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Abstract— A wide variety of heterogeneous compute re-
sources, ranging from multicore CPUs to GPUs and coprocessors,
are available to modern computers, making it challenging to
design unified numerical libraries that efficiently and productively
use all these varied resources. For example, in order to efficiently
use Intel’s Knights Langing (KNL) processor, the next-generation
of Xeon Phi architectures, one must design and schedule an
application in multiple degrees of parallelism and task grain
sizes in order to obtain efficient performance. We propose a
productive and portable programming model that allows us to
write a serial-looking code, which, however, achieves parallelism
and scalability by using a lightweight runtime environment
to manage the resource-specific workload, and to control the
dataflow and the parallel execution. This is done through multiple
techniques ranging from multi-level data partitioning to adaptive
task grain sizes, and dynamic task scheduling. In addition, our
task abstractions enable unified algorithmic development across
all the heterogeneous resources. Finally, we outline the strengths
and the effectiveness of this approach – especially in regards
to hardware trends and ease of programming high-performance
numerical software that current applications need – in order
to motivate current work and future directions for the next
generation of parallel programming models for high-performance
linear algebra libraries on heterogeneous systems.

I. INTRODUCTION

Hardware technologies based on many-core architectures
have gained ground not just in terms of computational perfor-
mance but also in terms of ease of use, e.g., due to software
technologies such as OpenMP, CUDA, OpenCL, and Ope-
nACC. The Many Integrated Core (MIC) technology offered
by Intel, incorporated in the Xeon Phi product family, is well
established, offering a high-performance computational edge,
as well as a dominant software stack and support for open
standards, e.g., OpenMP, that have served the community well
in terms of productivity to render auxiliary the burden of using
lower level libraries, like SCI and COI. We refer to this match
of hardware with its software stack as the vertical integration
of a platform.

Interestingly, horizontal integration, or combining different
platforms and their software stacks is much less supported
or researched. Yet, modern computing systems are likely to
feature multiple accelerators and/or coprocessors, often not
the same kind, in order to accommodate the whole variety
of scientific workloads.

Finally, the constant technological progress of hardware ac-

celerators, now featuring nearly 10 billion transistors, foreshad-
owed the advancement in traditional multicore CPU technol-
ogy. A CPU can now produce half a Tera-flop of computations
per second in double precision on a single motherboard socket.
This CPU performance was made possible by the fast paced
improvement in CPU vectorization standards with the flagship
AVX and multi-argument fused multiply-add instructions cou-
pled with multiple floating units per core that (with proper use
of Level 1 cache) can sustain very high performance without
being burdened by the vagaries of modern memory systems
and NUMA overheads.

We are presenting a programming model for the rapid
development of linear algebra applications designed to be
efficient on complex heterogeneous hardware. Our program-
ming model derives its productivity from a design that is
based on the task-superscalar paradigm, allowing us to write
serial-like code. Then, a task-superscalar runtime executes
the code adaptively, scalably, and efficiently on the available
heterogenous resources.

II. BACKGROUND AND RELATED WORK

Dense linear algebra, as available in LAPACK and ScaLA-
PACK, has been modernized for new architectures in libraries
like PLASMA and MAGMA [2], as well as in vendor libraries.
Key challanges for the development have included program-
ming models and algorithm designs to handle parallelism, het-
erogeneity, and communication. In MAGMA, similarly to ven-
dor libraries, these challanges have been targeted for specific
hardware configurations, e.g., multicore plus GPUs [22], [8],
[11], GPUs only [13], embedded systems [16], multicore plus
Xeon Phi coprocessors [14], etc. Recently, a unified framework
was developed that can handle a mix of multicore CPUs, GPU
accelerators, and Xeon Phi coprocessors (KNC) [12], [17], [15]
in a single heterogeneous system. In contrast, here we further
advance this current state-of-the-art LU, QR, and Cholesky
factorization techniques by adding efficient support for KNL,
the next generation of Xeon Phi processors. While previous
Xeon Phi work concentrated on hybrid factorizations models
that use multicore CPUs for the panel factorizations and KNC
for the trailing matrix updates, the KNL self-boot packaging
requires that the entire computation be done on the KNL,
including the communication intensive panels.

