4b. As shown, the notion of perfect speed-up does not exist for a memory-
bound algorithm, and adding more cores increases the performance slightly. We
performed a bandwidth evaluation when varying the number of cores to find that
a single core can achieve about 18 GB/s while 6 and 8 cores (over the available
10 cores) can reach about 88% and 93% of the practical peak bandwidth, which
is about 44 GB/s.

0 5 10 15 20 25 30 35
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

upper
bound

Matrix Size

G
flo

ps
/s

20 cores custom numa

20 cores interleave all

20 cores

10 cores

(a) Effect of the numa memory management

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Matrix Size

G
flo

ps
/s

1 core

2 cores

6 cores

8 cores

10 cores

(b) Effect of the number of cores

Fig. 4. Performance analysis

Effect of the NUMA-socket and Memory Location We also studied
NUMA-socket (non-uniform memory access) [9] when using two Xeon sockets
as seen in Figure 4a. A standard memory allocation puts all of the data in the
memory slot associated to the first socket until it gets filled, then starts filling
the second socket. Since the problem size we are targeting is very small, most of
the data is allocated on one socket, and thus using extra 10 cores of the second
socket will not increase the performance. This is due to the fact that the data

required by the cores of the second socket goes through the memory bus of the
first socket, and thus is limited by the bandwidth of one socket (44 GB/s). There
are ways to overcome this issue. By using NUMA with the interleave=all option,
which spreads the allocation over the two sockets by memory pages, we can im-
prove the overall performance. However, for very small sizes, we observe that
such solution remains far from the optimal bound since data is spread out over
the memory of the two sockets without any rules that cores from socket 0 should
only access data on socket 0, and vice versa. To further improve performance, we
use a specific NUMA memory allocation, which allows us to allocate half of the
matrices on each socket. As shown in Figure 4a, this allows our implementation
to scale over the two sockets and to reach close to the peak bound.

0 5 10 15 20 25 30 35

106

107

108

Matrix Size

N
um

be
r
of

in
st
ru
ct
io
ns

gen

mkl

ijk

ikj

(a) Total instructions count

0 5 10 15 20 25 30 35
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

upper
bound

Matrix Size

G
flo

ps
/s

gen code

mkl code

ijk code

ikj code

mkl batched

(b) Performance comparison

Fig. 5. Experimental results of the matrix-matrix multiplication on CPU’s

4.2 Programming Model, Performance Analysis, and Optimization
for GPUs

Our goal is to minimize coding effort and to design one kernel that can be
easily adapted for very small matrix size computations, providing very efficient
execution. To design a GEMM kernel in CUDA to take advantage of the available
threads, thread blocks, and streaming multiprocessors (SMs) of a GPU, the com-
putation must be partitioned into blocks of threads (also called thread blocks, or
simply TBs) that execute independently from each other on the multiprocessors
of the GPU. We use a hierarchical blocking model of both communications and
computations, similarly to the MAGMA batched GEMM kernel [3] for medium
and large sizes. We designed CUDA C++ templates to enable unified code base
for all the small sizes. Templates enable an easy instantiation of a kernel with a
specific precision and tuning parameters.

A Cache-based Approach Unlike multi-core CPUs, the L1 cache (per SM)
is not intended for global memory accesses, which are cached only in the L2.
The L2 cache is shared among all SMs, which makes it difficult to use for cache-
based optimizations, since all TBs will be sharing it (L2 cache is up to 1.5 MB).
However, a modern Kepler GPU has a 48 KB per SM of a read-only cache
(rocache), which can be used for global memory reads. A possible implementa-
tion that takes advantage of this is to read the input matrices A and B through

the read-only cache. Each matrix computation is associated to one TB that is
configured with M×N threads, where each thread is responsible for computing
one output element of the resulting matrix C. Thus, each thread reads an entire
row of A and entire column of B. This cache-based design ideally assumes that
most of the global memory accesses hit in the rocache. This kernel does not use
the shared memory, and so it does not need any synchronization points.

A Shared Memory based Approach Another approach is to use shared
memory (shmem) for data reuse rather than rocache. We refer to this implemen-
tation as the MAGMA kernel, since it is distributed within the MAGMA library.
We performed an extensive set of auto-tuning and performance counter analysis
to optimize and improve this implementation. The matrices A and B are loaded
by block into the shared memory, and the corresponding block of the matrix C
is held into registers. Prefetching can also be used to load the next blocks of A
and B. The prefetching can be done through either the shared memory or the
register, and is controlled by a tunable parameter. This implementation is very
well parametrized, and can work for any dimension with tunable block sizes for
A, B, and C.

