
On block-asynchronous execution on GPUs

Hartwig Anzt, Jack Dongarra
University of Tennessee

{hanzt,dongarra}@icl.utk.edu

Edmond Chow
Georgia Institute of Technology

echow@cc.gatech.edu

Abstract—This paper experimentally investigates how GPUs
execute instructions when used for general purpose computing
(GPGPU). We use a light-weight realizing a vector operation
to analyze which vector entries are updated subsequently, and
identify regions where parallel execution can be expected.
The results help us to understand how GPUs operate, and
map this operation mode to the mathematical concept of
asynchronism. In particular it helps to understand the effects
that can occur when implementing a fixed-point method using
in-place updates on GPU hardware.

Keywords-GPU-computing, asynchronous execution, block-
asynchronous iteration

I. INTRODUCTION

Understanding the operation mode of streaming proces-
sors like GPUs can be important for implementing linear
algebra algorithms. In particular when implementing fixed-
point iterations that reuse the input vector as output vector,
understanding the order in which the distinct vector entries
are updated is required as this order can have signifi-
cant impact on the convergence properties of the iteration
method [1]. On GPUs, the order in which the vector entries
are updated is determined by the level of parallelism and the
thread block scheduling.

In this paper we unveil some key properties of the
operation mode used by GPUs. Precisely, we experimen-
tally locate instances where vector values were updated
subsequently, and try to identify the largest sub-vector for
which parallel execution can be expected. The goal is to
understand how GPUs execute vector instructions, and the
impact on numerical algorithms that reuse the input vector
as output. The most prominent representative for this class
of algorithms are fixed point iterations that become “block-
asynchronous [2]” when executed on GPUs.

The rest of the paper is structured as follows. In Section II
we list some related work on asynchronous two-stage and
block-asynchronous iterations on GPUs. In Section III we
review some technical details about the hardware charac-
teristics of a state-of-the-art GPU architecture, the CUDA
programming model, and the kernel execution mode. The
core of the paper is Section IV, where we employ a light-
weight test kernel to experimentally analyze some properties
of the kernel execution of the GPUs. We summarize the
experimental observations in Section IV-C.

II. RELATED WORK

Relaxing the level of synchronicity in favor of more
efficient execution on GPUs has been subject to numerous
research efforts. Most notably is the idea to span the arc
between asynchronous two-stage iterations and the block-
asynchronous execution mode: a fixed-point iteration reuses
the input vector as output vector; the block-asynchronous
execution of the GPU destroys the global synchronicity; the
result is an algorithm where parallel handling of subsets is
embedded in a asynchronous global update scheme. For a
Jacobi relaxation method this setting results in a “block-
asynchronous Jacobi” where subsets of the iteration vector
are iterated in synchronous Jacobi fashion, and asynchronous
updates are used in-between the subsets [2]. The potential of
block-asynchronous Jacobi on GPU hardware was initially
investigated in [3]. This includes an analysis on the benefits
of adding local iterations on shared memory that may be
used to hide memory latency and promote faster solver con-
vergence. Block asynchronous Jacobi was also considered as
smoother for geometric multigrid methods [4], and evaluated
in a mixed-precision iterative refinement framework [5].
In [6], a block-asynchronous Jacobi was used in a multigrid
solver running on a GPU cluster. A Gauss-Seidel method as
inner solver was considered in [7] where a block-relaxation
method was used to solve a stencil discretization. In [8],
block-asynchronous Jacobi was employed as an iterative
solver for sparse triangular systems arising from incomplete
factorization preconditioning. A fixed-point implementation
allowing for block-asynchronous execution was also used
in [9] for the iterative generation of an incomplete LU fac-
torization. Some of these previously mentioned publications
make vague or incorrect statements about the size of the
subsets where the synchronous inner solver acts.

III. TECHNICAL DETAILS

In the following paragraphs we review some technical
details that provide an idea of what we can expect in the
experimental analysis.