Related to parallel programming models, the tasking ap-
proach and the use of BLAS are well established for dense



linear algebra [1]. To provide parallelism, algorithms are split
into computational tasks, which in the context of LAPACK
algorithms translates to splitting BLAS calls into tasks. The
resulting algorithms can be viewed as DAGs that can be
scheduled for execution on the underlying hardware in various
ways. Of particular interest are task-superscalar approaches
that take serial code as input and result in a parallel execution,
inferring the data dependencies between the tasks at runtime,
generally using task superscalar techniques, for example as in
Jade [20], Cilk [5], OpenMP 4.0 [7], Sequoia [9], SuperMa-
trix [6], OmpSS [19], Habanero [4], StarPU [3], QUARK [23],
or the DepSpawn [10] project.

III. HARDWARE DESCRIPTION AND INTEL LIBRARY

We conducted our experiments on three different systems,
denoted A, B, and C. They are representative of a vast class of
servers and workstations commonly used for computationally
intensive workloads.
• System A is equipped with two 8-core Intel Xeon

E5-2670 (Sandy Bridge) processors, and two Intel
Xeon Phi 7120 (KNC) cards with 15.8 GB per card,
running at 1.23 GHz, and achieving a double precision
theoretical peak of 1180 Gflop/s. Cards are connected
via two PCIe I/O hubs at 6 GB/s bandwidth.

• System B has two 18-core Intel Xeon E5-2697 (Broad-
well) processors, running at 2.6 GHz. Each socket
has 35 MiB of shared L3 cache, and each core has a
private 3.5 MiB L2 and 448 KB L1 cache. The system
is equipped with 52 GB of memory and the theoretical
peak in double precision is 20.8 Gflop/s per core.

• System C is the selfhosted preproduction Intel Xeon
Phi Knights Landing (KNL) card, with 16 GB of
MCDRAM used in flat mode, running at 1.3 GHz
and achieving a double precision the theoretical peak
of 2662 Gflop/s. It consists of 64 cores with 4 hyper-
threads each. There are also card that came with 68
or 72 cores but are not included into our experiments.

We used the Intel MKL (Math Kernel Library) [18]
(2017b1 20160506) , and Intel C compiler in the Intel Com-
poser XE 2016 suite. Intel MKL is optimized for all Intel
Xeon and Xeon Phi architectures. The Intel MKL team puts
additional effort into optimizing the Level 3 BLAS and the
LAPACK LU, Cholesky and QR factorizations as these are
some of the most commonly used routine in the library.

IV. FLEXIBLE AND PORTABLE HETEROGENEOUS
PROGRAMMING MODEL

Making an algorithm work with heterogeneous hardware
components can be challenging. We discuss a programming
model that provides high-level abstractions for programming
multi-way heterogeneous resources. This allows us to have
a unified approach and a seamless porting of the algorithms
across a wide range of hardware. The use of 1) algorithmic
blocking techniques, 2) 1−D block-column data distribution
guided by hardware-capabilities-weight, and 3) optimized ker-
nels, also enables an ease of programming (algorithms can
be expressed through building blocks) as well as efficiency
in using a wide range of recent architectures. To be fast,
reliable, and efficient, we take advantage of a runtime system
that allows us to write serial code while extracting parallelism
and enabling adaptive execution on the available resources.

This work builds on our earlier work on programming for
multi-way heterogeneous architectures [12], but differs here
by extending it to a native computational mode, as well as
extending compatibility to handle new architectures, including
the KNL processors.

A. Algorithmic Advancements
Here we present the linear algebra aspects of our generic

solution for development of the one-sided factorizations:
Cholesky (Chol), Gaussian (LU), and the Householder QR.
Algorithmically, as presented in Algorithm 1 and illustrated
in Figure 1, these factorizations can be viewed as a sequence of
steps with two distinct phases per step: 1) a panel factorization
that affects the data depicted by the blue portion of Figure 1,
and, 2) a trailing matrix update that updates data represented
by the magenta and green color in Figure 1. Table I shows the
BLAS and LAPACK routines that must be substituted for the
generic routines named in the algorithm. From a hardware

for Pi ∈ {P1,P2, . . . ,Pn} do
PanelFactorize(Pi)
TrailingMatrixUpdate(A(i))

Algorithm 1: Two-phase matrix factorization.