��

����

����

����

����

��

����

����

����

�� �� ��� ��� ��� ��� ��� ���

�
��
��
�
�
��
��
�
��
�
�
���
�
�
�
��

�
�
�
�
�
�

�����������

��������������
���������������
��������������

(a) GPU number of integer instructions

���

�

��

���

����

� � �� �� �� �� �� ��

�
��
��
�

��	
��
���

	�� � �
	�� � �

	�� � �
	�� � �

	�� ���

�
��
��
��
��
��
��
��
	�

�
���

� � � � 	 ��

G
flo

p/
s

(b) Effect of the tbc parameter

Fig. 6. Performance counters measurement on the K40 GPU

Instruction Mix We performed a detailed performance study based on the
collection and analysis of hardware counters. Counter readings were taken using
performance tools (Nvidia’s CUPTI and PAPI CUDA component [15]). Our
analysis shows that it is important to pay attention to the instruction mix of
the GPU kernel, in particular when operating on matrices of such very small
sizes. Integer instructions, which are used for loop counters and memory address
calculations, can be quite an overhead in such computations. Moreover, our
study showed that a loop with predefined boundary can be easily unrolled and
optimized by the Nvidia compiler. We adopt an aggressive approach to produce
a fully unrolled code for every size of interest. We add the sizes M, N, and K
to the template parameters such a way to use a unified code base to produce a
fully unrolled and optimized implementation for any of these very small sizes.
Figure 6a shows the number of integer instructions executed by rocache-based

approach, the MAGMA design, and the CUBLAS-batched implementation. As
shown, the MAGMA kernel uses the smallest number of integer instructions,
thanks to the fully unrolled code. An interesting observation of the CUBLAS
implementation, for this range of matrices, is that it uses a fixed blocking size
of 16×16. This will explain the match in number of integer instructions between
the CUBLAS and our design when the matrix sizes are multiple of 16×16. The
CUBLAS kernel must then have a cleanup section if the input size modulo 16 is
not zero.

��

����

����

����

����

����

����

����

����

����

��

�� �� ��� ��� ��� ��� ��� ���

�
�
�
�
��
�
�
�

�
�
�
�
�
�
�
�
�
�

�����������

��������������
���������������
��������������

(a) GPU Achieved Occupancy

��

���

���

���

���

����

�� �� ��� ��� ��� ��� ��� ���
�
�
��
�
�
��
�
�
�
�
��

�
�
�
�
�

�
�
��
�
��
�
�
�
��
�

�����������

��������������
���������������
��������������

(b) GPU Global Memory Load Efficiency

Fig. 7. Performance counters measurement on the K40 GPU

��

����

�����

�����

�����

�����

�� �� ��� ��� ��� ��� ��� ���

�
�
�
�
�

�
�
�
�
�

�
�
�
��
�
�
�
�
�
��
��
�
��
�

�����������

��������������
���������������
��������������

(a) GPU shared memory throughput

��

���

����

����

����

����

����

����

����

�� �� ��� ��� ��� ��� ��� ���

��
��
��
��
��
�

�
�
�
�
��

�����������

��������������
���������������
���������������

�����������

(b) GPU Performance on K40c

Fig. 8. Performance counters measurement and efficiency of our design for the matrix-
matrix multiplication on the K40 GPU

TB-level Concurrency We further improved the proposed design by another
optimization that helps significantly increase the performance for the tiny sizes
(e.g. less than 12). We increase the concurrency by fusing the execution of several
TBs into a larger TB which rises the achieved occupancy. The motivation behind
this technique is to increase the number of threads, especially when the TB
configuration has few warps or even less than a warp. The concurrency level is
controlled through an additional parameter tbc, which controls the number of
TBs to be fused together. Figure 6b shows the impact of tbc on performance.
For example, we achieve a speed-up of 6.8× for size 2 and 3.8× for size 3. The

performance improvement reaches 24% at size 8. We found out that beyond size
10, setting tbc larger than 1 does not achieve any gains because the resources
required by one fused TB become expensive, which affects the number of residing
TBs per SM. Some curves look incomplete, since a large value of tbc sometimes
requires more threads than the hardware-defined maximum number of threads
allowed per TB.

Performance Counter Analysis Figure 7 shows two of the key factors to
high performance on a GPU: the achieved occupancy and the efficiency of global
memory reads. The first one is the ratio between the number of active warps
per active cycles and the maximum number of warps that can run on an SM.
The second is defined as the ratio between the load throughput requested by
the kernel, and the actual required throughput needed to fulfil the kernel load
requests. Our proposed MAGMA implementation achieves more than 75% occu-
pancy in most cases, which is nearly the upper limit for the other design. It can
also achieve very high occupancy (≈90%) even for very small matrices, thanks
to the TB-level concurrency. On the other hand, the MAGMA approach is at
least 90% efficient in reading from global memory, which means that the kernel
encounters very little overhead in terms of load instructions replays.