A. Hardware characteristics

The GPU hardware we target in this paper is NVIDIA’s
Kepler GK110 (GK110b) architecture [10]. It is the latest
architecture featuring full double precision support and, e.g.,

Figure 1: GK110 SMX design [10].

used in the K40 GPU line. One K40 composes of 15 mul-
tiprocessors called “streaming multiprocessor (SMX),” each
of the SMX equipped with 64 KB of local multiprocessor
memory. The local memory splits into shared memory and
L1 cache. On each multiprocessor, there are 192 single-
precision CUDA cores, 64 double-precision arithmetic units,
32 special functional units, and 32 load/store units. The
32 load/store units handle the main memory access, which
means that each memory transaction can read or write up to
128 byte of contiguous memory. Working with 32-bit data
types, this means that each memory transaction can read or
write up to 32 values, if these values fall within the same
128B segment of memory. Otherwise, part of the bandwidth
is unexploited. The coalescing of up to 32 data elements into
a single transaction is motivated by the size of the “warp.”
The arrangement of the building blocks forming one SMX
is sketched in Figure 1. 15 multiprocessors are aggregated
in one K40 GPU, all accessing 12 GB of main memory at
an accumulated bandwidth of 288 GB/s (theoretical peak).
Additionally, each card is equipped with 1.5 GB of L2 cache,
and a PCI controller managing the GPU-host communica-
tion. Figure 2 visualizes the GK110 architecture.

B. CUDA programming

CUDA C [11] is an extension to the C programming
language that allows for general purpose computing on
NVIDIA’s CUDA architecture. Operations for execution on

Figure 2: GK110 architecture [10].

the GPU are coded in terms of a “GPU kernel.” Kernel
execution is handled by thread blocks, where each thread
block is usually composed of multiple threads. In the current
compute capability, a thread block can contain up to 1024
individual threads, arranged in up to three dimensions [12].
Usually, one thread block is not sufficient to cover the
complete data stream. Instead, multiple thread blocks are
arranged in an up to three-dimensional grid. For good
performance, it is essential to find a trade-off between the
thread-block size and the number of thread blocks forming
a grid: few large thread-blocks allow for better data reuse
through shared memory, smaller thread blocks give the
scheduler more flexibility in assigning thread blocks to the
multiprocessors. In case of using small thread-block sizes,
a multiprocessor may schedule multiple thread-blocks in
parallel.

C. GPU execution mode

Every SMX of the GK110 architecture can manage up
to 2048 threads, arranged in from anywhere from 2 to 16
different thread-blocks. The upper bound of 16 is a strict
hardware limit, the lower bound of 2 is due to a maximum
of 1024 threads forming one thread block. The number of
threads that is executed in parallel is, however, significantly
smaller, and depends on the hardware characteristics and
the kernel requirements such as registers, shared memory, or
thread-block size. The intention of having a larger number of
threads active is to quickly switch in-between them to cover
memory latency. E.g., if threads in a warp issue a memory
operation, those threads will stall while waiting for the
memory transaction to complete. To combat this, rather than
allowing the hardware to stall, the warp scheduler may find a
warp that is not waiting for a memory operation to complete,
and begin executing this warp instead. This constant juggling
of active warps allows the GPU to tolerate the high memory
latency and attempt to keep the compute cores occupied. A

result of this operation mode, the data will not be handled
in parallel for data streams that are too large for one
warp; instead some data has to wait until resources are
available again. This issue leads us to consider the execution
mode as block-asynchronous, consistent with the notation
for iteration schemes, where local, synchronous iterations
are embedded in a global asynchronous iteration [2]. Using
this interpretation, a central question is what size the blocks
of synchronous, parallel execution have. While the technical
characteristics of the GPU hardware may suggest that the
blocks of parallel execution are consistent with the warps, we
will investigate this question experimentally the Section IV.

g l o b a l vo id kerne l1(i n t n, double *val) {
i n t i = blockDim.x * blockIdx.x + threadIdx.x;
i f ((i > 0) && (i < n-1))

i f (val[i+1] == 1.0 && val[i-1] == 1.0)
val[i] = 0.0;

}

Figure 3: CUDA kernel revealing block-asynchronous exe-
cution scheme of GPUs.

g l o b a l vo id kerne l2(i n t n, double *val) {
i n t i = blockDim.x * blockIdx.x + threadIdx.x;
i n t tid = threadIdx.x;
__shared__ double tmp[BLOCKSIZE];
i f (i<n)

tmp[tid] = val[i];
__syncthreads();
i f ((tid > 0) && (tid < BLOCKSIZE-1)){

i f (tmp[i+1] == 1.0 && tmp[i-1] == 1.0)
tmp[i] = 0.0;

} e l s e i f ((tid == 0) && (i > 0)){
i f (val[i-1] == 1.0)

tmp[i] = 0.0;
} e l s e i f ((tid == BLOCKSIZE-1) && (i < n-1)){

i f (val[i-1] == 1.0)
tmp[i] = 0.0;

}
__syncthreads();
i f (i<n)

val[i] = tmp[tid];
}

Figure 4: CUDA kernel revealing block-asynchronous exe-
cution scheme of GPUs.

