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CHAPTER 1

Preface

ScaLAPACK was �rst released in 1995, 22 years ago. To put it in perspective, this was one
year a�er version 1.0 of the MPI standard was released, and two years before the OpenMP
Fortran 1.0 speci�cation was released. The fastest machine on the TOP500 list was the
Japanese Numerical Wind Tunnel, with peak performance of 235.8 GFLOPS. This was the
year when Microso� acquired NCSA Mosaic to build the Internet Explorer.

The past two decades witnessed tectonic shi�s in the hardware technology, followed by
paradigm shi�s in the so�ware technology, and a plethora of algorithmic innovation in
scienti�c computing. At the same time, no viable replacement for ScaLAPACK emerged,
that would channel this technological progress into a robust so�ware package. SLATE is
meant to be this replacement, and the objective of this document is to provide an overview
of the cutting-edge solutions required to accomplish that mission.
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CHAPTER 2

ECP Applications Survey

In February 2017, the SLATE team circulated a survey to the ECP applications teams, to
asses their needs for dense linear algebra functionality. 40 responses were collected, 25
from project’s PIs and co-PIs and 15 from other team members. Here, the responses to the
most important questions are summarized.

2.1 Results

2



2.1. RESULTS CHAPTER 2. ECP APPLICATIONS SURVEY

LAPACK 25
ScaLAPACK 11

BLAS 26
PBLAS 7

PLASMA 3
MAGMA 8

Figure 2.1: Is your application directly calling any of the following packages? Mark all that
apply.

completely 7
heavily 13

somewhat 13
not at all 7

Figure 2.2: To what extent does your application rely on dense or band linear algebra
operations?
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2.1. RESULTS CHAPTER 2. ECP APPLICATIONS SURVEY

BLAS 29
linear systems 21

least squares 12
singular values 12

eigenvalues 19
low rank approximation 12
updating or downdating 5

computing an inverse 13
Other 8

Figure 2.3: What linear algebra routines are you using? Mark all that apply.

single 18
double 32

Figure 2.4: Which precisions are you using? Mark both if applicable.

real 36
complex 16

Figure 2.5: What arithmetic are you using? Mark both if applicable.

4



2.1. RESULTS CHAPTER 2. ECP APPLICATIONS SURVEY

yes 13
no 23

Figure 2.6: Are you interested in extended precision, e.g., double-double or triple-�oat?

yes 15
no 17

Figure 2.7: Are you interested in lower precision, e.g., half precision (16-bit �oating point).

full 25
band 13

Other 14

Figure 2.8: What is the structure of your matrices? Mark all that apply.

5



2.1. RESULTS CHAPTER 2. ECP APPLICATIONS SURVEY

general 26
symmetric / Hermitian 16

positive de�nite 8
Other 3

Figure 2.9: What are the properties of your matrices? Mark all that apply.

square 21
roughly square 10
tall and skinny 16
short and wide 13

Other 4

Figure 2.10: What is the typical shape of your matrices? Mark all that apply.

yes - all of the same size 10
yes - di�erent sizes 7

no 14

Figure 2.11: Are you solving a large number of small independent problems? (matrices
smaller than 500x500)?

6



2.1. RESULTS CHAPTER 2. ECP APPLICATIONS SURVEY

single core 19
single node multicore 23

single GPU 15
single node +GPUs 18

dist. mem. [+GPUs] 22
Other 6

Figure 2.12: You need dense linear algebra routines for what target? Mark all that apply.

C 19
C++ 26

FORTRAN 77 11
Fortran 90/95/2003/... 14

Other 4

Figure 2.13: Which API do you need? Mark all that apply.
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2.2. CONSEQUENCES FOR SLATE CHAPTER 2. ECP APPLICATIONS SURVEY

2.2 Consequences for SLATE

This summary is based on the results of the survey, as well as follow up interaction with the
applications teams. Here we summarize the main observations.

Impact: Dense linear algebra is ubiquitous in DOE ECP applications. 80% of respondents
indicated reliance on LAPACK and BLAS, 35% reliance on ScaLAPACK, 20% reliance
on PBLAS. The newer libraries, PLASMA and MAGMA have much smaller traction.
While MAGMA has some adoption, the adoption of PLASMA is minimal. Half of
respondents indicated that their applications rely completely or heavily on dense or
band linear algebra operations. Only 20% of respondents indicated no need for such
operations at all.

While traditional DOE applications, relying heavily on PDE solvers (fusion, com-
bustion, wind turbines, stellar explosions), use little dense linear algebra, and mostly
indirectly, there is a number of applications in quantum mechanics, computational
chemistry, particle physics, material science, which rely heavily on dense linear alge-
bra so�ware (QMCPACK, NWChemEx, GAMESS, EXAALT). Naturally, dense linear
algebra routines are used heavily by sparse direct solvers, e.g., FBSS (STRUMPACK).

Types of Problems: The needs of the ECP applications basically spans the coverage of
BLAS and LAPACK. 75% of respondents indicated the need for BLAS, 50% indicated
the need for linear solvers and eigenvalue solvers, 30% indicated the need for least
squares solvers, singular value solvers, low rank approximations, and constructing an
inverse of a matrix. There is also some need for updating and downdating capabilities.

80% of respondents deal with full matrices, 40% of respondents deal with band matrices.
At the same time, 80% of respondents deal with general (non-symmetric) matrices,
40% deal with symmetric matrices, and 30% deal with symmetric positive de�nite
matrices. Also, while in most cases the matrices are square (60%), there is also a strong
need for operations on matrices that are tall and skinny, and on matrices that are short
and wide (50% and 35% respectively). This, again, con�rms the need for supporting
the fairly wide range of matrix shapes and properties, close to the coverage of BLAS
and LAPACK.

Target Hardware: There seems to be a universal agreement that all types of architectures
should be supported, including homogeneous multicore systems, as well as heteroge-
neous, accelerated, systems, and support for multiple accelerators per node is desired.
There also seems to be a universal agreement that distributed memory capabilities
are a must, although we only heard a single request for actual exascale capabilities.
The NWChemEx team expressed interest in a dense solvers capable of dealing with
O(1M) matrices.

Arithmetic and Precision: The majority of applications require double precision, while
about half also use single precision. All need real arithmetic, while about half needs
complex arithmetic. About a third indicated interest in extended precision (double-
double or triple-�oat), while almost half indicated interest in lower precision, e.g.,
16-bit half precision. This is a clear indicator that there is a strong need for providing
�exibility going beyond the four basic precision supported by LAPACK, ScaLAPACK,
PLASMA, and MAGMA.

8



2.2. CONSEQUENCES FOR SLATE CHAPTER 2. ECP APPLICATIONS SURVEY

Desired APIs: Basically, APIs for all common HPC programming languages are needed: C,
C++, legacy Fortran, modern �avors of Fortran. At the same time, there is a strong
interest in C++ interfaces. 75% of respondents indicated the need for a C++ API.

Batched Operations: There is a signi�cant demand for batched dense linear algebra oper-
ations, i.e., operations on large numbers of small matrices. The two cases seem to be
equally important: the case when all the matrices in the batch are of the same size,
and the case when the batch contains matrices of di�erent sizes. Obviously, this is a
node-level capability.

In summary, the SLATE so�ware needs to:

• serve as a replacement for BLAS/PBLAS and LAPACK/ScaLAPACK,

• support distributed memory systems with accelerators,

• provide a C++ API in addition to traditional APIs,

• facilitate the use of other precisions then the traditional set of four.

