
Fast Cholesky Factorization on GPUs for Batch and
Native Modes in MAGMA

Ahmad Abdelfattaha,∗, Azzam Haidara, Stanimire Tomova, Jack Dongarraa,b,c

aInnovative Computing Laboratory, University of Tennessee, Knoxville, USA
bOak Ridge National Laboratory, Oak Ridge, USA

cUniversity of Manchester, UK

Abstract

This paper presents a GPU-accelerated Cholesky factorization for two different

modes of operation. The first one is the batch mode, where many independent

factorizations on small matrices can be performed concurrently. This mode

supports fixed size and variable size problems, and is found in many scientific

applications. The second mode is the native mode, where one factorization

is performed on a large matrix without any CPU involvement, which allows

the CPU do other useful work. We show that, despite the different workloads,

both modes of operation share a common code-base that uses the GPU only.

We also show that the developed routines achieve significant speedups against

a multicore CPU using the MKL library. This work is part of the MAGMA

library.

Keywords: GPU computing, Cholesky factorization, batched execution

1. Introduction

High performance solutions of many small independent problems are cru-

cial to many scientific applications, including astrophysics [1], quantum chem-

istry [2], metabolic networks [3], CFD and resulting PDEs through direct and

∗Corresponding author
Email addresses: ahmad@icl.utk.edu (Ahmad Abdelfattah), haidar@icl.utk.edu

(Azzam Haidar), tomov@icl.utk.edu (Stanimire Tomov), dongarra@icl.utk.edu (Jack
Dongarra)

Preprint submitted to Journal of Computational Science November 1, 2016

multifrontal solvers [4], high-order FEM schemes for hydrodynamics [5], direct-5

iterative preconditioned solvers [6], image [7] and signal processing [8]. The lack

of parallelism in each of the small problems drives researchers to take advantage

of the mutual independence among these problems, and develop specialized soft-

ware that groups the computation into a single batched routine. Such software

is relatively easy to develop for multicore CPUs using the existing optimized10

sequntial vendor libraries as building blocks. For example, considering Intel

CPUs, a combination of the MKL library and OpenMP (scheduling individual

cores dynamically across the input problems) usually achieves a very high perfor-

mance, since most of the computation can be performed through the fast CPU

cache. However, the same technique cannot be used for GPUs, fundamentally15

due to the lack of large caches.

On the other hand, there is a need to develop factorizations and linear system

solvers that work entirely on the GPU, with no computational work submitted

to the CPU. We call this mode of operation the native mode. Native execution

on the GPU would allow the CPU to do other useful work. It can also be used20

in power sensitive environments, or in embedded systems with relatively slow

CPUs, such as the Jetson TK1. Since GPUs are inherantly more energy efficient

than CPUs, it is expected that a native code, although slower than a hybrid

code using both CPU and GPU, be more energy efficient than the hybrid one [9].

While MAGMA [10] provides high performance LAPACK functionality on25

GPUs, most of the MAGMA routines are hybrid. This means that both the

CPU and the GPU are engaged in performing the computation. This technique

is proved to achieve very high performance on large problems [11]. However,

it cannot be used efficiently to solve a batch of small problems due to the

prohibitive cost that CPU-GPU communications will have for small problems.30

It cannot be used either in systems with low-end CPUs, or when the CPU is

required to do other work. In general, we need a different design approach that

uses the GPU only.

This paper presents a high performance Cholesky factorization that can run

entirely on the GPU. We discuss two modes of operations. The first is the35

2

batch1 mode, where many small independent problems, of the same size or

different sizes, are factorized concurrently. We extend the work presented in

this direction [12], by showing a design that works for any size, not only those

sizes where the panel fits into the GPU shared memory. The second mode of

operation is called the native mode, where one large matrix is factorized using40

the GPU only. We show that the developed software for both modes share

a common code-base while achieving high performance. Eventually, with this

work integrated into the MAGMA library, we provide various choices to perform

the factorization efficiently according to the different situations summarized in

Figure 1.

start

finish

efficiency
metric?

same
size?

problem
config.?

hybrid native batched
fixed

batched
variable

high
performance

CPU?

one large matrix many small
matrices

yes no yes no

best performance

high performance
& power efficient

Figure 1: Decision flowchart for modes of operations in MAGMA

45

The paper starts by progressive optimization and tuning for the batched

mode where all problems have the same size. We then proceed with the best

configuration for fixed size problems and extend it to support variable size prob-

1We use the words batch and batched interchangeably.

3

lems. The native mode is realized by using the same code base with different

tuning parameters to work on one large problem at a time. We show experimen-50

tal results that demonstrate the performance of the proposed routines against

state-of-the-art CPU and GPU solutions.