Cholesky Householder Gaussian

PanelFactorize xPOTF2 xGEQF2 xGETF2
xTRSM xLARFT xLASWP

TrailingMatrixUpdate xSYRK xLARFB xTRSM
xGEMM xGEMM

TABLE I. PANEL FACTORIZATION AND TRAILING MATRIX UPDATE
ROUTINES.

panel 

update 

step 1  step 2  step 3  step 4  

nb	

nb	

Fig. 1. Two-phase implementation of a one-sided factorization.

standpoint, the increased computational capability requires an
incredible increase in the amount of concurrency that a soft-
ware must be able to utilize. This, which in turn, requires the
hardware/software not only to exploit unprecedented amounts
of parallelism at the algorithm level, but also Multi-way Het-
erogeneous Programing through the Master-Devices approach
that we propose and describe in the next section. From a soft-
ware point of view, we know that from the routines described
in Table I, the PanelFactorize is memory-bound, while
the TrailingMatrixUpdate is compute-bound. Thus, one
can expect inefficiency of the simple loop of Algorithm 1
due to the nature of the PanelFactorize phase. As a
consequence, the algorithm must be modified further in order
to overcome this issue and to achieve closer to optimal perfor-
mance. The first optimization is to hide the inefficiency of the
memory-bound task (e.g., the PanelFactorize phase). A



common technique to achieve this is to use lookahead [21]. In
other words, the idea is to split the update phase of step i into
an update of the next panel UnextP (the first green block from
the left of Figure 1), and an update of the rest of the trailing
matrix Urest (the green blocks to the right). Thus, once the
update of the next panel is done, its PanelFactorize phase
of step i+1 can start in parallel with the update of the rest of
the trailing matrix Urest, hiding its memory-bound behavior.
The Multi-way Heterogeneous Programing model described in
the next subsection provide an easy way to perform these two
operations in parallel. Figure 3 shows the execution trace of
the LU factorization on the KNL where we can see that the
panel factorization, illustrated in red, is computed in parallel,
with the trailing matrix update depicted in green.

The efficient use of multiple computational devices for
Algorithm 1 strongly depends on the data distribution of the
matrix. The PanelFactorize phase operates on a block-
column of data (cf., the blue blocks of Figure 1), and thus it
is preferable for its data to be located in the same memory
space in order to avoid communications, and to increase data
locality, and cache reuse. The TrailingMatrixUpdate
phase requires data from the panel and the top block of nb
rows, and in the QR case a summation over the columns of
the trailing matrix, which makes a block-row data distribution
a bad candidate. For example, the xGEMM routine of the
LU update (green blocks of Figure 1) requires data from the
output of the xTRSM magenta blocks of Figure 1. We easily
deduce that a block-column data distribution is preferable for
both phases. Thus, based on the analysis of all the routines
described in Table I, we concluded that an optimal distribution
that minimizes the communications is a 1D block-column data
distribution. Note that in contrast to the 2D data distribution,
well known from the distributed memory ScaLAPACK, here
we are in shared memory, and the number of targeted devices
is in general less than 10. It turns out that the benefits of a 2D
distribution (to keep load balance throughout the computation)
cannot overcome the overheads of the extra communications
and synchronizations associated with it on shared memory
systems. This is illustrated by the performance experiments
in Figures 4, 5, and 6. We see that two KNCs (purple curves)
reach twice the performance of one KNC (cyan curve), i.e., a
perfect scalability, and performance is close to the theoretical
peak. This shows that the optimization techniques cited above
are well implemented, and that the panel computation and the
CPU-KNC communications are overlapped with the trailing
matrix update phase. More details are provided in Section VI.
We propose a 1D hardware-capabilities-weight block-column
distribution, which distributes the data across the devices based
on their computing capabilities (in a 1D block-column fashion).
For more details about the hardware-capabilities-weight distri-
bution, we refer to [12]. While the main purpose of this paper
is a self-boot single KNL, we mentioned the importance of the
data distribution since, as described next, a single device can
be viewed as many, and thus the data distribution analysis still
holds, where communication becomes now between cores on
the same ship and reflect data movements between low level
memory such as L2 cache.