In the course of the project, it is also desired to:

• standardize the C++ APIs of BLAS and LAPACK,

• standardize the API for batched BLAS and LAPACK operations.

9



CHAPTER 3

Hardware Technology Trends

3.1 UpcomingMachines

The Collaboration of Oak Ridge, Argonne, and Livermore (CORAL) is a joint procurement
activity among three of the Department of Energy’s National Laboratories launched in 2014
to build state-of-the-art high-performance computing technologies that are essential for
supporting U.S. national nuclear security and are key tools used for technology advancement
and scienti�c discovery [61]. The Argonne Leadership Computing Facility (ALCF) will
contract with Intel and Cray to build “pre-exascale” systems, while Lawrence Livermore
National Laboratory (LLNL) and Oak Ridge Leadership Computing Facility (OLCF) will
contract with IBM. This con�guration of systems will enable explorations of architecture
diversity along the path to exascale computing [63, 69].

The ALCF CORAL system, named Aurora, is planned on the foundation of Intel’s HPC scal-
able system framework. Aurora is designed to provide peak performance of 180 PetaFLOP/s
from >50,000 nodes while consuming 13 MW of power [69]. Argonne and Intel have also
provide an interim system, called Theta, which is enabling ALCF users to transition their
applications to the new technology [63, 68].

The LLNL CORAL system, named Sierra, is planned to provide 120-150 peta�op/s peak.
The Sierra system will include compute nodes (POWER Architecture Processor, NVIDIA
Volta, NVMe-comaptible PCIe 800 GB SSD, greater than 512 GB DDR4 + HBM “high
bandwidth memory”, and coherent shared memory), compute racks (standard 19-inch
with warm-water cooling), and the compute system with be 2.1-2.7 PB memory, 120-150
peta�op/s, and 10 MW). The Global Parallel File System will have 120 PB usable storage

10



3.2. PROCESSING CHAPTER 3. HARDWARE TECHNOLOGY TRENDS

and 1.0 TB/s bandwidth [73].

The OLCF CORAL system, named Summit, is planned to deliver more than �ve times
the computational performance of OLCF’s Titan’s 18,688 nodes, using only approximately
3,400 nodes. Each Summit node will contain multiple IBM POWER9 CPUs and NVIDIA
Volta GPUs all connected together with NVIDIA’s high-speed NVLink and a huge amount
of memory. Each node will have over half a terabyte of coherent memory (HBM + DDR4)
addressable by all CPUs and GPUs, plus an additional 800 gigabytes of NVRAM [39].

3.2 Processing

3.2.1 GPUs

Graphical Processing Units adopt a many-core architecture. GPUs pack typically thousands
of very lightweight processing cores, rather than tens of large powerful cores (as in modern
multicore CPUs and the Xeon Phi architecture). Generally, a GPU thread executes slower
than a CPU thread. Such slow single-thread execution is compensated by the ability to
execute orders of magnitude more concurrent threads than a modern CPU. Therefore, GPUs
usually outperform CPUs in executing kernels that include large amounts of parallelism,
and where throughput matters more than latency.

Since the Fermi product line, GPU compute cards have always consisted of tens of Streaming
Multiprocessors (SMs). Each SM consists of single precision CUDA cores, double precision
units, texture units, warp schedulers, special function units, and fast memory levels (register
�le, shared memory, and sometimes a constant read-only memory). Through the Fermi,
Kepler, and Maxwell architectures, the numer of SMs was relatively low (typically 8-15), and
the main memory was an o�-chip GDDR memory. The Pascal architecture [1] brought
some drastic changes to these two aspect. First, a Pascal GPU packs 56-60 SMs, but the
number of cores per SM is relatively low (e.g. 192 cores in Kepler vs. 64 cores in Pascal).
In addition, the main memory is now a stacked memory architecture (HBM2) that brings
substantial improvement in memory bandwidth (e.g. ∼250 GB/s for Kepler vs. 720 GB/s
for Pascal). Throughout the generations, several other features have been added, such as
atomic operations, dynamic parallelism, Hyper-Q, warp shu�e instructions, and improved
power e�ciency.

The latest commercially available GPU adopts a Pascal architecture [1]. A Pascal GPU (P100)
has brought several architectural enhancements that are summarized:

1. Improved performance: the P100 GPU is capable of delivering up to 5.3/10.6 T�op/s
of performance. For double precision, this is more than 4× improvement against the
last FP64 capable GPU (Kepler).

2. Half precision arithmetic: The Pascal P100 GPU is the �rst NVIDIA GPU to support
half precision arithmetic, with up to 21.2 T�op/s. This new �oating point standard is
of particular importance for deep learning and AI applications.

3. High Bandwidth Memory (HBM2): the P100 chip incorporates a stacked memory ar-
chitecture, with up to 720 GB/s bandwidth. Unlike the previous generations, this is the
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�rst NVIDIA GPU to support ECC on the hardware level. Previous generations enable
a so�ware ECC, which consumes about 12-15% of the available memory bandwidth
on average.

4. NVLink: a new high speed interconnect that can deliver at least 5× the speed of the
PCIe interconnect.

5. The P100 GPU is the �rst to support FP64 atomic operations on the hardware level.

6. Compute preemption at an instruction level granularity, rather than a thread block
granularity in the previous generations.

7. A 2× improvement in the RDMA bandwidth, which is fundamentally important for
multi-GPU con�gurations.

The anticipated Volta GPU brings even more performance and power e�ciency than the
P100 GPU. While a detailed description of the V100 architecture is yet to come, these are
the features announced for the upcoming GPU [2]:

1. Improved performance: the Tesla V100 GPU is at least 1.4× faster than the P100 GPU in
many computational workloads and benchmarks. This includes matrix multiplication
(FP32 and FP64), Fast Fourier Transform (FFT), and the STREAM benchmark.

2. Faster interconnect: the Volta NVLink delivers up to 300 GB/s, which is almost twice
as fast as the bandwidth of the Pascal NVLink.

3. A new ISA with double the number of warp schedulers (vs. Pascal). The volta GPU
incorporates a larger and faster uni�ed L1 cache/shared memory. Unlike Pascal, which
has a separate 64KB shared memory and a slower 24KB L1 cache, the V100 GPU has a
uni�ed 128KB L1 cache/shared memory. The L1 cache is, therefore, as fast as shared
memory. The latter is also con�gurable up to 96KB. The V100 GPU also has 6MB of
L2 cache (against 4MB on the P100 GPU).

4. Independent thread scheduling: All previous GPUs had a single program counter (PC)
and stack for a warp of 32 threads. As per the Volta GPU, each thread has its own PC
and stack. A new synchronization mechanism among divergent threads in the same
warp is also supported.

5. As a result of the independent thread scheduling, the volta GPU, along with CUDA
9.0, deprecates the previous shu�e and compare intrinsics, and replaces them with
other intrinsics that synchronizes across a warp.

6. Tensor acceleration: the V100 GPU brings 8 tensor cores per multiprocessor. These
cores perform mixed precision matrix math (FP16/FP32) with signi�cant speedups
against the P100 GPU. With up to 120 T�op/s, the tensor cores are of particular
importance for deep learning applications.