The rest of the paper is organized as follows. Section 2 discusses some pre-

vious efforts in GPU-accelerated matrix factorizations, with a focus on batched

routines. Different modes of operation are discussed in Section 3. Section 455

presents a detailed description of the design approach, In Section 5, we dis-

cuss the obtained performance results. The paper ends with a conclusion in

Section 6.

2. Related Work

Since the emergence of general purpose GPU computing (GPGPU), per-60

formance optimization of matrix factorization algorithms on GPUs has been

a trending research topic. The hybrid algorithms in MAGMA represent the

state-of-the-art in this area, where GPUs significantly accelerate the compute-

intensive trailing updates [13, 14], and the CPU, in the meantime, prepares the

next panel factorization [11]. It has been shown, however, that such an algo-65

rithmic design is not suitable for batched workloads [15], mainly due to the lack

of parallelism in trailing matrix updates. This led to some research efforts that

deal with small matrix computations on GPUs. Small LU factorizations were

investigated by Villa et al. [16, 17] (for size up to 128), and Wainwright [18]

(for sizes up to 32). Batch one-sided factorizations have been the focus of some70

research efforts, including Cholesky factorization ([19], [20]), and LU and QR

factor factorizations ([21], [22], [23]). Some contributions focus on very small

matrices, where all the computational stages are fused and performed by a single

thread block (TB), as proposed in [20], [12], and [24].

The authors of this paper introduced variable size batched matrix multipli-75

cation (GEMM) [25] as a first step to develop LAPACK algorithms on variable size

batched workloads. In addition, the work done by the authors [12] presented

4

optimized batched Cholesky factorization that had a limitation on the matrix

sizes it could operate on. In fact, the kernel design proposed in [12] requires a

dynamic shared memory allocation that is a function of the matrix size, mean-80

ing that it cannot work on any size. This paper extends such work and provides

a design that can work on any matrix size, while supporting batches of fixed

and variable sizes. It also uses the same code-base to develop native GPU fac-

torization on very large matrices. We also show that the performance of the

developed work is portable to three different GPU architectures, achieving high85

performance in all scenarios.

3. Modes of Operation

As mentioned earlier, we are designing a full GPU solution that can operate

in two modes. We set a design goal to have a unified code base for both modes.

As an example, Figure 2 shows the modes of operation for the POTf2 algorithm,90

which is used to perform the Cholesky panel factorization. A code base, written

using CUDA device routines, represents the core operation for one matrix. Such

a code base is oblivious to any tuning parameters, which are defined later for

each mode. The device routines are then wrapped into three CUDA kernels as

shown in the figure. The native mode is the simplest, as it considers only one95

problem. The kernel passes the input arguments directly to the device routine,

with no preprocessing required.

potf2 CODE BASE
(CUDA device routine)

- Read arguments

- Determine batchid
- Read local arguments

- Determine batchid
- Read local arguments
- ETM: terminate extra

TBs

potf2_native potf2_batched potf2_vbatched

Figure 2: Modes of operations for the POTF2 routine

The batched mode requires some preprocessing. The potf2 batched kernel

is used for fixed size batched problems. It is internally organized into a number

5

of subgrids, each with a unique batchid. The batchid is used to map a certain100

matrix to a specific subgrid. The kernel reads the local input arguments of

the assigned problem and passes them to the device routine. On the other

hand, the variable size batched routine (potf2 vbatched) assumes that each

matrix has a different size and leading dimension. The kernel is configured

according to the largest matrix in the batch, which means that all subgrids can105

accomodate this matrix. An extra preprocessing step called Early Termination

Mechanism (ETM) [25] [12] trims each subgrid according to the local size of

the assigned problem. This step is necessary to avoid any runtime failures or

memory access violations. After trimming subgrids, the kernel normally passes

the local input arguments to the device routine to start the execution. We use110

the same approach in Figure 2 for all other building block routines discussed in

this paper.

4. Algorithmic Design

This section describes the design details for Cholesky factorization in both

batched and native modes. Our starting point is to have a high performance115

design and implementation for fixed size batched workloads. Such a design can

then be ported easily to support variable size batched workloads, as well as the

native mode for large matrices.

4.1. Overall Design

Figure 3 shows the overall design for the Cholesky factorization algorithm.120

The three main computational stages of the algorithm are the Cholesky panel

factorization (POTF2), the triangular solve (TRSM), and the Hermitian rank-k

update (HERK). The right side of the figure is the conventional way of performing

the computation as three separate BLAS kernels, each of which is launched by

the CPU. However, if the matrix size (N) is less than a threshold (C), then we125

use the blocked POTF2 routine to perform the entire factorization. The blocked

POTF2 routine is recursively blocked to make use of level-3 BLAS operations, and

6

thus achieve high performance (left side of the figure). It consists of three stages

(unblocked POTF2, TRSM, and HERK) that are fused together into a single kernel.