5 Conclusions and future directions

We presented work motivated by a large number of applications, ranging
from machine learning to big data analytics, that require fast linear algebra on
many independent problems that are of size 32 and smaller. The use of batched
GEMM for small matrices is fundamental for obtaining high performance in ap-
plications like these. We presented specialized algorithms for these cases – where
the overall computation is memory bound but still must be blocked – to ob-
tain performance that is within 90% of the optimal, significantly outperforming
currently available state-of-the-art implementations and vendor-tuned math li-
braries. Here, the optimal is the time to just read the data once and write the
result, disregarding the time to compute. The algorithms were designed for mod-
ern multi-core CPU and GPU architectures. The optimization techniques and
algorithms can be used to develop other batched Level 3 BLAS and to accelerate
numerous applications that need linear algebra on many independent problems.

Future work includes further optimizations and analyses, e.g., on how high
performance can go using CUDA. It is known that compilers have their limi-
tations in producing top performance codes for computations like these, thus,
requiring the use of lower level programming languages. Current results used in-
trinsics for multi-core CPUs and CUDA for GPUs, combined with auto-tuning
in either case, to quickly explore the large algorithmic variations developed in
finding the fastest one. Future work includes also use in applications, develop-
ment of application-specific optimizations, data abstractions, e.g., tensors, and
algorithms that use them efficiently.

Acknowledgments

This material is based in part upon work supported by the US NSF under
Grants No. CSR 1514286 and ACI-1339822, NVIDIA, the Department of Energy,
and in part by the Russian Scientific Foundation, Agreement N14-11-00190.

References

1. Abdelfattah, A., Baboulin, M., Dobrev, V., Dongarra, J., Earl, C., Falcou, J.,
Haidar, A., Karlin, I., Kolev, T., Masliah, I., Tomov, S.: High-Performance Tensor
Contractions for GPUs. Tech. Rep. UT-EECS-16-738 (01-2016 2016)

2. Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.: Performance, Design, and
Autotuning of Batched GEMM for GPUs. Tech. Rep. UT-EECS-16-739 (02 2016)

3. Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.: Performance, design, and
autotuning of batched gemm for gpus. Tech. Rep. UT-EECS-16-739, University of
Tennessee, Knoxville (January 16 2016)

4. Ahmed, N., Mateev, N., Pingali, K.: Tiling imperfectly-nested loop nests. In: Su-
percomputing, ACM/IEEE 2000 Conference. pp. 31–31 (Nov 2000)

5. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for high-
performance computing. ACM Comput. Surv. 26(4), 345–420 (Dec 1994), http:
//doi.acm.org/10.1145/197405.197406

6. Dong, T., Haidar, A., Luszczek, P., Harris, A., Tomov, S., Dongarra, J.: LU Factor-
ization of Small Matrices: Accelerating Batched DGETRF on the GPU. In: Pro-
ceedings of 16th IEEE International Conference on High Performance and Com-
munications (HPCC 2014) (August 2014)

7. Dongarra, J., Haidar, A., Hammarling, S., Hogg, J., Lara, P., Mawussi, Z., Relton,
S., Tomov, S.: A set of batched hybrid basic linear algebra subprograms (2016),
https://www.dropbox.com/s/ic3kbf9goixr950/batched_api.pdf?dl=0

8. Fuller, S.H., Lynette I. Millett, E.C.o.S.G.i.C.P.N.R.C.: The Future of Computing
Performance: Game Over or Next Level? The National Academies Press (2011),
http://www.nap.edu/openbook.php?record_id=12980

9. Hager, G., Wellein, G.: Introduction to High Performance Computing for Scientists
and Engineers. CRC Press (2011)

10. Haidar, A., Dong, T., Luszczek, P., Tomov, S., Dongarra, J.: Batched matrix com-
putations on hardware accelerators based on gpus. International Journal of High
Performance Computing Applications (2015), http://hpc.sagepub.com/content/
early/2015/02/06/1094342014567546.abstract

11. Haidar, A., Dong, T., Tomov, S., Luszczek, P., Dongarra, J.: A Framework for
Batched and GPU-Resident Factorization Algorithms Applied to Block House-
holder Transformations. In: High Performance Computing, Lecture Notes in Com-
puter Science, vol. 9137, pp. 31–47 (2015)

12. Hennessy, J.L., Patterson, D.A.: Computer Architecture, Fifth Edition: A Quan-
titative Approach. Morgan Kaufmann Publ. Inc., San Francisco, CA, USA (2011)

13. Intel Math Kernel Library (2016), available at http://software.intel.com
14. Loshin, D.: Efficient Memory Programming. McGraw-Hill Profess., 1st edn. (1998)
15. Malony, A.D., Biersdorff, S., Shende, S., Jagode, H., Tomov, S., Juckeland, G.,

Dietrich, R., Poole, D., Lamb, C.: Parallel performance measurement of heteroge-
neous parallel systems with gpus. In: Proc. of ICPP’11. pp. 176–185. IEEE Com-
puter Society, Washington, DC, USA (2011)

16. Weaver, V., M.Johnson, K.Kasichayanula, J.Ralph, P.Luszczek, D.Terpstra, S.:
Measuring energy and power with PAPI. In: 41st ICPP Workshops (09 2012)