7. The Volta GPU comes with CUDA 9.0, which brings many new functionalities, such as
cooperative thread groups, synchronization across thread blocks, and the elimination
of implicit warp synchronization.
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3.2.2 Xeon Phi

Knights Landing (KNL) is the codename for the second-generation of Intel’s Xeon Phi
many integrated core (MIC) architecture. The Theta system is a pre-exascale machine
being installed and put into early production at Argonne National Lab by the Argonne
Leadership Computing Facility (ALCF). Theta utilizes Intel Knights Landing along with
the Cray Aries interconnect via the XC40 supercomputer architecture. The ALCF Theta
XC40 system achieves a nearly 10 PF peak with 2,624 Nodes. Theta contains the 64 core
7230 KNL variant. The 7230 KNL chip has 64 cores that are organized into 32 tiles, with 2
cores per tile, connected by a mesh network and with 16 GB of in-package multichannel
DRAM (MCDRAM) memory. The core is based on the 64-bit “Silvermont” Atom Core
(1.40 GHz) which has 6 independent out-of-order pipelines, two of which perform �oating
point operations [68].

The 7230 and 7250 KNL variants utilizes 14 nm lithography similar to the “Broadwell”
Xeon E5 and E7 server processors to achieve 3.05 TFLOPS Peak Double Precision. The 68
cores on the 7250 KNL chip are also based upon the “Silvermont” microarchitecture and
support four execution threads. Both the 7230 and 7250 KNL variants have two AVX512
vector processing units per core. The cores are tiled in pairs that share 1MB of L2 memory.
The tiles of both variants are linked to each other using 2D mesh interconnect, that also
connects to the 384 GB DDR4-2400 memory (115.2 GB/s) through two controllers. The cores
are also connected to 16 GB MCDRAM providing up to 490 GB/s of sustained bandwidth
through the 2D mesh interconnect. The memory bandwidth per KNL core is approximately
11 GB/sec for small thread counts, while its predecessor the Knights Corner only provided
3.6 GB/sec [54].

Knights Hill (KNH) is the codename for the third-generation of Intel’s Xeon Phi MIC
architecture. Little has been publicly announced about the Knight’s Hill Processor beyond
the plan to manufacture it with a 10 nm lithography process (SC 14) [69]. ALCF’s Aurora,
a 180-peta�op supercomputer that is planned to be built for Argonne National Lab in
2018 was originally announced as utilizing KNH processors as part of the Collaboration
of Oak Ridge, Argonne, and Livermore (CORAL) joint procurement activity [63]. The US
Department of Energy �scal year 2018 budget request is not speci�c regarding the Aurora
supercomputer [62].

3.2.3 POWER

The Summit is Oak Ridge Leadership Computing Facility’s (OLCF’s) next �agship super-
computer. It will consists of 3,400 nodes, each featuring 2 IBM POWER9 CPUs and 6
NVIDIA Volta GPUs connected by NVLink and 512GB high bandwidth memory addressable
by both CPUs and GPUs and 800GB of NVRAM.

For developers transitioning to use Summit, OLCF provides Summitdev with node archi-
tectures one generation earlier than Summit, the 2 IBM POWER8 CPUs with NVLink and
4 NVIDIA Tesla P100 GPUs. The IBM POWER8 [74] is a RISC microprocessor from IBM
fabricated using IBM’s 22-nm technology. Compared to previous generation IBM POWER7
processors the POWER8 processor improved both in single thread performance and in
the number of cores. The IBM POWER8 processor feautures up to 12 cores per socket, 8
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threads per core, 32 KB instruction cache, 64 KB L1 data cache, 512 KB L2 cache, and 8 MB
L3 cache, per core. Each core can issue up to 10 instructions per cycle, and complete 8
instructions per cycle. Functional unit wise, the POWER8 has two independent �xed-point
units (FXU), two independent load-store units (LSU) plus two more load units, and two
independent �oating-point vector/scalar units (VSU). The maximum double-precision
�oating-point issue rate is 4 fmadds per cycle, single-precision 8 fmadds per cycle. The
SIMD width is 2 for double precision and 4 for single precision. Thus the peak double
precision performance is Freq× 8× #cores. For a 3.5 GHz frequency 20-cores node the
peak DP performance is 560 GFLOPS.

The upcoming IBM POWER9 CPUs [72] will be fabricated using 14nm FinFET technology.
It will come in 4 variants with either 1) 2 sockets optimized (Scale-Out, SO) or multiple
sockets optimized (Scale-Up, SU) con�gurations, 2) 24 SMT4 cores, or 12 SMT8 cores.
Compared to a POWER8 chip with the same SMT, frequency, and core count con�gura-
tion, the POWER9 socket achieves 1.5x �oating point performance, 2.25x graph analytics
performance, and something between 1.5x and 2.25x for commercial, integer, scripting,
and business intelligence workloads [79]. For HPC workloads, POWER9 is also a pow-
erful acceleration platform equipped with NVLink 2.0 and various high bandwidth low
latency interconnects (PCIe G4, CAPI 2.0, and New CAPI) to connect to accelerators such as
ASIC/FPGA.

3.2.4 ARM

Recently many ARM vendors are trying to bring server class ARM chips to challenge Intel’s
Xeon in datacenter servers, and Japan, China, and Europe seem to be interested in a ARM
based exascale supercomputer. Products in the server class ARM processors include Cavium
with its high core count ThunderX and ThunderX2 lines. The current production chips,
ThunderX, features up to 48 cores per socket in a 2 socket con�guration, is fabricated using
28nm process technology, and clocked at up to 2.5 GHz (though 2.0 GHz is mostly found).
The next generation ThunderX2 promises to have 2-3X improvement in performance
and will be etched using 14nm FinFET process. Architectural change from ThunderX
to ThunderX2 probably includes bigger caches, out-of-order pipelines, and more cores
(56) per socket, clocked at 3.0 GHz. ThunderX2 is also supposed to be much more power
e�cient than ThunderX, and twice as high memory bandwidth.

To cater for the HPC market, the ARMv8-A architecture was exteneded with vector in-
structions. This was announced by ARM at the HotChips’16 conference [76]. The speci�cs
of the Scalable Vector Extension (SVE) were later speci�ed in more detail [77]. The SVE
signi�cantly enchances the vector processing capabilities of AArch64 execution in ARM
architecture in a �exible way such that unmodi�ed binary code can e�ciently run on fu-
ture CPUs with longer vector lengths (128-2048 bits in 128 bits increments). This is called
Vector Length Agnostic programming model. Compared with previous media-processing
focused SIMD instructions (aka the ARM NEON, or ARMv7 Advanced SIMD), the SVE
introduces scalable vector lengths, gather load and scatter store, per-lane predication, and
some other features to make it a better compiler target and allow increased parallelism
extraction for HPC workloads. One particular interesting property in SVE is its vector
length agnostic which increases its future proofness. Traditionally SIMD is incorporated
into an ISA whenever the vector length is increased. We have seen this in x86 ISA with a
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handful of extensions: MMX, 3DNow!, SSE, SSE2, SSE3, SSSE3, SSE4, AVX, AVx2, AVX512).
The SVE does not have to be revised every time the vector length is increased. In addition,
the portability across di�erent microarchitecture is improved with CPUs featuring di�erent
vector lengths with di�erent tradeo�s between cost, power, area, and performance. Besides
this, SVE has many other advanced vector processing functions that makes vectorization
more applicable and e�cient. As a result, SVE can achieve better speedups than NEON even
with the same vector lengths for many applications, notably dense linear algebra, and allows
CPU designers to �nd their optimum vector lengths depending on individual objectives
and constraints. The SVE will be supported by lead partners of ARM such as Fujistu for its
Post-K supercomputer. It is unclear whether Cavium’s ThunderX2 will support SVE.

