
Small Tensor Operations on Advanced Architectures for

High-order Applications

A. Abdelfattah1, M. Baboulin5, V. Dobrev2, J. Dongarra1,3, A. Haidar1,
I. Karlin2, Tz. Kolev2, I. Masliah4, and S. Tomov1

1 Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA
2 Lawrence Livermore National Laboratory, Livermore, CA, USA

3 University of Manchester, Manchester, UK
4 Inria Bordeaux, France

5 University of Paris-Sud, France

Abstract

This technical report describes our findings regarding performance optimizations of the tensor con-

traction kernels used in BLAST – a high-order FE hydrodynamics research code developed at LLNL

– on various modern architectures. Our approach considers and shows ways to organize the contrac-

tions, their vectorization, data storage formats, read/write patterns, and parametrization as related

to batched execution and parallelism in general. Autotuning framework is designed and used to find

empirically best performing tensor kernels by exploring a large search space that results from the tech-

niques described. We analyze these kernels to show the trade-offs between the various implementations,

how different tensor kernel implementations perform on different architectures, and what tuning param-

eters can have a significant impact on performance. In all cases, we organize the tensor contractions to

minimize their communications by considering index reordering that enables their execution as highly

efficient batched matrix-matrix multiplications (GEMMs). We derive a performance model and bound

for the maximum performance that can be achieved under the maximum data-reuse scenario, and show

that our implementations achieve 90+% of these theoretically derived peaks on advanced multicore

x86 CPU, ARM, GPU, and Xeon Phi architectures. These results significantly outperform what is

available today in vendor libraries. In particular, we show average performance speedups of 1.3× and

2× compared to Intel MKL on two 10-core Haswell CPUs and KNL Xeon Phi, respectively, and 3×
when compared to NVIDIA CUBLAS on the latest P100 NVIDIA GPU.

1 Introduction

Numerous important applications, and in particular high-order, tend to be cast in terms of many
small matrix/tensor operations: they contain very large computations that consist of a large
number of small tensors, which cannot be executed efficiently on accelerated platforms except
in large groups, or batches. The emergence of large-scale, heterogeneous systems with GPUs
and coprocessors has revealed the near total absence of linear algebra software for performing
such small operations in batches.

The main challenge is that using the full potential of a processor is becoming increasingly
difficult for small problems as the number of cores keeps increasing, along with increases in
vector register sizes, while overheads for scheduling tasks and lower-level function calls are not
decreasing fast enough to stay negligible compared to the computation times associated with
these small problems. The complexity in the architectures of interest – multicore x86 CPUs,
manycore Intel Xeon Phis, ARM, and NVIDIA GPUs – along with their memory hierarchies, for
which we want to design efficient blocking strategies for small tensor contractions, is illustrated
on Figure 1. Calling a sequence of small GEMMs through the standard BLAS API on a

1

Small tensor operations on advanced architectures Abdelfattah et al.

REGISTERS	

MAIN	MEMORY	BANDWIDTH	

PCI		EXPRESS	GEN3	X16		

INTERCONNECT	
CRAY	GEMINI	

L3	CACHE	

L2	CACHE	

L1	CACHE	&	GPU	SHARED	MEMORY	

MAIN	MEMORY	

Haswell	
E5-2650	v3		

KNL	7250	
DDR5|MCDRAM	 ARM	 K40c	 P100	

10	cores	 68	cores	 4	cores	 15	SM	x		
192	cores	

56	SM	x		
64	cores	

16/core	AVX2	 32/core	AVX-512	 32/core	 256	KB/SM	 256	KB/SM	

32	KB/core	 32	KB/core	 32	KB/core	 64	KB/SM	 64	KB/SM	

256	KB/core	 1024	KB/2cores	 2	MB	 1.5	MB	 4	MB	

25	MB	 0...16	GB	 N/A	 N/A	 N/A	

64	GB	 				384	|16	GB	 4	GB	 12	GB	 16	GB	

68	GB/s	 				115	|	421	GB/s	 26	GB/s	 288	GB/s	 720	GB/s	

16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	 16	GB/s	

6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	 6	GB/s	

Memory	hierarchies	for	different	type	of	architectures	

Memory	hierarchies		

Figure 1: Memory hierarchies of the experimental CPU and GPU hardware

K40c GPU with 14 multiprocessors, for example, would result in performance that is at least
14× lower than expected. A solution that has led to success so far is to provide routines
using a new batched BLAS API that exploit the extra level of parallelism while minimizing
function call overheads. Although highly successful, this approach requires the development
and optimization of various batched routines, where high-level algorithms and low-level kernels
must be redesigned for full efficiency.

This was done in the recently released MAGMA Batched library, starting with the 1.6.1
release [20], to targeted small matrix factorizations (like LU, QR, and Cholesky) and a number
of BLAS routines. For “small” sizes, in the range of 100 to 300, the MAGMA factorizations
outperform similar routines in CUBLAS by 3 to 4× due to architecture- and size-aware algorith-
mic redesigns and optimizations. This report describes algorithms and optimization techniques
that target smaller problem sizes, and in particular ones that are sub-warp/vector in size, and
thus requiring vectorization across tensor operations.

2 Current development in tensors computations

We studied current tensor computations development to identify possible collaborations and
ideas to explore. We found that the survey [17], and the references cited there, provide a
good overview of the linear algebra aspects of tensors research, including higher-order tensor
decompositions, their applications, and available software. A general overview with current
and future direction in tensor research is presented in the Future directions in tensor-based
computation and modeling workshop report [1].

There has been a number of software packages developed for tensors. Some are designed
to be used through numerical computing mathematical environments like the Tensor Toolbox1

for Matlab, GRTensor II2 for Maple, or Ricci3 for Mathematica, and therefore do not target
accelerators, and high-performance computing in general. A few are specialized for particular
applications, most notably for quantum chemical computations. For example, [19] presents

1http://www.sandia.gov/∼tgkolda/TensorToolbox/
2http://grtensor.phy.queensu.ca/
3http://www.math.washington.edu/∼lee/Ricci/

2

Small tensor operations on advanced architectures Abdelfattah et al.

early work on using accelerators to accelerate tensor contractions on GPUs. The approach
uses code generation techniques and is incorporated in the NW Chem computational chemistry
suite. More recent work [25] also uses code generation techniques and autotuning (with a system
called Baracuda, based on CUDA-CHiLL and a high-level module Optimizing Compiler with
Tensor OPeration Intelligence (OCTOPI)) to report significant acceleration compared to NW
Chem on particular tensor contractions.