B. Programming Multi-way Heterogeneous Resources
Developing software that properly maps algorithmic re-

quirements to the specific strengths of the hardware com-
ponents requires the development of heterogeneous algo-

rithms. Xeon Phi and GPUs have high computational peaks
compared to multicore CPUs. The difference in capabilities
makes it challenging to develop a portable algorithm that
can achieve high performance, reach good scalability in a
multi-way heterogeneous environment, while also being easy
to use, modify, and optimize. For example, computations
on the critical path of an algorithm (mainly memory-bound
operations like the PanelFactorize phase) may be more
suitable to run on a small number of cores — the well
known way is to run it on multicore CPUs– than on high-
throughput computing devices such as GPUs or Xeon Phis,
which are more suitable for highly-parallel computations as in
the TrailingMatrixUpdate phase. This is what we call
hybrid mode — where CPUs work together with accelerators.
We have demonstrated the methodology of developing these
types of hybrid algorithms in the MAGMA Library [12], which
is widely used and referenced by industry (NVIDIA, Intel,
AMD, and MathWorks) and application developers from the
scientific community.

Fig. 2. The design of our Unified Programming Model.

We build on the same approach by: 1) extending it to native
mode (where an algorithm runs on the same type of hardware,
e.g., the KNL), and 2) supporting more hardware, such as
multicore CPUs and the recent self-hosted KNL. Using the
whole accelerator to compute a memory-bound task that is on
the critical path of an algorithm is not a good idea, as presented
in the previous section, since this kind of task does not exhibit
enough parallelism. Therefore, we propose a programming
model based on what we call a virtual view of the hardware.
The hardware (GPUs, Xeon Phi KNC, Xeon Phi KNL, and
multicore CPUs) can be viewed/modeled as a Master or Host
computing unit with low capability that is responsible for tasks
that are memory-bound, and other Device units or workers that
are for compute-intensive tasks, as illustrated in Figure 2. This
way, we can represent any native mode as a virtual hybrid
mode even within the same hardware. For example, a KNL
with 64 cores can be viewed as a Master using 4 cores, and
one Device using 60 cores. Another possible configuration is a
Master using 4 cores along with 6 Devices using 10 cores each,
etc. Hence, the techniques proposed in Section IV-A can be
easily developed now using this Master-Device design. For the
rest of the paper, we just have two computing types, a Master
unit and one or many Device units, independently from the
associated hardware.



Task Flags panel flags = Task Flags Initializer
Task Flags update flags = Task Flags Initializer
Set the priority of the panel task

TaskFlagSet(&panel flags, PRIORITY, 10)
Panel is memory-bound → locked to Master and
disable task stealing

TaskFlagSet(&panel flags, OPTYPE, BLAS2,
DEVTYPE, Master)
Update is compute-intensive → preference to Device

TaskFlagSet(&update flags, OPTYPE, BLAS3,
DEVTYPE, Device)
for k ∈ {0,nb,2×nb, . . . ,n} do

Factorization of the panel A(k:n,k:k+nb)
TASK: getf2(A(k:n,k:k+nb))
Swap the rows to the left and the right of the panel

TASK: laswp(A(k:n,1:k))
TASK: laswp(A(k:n,k+nb:n))
for j ∈ {k+nb,k+2nb, . . . ,n−nb} do

if j = k+nb then
TaskFlagSet(&update flags, PRIORITY, 10)

TASK: trsm(A(k:k+nb,k:k+nb) → A(k:k+nb,j:j+nb)
if panel m > panel n then

TASK: gemm( A(j:n,k:k+nb) ×
A(k:k+nb,j,j+nb) → A(j:n,j:j+nb) )

Algorithm 2: LU implementation for multiple devices.