3.3 Communication

3.3.1 NVLINK

NVLink is a high memory bandwidth technology developed by NVIDIA in response to
the slow communication via the PCIe interconnect. Current PCIe technology (Gen. 3.0,
16 lanes) has a theoretical peak bandwidth of 16 GB/s. With a signi�cant portion of the
computing power being delivered by the coprocessor, communication via this port quickly
becomes the bottleneck when running distributed codes on a GPU-accelerated cluster.
NVIDIA’s NVLink-enabled P100 GPUs feature 4 NVLink connections, each providing a
peak bandwidth of 20 GB/s per direction. The NVLink technology can be used in di�erent
con�gurations. Connecting all NVLink lanes to the CPU augments the host-accelerator
bandwidth by another 80 GB/s per direction, which makes GP100 in total 160 GB/s of
bidirectional bandwidth. Alternatively, a Peer-to-Peer con�guration uses some of the lanes
to improve the GPU-to-GPU communication. NVLink also boasts up to 94% bandwidth
e�ciency.

Aside from the massive bandwidth of NVLink, it is also designed to enable the clustering
of GPUs and CPUs for them to appear as a single computing unit. NVLink enables this
abstraction by supporting load/store semantics [40] that allows programmers to directly
read/write peer GPU’s local memory and the CPU’s host memory all in a common shared
memory address space. Furthermore, remote atomic memory operations are supported on
peer GPUs for fast synchronizations. Together with the uni�ed memory space in CUDA 8
and page faulting hardware in GP100 GPU, NVLink thus pushes forward something like
Symmetric Multiprocessing (SMP) capability for CPUs to GPU accelerators (also to include
CPUs that support NVLink). In fact, the NVIDIA’s DGX-1 server clusters two CPUs with
eight P100 GPUs, with GPU↔CPU links being PCIe and GPU↔GPU link being NVLink.

3.3.2 In�niBand

In�niBand originated in 1999 from the merger of two competing technologies: Future I/O
and Next Generation I/O. Companies participating in the initial development included:
Compaq, Dell, HP, IBM, Intel, Microso�, and Sun. The �rst speci�cation of the architecture
was released in 2000. The vision was that In�niBand would replace PIC for the I/O and
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Ethernet for the interconnect. This plan was disrupted by the burst of the doc-com bubble.
Mellanox shipped the �rst 10 Gbit/s devices in 2001.

Currently, In�niBand is the most commonly used interconnect for supercomputers. In�ni-
Band adapters and switches are made by Mellanox and Intel, and Oracle is also entering the
market with its own hardware. The important feature, from the standpoint of HPC, is that
In�niBand provides RDMA capabilities for low CPU overhead. The current technology,
In�niBand EDR, provides ca. 24 Gbit/s of theoretical e�ective throughput per link (1×).
Links can be aggregated, and most systems use a 4× aggregate, for the total theoretical
e�ective throughput of close to 100 Gbit/s.

3.3.3 OmniPath

Omni-Path is an interconnection technology from Intel developed to address scaling
weaknesses that are currently impeding the High Performance Computing. From the
commercial standpoint, its main competition is In�niBand. OmniPath has its roots in two
acquisitions - acquisition of the In�niBand technology from QLogic and acquisition of the
Aries interconnect technology from Cray. As a result, Omni-Path combines the QLogic
True Scale architecture, and its associated so�ware stack, with high performance features of
Cray’s Aires. Notably, it is compliant with the Open Fabrics Alliance (OFA) stack for RDMA
fabrics.

The current generation of Omni-Path products delivers 100 Gbit/s of bandwidth per
port and port-to-port latencies comparable to EDR In�niBand. Notably, Intel already
ships Xeon Phi processors with integrated Omni-Path fabric. Intel also di�erentiates the
technology from other RDMA fabrics by pointing to a set of unique features, including
tra�c management and robust error detection, e.g.:

Adaptive Routing monitors the network and selects the least congested path to rebalance
the load. While this is not a unique solution, Intel points out advantages of its imple-
mentation, which is based on cooperation between the fabric manager and the switch
ASICs.

Dispersive Routing distributes tra�c across multiple paths, instead of sending all packets
from source to destination via a single path, which promotes e�ciency through
redundancy, and better load balancing.

Tra�c FlowOptimization breaks up variable length packets into �xed size containers for
transmitting over the link. At the same time, higher priority containers can be inserted
into the stream of lower priority containers, which allows to reduce the variation of
latency experienced by high priority tra�c in the presence of low priority tra�c.
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3.4 Memory

3.4.1 High Bandwidth Memory

Memory interfaces have been undergoing major changes during the last few years and
a number of new technologies are becoming available in high performance computing
architectures. The basic technologies in previous generation memory interface (DDR4)
were de�ned in 2008, and even though there have been updates for power and perfor-
mance, these changes have been incremental. The maximum bandwidth for 64-bit DDR4 is
approximately 26 GB/s, which is be insu�cient for many application on highly multi-core
architectures.

High Bandwidth Memory (HBM) is a memory interface promoted by AMD, NVIDIA, and
Hynix. HBM is a new type of memory architecture with low power consumption and
ultra-wide communication lanes. It uses vertically stacked memory chips interconnected
by microscopic wires called through-silicon vias or TSVs (Figure 3.1).

Figure 3.1: High Bandwidth Memory architecture (source: http://www.amd.com/en-us/
innovations/software-technologies/hbm).

The primary purpose for HBM is for use in graphics cards and it is designed to serve as a
replacement for GDDR5, which is the current graphics memory interface standard. The
HBM interface is intended to decrease power consumption, to enable more dense circuitry
for the higher bandwidth required today, and to allow the memory interface to be attached
o�-chip rather than requiring on-chip integration.

High Bandwidth Memory can achieve a bandwidth of 100+ GB/s per memory stack, whereas
GDDR5 got up to 28 GB/s per chip. In terms of energy consumption, HBM has a substantially
improved energy usage when measured in bandwidth/watt as compared to GDDR5. HBM
achieves 35+ GB/s of bandwidth per watt, whereas GDDR5 achieves 10.66 GB/s of bandwidth
per watt. The newer HBM-2 standard can achieve even better bandwidth and power
e�ciency.
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3.4.2 Hybrid Memory Cube

The Hybrid Memory Cube (HMC) interface is managed by a consortium whose participants
include Altera (Intel), ARM, IBM, Micron Technology, Open-Silicon, Samsung, SK Hynix,
and Xilinx, along with a large number of adopter members.

Hybrid Memory Cube architecture consists of stacked memory chips that are bonded
together using TSVs (through-silicon-vias) in conjunction with a high-speed logic layer
(Figure 3.2).

Figure 3.2: Hybrid Memory Cube architecture (source: http://wccftech.com/
micron-hybrid-memory-cube-3-0-specification/).

One of the goals of HMC is to remove the duplicated control logic of modern memory
systems, simplify the design, connect the entire stack in a 3D con�guration, using a single
control logic layer to handle the memory management. The logic layer in HMC controls
all aspects of the memory, and the host memory control is simpli�ed to handling requests
and responses. The HMC logic layer provides error detection and management capabili-
ties, atomic operations, reliability and availability features and scale-out device-chaining
capabilities.

Table 3.1: Comparison of Memory Technologies.

Memory HMC Gen3 HBM-2

Size 8 GB 8 GB
Max Bandwidth 480 GB/s 256 GB/s
Expandable Yes, chain modules No
Power Higher Lower
Target HPC, networking Graphics, networking,

small form-factors
Bene�ts High bandwidth; scala-

bility; power e�ciency
High bandwidth; scala-
bility; power e�ciency

Cost High Medium

A single HMC module can provide more than 15x the performance of a DDR3 module,
utilizing 70 percent less energy per bit than DDR3 DRAM technologies, and is contained in
90 percent less space.