Most approaches recognize and exploit the fact that many tensor contractions can be re-
vamped into GEMMs. For example, [30] executes on CPUs contractions via GEMM on a
properly ordered and structured tensor. As in the other approaches in quantum chemistry,
large tensor contractions are targeted, although there are cases of small ones as well [32]. C.
Cecka et al. [27] target a wide range of general tensor contractions on CPU and GPUs. The ap-
proach is library-based, investigating various index reordering leading to GEMMs, while trying
to avoid memory movement. Focus is on small and moderate tensor sizes. Paul Springer and
Paolo Bientinesi [31] also target general tensor contractions. They have a code generator that
translates contractions to loop over GEMM code that can be applied to either large (compute-
bound) or small (bandwidth-bound) tensor contractions. Performance is derived from GEMM
implementations offered by tuned BLAS libraries.

In contrast to quantum chemistry, we target many but small contractions, that are often sub-
warp/vector in size. In these cases, we have shown that tensor reshuffle operations to cast the
contractions to GEMMs are also highly effective [5]. Moreover, we use a batched approach with
custom-built BLAS kernels that are used to efficiently execute the tensor contractions [5, 6, 22].
Closely related in terms of general approach and applications targeted are the efforts of our
collaborators P. Fischer et al. [21, 28], as well as P. Fisher, M. Min et al. [12, 26] who explored the
use of OpenACC and CUDA Fortran for Nekbone – one of the core kernels of the incompressible
Navier-Stokes solver Nek5000 – and showed 2.5× speedup of hybrid GPU+CPU computation
over CPU-only performance on the same number of nodes (262,144 MPI ranks) on the Titan
Cray XK7 supercomputer (nodes have one AMD Opteron 6274 16-core CPU and one Nvidia
Tesla K20X GPU). Further, D. Medina, A. St-Cyr, and T. Warburton developed OCCA [23], a
novel single kernel language that expands to OpenMP, OpenCL, and CUDA. OCCA is shown to
deliver portable high-performance on different architectures and platforms (for finite difference,
spectral element, and discontinuous Galerkin methods).

Hardware vendors so far do not provide software for tensor contractions. However, their op-
timized numerical libraries, and in particular BLAS, e.g., Intel’s MKL and NVIDIA’s CUBLAS,
have been heavily used as the backend of the tensor contraction engines mentioned. Efforts to
optimize for small matrix sizes have been done in the context of batched operations, or separate
efforts, like Intel’s libxsmm [16] or Nvidia’s C. Cecka tensor contractions work [27].

Symmetry, when available, is also very beneficial to exploit. For example, E. Solomonik
and J. Demmel have presented a new symmetry preserving algorithm that uses an algebraic
reorganization in order to exploit considerably more symmetry in the computation of the con-
traction than the conventional approach, requiring fewer multiplications but more additions per
multiplication [29].

3 Tensor operations in high order FEM

Here we derive the tensor formulations for high-order FE kernels. In particular, we are interested
in formulations for the Lagrangian phase of the BLAST code developed at LLNL, which solves
the Euler equations of compressible hydrodynamics in a moving Lagrangian frame [9, 10]. On

3

Small tensor operations on advanced architectures Abdelfattah et al.

a semi-discrete level, the conservation laws of Lagrangian hydrodynamics can be written as:

Momentum Conservation: MV
dv

dt
= − F · 1, (1)

Energy Conservation:
de

dt
= M−1E FT · v , (2)

Equation of Motion:
dx

dt
= v, where (3)

v, e, and x are the unknown velocity, specific internal energy, and grid position, respectively;
MV and ME are independent of time velocity and energy mass matrices; and F is the generalized
corner force matrix depending on (v, e, x) that needs to be evaluated at every time step.

BLAST improves the accuracy of simulations and provides a viable path to extreme parallel
computing and exascale architectures. A core requirement to enable this path is the develop-
ment of advanced methods and software to accelerate tensor assembly and evaluations on GPU
and multi/many-core architectures. These operations exceed half of the BLAST simulation
time.

To illustrate the tensor formulation of this problem, consider the computation of the finite
element (FE) mass matrix ME for an element (zone) E with a weight ρ. As a 2-dimensional
tensor, ME is:

(ME)ij =

nq∑
k=1

αk ρ(qk)ϕi(qk)ϕj(qk) |JE(qk)| , i, j = 1, . . . , nd, where

nd is the number of degrees of freedom (dofs), nq is the number of quadrature points, {ϕi}ndi=1

are the FE basis functions on the reference element, |JE | is the determinant of the element
transformation, and {qk}nqk=1 and {αk}nqk=1 are the points and weights of the quadrature rule.

Tensors can be introduced by taking the nq × nd matrix B, Bki = ϕi(qk), and the nq × nq
diagonal matrix DE , (DE)kk = αk ρ(qk) |JE(qk)|. Then, (ME)ij =

∑nq
k=1Bki(DE)kkBkj , i.e.,

M = BTDB (omitting the element index E) .

Using FEs of order p with a quadrature rule of order p, we have nd = O(pd) and nq = O(pd),
so B is a dense O(pd) × O(pd) matrix. If the FE basis and the quadrature rule have tensor
product structure, then in 2D,

Mi1,i2,j1,j2 =
∑
k1,k2

(B1d
k1,i1B

1d
k1,j1)(B1d

k2,i2B
1d
k2,j2)Dk1,k2

, (4)

where B1d is a dense O(p)×O(p) matrix and D is a dense O(p)×O(p) matrix. In 3D,

Mi1,i2,i3,j1,j2,j3 =
∑

k1,k2,k3

(B1d
k1,i1B

1d
k1,j1)(B1d

k2,i2B
1d
k2,j2)(B1d

k3,i3B
1d
k3,j3)Dk1,k2,k3

, where (5)

D is a dense O(p)×O(p)×O(p) tensor, and i = (i1, · · · , id), j = (j1, · · · , jd), k = (k1, · · · , kd)
are the decompositions of the dof and quadrature point indices into the tensor components
along logical coordinate axes. Note that if we store the tensors as column-wise 1D arrays, then

Mnd1×nd2×nd1×nd2
i1,i2,j1,j2

= Mnd×nd
i,j = Mnd2

i+nd j = Mnd2

i1+nd1i2+nd(j1+nd1j2)
,

i.e. we can reinterpret M as a nd × nd matrix, or a fourth order tensor of dimensions nd1 ×
nd2 × nd1 × nd2, or a vector of dimension nd2, without changing the underlying storage.

4

Small tensor operations on advanced architectures Abdelfattah et al.