The fusion of these routines helps save global memory traffic and reuse data in130

shared memory across the computational stages, which gives a big performance

advantage for very small matrices. The blocked POTF2 routine serves the panel

factorization step on the right side of the figure if the matrix size is larger than

C.

POTF2
(unblocked)

TRSM

HERK

TRSM

HERK

POTRF POTF2

N ≤ C N > C

POTF2
(blocked)

Figure 3: Overall design of the Cholesky factorization algorithm

The blocked POTF2 routine is probably the most important routine in Fig-135

ure 3. This is because it is used solely in the batched mode to perform the

factorization on small matrices. In the native mode, it replaces the panel fac-

torization done by the multicore CPU. Therefore, it has to be well optimized

in order to deliver the best performance in the batched mode, and to introduce

a minimum overhead to the execution time in the native mode. This is why140

we focus more on the design details of POTF2 in the following subsections. The

other routines (TRSM and HERK) are simpler to optimize due to their reliance on

our batched GEMM kernel [25].

4.2. Cholesky Panel Factorization (POTF2)

Previous studies [22][12] showed that an efficient panel factorization of an145

N × N matrix should be recursively blocked, as shown in Figure 3, in order

7

to use the fused level-3 BLAS routines instead of the memory-bound level-2

BLAS operations. For example, thanks to the recursive blocking in Figure 3,

trailing matrix updates inside the blocked POTF2 routine use the HERK operation

instead of the memory-bound Hermitian rank 1 update (the HER routine in level-150

2 BLAS). In addition, blocking at the kernel level follows a left-looking Cholesky

factorization, with a blocking size ib, as shown in Algorithm 1, which is known

to minimize data writes (in this case from GPU shared memory to GPU main

memory).

Algorithm 1: The left looking fashion.

for i← 0 to N Step ib do

if (i > 0) then
// Update current panel Ai:N,i:i+ib

HERK Ai:i+ib,i:i+ib = Ai:i+ib,i:i+ib −Ai:i+ib,0:i ×AT
i:i+ib,0:i;

GEMM Ai+ib:N,i:i+ib = Ai+ib:N,i:i+ib −Ai+ib:N,0:i ×AT
i:i+ib,0:i;

end

// Panel factorize Ai:N,i:i+ib

POTF2 Ai:i+ib,i:i+ib;

TRSM Ai+ib:N,i:i+ib = Ai+ib:N,i:i+ib ×A−1
i:i+ib,i:i+ib;

end

4.2.1. Kernel optimization155

Using a left-looking Cholesky algorithm, the update writes a panel of size

N×ib in the fast shared memory instead of the main memory, so that the un-

blocked POTF2 stage can execute directly in shared memory. Note that N and ib

control the amount of the required shared memory We developed an optimized

and customized fused kernel that first performs the update (HERK), and keeps160

the updated panel in shared memory to be used by the unblocked POTF2 and the

TRSM steps. The cost of the left looking algorithm is dominated by the update

step (HERK). The panel C, shown in Figure 4, is updated as C = C − A × BT .

A double buffering scheme is employed to perform the update in steps of lb,

8

C

ib	

ib	

m-i	

m
-i	

lb	

A

Figure 4: Left-looking Cholesky factorization

which minimizes the update cost, as described in Algorithm 2. For clarity, we165

prefix the data array by “r” and “s” to denote register and shared memory,

respectively. We prefetch data from A into register a array rAk while a multipli-

cation is being performed between register array rAkk and the array sB stored

in shared memory. Since the matrix B is the shaded portion of A, our kernel

avoids reading it from the global memory and transposes into the shared mem-170

ory array sB. Once the update is finished, the factorization (POTF2 and TRSM)

is performed as one operation on the panel C, held in shared memory.

4.2.2. Loop-inclusive vs. Loop-exclusive Kernels

In addition of fusing the computational steps of a single iteration in Algo-175

rithm 1, another level of fusion is to merge all iterations together into one GPU

kernel. The motivation behind the loop-inclusive design is to maximize the

reuse of data, not only in the computation of a single iteration, but also among

iterations. For example, the factorized panel of iteration i−1 (which is in shared

memory) can be reused to update the panel of iteration i, which means replacing180

the load from slow memory of the last blue block of A (illustrated in Figure 4)

by directly accessing it from fast shared memory. However, such a design has

a downside regarding occupancy, in terms of the number of factorizations that

9

Algorithm 2: The fused kernel correspond to one iteration of Algorithm 1.

rAk ← A(i:N,0:lb); rC ← 0;

for k ← 0 to N-i Step lb do

rAkk ← rAk;

sB ← rAk(i:lb,k:k+lb) // inplace transpose;

barrier();

rA1 ← A(i:N,k+lb:k+2lb) // prefetching;

rC ← rC + rAkk×sB // multiplying;

barrier();

end

sC ← rA1 - rC;

factorize sC;

can be performed on a single Streaming Multiprocessor (SM). A loop-inclusive

kernel should be configured based on the tallest sub-panel (i.e., based on the size185

N). As we execute more iterations of Algorithm 1, more threads become idle

and more of the reserved shared memory becomes unused. In other words, the

kernel runs entirely on the occupancy level defined by the resource requirements

of the first iteration.