IV. EXPERIMENTAL ANALYSIS

In this section we experimentally analyze the effects of
the GPU execution scheme. The analysis is based on kernels
operating on a one-dimensional data stream that we call a
“vector” consisting of “components.” Although the findings
also hold for multi-dimensional data streams and higher
thread block dimensions, we consider only a setting where
the compute thread are arranged linearly within each thread
block, and the thread blocks are arranged linearly within
the compute grid. This simplification corresponds to a one-
dimensional grid containing one-dimensional thread blocks.
Also, it allows for mapping threads to vector components.

A. Evaluation paradigms

With the goal of relating the block-asynchronous ex-
ecution mode to the mathematical perception of block-
asynchronous updates, we first have to define a suitable
concept of parallel execution. Given a data set, we call
the update of two components a “parallel update” if the
following conditions are fulfilled:

1) The update process of the two components is based on
an identical memory state for all other components.

2) The update process of the two components is based on
the pre-update memory state of the respectively other
component.

For dependent update operations, this concept of parallelism
implies that two updates are not considered parallel if
one component is updated based on an already updated
memory state of the other component. We note that we are
in particular interested in determining whether components
adjacent in main memory are updated in parallel or non-
parallel fashion. This allows to identify sets of consecutive
components that are handled in parallel.

In general, it is very difficult to identify the largest
coalesced entity for which parallel updates can be expected.
Component updates are handled by threads, the threads
are aggregated in thread blocks, and distinct thread blocks
may be assigned to the same, or different multiprocessors.
Also, the thread block scheduling an the scheduling of
warps within a thread block is not deterministic, and can,
theoretically, differ between runs. The approach we use to
identify regions of parallel execution is based on a concept
we call “memory inconsistencies”. We define a memory
inconsistency the situation where a component update is
executed at a point when a component adjacent in memory
has already been updated. This concept accounts for all
memory levels, i.e. we also call it a memory inconsistency if
the adjacent component is not yet updated in main memory,
but in local multiprocessor memory. Hence, memory incon-
sistencies are determined by what values an update operation
would read for its neighbors.

For experimental investigation, we initiate a vector with
ones, and design a simple kernel that sets vector values to
zero if both adjacent values are one, see kernel1 in Figure 3.
If the kernel reads an already updated value for one of its
immediate neighbors, the vector component remains one.
During kernel execution, the vector values are read, updated,
and written back to the GPU main memory. The output
vector is expected to show a pattern: zeros corresponding to
regions of parallel updates, ones indicating locations where
adjacent vector components where handled subsequently.

The same detection strategy is used in a second kernel,
that, oppose to kernel1, explicitly uses the local mul-
tiprocessor memory as intermediate storage for reading,
updating, and writing the values (see kernel2 in Figure 4).
Synchronizations separate these data access operations from

Thread-block size 8 Thread-block size 16

0 10 20 30 40 50 60 70

Vector entry

0 10 20 30 40 50 60 70

Vector entry

Thread-block size 32 Thread-block size 64

0 10 20 30 40 50 60 70

Vector entry

0 10 20 30 40 50 60 70

Vector entry

Thread-block size 128 Thread-block size 256

0 10 20 30 40 50 60 70

Vector entry

0 10 20 30 40 50 60 70

Vector entry

Figure 5: Detected memory inconsistencies in the vector updates. Values larger zero indicate locations where a vector
value was updated subsequently to one of its intermediate neighbors. Zero values correspond to regions where no memory
inconsistencies occurred.

the actual component update. The intention of disconnecting
the data read and write phases from the computation is
to determine the parallelism level used for the component
updates.