More generally, given a n1 × · · · × nr tensor T , we can reshape it as a m1 × · · · ×mq tensor

Reshape(T)
m1×···×mq

j1,··· ,jq = Tn1×···×nr
i1,··· ,ir

as long as n1n2 · · ·nr = m1m2 · · ·mq and

i1 + n1i2 + · · ·+ n1n2 · · ·nr−1ir = j1 +m1j2 + · · ·+m1m2 · · ·mq−1jq

for ik = 0, . . . , nk − 1, k = 1, . . . , r and jl = 0, . . . ,ml − 1, l = 1, . . . , q. In particular, we can
reduce the number of dimensions of the tensor by agglomerating consecutive indices as above,
and we can also increase the number of dimensions by simply specifying the size in the artificial
dimensions to be one:

Reshape(T)1×n1×···×nr
0,i1,··· ,ip = Tn1×···×nr

i1,··· ,ir = Reshape(T)n1×···×nr×1
i1,··· ,ip,0 .

The action of the operator, U = MV , can be written in the tensor product case as

Ui1,i2 =
∑

k1,k2,j1,j2

B1d
k1,i1B

1d
k2,i2Dk1,k2

B1d
k1,j1B

1d
k2,j2Vj1,j2 , and (6)

Ui1,i2,i3 =
∑

k1,k2,k3,j1,j2,j3

B1d
k1,i1B

1d
k2,i2B

1d
k3,i3Dk1,k2,k3B

1d
k1,j1B

1d
k2,j2B

1d
k3,j3Vj1,j2,j3 . (7)

Given B1d, D, and V , tensors M and U must be computed based on the generalized con-
tractions (4)–(7). The matrix sizes are relatively small, e.g., with p = 2..8 and d = 2 or 3. The
computations can be parallelized between the elements, and we may need to perform multiple
evaluations with (3)–(4).

Remark 1. One natural way to implement the above contractions is as a sequence of pairwise
contractions, i.e. by evaluating the sums one at a time. While this is an efficient approach,
there is enough complexity here that maybe one can come up with something better?

The table below summarizes the complexity and storage of the general and nearly-optimal
assembly and evaluation algorithms, and the pairwise tensor kernel operations that we need for
the (1)–(4) operations above. Some of these kernels can be reduced further to a common kernel.
For example the contractions (3a)–(4f) can be implemented as tensor index reordering (gener-
alized transpose) plus the dgemm A,B 7→ ATB. This is because contraction by the first index,
for example (4f), can be written as Reshape(A)nd1×(nd2nd3) = B1d Reshape(C)nq1×(nd2nd3).
(If the contraction is not by the first index, reducing it to ATB requires data reordering and it
will be interesting to explore when and if that is worth it or not.) Without reordering, all of
the (3a)–(4f) operations can be implemented through reshaping and the kernels

Ai,j,k,l =
∑
s

Bi,s,jCk,s,l and Ai,k,l,j =
∑
s

Bi,s,jCk,s,l . (8)

For example, the matrix multiplication (3b) of two m× p and p× n matrices B and C can be
implemented by reshaping B to m × p × 1, C to 1 × p × n, applying the Ai,j,k,l kernel above,
and reshaping the m× 1× 1× n result to a m× n matrix.

The matrix assembly contractions (1a)–(2c) can also be reduced to a common kernel (plus
reshaping):

Ak,i,l,j =
∑
s

Bs,iBs,jCk,s,l. (9)

For example, in (2c) we can first reshape C as a third order tensor by agglomerating i1, i2
and j1, j2, apply the above kernel, and reshape the result as a 6th order tensor (or a nd× nd
matrix).

5

Small tensor operations on advanced architectures Abdelfattah et al.

stored assembly storage matvec numerical
items FLOPs amount FLOPs kernels

full assembly

M O(p3d) O(p2d) O(p2d) B,D 7→ BTDB, x 7→Mx

decomposed evaluation

B, D O(p2d) O(p2d) O(p2d) x 7→ Bx, x 7→ BT x, x 7→ Dx

near-optimal assembly – equations (1) and (2)

Mi1,··· ,jd O(p2d+1) O(p2d) O(p2d) Ai1,k2,j1 =
∑

k1
B1d

k1,i1
B1d

k1,j1
Dk1,k2

(1a)

Ai1,i2,,j1,j2 =
∑

k2
B1d

k2,i2
B1d

k2,j2
Ci1,k2,j1 (1b)

Ai1,k2,k3,j1 =
∑

k1
B1d

k1,i1
B1d

k1,j1
Dk1,k2,k3

(2a)

Ai1,i2,k3,j1,j2 =
∑

k2
B1d

k2,i2
B1d

k2,j2
Ci1,k2,k3,j1 (2b)

Ai1,i2,i3,j1,j2,j3 =
∑

k3
B1d

k3,i3
B1d

k3,j3
Ci1,i2,k3,j1,j2 (2c)

near-optimal evaluation (partial assembly) – equations (3) and (4)

B1d, D O(pd) O(pd) O(pd+1) Aj1,k2
=

∑
j2

B1d
k2,j2

Vj1,j2 (3a)

Ak1,k2
=

∑
j1

B1d
k1,j1

Cj1,k2
(3b)

Ak1,i2 =
∑

k2
B1d

k2,i2
Ck1,k2

(3c)

Ai1,i2 =
∑

k1
B1d

k1,i1
Ck1,i2 (3d)

Aj1,j2,k3
=

∑
j3

B1d
k3,j3

Vj1,j2,j3 (4a)

Aj1,k2,k3
=

∑
j2

B1d
k2,j2

Cj1,j2,k3
(4b)

Ak1,k2,k3
=

∑
j1

B1d
k1,j1

Cj1,k2,k3
(4c)

Ak1,k2,i3 =
∑

k3
B1d

k3,i3
Ck1,k2,k3

(4d)

Ak1,i2,i3 =
∑

k2
B1d

k2,i2
Ck1,k2,i3 (4e)

Ai1,i2,i3 =
∑

k1
B1d

k1,i1
Ck1,i2,i3 (4f)

matrix-free evaluation

none none none O(pd+1) evaluating entries of B1d, D, (3a)–(4f) sums

Table 1: Main tensor contractions needed in high-order FEMs

4 Main activities

The main focus of our developments was the optimization of the tensor contractions in BLAST,
as summarized in Table 1. These contractions are expressed as batched GEMMs of very small
sizes. The approach is described in Section 3. Note that we can restrict the contractions needed
to three main cases. Therefore, we can afford to directly target these cases for optimization,
which is in contrast to the general approaches that rely on a generator to express a general
tensors contraction to GEMMs (see Section 2). We can consider such generator in an extension
of the current developments to a general tensor contractions library.

We investigated various techniques to develop high-performance batched GEMMs of small
sizes on various architectures. The sizes were taken to be up to 32 and the target architectures
included multicore x86 CPUs, ARM, GPUs, and Intel Xeon Phis.