The Hybrid Memory Cube design has a higher power consumption than the High Band-
width Memory design, but achieves a higher bandwidth. Putting the entire control logic
into the HMC allows modules to be chained together to increase capacity.
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3.5 Consequences for SLATE

The hardware technology trends, described in this chapter, have some dire consequences
for dense linear algebra in general, and the SLATE project in particular. Here we summarize
the most impactful developments:

Large Numbers of Cores: The number of CPU cores per node is going to be large. Right
now, a single Xeon Phi is already at the level of 72 cores and one ThunderX ARMv8
system is at the level of 96 cores. As this trend continues, we will likely have hundreds
of cores per node by the time we reach exascale. At the same time, it is still the rule
of thumb that the best performance can be extracted from ScaLAPACK by running
one process per core. It should be clear now that this is a completely unsustainable
direction for any numerical so�ware. While message passing is the paradigm of
choice for the foreseeable future, node-level parallelism has to be addressed with
some form of multithreading.

Omnipotent GPUs: GPUs are here to stay, and the GPU-accelerated machines are going
to have virtually all of its performance on the GPU side. A single node of the Summit
supercomputer is expected to have 40 TFLOPS of GPU performance. At the same
time it is likely to have about 1 TFLOPS of CPU performance. This means that only
2.5% or raw performance comes from CPUs. A gap of such magnitude requires a
fundamentally di�erent approach to designing numerical so�ware, as the process
can no longer be framed in terms of “o�oading” work to GPU. Instead, new packages
have to be built from the ground up with a GPU-centric mindset.

Starved Communication: Communication is getting worse. Consider the following: The
Titan supercomputer has node bandwidth of 6.4 GB/s and node peak performance of
ca. 1.4 GFLOPS, while the Summit supercomputer is advertised at 23 GB/s of node
bandwidth and 40 TFLOPS of node peak performance [5]. So, while the bandwidth
increases about 3.6 times, the node peak performance increases more than 28 times,
which means that the communication to computation ratio is about 8 times worse
(basically an order of magnitude). This makes the bandwidth a very scarce resource.
While various techniques can be used to deal with the latency, little can be done about
the lack of bandwidth. This means that SLATE will have to be very conservative
in its use of bandwidth, stay away from any techniques of dynamically rebalancing
work, and rely on statically partitioning matrices among distributed memory nodes.
Dynamic scheduling is only applicable at the node level.

Complex NodeMemories: SLATE will have to deal with twofold memory complexity.
First, a GPU-accelerated node is basically a globally-addressable distributed memory
system. From the standpoint of programmability, memory tra�c can be handled by a
so�ware coherency protocol. This does not change the fact that careful orchestration
of data transfers will be required for good performance. Second, the introduction
of 3D stacked memories creates an extra level of memory on the CPU side, with
cache-like appearances, but no hardware cache coherency protocol. While low-level
memory management may not be within the scope of SLATE, SLATE needs to utilize
data layout that does not handicap memory motion to and from GPUs or between
traditional RAM and 3D memory. Speci�cally, it is probably about time that the

19



3.5. CONSEQUENCES FOR SLATE CHAPTER 3. HARDWARE TECHNOLOGY TRENDS

ScaLAPACK matrix layout is retired, as it is not particularly friendly to transfers
through memory hierarchies.

In summary, the SLATE so�ware needs to:

• expose work in large chunks, to be able to saturate large numbers of CPU cores and/or
multiple GPU devices per node,

• be extremely conservative it its use of network bandwidth, refrain from dynamic
work migration between nodes,

• o�er an alternative to the traditional matrix layout, which will streamline memory
management and messaging.
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CHAPTER 4

Software Technology Trends

The U.S. Department of Energy (DOE) has identi�ed performance portability as a priority
design constraint for pre-exascale as well as upcoming exascale systems [3, 4]. The develop-
ment of portable across architectures parallel so�ware can be provided through the use
of standard APIs, e.g., OpenMP, OpenACC, and MPI, and standardized language features,
like co-arrays and ’do concurrent’ from the Fortran standard [70], or new parallelization
features [52], proposed for inclusion in the C++17 standard, etc. However, as the standard-
izations and their e�cient, high-performance implementations are a very slow process,
many of these features remain inadequate for performance portability, especially as related
to accelerator programming with heterogeneous compute capabilities and deep memory
hierarchies. To address this, various programming environments and frameworks have
been developed on top of standards as well, e.g., PaRSEC, Legion, DARMA, Kokkos, and
RAJA, but still, the performance portability remains a major challenge. Therefore, there
is need to understand, explore, and assess the current standards, as well as environments,
in order to select the best programming model and practices, as related to performance
portability, productivity, sustainability, and their trade-o�s, for the development of the
SLATE linear algebra library for exascale computing.

21



4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

4.1 Standards

4.1.1 C++

Historically speaking, ScaLAPACK, PBLAS, and BLACS were written in a combination of
FORTRAN 77 and C (ANSI and K&R versions). The complexities of modern hardware
and so�ware systems for HPC necessitated introduction of contemporary programming
languages to ease the development process and shi� the burden of common development
tasks onto the so�ware stack and the accompanying tool chain.

A quickly increasing set of scienti�c applications relies on a mix of programming languages
and thus linking multiple language runtimes has become a common place. C++ has become
a prevalent implementation language for large scienti�c so�ware collections such as Trilinos
and, as a consequence, became an indispensable part of large and scalable applications of
great importance to the national defense and energy agenda.

As a somewhat arbitrary boundary, we choose to focus on the transition from C+03 to
C++11. The former being mostly a bug-�x release of the C++98 standard that addressed a
large number of defect reports. The latter, on the other hand, slipped a large aspirational
deadline in 2010s and eventually landed almost a decade a�er the standard preceding it.

Even today, C++11 is not universally implemented by all the compilers. The prominent
examples are vendor compilers that o�en substantially lag behind in features. More speci�-
cally, IBM’s XLC tool chain is notoriously conservative and NVIDIA’s compiler (from CUDA
8 as of this writing) still misses some features to make it C++11 complete. These are among
the targeted compilers and therefore we have to take this situation into consideration.

A defensive strategy needs to be developed to pick and choose the C++ feature set that will
be used throughout SLATE. As a mitigation strategy, we might consider a two-compiler
strategy whereby both performance and programmer’s productivity are addressed. As the
project progresses, hopefully, support for modern features will improve, so workarounds
can be replaced with more legitimate solutions.

In the following subsections we describe the modern C++ features most relevant to the
development of SLATE.

Overloading

C++ allows multiple functions to have the same name, as long as they can be di�eren-
tiated by argument types. For instance, a single gemm function, with versions for �oat,
double, complex-�oat, complex-double, etc., instead of multiple type-speci�c variants:
sgemm, dgemm, cgemm, zgemm, etc. This is crucial for templating, as all function calls must
be generic.
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Templates

C++ templates reduce the complexity of programming by implementing a routine once for
a generic type, which can then be automatically instantiated for speci�c types such as single,
double, half, or quad precision. Existing LAPACK, MAGMA, and PLASMA so�ware involves
either hand coding 4 versions (s, d, c, z) of each routine, or coding the double-complex
version and using a search-and-replace script to crudely automate conversion to other
precisions. Templates fully automate this process and ensure type safety.

When a template is instantiated for a speci�c type, all the operations and functions must
apply to that type. In numerical so�ware, this o�en involves adding no-op versions of
functions. For instance, conj(x) when x is double simply returns x.