The key features taken into account by our model are
the capabilities of the computational resources, the memory
access, and the communication cost. We have developed a
strategy that prioritizes the data-intensive operations to be
executed by the Devices and the memory-bound ones by the
Master. Moreover, we redesigned the kernels and implemented
dynamically guided data distribution to exploit parallelism in
order to keep the Devices busy. From a programming model
point of view, each algorithm is converted into a Master part
and a Device part. The routines destined to execute on the
Devices must be extracted into a separate hardware-specific
kernel function. The kernels may need to be optimized for
the Device, e.g., including unrolling loops, replacing some
memory-bound operations with compute-intensive ones even
if it has a marginal extra cost, and also arranging operations
to use the Device memory efficiently. The Master must manage
the Device memory allocation, the Master-Device data move-
ment, and the kernel invocation. We used a runtime engine
in order to present a much easier programming environment
and to simplify scheduling. This often allows us to maintain a
single source version that handles different types of hardware
either independently, or mixed together. Our goal is to abstract
hardware details, while still maintaining fine levels of control.

Algorithm 2 shows the pseudocode for the LU factor-
ization. It consists of a sequential code that is simple to
comprehend and is independent of the architecture. Each call
represents a task that is inserted into the scheduler, which
stores it to be executed when all of its dependencies are
satisfied. Each task by itself consists of a call to a kernel
function that could either be a Master or a Device function. We
tried to hide the differences between hardware and to allow the

scheduler engine to handle the transfer of data asynchronously
and automatically, when needed (meaning when Master and
Device do not share the same memory). We have proposed a
set of scheduling directives (such as DEVTYPE, PRIORITY,
and OPTYPE flags) that are evaluated at runtime in order to
fully map the algorithm to the hardware, and to run close to
the peak performance of the system. DEVTYPE specify the
type of of the device, OPTYPE specify the operation type
(e.g., memory-bound BLAS2 or compute-intensive BLAS3)
while PRIORITY specify the priority of the task. Using these
strategies, we can easily develop simple and portable code
that can run on different heterogeneous architectures, letting
the scheduling and execution engine do the task dependency
analysis, resource scheduling, and finally, the task execution. A
simple example of these functionalities is the implementation
of the lookahead technique that does not requires any extra
programming effort. The first task of the trailing matrix update
phase (trsm and gemm) consists of the update of the next
panel. Since it is a priority task, the scheduling engine ensures
that the scheduler places it at the top of the queue as a priority
task (since it is on the critical path), tracks its dependencies,
and once finished, sends it to the Master in order to perform
the panel factorization of the next step, while the accelerator
Device continues the update of the trailing matrix of step k.
This technique is called lookahead, and is hidden here by the
scheduler without any extra lines of code. Figure 3 shows the
execution trace of the LU factorization on the KNL. We see
that the panel factorization task of step i+ 1 runs in parallel
with the update of the rest of the trailing matrix of step i,
allowing lookahead.

C. Adaptive Multi-grain Scheduling
In this section we describe the techniques that we used to

provide an adaptive, scalable, high performance execution in
a multi-way heterogeneous environment. Further details and
experiments can be found in our earlier work [12]. There
are not many restrictions on the user code, and a sample
is presented in Algorithm 2. The user is responsible for
providing computational fragments as tasks, defining dataflow
dependences between tasks, and indicating task priority as well
as its type: memory- or compute-bound (BLAS2 or BLAS3,
respectively). The scheduler will take over the execution of
tasks by first placing them in the appropriate queue (according
to task type and available resources). For an efficient execution,
the tasks need to be assigned to the computational resources,
taking into account the varying computational differences
between the resources. The selection of the right queue takes
into account the length of each queue, which reflects the
current and future load of the Device, and the computational
capacity of the Device. This is achieved by assigning tasks
to Device bins with a greedy heuristic. In order to keep a
measure of the difference between the resources, for each
Device i and each kernel type k, we maintain an αik parameter
which corresponds to the effective performance rate that can
be achieved on that Device. This αik, also referred to as a
resource capability weight for the task, can be provided
by the user via a task-flag, or could potentially be estimated
by the runtime environment. As an example, the capability-
weights for the update operation (a Level 3 BLAS) is around
1 : 10, which means that the GPU can execute 10 times as
many update tasks as the CPU. The tasks are scheduled using
adaptive scheduling with capability weights. As a task is