The overall design and coding approaches that we took are described in Section 5. Al-
gorithms, optimization strategies, and issues are given in Section 6. Performance results are
presented in Section 7. All these developments were presented and published at a number of
conferences:

• Smoky Mountains Computational Sciences and Engineering Conference (SMC’15):

6

Small tensor operations on advanced architectures Abdelfattah et al.

we presented a poster giving an overview and our plans towards developing a high-
performance tensor algebra package for accelerators [7];

• Smoky Mountains Computational Sciences and Engineering Conference (SMC’16):
we presented a poster on tensor contractions for high-order FEM on CPUs, GPUs, and
KNLs [13];

• The International Conference on Computational Science (ICCS’16): paper on
high-performance tensor contractions for GPUs [5];

• ISC High Performance (ISC 2016): paper on batched GEMM for GPUs [6];

• 22Nd International Conference on Euro-Par 2016: paper on small GEMMs for
CPU and GPU architectures [22];

• Workshop on Batched, Reproducible, and Reduced Precision BLAS: ICL orga-
nized two workshops in the past year with the intent to extend the BLAS standard [2, 3, 11]
to include batched computations (and others). We presented our work on tensor contrac-
tions;

• SIAM CSE’17: we presented our work on tensor contractions [4].

A. Haidar and S. Tomov visited LLNL in 2016 and presented the current project status and
work on tensor contractions.

5 Tensor contraction interfaces and code generation

To develop high-quality HPC software for tensor contractions, we impose the following three
main requirements on our interface design:

Convenience of use: Interfaces of HPC libraries are extremely important for the libraries’
adoption by the community. Interfaces must provide convenience and practicality of use,
including ease of interoperability between libraries. Ideally, a tensor data type standard
must be defined. The standard for a dense matrix is a pointer, sizes, leading dimension,
and assumption for column-major data layout, e.g., as in BLAS and LAPACK. For tensors,
motivated by reviewing interfaces in available libraries and the success of BLAS, we propose
to represent a tensor by its dimensions and a data layout abstraction. The abstraction is to
provide a choice of predefined layouts, and ways to switch it, or to easily add user-specified
layouts, without changing the underlying algorithms. In general, a specific layout provides
the formula of mapping the multi-dimensional tensor to the memory, e.g., a second order
tensor can be stored as a column-major matrix A with leading dimension lda, in which
case the abstraction maps Ai,j to A[i+ j ∗ lda] (see Listing 1).

Readability: Numerical software must be understandable, which is needed for ease of main-
tenance, as well as code optimizations, and testing. While we can easily implement any
interface, e.g., even expressing the interface and tensor APIs in a DSEL if needed (plus
code generation techniques to translate the DSEL to a standard language; see the example
in Einstein tensor notations on Figure 2), we determined that it is better to provide im-
plementations relying on a standard language and the code generation features provided
within the language. The C++14 standard for example is expressive enough to allow us
to implement readable and easy to use interfaces.

Performance: While we expect to obtain high performance mostly through algorithmic design
and autotuning (see Section 6), we do not want to compromise on optimization opportu-
nities like removing parameters checking and loop unrolling to eliminate jumps and loop

7

Small tensor operations on advanced architectures Abdelfattah et al.

n

. i
j

Ai,j,m,n

m

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7
Matrix A in tiled data-layout

as a 4th-order tensor:

// Declare a 4th-order Tensor A on the GPU ︎
Tensor<64, 64, 9, 8, gpu_t> A; ︎

// DSEL design using Einstein notation: repeated  
// index k means a summation/contraction. ︎
// Range of the other indices is full/range as︎
// given through the left assignment operand ︎
A(i, j, m:1..8, n:1..7) -= A(i, k,m,0) * A(k, j,0,n); ︎

A rank-64 update as tensor contraction on index k
(for i = 0..63 for j = 0..63 for m = 1..8 for n = 1..7):

i, j,m,nA − = i,k,m,0A k, j,0,nA
k
∑

Figure 2: Example of a 4th-order tensor resulting from tile matrix layout used in dense LA, a
tensor contraction, and a possible tensor contractions design using Einstein summation notation
and a Domain Specific Embedded Language (or DSEL).

count decrements. These optimizations are essential especially for the small computations
that we target. Therefore, in our design we consider the use of compiler features related
to code generation (e.g., templates, etc.), as further discussed below.

Related to performance, a lost optimization opportunity is if static checking and compile
time information is not provided as part of the scientific libraries used. As an example, LA-
PACK routines start by checking entry parameters dynamically, which results in extra time for
small size computations. The type of algorithms that we intend to use, e.g., as the MAGMA
Batched algorithms, also require specific tuning [14] as performance will greatly vary depending
on numerous parameters. To avoid these performance drawbacks, and also benefit from opti-
mization techniques like compiler loop unrolling for static dimension problems, we use features
of the new C++14 standard. In particular, the constexpr specifier enables to evaluate the
value of a function or variable at compile time. We use this feature with integral constants and
template specialization to design our tensor dimensions layout:

// Template s p e c i a l i z a t i o n
constexpr auto layout = o f s i z e <5,3>() ;
// Using I n t e g r a l constant
constexpr auto layout1 = o f s i z e (5 c , 3 c) ;
// Using dynamic dimensions
constexpr auto layout2 = o f s i z e (5 ,3) ;
// Access Dimensions at compile time
constexpr auto dim1 = layout (1) ;

Listing 1: Dimensions for Tensors

// Create a rank 2 tensor o f s i z e 5 ,3 on GPU
constexpr tensor<f l o a t , gpu > d t s (o f s i z e <5,3>()) ;
// Create a rank 2 tensor o f s i z e 5 ,3 on CPU
constexpr tensor<f l o a t , gpu > d t s (o f s i z e <5,3>()) ;
// Create a rank 2 tensor o f s i z e 5 ,3 on CPU
constexpr tensor<f l o a t> t s (o f s i z e <5,3>()) ;
// Use thrus t to f i l l d t s with 9
thrus t : : f i l l (d t s . begin () , d t s . end () , 9) ;
// Copy d t s from GPU to t s on CPU
copy (d t s , t s) ;

Listing 2: Create Tensor and copy

As seen in Listing 1, we propose 3 ways to specify dimensions using the function of size
which returns a layout containing the static or dynamic dimension. Each operator inside the
layout uses the constexpr keyword which enables us to return sizes at compile time if possible.

We can then freely extract the dimensions (Listing 1) and use them to specify our CPU
and GPU kernels at compile time. Our tensor model is based on our layout, the data type of
the tensor and its locality. The memory buffer is based on vector from the Standard Template
Library for CPU and thrust [8] for GPU. To generate a tensor, we need to pass a data type
and locality as template parameter and the size to the constructor (Listing 2).

Transfers between CPU and GPU tensors can be expressed through the function copy (List-
ing 2). This function will use the stream 0 by default but a stream can be passed for asyn-

8

Small tensor operations on advanced architectures Abdelfattah et al.

chronous copy. We have designed two models for batched computing (Listing 3). The first
one is based on allocating a single memory block for all tensors to improve data transfers and
locality while the other is a group of same size tensors.