The analysis of the occupancy and the throughput of the loop-fusion tech-190

nique motivated the development of a more occupancy-oriented design, which

we call the loop-exclusive kernel. In this regard, each iteration of Algorithm 1

corresponds to a kernel launch that has the exact resources required by this

iteration, with no idle threads and no waste in shared memory. While this de-

sign leads to reloading the previous panel from the main memory, such extra195

cost is alleviated thanks to the double buffering technique in the update step.

We conducted a tuning experiment for both kernels. The results, summarized

in Figure 5, prove that the loop-exclusive approach tends to help the CUDA

runtime increase the throughput of the factorized matrices during execution by

increasing the occupancy at the SMs’ level.200

10

��

���

����

����

����

����

�� ���� ���� ���� ���� ����

�
�
�
�
��

�����������

�������
��������

�������
��������

�������
��������

��������
���������

Figure 5: Performance tuning of loop-inclusive(inc) and loop-exclusive(exc) kernels on a K40c

GPU, batchCount = 3000. The value of ib is shown between brackets. Results are shown for

double precision.

4.2.3. Greedy vs. Lazy Scheduling for potf2 vbatched

Following a loop-exclusive design, the potf2 vbatched kernel is called as

many times as required by the largest matrix in the batch. In this regard,

there is a degree of freedom in determining when to start the factorization for

smaller matrices. We present two different techniques for scheduling those fac-205

torizations. These techniques control when a factorization should start for every

matrix in the batch. The first one is called greedy scheduling, where the factor-

ization begins on all the matrices at the first iteration. Once a matrix is fully

factorized, the Thread Block (TB) assigned to it in the following iterations be-

comes idle and is terminated using the ETM technique. With greedy scheduling,210

completion of factorization on individual matrices occurs at different iterations.

A drawback of this problem is that smaller matrices are factorized alongside

larger matrices in the same iteration. Since the shared memory allocation has

to accomodate the tallest sub-panel, greedy scheduling results in wasted shared

memory for smaller subpanels, which in turn results in low occupancy. The215

downside of greedy scheduling motivated the design of the opposite technique,

which we call lazy scheduling. Individual factorizations start at different iter-

11

ations, such that they all finish at the last iteration. At each iteration, lazy

scheduling considers only matrices with local sizes within the range max N -

i to max N -i+ib, and ignores other matrices using ETMs. As a result, the220

resource allocation per iterations (number of threads and shared memory) is

closest to the optimal configuration. In other words, lazy scheduling technique

always ensures better occupancy than greedy scheduling, and is in fact more

robust to the variations of sizes in the batch.

��

���

����

����

����

����

�� ��� ���� ���� ����

�
�
�
�
��

�����������������������������������

����������������
������������������

Figure 6: Performance robustness test of greedy and lazy scheduling techniques, batchCount

= 3000. Sizes are randomly sampled within the (384±r) interval.

Figure 6 shows a performance robustness test for the greedy and the lazy225

scheduling techniques. We conducted performance tests on 3000 matrices, with

a mean size of 384 and a variation of±r, so that the interval (384±r) is randomly

sampled 3000 times to construct the batch. The figure shows that if the varia-

tion is small, both scheduling techniques score roughly the same performance.

However, as we increase r, the greedy scheduling loses performance due to the230

larger variation in sizes, which causes bad occupancy. In fact, greedy schedul-

ing loses up to 25% of its performance, while the lazy scheduling technique is

capable of maintaining a stable performance regardless of the size variations.

The discussion of different scheduling techniques do not apply to the TRSM

and HERK routines. Unlike the potf2 vbatched kernel which uses dynamic235

12

shared memory allocation based on the max N, both routines use static shared

memory allocations based on tuning parameters rather than the input sizes.

Therefore, their occupancy are controlled by the tuning parameters, and are

minimally affected by size variations.

4.3. Triangular Solve (TRSM)240

The TRSM routine starts by inverting square diagonals blocks of size tri nb

in the triangular matrix. The inversion is performed using a batched triangular

inversion routine (TRTRI). The solution is, therefore, obtained by multiplying

these inverses (which are stored in a workspace) with the corresponding sub-

matrices of the right hand side matrix. A carefully tuned GEMM [25] is used to245

perform the multiplication. The value of tri nb is chosen to let GEMM dominate

the computation involved in the TRSM routine. Figure 7 shows the impact of the

parameter tri nb on performance. The figure represent a typical test case that

is invoked by the Cholesky factorization if the panel size is set to 256. The best

configuration of MAGMA is 10-17% times faster than a MKL+OpenMP, and250

4-5× faster than CUBLAS.