Traits

Traits is a technique to de�ne types and parameters based on the type in templated code.
For instance, the result of norm should be �oat for both float and complex<float>, as
demonstrated in this example:

template < typename T >
class Traits
{
public:

// by default , norm is same type: float => float , ...
typedef T norm_type;

};

template < typename baseT >
class Traits < std::complex <baseT > >
{
public:

// for complex , norm is base type: complex <float > => float , ...
typedef baseT norm_type;

};

template < typename T >
typename Traits <T>:: norm_type max_norm( int n, T* x )
{

typename Traits <T>:: norm_type norm = 0;
for (int i = 0; i < n; ++i) {

norm = std::max( norm , std::abs( x[i] ));
}
return norm;

}

Expression Templates

A simple C++ Vector class implementation would require intermediate temporary arrays to
evaluate an expression such as:

Vector x(n), y(n);
x = 1.2*x + 2.0*y;

It would e�ectively become

tmp1 = 1.2*x;
tmp2 = 2.0*y;
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tmp3 = tmp1 + tmp2;
x = tmp3;

Expression templates were developed as a techinque to evaluate these kinds of expres-
sions e�ciently, without any intermediate temporaries. It relies on lazy evaluation, that
intermediate results are represented by meta-objects, and the actual operation is not per-
formed until the assignment (=) operator. At the assignment, the compiler evaluates the
meta-objects, usually inlining their code to e�ectively generate the “ideal” loop:
for (size_t i = 0; i < x.size (); ++i) {

x[i] = 1.2*x[i] + 2.0*y[i];
}

with no intermediate temporary arrays.

Expression templates work well for Level 1 (vector) and Level 2 (matrix-vector) BLAS
operations. Level 3 (matrix-matrix multiply) BLAS operations introduce more challenges.
Aliasing becomes a major problem, for instance in the expression:
C = A*C;

updating C will produce erroneous results; a temporary is needed. It is di�cult for the
compiler to determine if aliasing will occur, and therefore whether a temporary is needed.
It is also challenging to reach the peak performance for Level 3 BLAS with generic code.
Hand-optimized code, possible in assembly or using hardware-speci�c intrinsics, generally
has a large performance advantage over generic code. Multi-threaded expression templates
is also challenging. Several BLAS libraries (uBLAS, MTL4, Eigen, etc.) have been developed
around the idea of expression templates; a further evaluation of these is available in the
accompanying C++ Binding for BLAS and LAPACK document.

Exceptions

Traditional linear algebra so�ware such as LAPACK has relied on returning an info parame-
ter with an error code. C++ allows throwing exceptions, which a parent context can catch.
This can simplify error checking by grouping all the error checks together. Exceptions also
prevent ignoring errors, as o�en happens with returned error codes—the exception must
be caught somewhere, or it will propogate all the way up to main.

Existing C code o�en mises error handling a�er every function call. Especially mixed with
allocation, this is error prone as all previous allocations must be freed:
double *A = NULL , *B = NULL;
A = malloc( lda*n*sizeof(double) );
if (A == NULL) {

// handle error
}

B = malloc( ldb*n*sizeof(double) );
if (B == NULL) {

free( A ); A = NULL; // forgetting this causes a memory leak!
// handle error

}

// computing using A and B

free( A ); A = NULL;
free( B ); B = NULL;
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Using exceptions moves this error checking code to the end:

double *A = nullptr , *B = nullptr;
try {

A = new double[ lda*n ];
B = new double[ ldb*n ];
// ... computing using A and B ...

}
catch( const std:: bad_alloc& exception ) {

// ... handle error
}
delete [] A; A = nullptr;
delete [] B; B = nullptr;

Even better in this example is to have a Matrix class that encapsulates the new/delete,
using the common Resource Acquisition Is Initialization (RAII) paradigm, so that matrices are
automatically deleted when exiting their context:

try {
Matrix A( lda , n );
Matrix B( ldb , n );
// ... computing using A and B ...

}
catch( const std:: bad_alloc& exception ) {

// ... handle error
}

C++ exceptions can be implemented as “zero-cost exception”, meaning no extra time cost
when exceptions are not thrown, compared to code that simply aborts on error. There is
added cost to the size of object code, which must encode how to unwind the stack when
an exception occurs, and time to actually unwind the stack when an exception does occur.
Hence, exceptions should be invoked rarely. For further details, see https://mortoray.com/
2013/09/12/the-true-cost-of-zero-cost-exceptions/

Care must be taken with exceptions in multithreaded code and when interoperating between
mutiple languages. C++11 introduced std::exception_ptr to facilitate such uses.

Value Initialization

As one of very few features added in C++03, it is a very commonly used feature that allows,
among other things, providing a default constructor for user-de�ned objects. Trillinos
packages, Epetra and Teuchos, use it for their BLAS and LAPACK wrappers.

Type Inference (C++11)

A signi�cant contribution of C++11 is the decrease in verbosity by adding type inference
functionality to the compiler by changing the semantics of the auto keyword and adding a
new keyword: decltype. However, these are of limited use for functions that work with
primitive data types and without templates. Another drawback is the compiler compliance,
CUDA 8 with its nvcc compiler being a notable example.

std::vector < doube > x( 10 );

// verbose syntax
for (std::vector < double >:: const_iterator iter = x.begin (); iter != x.end(); ++iter)
{ ... }
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// simplified with auto
for (auto iter = x.begin (); iter != x.end(); ++iter)
{ ... }

Lambda Functions and Expressions (C++11)

Functional capabilities with generalized notion of a function and support for closures
were a major addition of the C++11 standard. These facilities may be very useful for asyn-
chronous operation and event-based processing that tend to �t well on a many-way parallel
heterogeneous systems in a distributed processing context when network latency creates
opportunities for out-of-order computing. This may be e�ectively combined with the
parallel facilities of the C++ standard and allow for seamless passing of execution contexts.

NULL Pointer Constant (C++11)

Addition of an explicit and type-safe constant nullptr to use for pointers that are known
to be uninitialized adds possibilities in the area of stricter typing and less error-prone code
that relies on type-less values that can easily be confused with unsigned integer values. This
resolves certain ambiguities with overloading, for instance:

void foo( int x ) {}
void foo( void* x ) {}

foo( 0 ); // calls foo( int )
foo( NULL ); // error: ambiguous
foo( nullptr ); // calls foo( void* )

Strongly Typed Enumerations (C++11)

Enumeration types are a useful feature that C++ inherited from its C pedigree. In C, enums
are basically integers and can be exchanged freely with other integral types. C++98 added
some type safety: you cannot implicitly convert from an int to an enum, or between
di�erent enums:

typedef enum { red , green } color_t;
typedef enum { left , right } side_t;
color_t a = red; // ok
color_t b = 101; // ok in C, error in C++
color_t c = left; // ok in C, error in C++

However, you can implicitly convert from an enum to an int:

int d = red; // ok in C and C++

Strongly typed enumerations in C++11 prevent this implicit conversion to int:

enum class Color { red , green };
Color e = Color::red; // ok
int f = Color::red; // error
int g = int( Color::red ); // explicit conversion ok
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In both C and C++, an old-style enumeration may occupy an unknown size because the
compiler is free to pick the implementation type based on the number of enumerated
items. Strongly typed enumerations �x this problem by allowing the size to be speci�ed;
the default size is int:

enum class Color { red , green }; // sizeof(Color) == sizeof(int)
enum class ColorSmall : char { red , green }; // sizeof(ColorSmall) == sizeof(char)

Strongly typed enumerations also reduce name con�icts by scoping names. Here red in
color_t, Color::red, and ColorSmall::red are all di�erent enum values.