As previously mentioned, the GPU kernel will be executed
in terms of thread blocks. The order in which the GPU
thread blocks are executed is not deterministic, and can,
theoretically, differ between runs. The same holds for the
execution of the distinct warps within on thread block.
Therefore, we base the analysis on a high number of kernel
executions. The goal is to catch all memory inconsistencies
that can potentially occur. Although the experiments are
based on 1,000,000 kernel executions, we emphasize that
the experimental analysis only allows to identify memory
inconsistencies, it is impossible to identify areas where
parallel execution is guaranteed. Hardware characteristics
and experimental results may suggest those regions, but no
experiment allows for a conclusive proof of this.

B. Experimental results

In a first experiment, we run kernel1 with different thread
block sizes. We then map all detected memory inconsisten-
cies to the first set of thread blocks. Precisely, if a memory
inconsistency was encountered at a location i, we map this
inconsistency to location j where j = mod256(i), and 256
being a multiple of all evaluated thread block sizes. This
helps in hiding effects associated with the scheduling of the
first thread blocks.

Figure 5 visualizes the memory inconsistencies we en-
counter when executing kernel1. The first row of Figure 5
visualizes the inconsistencies for thread-block sizes 8 and
16, which is smaller than the warp size (32). Memory

inconsistencies occur at the thread-block boundaries. Within
a thread block, no memory inconsistencies are detected.
The second row shows the data for thread-block sizes 32
and 64. 32 is also the warp size. The inconsistencies at
the thread-block boundaries are expected. For thread-block
size 64 (right figure in second row), memory inconsistencies
occur not only at the thread-block boundaries (component
0 and 64), but also at the location 32. This indicates that
components handled by different warps were, although part
of the same thread block, not updated in parallel fashion.
The same pattern can be observed for thread-block sizes
128 and 256, see the plots in the third row of Figure 5.

The experimental results are consistent with the GPU
characteristics. Thread-block sizes larger the warp size
ensure the vector components are handled by the same
multiprocessor, however not necessarily in parallel. kernel1
composes of memory reads, component updates, and mem-
ory writes, and with the memory access being handled at the
granularity of warp, a multiprocessor may interleave read,
update and write phases of distinct warps to hide memory
latency.

Another interesting observation from Figure 5 is that the
detected memory inconsistencies are all located in the first
component of a thread block or warp. For this kernel, we
never encounter the situation where the last component in a
warp or thread block is updated after a immediate neighbor
has been updated. This indicates that in this experiment, the
thread blocks were – in particular if handled by the same
multiprocessor – executed in increasing order. If handled
by different thread blocks, the exact update order may have
been hidden by the delay of accessing main memory.

Next, we investigate the impact of using shared memory

Thread-block size 128 Thread-block size 256

0 10 20 30 40 50 60 70

Vector entry

0 10 20 30 40 50 60 70

Vector entry

Figure 6: Update inconsistencies in the vector updates using shared memory with a synchronization barriers inside each
thread block before and after data transfers.

for thread block configurations exceeding the warp size.
The first explicit synchronizations in kernel2 enforce that
all data is loaded into multiprocessor memory before any
component (of the thread block) is updated (see line 13
Figure 4). The second synchronization (line 30 in Figure 4)
ensures that all components are updated in shared memory
before any component is written back to main memory.
This isolates the component update from the main memory
access. The results obtained from executing kernel2 with
thread block size configurations 128 and 256 are visualized
in Figure 6. Again, we detect memory inconsistencies not
only at the thread block boundaries, but also at the warp
boundaries. This shows that also the arithmetic operations
in the component update phase uses a parallelism level of
the warp size.

A difference to the results in Figure 5 is that update
inconsistencies are not only detected at the beginning of
the warps (i.e. components 0, 32, 64), but also in the last
components of a warp (components 31, 63). This is only
possible if a component with a lower ID is updated at a point
where an adjacent component with a higher ID has already
been updated, i.e. warp with higher ID has completed the
component update – at least in the local multiprocessor
memory – before a warp with a lower ID. We conclude
that the previously observed linear consecutive scheduling
of warps may be violated.

In a nutshell, the key observations from running kernel1
and kernel2 are:
• If the data dependencies allow, thread blocks are prefer-

ably scheduled in consecutive, increasing order.
• For thread-block sizes smaller or equal the warp size,

we have no indications of non-parallel execution within
a thread block.