��

���

����

����

����

����

����

�� ���� ���� ���� ���� ����

�
�
�
�
��

�������������������������

�����������������
�����������������
�����������������
������������������
�����������
���������������

Figure 7: Performance tuning of batched TRSM, batchCount = 1000. Experiments are per-

formed on a 1 K40c GPU and 16-core Intel Sandy Bridge CPU. Results are shown for double

precision.

13

4.4. Hermitian Rank-k Update (HERK)

The HERK routine is a key to high performance in Cholesky factorization, as

it dominates the trailing matrix updates, which represent the most compute-

intensive phase of the computation if the matrix is larger than the crossover255

point C. MAGMA uses one of two HERK implementations based on the input

size. The first one is a MAGMA kernel that uses the same code-base and tun-

ing parameters of the GEMM kernel proposed in [25]. Such kernel performs a

normal GEMM operation except for a preprocessing layer that terminates thread

blocks writing to the upper/lower triangular part of the matrix. This means260

that the kernel inherits all the optimization techniques and tuning efforts that

have been done for the GEMM kernel. The second implementation uses concurrent

CUDA streams to launch multiple instances of the CUBLAS HERK kernel. The

motivation behind the second implementation is that it achieves very high per-

formance when the input size becomes relatively large. MAGMA transparently265

decides which approach to use based on the input size.

5. Performance Results

5.1. System Setup

Performance experiments are conducted on a 16-core Intel Sandy Bridge

CPU (Intel Xeon E5-2670, running at 2.6 GHz), and three GPUs that are sum-270

marized in Table 1. The Titan-X and the GTX1080 GPUs do not support native

double precision arithmetic, which means that it is emulated by software and is

not expected to deliver any good performance. Our test environment uses Intel

MKL Library 11.3.0 for CPU tests and CUDA Toolkit 8.0RC for GPU tests.

5.2. Performance of The Batched Routines275

Figure 8 compares the performance of the blocked POTF2 kernel (when used

solely), against the performance of the full POTRF routine (which internally calls

POTF2). The figure shows that, if the matrix size is below some crossover point,

14

Name Architecture Compute Capability CUDA Cores Frequency

K40c Kepler 3.5 2880 0.75 GHz

Titan-X Maxwell 5.2 3072 1.08 GHz

GTX1080 Pascal 6.1 2560 1.73 GHz

Table 1: Summary of the GPUs used in performance tests.

it is better to perform the entire factorization using the blocked POTF2 ker-

nel only. Operating on such small sizes, most of the operations become more280

memory-bound. It is, therefore, important to save any unnecessary global mem-

ory traffic. The blocked POTF2 routine does exactly that by fusing all operations

into one kernel, and increasing data reuse in shared memory among the different

computational stages. Considering matrix sizes less than 400, Figure 8 shows

significant speedups against the full POTRF, ranging from 1.12× up to 4×, as285

the matrix size gets smaller.

��

���

����

����

����

����

����

����

����

����

����

�� ���� ���� ���� ���� �����

�
�
�
�
��

���������

�������������������
�����������

Figure 8: Example crossover point for dpotrf batched, batchCount=1000.

Following the design strategy in Figure 3, the blocked POTF2 routine cannot

be used for any problem size, because its shared memory requirements are func-

tion of the matrix size. Moreover, Figure 8 shows that its performance starts

to stagnate as the problem becomes more compute-bound. At this stage, our290

15

��

����

����

����

����

�����

�����

�����

�����

�����

�����

�� ���� ���� ���� ���� �����

�
�
�
�
��

���������������

��������������
��������������
�����������
�����������

(a) Single precision

��

���

����

����

����

����

����

����

����

����

����

�� ���� ���� ���� ���� �����

�
�
�
�
��

���������������

��������������
��������������
�����������
�����������

(b) Double precision

Figure 9: Performance of the fixed size batched Cholesky factorization, batchCount=1000.

final solution switches to the full POTRF implementation. The crossover points

in MAGMA are tunable according to the precision and the GPU model. Fig-

ures 9 and 10 shows the final performance of the batched Cholesky factorization

for fixed and variable size problems, respectively. A first observation is that the