inserted into the runtime, it is assigned to the resource with
the largest remaining capability-weights. This greedy heuristic
takes into account the capability-weights of the resource as
well as the current number of waiting tasks preferred to be
executed by this resource. For example, the panel tasks are
memory-bound and thus are preferentially executed on the
Master. The adaptive heuristic tries to maintain the ratios of
the capability-weights across all the resources to maintain
a balanced execution time. Finally, the task is inserted into
the appropriate queue according to its priority to allow for
progress along the critical path of the task graph. The priorities
are user-defined and are optional, but in practice, they can
give a performance advantage for some workloads. Similarly,
appropriate allocation of hardware resources to the scheduler
devices can be regarded as a tuning option. Once the tasks
are scheduled for execution, we provide transparent data
movement through the runtime. If the runtime detects that the
data required for a task is not available at the location that the
task is scheduled, it manages the data transfer. The advantage
of such a strategy is not only to hide the data transfer cost
between the Master and Devices (since it is overlapped with
the Devices computation), but also to keep the Devices busy
by providing enough tasks to execute.

V. FLEXIBLE DESIGN AND ROBUST TUNING PROCESS

The proposed programing model also allows us to have
a flexible resource management and robust tuning process.
Thus, keeping a consistent interface that remains the same for
users, independent of scale and processor heterogeneity, but
which achieves good performance and efficiency by binding
to different underlying code, depending on the configuration.
For example, consider a KNL in native mode and construct
two configurations – one with a 4 core Master and a 60
core Device, and a second one with 4 Devices with 15
cores each. Figure 3 shows the execution trace of the LU
factorization for both configurations. Note that performance
is similar, with less than a 5% difference. This attractive
observation shows that when the kernels of the update routine
are optimized to perform well on large number of cores, we
do not need to split the hardware over many Devices; only
one Device is enough to achieve very good performance and
reach close to the peak. This scenario simplifies the tuning
process (reducing the number of configurations), minimizes the
effort required for the hardware-specific kernel optimizations
(since update kernels need to be optimized for a large number
of cores), decreases the scheduler work, and also makes the
execution trace easy to understand, which in turn simplifies
the performance analysis and the debugging process.
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Fig. 3. Execution traces for the LU factorization on KNL (64 cores) viewed
as a Master using 4 cores and either one Device of 60 cores (top) or four
Devices of 15 cores each (bottom). The panel factorization is represented in
red (Master tasks) and the update by the green color (Devices tasks).
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VI. PERFORMANCE RESULTS

Figures 4, 5, and 6, already mentioned in the previous
sections, illustrate the performance results in double precision
(DP) arithmetic for the LU, QR, and Cholesky factorizations,
respectively, for three types of hardware and in both hybrid
and native configurations. We use the same code to show its
portability, sustainability, and ability to provide close to peak
performance when used in native mode, on a single KNC (the
blue curve), self-hosted preproduction single KNL (the red
curve), 36 Broadwell CPUs only (the green curve), as well as
in hybrid mode on 16 Sandy Bridge E5-2670 CPU cores with
either one KNC (cyan curve) or two KNCs (purple curve).
In addition to the portability, note that the results confirm
the following observations. Our heterogeneous multi-device
implementation achieves perfect scalability for large matrix
sizes. In order to evaluate the performance of an algorithm we
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Fig. 6. Performance of Cholesky across five hardware configurations.



rate its performance compared to what we refer to practical
peak which is the peak of the most compute-intensive and the
most optimized Level 3 BLAS routine, the dgemm routine.
The peak performance of the MKL square dgemm on 36
cores Broadwell E5-2697 is about 1,140 Gflop/s, on one
KNC is 940 Gflop/s, and around 2,000 Gflop/s for the KNL.
The operands of the update phases have rectangular shapes
reducing the update’s performance to about 90% of the square
gemm peak mentioned above. The performance obtained by
the hybrid LU factorization illustrated in Figure 4 is about
900 Gflop/s on a single KNC and about 1,700 Gflop/s on two
KNCs, which demonstrates scalability and performance close
to the peak. This also indicates that the panel factorization
phase running on the CPUs is fully overlapped with the trailing
matrix update running on the KNCs, and for that, the overall
factorization performance reaches the Level 3 BLAS gemm
performance. More attractive are the native performance re-
sults. We obtained about 772 Gflop/s on the KNC and about
1,500 Gflop/s on the KNL, which is considered efficient and
high performance. Note that when running in native mode for
any hardware (CPUs, KNC, or KNL), the hardware is split
over Master and Devices. The master is assigned to a small
number of the hardware cores (in our experiments, about 10%),
and the remaining cores are the ones that contribute to the
trailing matrix update. As a consequence, in order to evaluate
our algorithm, the peak now is the performance of the gemm
on the remaining number of cores. The native codes are within
90+% of the hybrid ones, i.e., within 90+% of running just the
Level 3 BLAS flops of the factorizations. A similar trend was
observed for the QR and Cholesky factorizations.