// Create a batch that w i l l conta in 15 t en so r s o f s i z e 5 ,3 ,6
constexpr auto batch<f l o a t , gpu > b = make batch (o f s i z e (5 c , 3 c , 6 c) , 15) ;
// Access ing a tensor from the batch re turns a view on i t
constexpr auto view b = b(0) ;
// Create a grouping o f t en so r s o f same s i z e t en so r s
constexpr auto group<f l o a t , gpu > g (o f s i z e (5 c , 3 c)) ;
// Add a tensor to the group
constexpr auto tensor<f l o a t , gpu > d t s (o f s i z e (5 c , 3 c)) ;
g . push back (d t s) ;

Listing 3: Batched tensors

Once we have defined these functions we can call the kernel to compute a batched dgemm
on tensors of dimension 2.

constexpr auto batch<f l o a t , gpu > b = make batch (o f s i z e (5 c , 3 c) , 15) ;
constexpr auto batch<f l o a t , gpu > b1 = make batch (o f s i z e (5 c , 3 c) , 15) ;
// Product o f two tensor batched o f dimension 2 f o r matrix product us ing C++ operator
constexpr auto c = b ∗ b1 ;
// Product us ing the batch dgemm funct i on that can be s p e c i a l i z e d depending on parameters
constexpr auto c = batch gemm(b , b1) ;

Listing 4: Tensor Operations

Using the above features of the C++14 standard, we also overloaded the functions dealing
with the different SIMD instructions on different architectures, e.g., Intel SSE, AVX2, AVX512,
and ARM AArch64. This allows us to easily support different SIMD extensions while using a
generic function for each call. These programming techniques allow us to have a single source
file that supports Intel and ARM processors for very efficient small size matrix products. It
is also very simple to extend. For example, adding support for IBM processors with Altivec
SIMD instructions only requires us to add an overload for each SIMD functions we need.

6 Algorithms design for performance and portability

The generalized tensor contractions (4)–(7) can be summarized to a few kernels [7] (as discussed
in Section 3). One natural way to implement them is as a sequence of pairwise contractions,
i.e. by evaluating the sums one at a time. While this is an efficient approach, especially when
coupled with a batched approach as in MAGMA [14, 15], there is enough complexity here
that maybe one can come up with something better. Indeed, a number of the kernels needed
can be reduced further to a tensor index reordering (generalized transpose) plus the dgemm
A,B 7→ ATB. This is because contraction by the first index, for example

Ci1,i2,i3 =
∑
k1

Ak1,i1Bk1,i2,i3 ,

can be written as Reshape(C)nd1×(nd2nd3) = AT Reshape(B)nq1×(nd2nd3). If the contraction is
not by the first index, reducing it to ATB requires data reordering. However, we note that there
is a way not to do this explicitly since the matrices are very small; we organize our algorithms
(next) to have a phase of reading A and B to shared memory, followed by a computational
phase. Thus, the reading can be from consecutive or not data, and in either case to benefit
from data reuse (of the small A and B in shared memory) using the same computational phase.

In summary, all of the (6)–(7) operations can be implemented through reshaping and the
kernels Ai,j,k,l =

∑
sBi,s,jCk,s,l and Ai,k,l,j =

∑
sBi,s,jCk,s,l.

The matrix assembly contractions (4)–(5) can also be reduced to a common kernel (plus
reshaping): Ak,i,l,j =

∑
sBs,iBs,jCk,s,l.

9

Small tensor operations on advanced architectures Abdelfattah et al.

6.1 Performance model

To evaluate the efficiency of our algorithms we derive theoretical bounds for the maximum
achievable performance Pmax = F/Tmin, where F is the flops needed and Tmin is the fastest
time to solution. For simplicity, consider C = αAB + βC on square matrices of size n. We
have F ≈ 2n3 and Tmin = minT (TRead(A,B,C) + TCompute(C) + TWrite(C)). Note that we have
to read/write 4n2 elements, or 32n2 Bytes for double precision (DP) calculations. Thus, if the
maximum achievable bandwidth is B (in Bytes/second), we take Tmin = 4n2/B in DP. Note
that this time is theoretically achievable if the computation totally overlaps the data transfers
and does not disrupt the maximum rate B of read/write to the GPU memory. Thus,

Pmax =
2n3B

32n2
=
nB

16
in DP.

The achievable bandwidth can be obtained by benchmarks, e.g., using NVIDIA’s bandwidthTest.
For example, on a K40 GPU with ECC on the peak is 180 GB/s, so in that case Pmax is 11.25 n
GFlop/s (denoted by the diagonal lines on the performance Figures in Section 7). Thus, when
n = 16 for example, we expect a theoretical maximum performance of 180 GFlop/s in DP.

6.2 Algorithms for tensor contractions through batched GEMMs

As described, we transform the tensor contractions to batched GEMM. To achieve HP on
batched GEMM for small matrices that are sub-warp in size, we apply the following techniques:

• Using templates and constexpr specifiers we manage to avoid parameters checking and
get compiler-unrolled loops in our kernels;

• We avoid passing arrays of pointers to the batched matrices, which are quite large, by
passing them through formula/function that is part of the tensor’s structure definition;

• The kernels are organized as follows: (1) Read A and B into shared memory; (2) Compute
AB in registers; (3) Update C. Reading A, B, and C is through functions in the tensor’s
structure definition, which allows us to work with matrices that are not stored in the stan-
dard matrix format. Thus, we do not need explicit data reordering for some contractions,
in order to efficiently benefit from the GEMM computation (step 2 above);

• We developed versions based on: how A and B are read; prefetching or not C by inter-
mixing reading C with the computation in (2); number of matrices handled by a thread
block, combined with prefetching variations for A and B; number of threads per thread
block; and combinations of the above.

In all cases, to maximize data reuse, a single GEMM is done on a single thread block. Batching
of the computation is done as in [15]. A GPU GEMMs technique, used for large matrices since
the Fermi architecture [24], is to apply hierarchical communications/blocking on all memory
levels, including a new register blocking. Register blocking can be added by making a single
thread compute more than one element of a resulting matrix (in the same row or column, so
that when an element from A or B is loaded into a register, it gets used more than once).
Current results show that register blocking may not be needed in this case.