MAGMA performance on the Titan-X is better than on the GTX1080, although295

the latter is the latest GPU architecture to date. The reason behind such a be-

havior is that GTX1080 is a low-end configuration of the Pascal architecture. In

16

fact, the Titan-X used in this work has more CUDA cores (refer to table 1), and,

as our benchmarks show, has a higher memory bandwidth. We also point out

that some graphs for the GTX1080 are not complete because it has less memory300

than the other two GPUs. Both figures show that the MAGMA performance

in single precision is portable on three different GPU architectures. MAGMA

is 1.75-2.3× faster than the CPU implementation using MKL and OpenMP. It

also receives a performance boost on the newer architectures, scoring 3-4.4× and

4-5× speedups on the GTX1080 and the Titan-X GPUs, respectively. Despite305

the expected low performance achieved in double precision using the GTX1080

and the Titan-X GPUs, MAGMA outperforms the CPU implementation on the

K40c GPU, scoring speedups ranging from 1.2× up to 2.5×.

For the experiments for variable size batched problems, we constructed every

test batch by randomly sampling the interval [1:N], where N is varied on the310

x-axis of Figures 10a and 10b. Similar to the fixed size batched routine, running

the MAGMA vbatched routine on Titan-X/GTX1080 is 2-4× faster than MKL

in single precision, and is 1.2-2.2× faster on the K40c GPU. In double precision,

MAGMA achieves a similar 1.2-2× speedups against MKL when running on the

K40c GPU.315

5.3. Performance of The Native Routines

Figure 11 shows the performance of the MAGMA native Cholesky factor-

ization. Since this test involves one factorization of a large matrix, we switch

the CPU implementation to use all cores together to do the factorization, which

means that the MKL configuration is switched to multithreaded. We also point320

out that the native MAGMA routines, while sharing the same code base with

the batched routines, they usually use a larger panel size, in order to have a

more compute intensive operation on the trailing updates. In single precision,

the speedups scored by MAGMA are up to 4.2×, 8.8×, and 9.8× on the K40c,

GTX1080, and Titan-X GPUs, respectively. Similar to the batched routines,325

speedups in double precision are scored on the K40c GPU only, where MAGMA

is up to 4.1× faster than the multithreaded MKL implementation.

17

��

����

����

����

����

�����

�����

�� ���� ���� ���� ���� �����

�
�
�
�
��

�����������������������

����������������
����������������
�������������
�����������

(a) Single precision

��

���

����

����

����

����

����

����

�� ���� ���� ���� ���� �����

�
�
�
�
��

�����������������������

����������������
����������������
�������������
�����������

(b) Double precision

Figure 10: Performance of the variable size batched Cholesky factorization, batchCount=1000.

Matrix sizes in each batch are randomly sampled between 1 and the maximum size shown on

the x-axis.

6. Conclusion and Future Work

This paper introduced a high performance Cholesky factorization that is de-

signed for GPUs. The proposed work can operate in a batch mode, factorizing330

many small matrices of similar or different sizes, or in a native mode, factorizing

one large matrix using the GPU only. The paper introduces a common code-

base that can be used in both modes, and can deliver high performance against

18

��

�����

�����

�����

�����

�����

�����

�� �� ��� ��� ��� ��� ���

�
�
�
�
��

������������������������

���������������
����������������
�������������
�������������������

(a) Single precision

��

����

����

����

����

�����

�����

�����

�� �� ��� ��� ��� ��� ���

�
�
�
�
��

������������������������

���������������
����������������
�������������
�������������������

(b) Double precision

Figure 11: Performance of the native GPU Cholesky factorization.

state-of-the-art solutions using multicore CPUs. Future directions include ap-

plying the same design concept to broader functionalities (e.g. LU and QR335

factorization), and developing an autotuning framework to guarantee portable

performance across many GPU architectures.

19

Acknowledgement

This material is based on work supported by NSF under Grants No. CSR

1514286 and ACI-1339822, NVIDIA, and in part by the Russian Scientific Foun-340

dation, Agreement N14-11-00190.

References

References

[1] O. Messer, J. Harris, S. Parete-Koon, M. Chertkow, Multicore and ac-

celerator development for a leadership-class stellar astrophysics code, in:345

Proceedings of ”PARA 2012: State-of-the-Art in Scientific and Parallel

Computing.”, 2012.

[2] A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata, V. Choppella,

D. Cociorva, X. Gao, R. Harrison, S. Krishnamoorthy, S. Krishnan, C.-C.

Lam, Q. Luc, M. Nooijene, R. Pitzerf, J. Ramanujamg, P. Sadayappanc,350

A. Sibiryakovc, Automatic code generation for many-body electronic struc-

ture methods: the tensor contraction engine, Molecular Physics 104 (2)

(2006) 211–228.

[3] J. L. Khodayari A., A.R. Zomorrodi, C. Maranas, A kinetic model of es-

cherichia coli core metabolism satisfying multiple sets of mutant flux data,355

Metabolic engineering 25C (2014) 50–62.