• For thread block sizes exceeding the warp size, com-
ponents assigned to distinct warps may be handled
subsequently.

• With the intention of hiding memory latency, the read,
update, and write phases of distinct warps may be
interleaved. For thread block sizes larger the warp size,
this can result in a situation where components part of
the same thread block are handled based on different
stages of the local multiprocessor memory.

• Memory operations and arithmetic operations are exe-
cuted at a parallelism level of the warp size, which is

32 for the current NVIDIA GPU hardware.

C. Summary

This study investigated the block-asynchronous execution
mode of NVIDIA’s GK110 GPU processor.

We have seen that components assigned to distinct warps
may be handled subsequently. In particular, increasing the
thread block size beyond the warp size does not result
in larger sets of consecutive components that are handled
in parallel. For thread block sizes smaller the warp size,
the thread-block to warp mapping is non-deterministic, and
components assigned to different thread blocks may be han-
dled subsequently. These observations show that the subset
size of the synchronous inner iterations like they occur in the
block-asynchronous fixed-point iterations considered in [2],
[3], [4], [9] is limited by the warp size 32.

ACKNOWLEDGMENT

The authors would like to acknowledge support from
the U.S. Department of Energy (Award Number DE-SC-
0010042), and NVIDIA. Furthermore, the authors would like
to thank Jeff Larkin for many fruitful technical discussions,
and for providing helpful comments on an earlier version of
the manuscript.

REFERENCES

[1] Y. Saad, Iterative Methods for Sparse Linear Systems.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2003.

[2] H. Anzt, “Asynchronous and Multiprecision Linear Solvers
- Scalable and Fault-Tolerant Numerics for Energy Efficient
High Performance Computing,” Ph.D. dissertation, Karlsruhe
Institute of Technology, Institute for Applied and Numerical
Mathematics, Nov. 2012.

[3] H. Anzt, S. Tomov, J. Dongarra, and V. Heuveline, “A block-
asynchronous relaxation method for graphics processing
units,” Journal on Parallel Distributed Computing, vol. 73,
no. 12, pp. 1613–1626, 2013.

[4] H. Anzt, S. Tomov, M. Gates, J. Dongarra, and V. Heuve-
line, “Block-asynchronous Multigrid Smoothers for GPU-
accelerated Systems,” in ICCS, ser. Procedia Computer Sci-
ence, vol. 9. Elsevier, 2012, pp. 7–16.

[5] H. Anzt, P. Luszczek, J. Dongarra, and V. Heuveline, “GPU-
Accelerated Asynchronous Error Correction for Mixed Pre-
cision Iterative Refinement,” in Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2012, vol. 7484, pp.
908–919.

[6] M. Wlotzka and V. Heuveline, “Block-asynchronous and
jacobi smoothers for a multigrid solver on gpu-accelerated
hpc clusters,” University of Heidelberg, Preprint Series of the
Engineering Mathematics and Computing Lab (EMCL) 03,
2015.

[7] M. R. Rodriguez, B. Philip, Z. Wang, and M. A. Berrill,
“Block-relaxation methods for 3d constant-coefficient stencils
on gpus and multicore cpus,” CoRR, vol. abs/1208.1975,
2012. [Online]. Available: http://dblp.uni-trier.de/db/journals/
corr/corr1208.html#abs-1208-1975

[8] H. Anzt, E. Chow, and J. Dongarra, “Iterative sparse trian-
gular solves for preconditioning,” in Euro-Par 2015: Parallel
Processing, ser. Lecture Notes in Computer Science, 2015,
vol. 9233, pp. 650–661.

[9] E. Chow, H. Anzt, and J. Dongarra, “Asynchronous Itera-
tive Algorithm for Computing Incomplete Factorizations on
GPUs,” in Lecture Notes in Computer Science, vol. 9137, July
12 – 16 2015, pp. 1–16.

[10] NVIDIA Corporation, “Kepler GK110 whitepaper,” 2012.

[11] NVIDIA CUDA Toolkit, 7th ed., NVIDIA Corporation, March
2015.

[12] CUDA Toolkit v7.5, NVIDIA Corporation, September 2015.