6.3 Autotuning

The complexity of tuning our algorithms is handled through autotuning [18, 6]. We note that
although tuning is important, the algorithmic design (as in Section 6.2) is the more critical part

10

Small tensor operations on advanced architectures Abdelfattah et al.

for obtaining high-performance, as the overall success is limited by the quality of the algorithms
used. With that in mind, there are generally two kinds of approaches for doing autotuning –
model-driven optimization and empirical optimization. We use a combination. The model-
driven part comprises compiler code generation and optimizations (as in Section 5). For the
empirical optimization, a large number of parametrized code variants are generated and run
on a given platform to discover the one that gives the best performance. The effectiveness of
empirical optimization depends on the chosen parameters to optimize, and the search heuristic
used. Our GEMM gesign and some of its paramers are illustrated on Figure 3. The GPU

BLKN

BLKk

BLKk

BLKM BLKM

BLKN

M

K

K

N

A C

B

Figure 3: GEMM design and (auto)tuning parameters for various levels of blocking.

implementation, for example, uses register blocking to hold three blocks of A, B, and C in the
register file. As a thread block (TB) moves across A and B, new blocks of A and B are read
in the registers, while the C block is kept for result accumulation. The multiplication between
blocks takes place in shared memory, which allows data prefetching of the next A and B blocks
in registers. The kernel has at least five tuning parameters, which are BLKM, BLKN, BLKK, and
the (x, y) configuration of TBs.

The designs of these algorithms and their implementations using templates are very conve-
nient in setting up our autotuning framework. The process is illustrated on Figure 4.

Further details on the autotuning framework can be found in [6], while details on the
kernels, including their extension to multicore CPUs, are available in our technical report [22].

11

Small tensor operations on advanced architectures Abdelfattah et al.

1) Kernel variants: performance parameters are exposed through a templated kernel interface
 template< typename T, int DIM_X, int DIM_Y,
 int BLK_M, int BLK_N, int BLK_K,
 int DIM_XA, int DIM_YA, int DIM_XB, int DIM_YB,
 int THR_M, int THR_N, int CONJA, int CONJB >
 static __device__ void tensor_template_device_gemm_nn(int M, int N, int K, …

2) CPU interfaces that call the GPU kernels as a Batched computation
 template<typename T, int DIM_X, int DIM_Y, … >
 void tensor_template_batched_gemm_nn(int m, int n, int k, …) {
 …
 tensor_template_device_gemm _nn<T, DIM_X, DIM_Y, … ><<<dimGrid, dimBlock, 0, queue>>>(m, n, k,…);
 }

3) Python scripts that generate the search space for the different parameters DIM_X, DIM_Y …
 index, DIM_X, DIM_Y, …
 #define NN_V_0 4, 8, 8, 24, 8, 1, 4, 8, 4, 8
 #define NN_V_1 4, 8, 8, 32, 8, 1, 4, 8, 4, 8
 #define NN_V_2 4, 8, 8, 40, 8, 1, 4, 8, 4, 8
 …

4) Scripts that run all versions in the search space, analyze the results, and return the best
 combination of parameters, which is stored in the library for subsequent use.

Figure 4: Autotuning framework for high-performance tensor contractions in MAGMA.

7 Experiments on tensor computations

We designed a framework and parametrized implementations, as described in Section 6, and
autotuned them for the architectures of interest (shown in Figure 1). The performance results
are presented in the following subsections for multicore CPUs, ARM, GPU, and Xeon Phi,
respectively. We note that in all cases the goal was to reach close to the theoretical peak
performance, as derived in Section 6.1.

We used gcc compiler 5.3.0 for our CPU code (with options -std=c++14 -O3 -avx -fma),
as well as the icc compiler from the Intel suite 2016.0.109, and the BLAS implementation from
MKL (Math Kernel Library) 16.0.0. We used CUDA Toolkit 8.0 for the GPU.

7.1 Multicore results

Figure 5 shows the performance of batched DGEMMs on a 10-cores Intel Xeon E5-2650 v3
(Haswell). The batch count is 10, 000. For the MKL library we used the best of the following
two: 1) An OpenMP loop statically or dynamically unrolled among the cores (we choose the best
results), where each core computes one matrix-matrix product at a time using the optimized
sequential MKL dgemm routine, or 2) The batched dgemm routine that has been recently added
to the MKL library.

Note that both MAGMA and MKL achieve very good, close the the peak performance, with
MAGMA outperforming MKL. For very small matrices, like the ones of interest, performing

12

Small tensor operations on advanced architectures Abdelfattah et al.

0 5 10 15 20 25 30 35
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

up
pe
r b
ou
nd

Matrix Size

G
fl

o
p

/
s

magma
mkl

ijk loop
ikj loop

Figure 5: Performance comparison of batched DGEMMs on Haswell CPU.

proper register blocking is essential for getting good performance on CPUs (among the other
techniques mentioned). In particular, once data is loaded into a SIMD register, it must be
reused as much as possible before being replaced by new data. The Haswell CPU has 16 (AVX-
2) SIMD registers, 256-bit each. Thus, to load completely an 8× 8 matrix, for example, would
take all 16 registers. Therefore, one can expect that loading the whole B will not be optimal as
we will have to reload the vectors for A and C. However, if we load only 8 registers for B, which
is equal to 4 rows, we can compute a row of C at each iteration and reuse these 8 registers for
each iteration. All combinations like this are checked to find the best one using our autotuning
framework. Also, note that the simple loop-based implementations can not be register-blocked
and vectorized automatically by the compiler, which results in poor performance (although data
is in L1 cache).

Multiple CPUs have non-uniform memory accesses based on the data location. Figure 6
illustrates that we can increase performance if we take NUMA effects into consideration. Note
that we manage to double the performance from a single to two sockets, meaning we manage to
double the bandwidth (44 GB/s for a socket). Interleaving the memory allocation between the
sockets (by memory pages) helps, but better performance is achieved if we explicitly allocate
half the matrices on one socket and the other half on the second socket (see the performance
marked by custom numa).

7.2 ARM results

Figure 7 gives the performance that we obtain on an ARM processor – Tegra X1, a 4-core Cortex
A57. We apply the same approach as for multicore CPUs. The difference is that the ARM
intrinsics only support 128-bit vectors, which severely limit the SIMD use for double precision
computations. However, the autotuning that we use manages to resolve this difference without
extra efforts.

As in the other cases, we outperform other available libraries (OpenBLAS in this case) and
we are very close to the theoretical peak. Simple loops again can not be vectorized and blocked

13

Small tensor operations on advanced architectures Abdelfattah et al.

0 5 10 15 20 25 30 35
0

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

up
pe
r b
ou
nd

Matrix Size

G
fl

o
p

/
s

20 cores custom numa
20 cores interleave all

20 cores
10 cores

Figure 6: Effect of the NUMA memory management on multi-socket Haswell CPU.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

up
pe
r b
ou
nd

Matrix Size

G
fl

o
p

/
s

magma
openblas
ijk loop
ikj loop

Figure 7: Experimental results of the matrix-matrix multiplication on the Tegra X1.

well for register reuse.