[4] S. N. YERALAN, T. A. DAVIS, S.-L. W. M, S. RANKA, Algorithm 9xx:

Sparse QR Factorization on the GPU, ACM Transactions on Mathematical

Software.

URL http://faculty.cse.tamu.edu/davis/publications_files/360

qrgpu_revised.pdf

[5] T. Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov, J. Dongarra, A

step towards energy efficient computing: Redesigning a hydrodynamic ap-

20

http://faculty.cse.tamu.edu/davis/publications_files/qrgpu_revised.pdf
http://faculty.cse.tamu.edu/davis/publications_files/qrgpu_revised.pdf
http://faculty.cse.tamu.edu/davis/publications_files/qrgpu_revised.pdf
http://faculty.cse.tamu.edu/davis/publications_files/qrgpu_revised.pdf
http://faculty.cse.tamu.edu/davis/publications_files/qrgpu_revised.pdf
http://faculty.cse.tamu.edu/davis/publications_files/qrgpu_revised.pdf

plication on CPU-GPU, in: IEEE 28th International Parallel Distributed

Processing Symposium (IPDPS), 2014.365

[6] E.-J. Im, K. Yelick, R. Vuduc, Sparsity: Optimization framework for sparse

matrix kernels, Int. J. High Perform. Comput. Appl. 18 (1) (2004) 135–158.

doi:10.1177/1094342004041296.

URL http://dx.doi.org/10.1177/1094342004041296

[7] J. Molero, E. Garzón, I. Garćıa, E. Quintana-Ort́ı, A. Plaza, Poster: A370

batched Cholesky solver for local RX anomaly detection on GPUs, PUMPS

(2013).

[8] M. Anderson, D. Sheffield, K. Keutzer, A predictive model for solving small

linear algebra problems in gpu registers, in: IEEE 26th International Par-

allel Distributed Processing Symposium (IPDPS), 2012.375

[9] A. Haidar, S. Tomov, P. Luszczek, J. Dongarra, Magma embedded: To-

wards a dense linear algebra library for energy efficient extreme computing,

in: 2015 IEEE High Performance Extreme Computing Conference (HPEC

15), (Best Paper Award), IEEE, IEEE, Waltham, MA, 2015.

[10] Matrix algebra on GPU and multicore architectures (MAGMA), available380

at http://icl.cs.utk.edu/magma/ (2014).

[11] S. Tomov, R. Nath, H. Ltaief, J. Dongarra, Dense linear algebra

solvers for multicore with GPU accelerators, in: Proc. of the IEEE

IPDPS’10, IEEE Computer Society, Atlanta, GA, 2010, pp. 1–8,

DOI: 10.1109/IPDPSW.2010.5470941.385

[12] A. Abdelfattah, A. Haidar, S. Tomov, J. J. Dongarra, Performance Tuning

and Optimization Techniques of Fixed and Variable Size Batched Cholesky

Factorization on GPUs, in: International Conference on Computational

Science 2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA, 2016,

pp. 119–130. doi:10.1016/j.procs.2016.05.303.390

21

http://dx.doi.org/10.1177/1094342004041296
http://dx.doi.org/10.1177/1094342004041296
http://dx.doi.org/10.1177/1094342004041296
http://dx.doi.org/10.1177/1094342004041296
http://dx.doi.org/10.1177/1094342004041296
http://icl.cs.utk.edu/magma/
http://dx.doi.org/10.1016/j.procs.2016.05.303

[13] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault,

S. Tomov, Faster, Cheaper, Better – a Hybridization Methodology to De-

velop Linear Algebra Software for GPUs, in: W. mei W. Hwu (Ed.), GPU

Computing Gems, Vol. 2, Morgan Kaufmann, 2010.

[14] J. Dongarra, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, A. YarKhan,395

Model-driven one-sided factorizations on multicore accelerated systems, In-

ternational Journal on Supercomputing Frontiers and Innovations 1 (1).

[15] A. Abdelfattah, A. Haidar, S. Tomov, J. Dongarra, On the Development

of Variable Size Batched Computation for Heterogeneous Parallel Archi-

tectures, in: 2016 IEEE International Parallel and Distributed Processing400

Symposium Workshops, IPDPS Workshops 2016, Chicago, IL, USA, May

23-27, 2016, 2016, pp. 1249–1258. doi:10.1109/IPDPSW.2016.190.

[16] V. Oreste, M. Fatica, N. A. Gawande, A. Tumeo, Power/performance trade-

offs of small batched LU based solvers on GPUs, in: 19th International

Conference on Parallel Processing, Euro-Par 2013, Vol. 8097 of Lecture405

Notes in Computer Science, Aachen, Germany, 2013, pp. 813–825.