Memory Alignment Control

While it was possible to force alignment on pointers through non-portable means, the
inclusion of alignment syntax is a welcome addition to the standard. As a result, it will be
now possible to portably manipulate aligned memory and be able to trigger optimization
levels that make it possible to use low-level features such as streaming loads and other vector
instructions that only work with aligned addresses and o�en are not generated because
the pointers are not guaranteed to be conforming and runtime checks are prohibitively
expensive.

Implementation Speci�c Attributes

The C++11 ability to add attributes to various syntactic constructs gives a long-needed
recognition of specifying features beyond the purview of the compiler and may reach
the linking stages. This feature is o�en used in HPC codes, for example, in the form of
weak symbols that allow the user to supply zero-cost tracing layer that is deactivated in
production runs. It is to be determined if weak linking will be added to the standard.

Move Semantics (C++11)

The addition of rvalue references allows optimizing away a copy of temporary data into
a simple move by swapping pointers. This greatly improves speed when, for instance,
returned a large object from a function. However, traditionally BLAS and ScaLAPACK
routines have taken all arrays as arguments, rather than returning arrays, so it is not clear
that a bene�t exists. The rvalue references can easily be conditionally compiled for older
compilers, in which case code reverts to the old, slower behavior. In example below, class Foo
has a move semantics constructor, Foo( Foo&& tmp ), and the copy-and-swap assignment
operator inherits the move semantics from that constructor. For more details, see http:
//stackoverflow.com/questions/3106110/what-are-move-semantics and http://stackoverflow.
com/questions/3279543/what-is-the-copy-and-swap-idiom.

class Foo {
public:

Foo( size_t size=0 ):
m_size( size ),
m_data( new double[size] )

{}
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// expensive copy constructor: allocate and copy data from orig
Foo( const Foo& orig ) {

m_size = orig.m_size;
m_data = new double[ m_size ];
std::copy( orig.m_data , orig.m_data + m_size , m_data );

}

#if (__cplusplus >= 201103) // requires C++11
// cheap "move semantics" constructor: move data from tmp
Foo( Foo&& tmp ) {

m_size = tmp.m_size;
m_data = tmp.m_data;
tmp.m_size = 0;
tmp.m_data = nullptr;

}
#endif

// "copy and swap" idiom assignment operator
Foo& operator = ( Foo copy ) {

std::swap( a.m_size , b.m_size );
std::swap( a.m_data , b.m_data );
return *this;

}

~Foo() {
delete [] m_data;

}

size_t m_size;
double* m_data;

};

Foo factory (); // factory function defined elsewhere

void test() {
// Without move semantics (C++98), this does expensive copy Foo( Foo& );
// with move semantics (C++11), this does cheap move Foo( Foo&& )
// (assuming Return Value Optimization (RVO) doesn ’t kick in).
Foo C = factory ();

}

Static Assertions (C++11)

static_assert enforces its condition at compile time, in contrast to assert, which enforces
its condition at runtime. This helps to make more robust code, while not adding any
overhead to the runtime cost. For instance:

static_assert( sizeof(int) == 4, "Requires 4-byte int" );

Prior to C++11, static assertions can be hacked in various ways; Eigen has an example of this.

Smart Pointers (C++11)

In C++, smart pointers are abstract data types that simulate pointers while providing au-
tomatic memory management. They are intended to reduce bugs caused by the misuse
of pointers, while retaining e�ciency. Speci�cally, smart pointers prevent most memory
leaks by making the deallocation automatic. I.e., an object controlled by a smart pointer is
automatically destroyed when the last owner of an object is destroyed. Smart pointers also
eliminate dangling pointers by postponing destruction until an object is no longer in use. In
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C++, a smart pointer is implemented as a template class that mimics, by means of operator
overloading, the behaviors of a traditional (raw) pointer, (e.g. dereferencing, assignment).

Consider the traditional declaration:

some_type* ambiguous_function ();

There is no way to know whether the caller should delete the memory of the referent when
the caller is �nished with the information.

Alternatively, the following declaration:

unique_ptr <some_type > obvious_function1 ();

makes it clear that the caller takes ownership of the result, and the C++ runtime ensures
that the memory for *some_type will be reclaimed automatically.

The following types of smart pointers are available:

unique ptr explicitly prevents copying of its contained pointer, and provides the
std::move function to transfer ownership to another unique_ptr

shared ptr maintains reference counting ownership of its contained pointer. An object
referenced by the contained raw pointer will be destroyed when and only when all
copies of the pointer have been destroyed.

weak ptr is a container for a raw pointer. It is created as a copy of a shared_ptr. The
existence or destruction of weak_ptr copies of a shared_ptr have no e�ect on the
shared_ptr or its other copies. A�er all copies of a shared_ptr have been destroyed,
all weak_ptr copies become empty.

All smart pointers are de�ned in the <memory> header.

4.1.2 OpenMP

OpenMP – an abbreviation for Open Multi-Processing – is an application programming
interface (API) based on compiler directives, some library routines, and environment
variables for multiprocessing programming in C, C++, and Fortran. OpenMP is the de-facto
standard API for shared memory parallel programming with widespread vendor support
and a large user base. It implements multithreading, or the so-called “fork-join” parallel
model of parallel execution. When any thread encounters a parallel construct, the thread
creates a team of itself and zero or more additional threads and becomes the master of the
new team. A set of implicit tasks, one per thread, is generated. The code for each task is
de�ned by the code inside the parallel construct. A set of directives is provided to manage,
synchronize, and assign work to threads that share data. Recently, with the adoption of
OpenMP 4.0 and 4.5 (see below), the OpenMP shared memory programming model was
extended to support task dependencies and accelerators, and this substantially changed the
programming model from previous versions of the API.

29



4.1. STANDARDS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

Tasking Extensions

OpenMP 3.0 [11] introduced simple tasking that followed the Cilk model. OpenMP 4.0 [66]
introduced data dependencies, allowing for proper expression of data�ow. OpenMP 4.5
further extended tasking capabilities, speci�cally added task priorities, which are critical
from the performance standpoint. The basic concepts of OpenMP tasking include:

task A speci�c instance of executable code and its data environment, generated when a
thread encounters a task, taskloop, parallel, target, or teams construct.

task region A region consisting of all code encountered during the execution of a task.

child task A task is a child task of its generating task region.

sibling task Tasks that are child tasks of the same task region.

task completion Task completion occurs when the end of the structured block associated
with the construct that generated the task is reached.

task dependence An ordering relation between two sibling tasks: the dependent task and
a previously generated predecessor task. The task dependence is ful�lled when the
predecessor task has completed.

dependent task A task that because of a task dependence cannot be executed until its
predecessor tasks have completed.

Tasks are generated when a thread comes across a task generating construct. Explicitly
generated tasks are assigned to one of the available threads in the current team. Execution
of a new task can be immediate or deferred until later, when threads are available and
scheduling constraints are met. Threads are allowed to switch from one task to another
at prede�ned task scheduling points. Tasks can be tied tasks or untied tasks. Suspended tied
tasks must be resumed by the same thread. Suspended untied tasks can be resumed by
a di�erent thread. Task completion is guaranteed by the implicit barrier at the end of a
parallel region. Task completion can be enforced in the middle of a parallel region by one
of the task synchronization constructs: taskwait, taskgroup, or barrier.