7.3 GPU results

Figure 8 shows the DP performance of four of our autotuned kernels from Section 6.2. Each
of the kernels gives best results for certain dimensions. Shown is also the performance on 16
cores Intel Sandy Bridge CPUs. The implementation uses OpenMP to run in parallel a GEMM
per thread, where the GEMMs call MKL. For n = 16 the speedup is about 4× and grows for
smaller sizes. Similar trend is observed in a comparison to the batched DGEMM in CUBLAS.

14

Small tensor operations on advanced architectures Abdelfattah et al.

��

���

���

���

���

����

����

����

����

����

����

�� �� �� �� �� ��� ��� ��� ���

�
�
�
�
��

���������������

������������
����������
����������
����������
����������
�������
����������

Figure 8: Performance comparison of tensor contraction versions using batched C = αAB+βC
on 100,000 square matrices of size n (x-axis) on a K40c GPU and 16 cores of Intel Xeon E5-2670
(Sandy Bridge) 2.60 GHz CPUs.

Our performance is within 90% of the theoretical maximum, as derived in Section 6.1, and
denoted by a dashed line. Slight improvement may be possible through register blocking and
tuning.

The same code can be easily tuned for other GPUs. Figure 9 shows the performance on a
P100 GPU. To compare with the K40c, note that at n = 16, we get about 500 GFlop/s on the
P100 vs. 180 GFlop/s on the K40c.

��

����

����

����

����

�����

�����

�� �� ��� ��� ��� ��� ��� ���

��
��
��
��
��
�

�
�
�
�
��

�����������

������
�������
�����������

Figure 9: Performance of batched 100,000 DGEMMs on a Tesla P100 GPU.

15

Small tensor operations on advanced architectures Abdelfattah et al.

7.4 Xeon Phi results

Figure 10 gives the performance of batched DGEMMs on KNL without MCDRAM (Left) and
with MCDRAM (Right). Note that use of the MCDRAM as the main memory, instead of the

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

180

200

up
pe
r b
ou
nd

Matrix Size

G
fl

o
p

/
s

magma
mkl

ijk loop
ikj loop

0 5 10 15 20 25 30 35
0

40
80
120
160
200
240
280
320
360
400
440
480
520
560
600
640
680
720
760

up
pe
r b
ou
nd

Matrix Size

G
fl

o
p
/
s

magma
mkl

ijk loop
ikj loop

Figure 10: KNL performance of batched DGEMMs without MCDRAM (Left) and with MC-
DRAM (Right).

DDR4, heavily impacts the performance. Although use of MCDRAM is about twice faster, we
end up far from the upper bound due to data in the MCDRAM not being read multiple times,
which limits the bandwidth achieved. The SIMD instructions here (AVX512) are 512-bit.

8 Conclusions and future directions

We developed a number of performance optimizations techniques for tensor contractions on
new architectures. The contractions targeted are for high-order FEM, and the BLAST code in
particular - a high-order FE hydrodynamics research code developed at LLNL. We presented
our approach and findings – from the tensor formulation of the numerical FEM algorithms
to the definition of tensor interfaces, code generation, design of algorithms, and tuning for
performance and portability. We developed a proof-of-concept software that shows that we can
achieve performance that is close to optimal. We currently achieve within 90% of a theoretically
derived peak on multicore CPUs, GPUs, ARM, and Xeon Phis using on-the-fly tensor reshaping
to cast tensor contractions to small but many GEMMs, executed using a batched computing
approach, custom-built GEMM kernels for small matrices, and autotuning.

As future work, there are many options that need to be coded and tuned in order to turn
the proof-of-concept software developed into production-ready software. The goal is to develop
this production-ready HP tensor contractions package and to release it as open source (e.g.,
through the MAGMA library). Also, it remains to integrate the developments in the BLAST
code, and prepare the autotuning in anticipation for easy portability to future supercomputers
like Sierra, and new GPU architectures like the Volta with its 3D-stacked memory, expected to
further favor tensor computations.

16

Small tensor operations on advanced architectures Abdelfattah et al.

Acknowledgments

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL release number
LLNL-TR-728700.

References

[1] Future directions in tensor-based computation and modeling, May 2009. Workshop. Arlington,
Virginia. Technical report published at http://www.cs.cornell.edu/CV/TenWork/FinalReport.pdf.

[2] Workshop on Batched, Reproducible, and Reduced Precision BLAS. http://bit.ly/

Batch-BLAS-2016, 2016. University of Tennessee, Knoxville, TN, May 18 19.

[3] Workshop on Batched, Reproducible, and Reduced Precision BLAS. http://bit.ly/

Batch-BLAS-2017, 2017. Georgia Tech, Atlanta, GA, February 23-25.

[4] A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar,
I. Karlin, Tz. Kolev, I. Masliah, and S. Tomov. Accelerating Tensor Contractions in High-
Order FEM with MAGMA Batched. http://icl.cs.utk.edu/projectsfiles/magma/pubs/

52-Tomov-SIAM-CSE2017.pdf. SIAM Conference on Computer Science and Engineering (SIAM
CSE’17) Presentation, Atlanta, GA, February 26-March 3, 2017.

[5] A. Abdelfattah, M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin,
Tz. Kolev, I. Masliah, and S. Tomov. High-performance tensor contractions for GPUs. Procedia
Computer Science, 80:108–118, 2016.

[6] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and Jack Dongarra. Performance, design,
and autotuning of batched GEMM for GPUs. In High Performance Computing: 31st International
Conference, ISC High Performance 2016, Frankfurt, Germany, June 19-23, 2016, Proceedings,
pages 21–38. Springer International Publishing, 2016.

[7] M. Baboulin, V. Dobrev, J. Dongarra, C. Earl, J. Falcou, A. Haidar, I. Karlin, T. Kolev,
I. Masliah, and S. Tomov. Towards a High-Performance Tensor Algebra Package for Accelerators.
http://computing.ornl.gov/workshops/SMC15/presentations/. Smoky Mountains Computational
Sciences and Engineering Conference (SMC’15), Gatlinburg, TN, Sep 2015.

[8] N. Bell and J. Hoberock. Thrust: A 2 6. GPU Computing Gems Jade Edition, page 359, 2011.

[9] Veselin Dobrev, Tzanio V. Kolev, and Robert N. Rieben. High-order curvilinear finite element
methods for lagrangian hydrodynamics. SIAM J. Scientific Computing, 34(5), 2012.

[10] Tingxing Dong, Veselin Dobrev, Tzanio Kolev, Robert Rieben, Stanimire Tomov, and Jack Don-
garra. A step towards energy efficient computing: Redesigning a hydrodynamic application on
CPU-GPU. In IEEE 28th International Parallel Distributed Processing Symposium (IPDPS), 2014.