[17] V. Oreste, N. A. Gawande, A. Tumeo, Accelerating subsurface transport

simulation on heterogeneous clusters, in: IEEE International Conference

on Cluster Computing (CLUSTER 2013), Indianapolis, Indiana, 2013.

[18] I. Wainwright, Optimized LU-decomposition with full pivot for small410

batched matrices, gTC’13 – ID S3069 (April, 2013).

URL http://on-demand.gputechconf.com/gtc/2013/presentations/

S3069-LU-Decomposition-Small-Batched-Matrices.pdf

[19] T. Dong, A. Haidar, S. Tomov, J. Dongarra, A fast batched Cholesky

factorization on a GPU, in: Proc. of 2014 International Conference on415

Parallel Processing (ICPP-2014), 2014.

[20] J. Kurzak, H. Anzt, M. Gates, J. Dongarra, Implementation and Tuning

of Batched Cholesky Factorization and Solve for NVIDIA GPUs, Parallel

22

http://dx.doi.org/10.1109/IPDPSW.2016.190
http://on-demand.gputechconf.com/gtc/2013/presentations/S3069-LU-Decomposition-Small-Batched-Matrices.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3069-LU-Decomposition-Small-Batched-Matrices.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3069-LU-Decomposition-Small-Batched-Matrices.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3069-LU-Decomposition-Small-Batched-Matrices.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3069-LU-Decomposition-Small-Batched-Matrices.pdf
http://on-demand.gputechconf.com/gtc/2013/presentations/S3069-LU-Decomposition-Small-Batched-Matrices.pdf

and Distributed Systems, IEEE Transactions on PP (99) (2015) 1–1. doi:

10.1109/TPDS.2015.2481890.420

[21] A. Haidar, T. Dong, S. Tomov, P. Luszczek, J. Dongarra, A framework

for batched and gpu-resident factorization algorithms applied to block

householder transformations, in: J. M. Kunkel, T. Ludwig (Eds.), High

Performance Computing, Vol. 9137 of Lecture Notes in Computer Sci-

ence, Springer International Publishing, 2015, pp. 31–47. doi:10.1007/425

978-3-319-20119-1_3.

[22] A. Haidar, T. Dong, P. Luszczek, S. Tomov, J. Dongarra, Batched matrix

computations on hardware accelerators based on gpus, IJHPCA 29 (2)

(2015) 193–208. doi:10.1177/1094342014567546.

[23] A. Haidar, P. Luszczek, S. Tomov, J. Dongarra, Towards batched linear430

solvers on accelerated hardware platforms, in: Proceedings of the 20th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, PPoPP 2015, ACM, ACM, San Francisco, CA, 2015.

[24] I. Masliah, A. Abdelfattah, A. Haidar, S. Tomov, M. Baboulin, J. Fal-

cou, J. J. Dongarra, High-Performance Matrix-Matrix Multiplications of435

Very Small Matrices, in: Euro-Par 2016: Parallel Processing - 22nd In-

ternational Conference on Parallel and Distributed Computing, Greno-

ble, France, August 24-26, 2016, Proceedings, 2016, pp. 659–671. doi:

10.1007/978-3-319-43659-3_48.

[25] A. Abdelfattah, A. Haidar, S. Tomov, J. Dongarra, Performance, De-440

sign, and Autotuning of Batched GEMM for GPUs, in: High Perfor-

mance Computing - 31st International Conference, ISC High Performance

2016, Frankfurt, Germany, June 19-23, 2016, Proceedings, 2016, pp. 21–38.

doi:10.1007/978-3-319-41321-1_2.

23

http://dx.doi.org/10.1109/TPDS.2015.2481890
http://dx.doi.org/10.1109/TPDS.2015.2481890
http://dx.doi.org/10.1109/TPDS.2015.2481890
http://dx.doi.org/10.1007/978-3-319-20119-1_3
http://dx.doi.org/10.1007/978-3-319-20119-1_3
http://dx.doi.org/10.1007/978-3-319-20119-1_3
http://dx.doi.org/10.1177/1094342014567546
http://dx.doi.org/10.1007/978-3-319-43659-3_48
http://dx.doi.org/10.1007/978-3-319-43659-3_48
http://dx.doi.org/10.1007/978-3-319-43659-3_48
http://dx.doi.org/10.1007/978-3-319-41321-1_2

	Introduction
	Related Work
	Modes of Operation
	Algorithmic Design
	Overall Design
	Cholesky Panel Factorization (POTF2)
	Kernel optimization
	Loop-inclusive vs. Loop-exclusive Kernels
	Greedy vs. Lazy Scheduling for potf2_vbatched

	Triangular Solve (TRSM)
	Hermitian Rank-k Update (HERK)

	Performance Results
	System Setup
	Performance of The Batched Routines
	Performance of The Native Routines

	Conclusion and Future Work