Figures 7, 8, and 9 show a performance comparison of
our results vs. MKL for the LU, QR, and Cholesky factoriza-
tions, respectively, on the KNL processor. MKL is optimized
for all Intel Xeon and Xeon Phi architectures. The Intel
MKL team puts additional effort into optimizing the Level
3 BLAS routines and the LAPACK LU, Cholesky, and QR
factorizations, as these are some of the most commonly used
routines in the library. The MKL LU factorization is the most
highly optimized of the three factorizations. The MKL LU
performance results look very attractive, reaching up to 1,700
Gflop/s, which is very close to the peak performance of the
dgemm routine (vs. 1,320 for Cholesky and 800 for QR).
In comparison, the dynamic MAGMA LU achieves up to
1,500 Gflop/s. For the QR factorization, as shown in Figure 8,
our implementation significantly outperforms the Intel MKL.
This is due mostly to the algorithmic and kernel optimizations
outlined in the previous sections. The Cholesky factorizations
are about the same performance with Intel MKL, slightly
outperforming the dynamic MAGMA version.

VII. CONCLUSION AND FUTURE WORK

While heterogeneous compute nodes have become ubiqui-
tous, the need for sustainable numerical libraries and an easy
programming paradigm, capable of delivering correct results
and providing portability and efficiency across a large range
of hybrid environments, became ever critical.

We designed a programing model and developed a number
of optimization techniques for the LU, QR, and Cholesky
factorizations on many-core systems. In particular, the tech-
niques presented advanced the current state-of-the-art for these
factorizations, providing efficient support for KNL, Intel’s next
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Fig. 7. Dynamic MAGMA vs. MKL LU on the preproduction KNL in DP.
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Fig. 8. Dynamic MAGMA vs. MKL QR on the preproduction KNL in DP.
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Fig. 9. Dynamic MAGMA vs. MKL DP Cholesky on the preproduction KNL

generation of Xeon Phi processors. We also showed how
judicious modifications to superscalar task scheduling were
used to meet two competing goals: (1) obtain portable high-
fraction of the peak performance for heterogeneous systems,
and (2) employ a unified programming model that simpli-
fies the development. Our performance analysis unequivocally
demonstrates that our approach improves the performance of
heterogeneous platforms by using adaptive scheduling tech-
niques and also enhances the scalability of the underlying
algorithms by providing a set of features capable of mapping
the algorithm and its data to all potential computing resources.
This principle can be extended to many other algorithms
such as the eigenvalue and singular value methods or even
sparse solvers. Future work will include releasing a dynamic
MAGMA library that merges CUDA, OpenCL, and Intel Xeon
Phi development branches into a single software package using
our new programming model.



ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant ACI-1339822, the Department
of Energy, and Intel. The results were obtained in part with
the financial support of the Russian Scientific Fund, Agreement
N14-11-00190.

REFERENCES

[1] M. Abalenkovs, A. Abdelfattah, J. Dongarra, M. Gates, A. Haidar,
J. Kurzak, P. Luszczek, S. Tomov, I. Yamazaki, and A. YarKhan.
Parallel programming models for dense linear algebra on heterogeneous
systems. Supercomputing Frontiers and Innovations, 2(4), 10-2015
2015.

[2] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov. Numerical linear algebra on
emerging architectures: The PLASMA and MAGMA projects. J. Phys.:
Conf. Ser., 180(1), 2009.

[3] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU:
A Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures. In Proceedings of the 15th International Euro-Par Con-
ference on Parallel Processing, Euro-Par ’09, pages 863–874, Berlin,
Heidelberg, 2009. Springer-Verlag.
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