[11] Jack Dongarra, Iain Duff, Mark Gates, Azzam Haidar, Sven Hammarling, Nicholas J. Higham,
Jonathon Hogg, Pedro Valero-Lara, Samuel D. Relton, Stanimire Tomov, and Mawussi Zounon. A
proposed API for Batched Basic Linear Algebra Subprograms. MIMS EPrint 2016.25, Manchester
Institute for Mathematical Sciences, The University of Manchester, UK, April 2016.

[12] Jing Gong, Stefano Markidis, Erwin Laure, Matthew Otten, Paul Fischer, and Misun Min. Nek-
bone performance on gpus with openacc and cuda fortran implementations. The Journal of Su-
percomputing, 72(11):4160–4180, 2016.

[13] A. Haidar, A. Abdelfattah, V. Dobrev, I. Karlin, Tz. Kolev, S. Tomov, and J. Dongarra. Tensor
Contractions for High-Order FEM on CPUs, GPUs, and KNLs. Smoky Mountains Computational
Sciences and Engineering Conference (SMC’16), Gatlinburg, TN, Sep 2016.

[14] Azzam Haidar, Tingxing Dong, Piotr Luszczek, Stanimire Tomov, and Jack Dongarra.
Batched matrix computations on hardware accelerators based on GPUs. IJHPCA,
doi:10.1177/1094342014567546, 02/2015.

17

http://bit.ly/Batch-BLAS-2016
http://bit.ly/Batch-BLAS-2016
http://bit.ly/Batch-BLAS-2017
http://bit.ly/Batch-BLAS-2017
http://icl.cs.utk.edu/projectsfiles/magma/pubs/52-Tomov-SIAM-CSE2017.pdf
http://icl.cs.utk.edu/projectsfiles/magma/pubs/52-Tomov-SIAM-CSE2017.pdf

Small tensor operations on advanced architectures Abdelfattah et al.

[15] Azzam Haidar, Tingxing Dong, Stanimire Tomov, Piotr Luszczek, and Jack Dongarra. A Frame-
work for Batched and GPU-Resident Factorization Algorithms Applied to Block Householder
Transformations. In High Performance Computing, volume 9137 of Lecture Notes in Computer
Science, pages 31–47. 2015.

[16] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. LIBXSMM: Accelerating
Small Matrix Multiplications by Runtime Code Generation. SC16: International Conference for
High Performance Computing, Networking, Storage and Analysis (SC), 00:981–991.

[17] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Rev.,
51(3):455–500, August 2009.

[18] Y. Li, J. Dongarra, and S. Tomov. A note on auto-tuning GEMM for GPUs. In Proceedings of
the 2009 International Conference on Computational Science, ICCS’09, Baton Roube, LA, May
25-27 2009. Springer.

[19] Wenjing Ma, S. Krishnamoorthy, O. Villay, and K. Kowalski. Acceleration of Streamed Tensor
Contraction Expressions on GPGPU-Based Clusters. In Cluster Computing (CLUSTER), 2010
IEEE International Conference on, pages 207–216, Sept 2010.

[20] Software distribution of MAGMA version 1.6.1. http://icl.cs.utk.edu/magma/software/,
January 30 2015. Quick reference http://icl.cs.utk.edu/projectsfiles/magma/pubs/

SC14-MAGMA.pdf.

[21] Stefano Markidis, Jing Gong, Michael Schliephake, Erwin Laure, Alistair Hart, David Henty,
Katherine Heisey, and Paul F. Fischer. Openacc acceleration of the nek5000 spectral element
code. IJHPCA, 29(3):311–319, 2015.

[22] Ian Masliah, Ahmad Abdelfattah, A. Haidar, S. Tomov, Marc Baboulin, J. Falcou, and J. Don-
garra. High-performance matrix-matrix multiplications of very small matrices. In Proceedings of
the 22Nd International Conference on Euro-Par 2016: Parallel Processing - Volume 9833, pages
659–671, Cham, 2016. Springer International Publishing.

[23] David S. Medina, Amik St.-Cyr, and Timothy Warburton. OCCA: A unified approach to multi-
threading languages. CoRR, abs/1403.0968, 2014.

[24] Rajib Nath, Stanimire Tomov, and Jack Dongarra. An Improved MAGMA GEMM For Fermi
Graphics Processing Units. Int. J. High Perform. Comput. Appl., 24(4):511–515, November 2010.

[25] Thomas Nelson, Axel Rivera, Prasanna Balaprakash, Mary W. Hall, Paul D. Hovland, Elizabeth R.
Jessup, and Boyana Norris. Generating efficient tensor contractions for gpus. Technical report,
2015.

[26] M. Otten, J. Gong, A. Mametjanov, A. Vose, J. Levesque, P. Fischer, and M. Min. An mpi/openacc
implementation of a high order electromagnetics solver with gpudirect communication. Interna-
tional Journal of High Performance Computing Applications, pages 1–15, 03/2015 2015.

[27] Yang Shi, U. N. Niranjan, Animashree Anandkumar, and Cris Cecka. Tensor contractions with
extended BLAS kernels on CPU and GPU. CoRR, abs/1606.05696, 2016.

[28] Jaewook Shin, Mary Hall, Jacqueline Chame, Chun Chen, Paul Fischer, and Paul Hovland. Speed-
ing up nek5000 with autotuning and specialization. In Proceedings of the 24th ACM International
Conference on Supercomputing, ICS ’10, pages 253–262, New York, NY, USA, 2010. ACM.

[29] Edgar Solomonik and James Demmel. Contracting symmetric tensors using fewer multiplications.
Technical report, ETH Zürich, 2015.

[30] Edgar Solomonik, Devin Matthews, Jeff Hammond, John Stanton, and James Demmel. A mas-
sively parallel tensor contraction framework for coupled-cluster computations. Technical Report
UCB/EECS-2014-143, EECS Department, University of California, Berkeley, Aug 2014.

[31] Paul Springer and Paolo Bientinesi. Design of a high-performance gemm-like tensor-tensor multi-
plication. CoRR, abs/1607.00145, 2016.

[32] Kevin Stock, Thomas Henretty, Iyyappa Murugandi, P. Sadayappan, and Robert J. Harrison.
Model-driven simd code generation for a multi-resolution tensor kernel. In IPDPS, pages 1058–
1067. IEEE, 2011.

18

http://icl.cs.utk.edu/magma/software/
http://icl.cs.utk.edu/projectsfiles/magma/pubs/SC14-MAGMA.pdf
http://icl.cs.utk.edu/projectsfiles/magma/pubs/SC14-MAGMA.pdf

	Introduction
	Current development in tensors computations
	Tensor operations in high order FEM
	Main activities
	Tensor contraction interfaces and code generation
	Algorithms design for performance and portability
	Performance model
	Algorithms for tensor contractions through batched GEMMs
	Autotuning

	Experiments on tensor computations
	Multicore results
	ARM results
	GPU results
	Xeon Phi results

	Conclusions and future directions