The depend clause allows for expression of data�ow dependencies, i.e. scheduling con-
straints, between sibling tasks. Storage locations may be marked as in, out, or inout. If a
storage location is marked as out or inout in one task, and marked as in in a subsequent
task, then the latter task depends on the former task (cannot start execution before the
former task completes). Also, if a storage location is marked as in or out in one task, and
marked as out or inout in a subsequent task, then the latter task depends on the former
task. All the di�erent cases basically boil down to the three basic data hazards: Read A�er
Write (RAW), Write A�er Read (WAR), and Write A�er Write (WAW).

Cancellation is a critical feature when dealing with the handling of exceptions. The cancel

construct is a stand-alone directive that activates cancellation of the innermost enclosing
region: parallel, sections, for or taskgroup. When a task encounters the cancel con-
struct with the taskgroup clause, it cancels execution and skips over to the end of its task
region, which implies completion of that task. Any other task, in the same group, that began
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execution, completes execution, unless it encounters the cancellation point construct. If
it does, it also skips over to the end of the task region, which also implies completion. Any
task that has not begun execution is aborted, again implying completion. The other cancel-
lation clauses apply cancellation to the innermost enclosing region of the type speci�ed.
Execution continues at the end of the region. Threads check for cancellation at cancellation
points. One important aspect of the cancel construct is that it cancels barriers, i.e., threads
waiting in a barrier are released and skip over to the end of the canceled region. This can
occur before all the expected threads reach the barrier.

Device Extensions

OpenMP 4.0 introduced new features that make it possible to run codes on both general-
purpose multicore CPUs and accelerators, in a work-sharing fashion, under a single pro-
gramming paradigm. The current standard, OpenMP 4.5, further improved acceleration
features, and the proposed standard, OpenMP 5.0, extends them yet further. The basic
concepts of the OpenMP acceleration model include:

host device The device on which the OpenMP program begins execution - basically the
CPU.

target device A device onto which code and data may be o�oaded from the host device -
basically a GPU or a leverage boot Xeon Phi; generally referred to as an accelerator/co-
processor.

team A set of one or more threads participating in the execution of a parallel region. In the
context of GPU execution, it is basically a thread block. It is not possible to synchronize
across di�erent teams over the lifetime of their existence.

league The set of thread teams created by a teams construct. In the context of GPU
execution, it is basically a block grid.

The o�oad execution model of OpenMP is host-centric, meaning that the host device o�oads
target regions to target devices. The whole program is surrounded by an implicit parallel
region executed on the host device. One or more devices may be available to the host
device for o�oading of code and data. Each device has its own distinct set of threads, which
cannot migrate from one device to another.

The target construct is used to create a device data environment and to execute a code
region on the device. Device id can be speci�ed to select the device for execution if multiple
devices are available. The runtime routine omp_get_num_devices can be used to determine
the number of accelerators in the system. To handle the situation when there are no
accelerators, the target construct can have an if clause. When an if clause is present
and the expression evaluates to false, the device is the host. The nowait clause can be
added to the target construct to allow for asynchronous execution. Also, a target region is
implicitly enclosed in a target task region, and the depend clause can be added to specify the
data �ow dependencies of the implicit task generated for the target. The declare target

construct can be used to declare a function as device function, basically �agging it as an
accelerator/coprocessor kernel.
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The map clause associates the current data environment on the host with the device data
environment. Data creation and movement is controlled by the to, from, tofrom, and
alloc, release, and delete attributes. The target data construct can be used to create a
device data environment that is persistent across multiple target execution regions. The
is_device_ptr clause is used to indicate that an item is a device pointer already and that it
should be used directly. The target update clause can be used to update the host data with
the corresponding device data, or vice versa, within one data region. The clause refreshes
host data with the device data for the from clause, and device data with host data for the to

clause. Two standalone directives, target enter data and target exit data, allow for
mapping and unmapping data items to the device data environment.

Several runtime routines are also available to manage memory on target devices, including
routines to allocate, free, and copy device memory, as well as routines to control mapping
of device pointers to host pointers:

omp target alloc Allocates memory in a device data environment.

omp target free Frees the device memory allocated with omp_target_alloc.

omp target is present Tests whether a host pointer has corresponding storage on a given
device.

omp target memcpy Copies memory between any combination of host and device point-
ers.

omp target memcpy rect Copies a rectangular subvolume from a multi-dimensional array
to another multi-dimensional array.

omp target associate ptr Maps a device pointer, which may be returned from
omp_target_alloc or implementation-de�ned runtime routines, to a host pointer.

omp target disassociate ptr Removes the associated pointer for a given device from a host
pointer.

SIMD Extensions

The simd\lstinline construct can be applied to a loop to indicate that the loop can be
transformed into a SIMD loop (that is, multiple iterations of the loop can be executed con-
currently using SIMD instructions). The simd directive places restrictions on the structure
of the associated for-loops. Speci�cally, all associated for-loops must have canonical loop form.
The canonical form allows the iteration count of all associated loops to be computed before
executing the outermost loop. The computation is performed for each loop in an integer
type [66, 67]. The basic terminology of the OpenMP simd concept include :

SIMD instruction A single machine instruction that can operate on multiple data elements.

SIMD lane A so�ware or hardware mechanism capable of processing one data element
from a SIMD instruction.
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SIMD chunk A set of iterations executed concurrently, each by a SIMD lane, by a single
thread by means of SIMD instructions.

All loops associated with the construct must be perfectly nested; that is, there must be no
intervening code nor any OpenMP directive between any two loops. The associated loops
must be structured blocks.

A SIMD loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop
iterations, and the logical numbering denotes the sequence in which the iterations would be
executed if the associated loop(s) were executed with no SIMD instructions. If the safelen

clause is used then no two iterations executed concurrently with SIMD instructions can
have a greater distance in the logical iteration space than its value. The parameter of the
safelen clause must be a constant positive integer expression. If used, the simdlen clause
speci�es the preferred number of iterations to be executed concurrently. The parameter
of the simdlen clause must be a constant positive integer. The number of iterations that
are executed concurrently at any given time is implementation de�ned. Each concurrent
iteration will be executed by a di�erent SIMD lane. Each set of concurrent iterations is a
SIMD chunk. Lexical forward dependencies in the iterations of the original loop must be
preserved within each SIMD chunk [66, 67].

The declare simd construct can be applied to a function (C, C++ and Fortran) or a subroutine
(Fortran) to enable the creation of one or more versions that can process multiple arguments
using SIMD instructions from a single invocation in a SIMD loop. The declare simd directive
is a declarative directive. There may be multiple declare simd directives for a function (C,
C++, Fortran) or subroutine (Fortran) [66, 67].

Example Codes

This section presents example codes in C and C++ to highlight the use of OpenMP features
discussed in the preceding sections.

To motivate an example of task-parallelism a serial form of the divide and conquer algo-
rithmic technique for summation is shown in Figure 4.1. The code snippet in Figure 4.1 is
based upon the Wikibooks example [82].

float sum(const float *a, size_t n)
{

// base cases
if (n == 0) {

return 0;
}
else if (n == 1) {

return *a;
}

// recursive case
size_t half = n / 2;
return sum(a, half) + sum(a + half , n - half);

}

Figure 4.1: Basic divide and conquer summation algorithm.
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Recognizing that the recursion in the divide and conquer summation consists of parallel
tasks, rather than data parallelism, prompts the implementation of a task-recursive version,
such as shown in Figure 4.2. The �rst pragma, #pragma omp parallel, prepares all the
threads in the pool to execute the next code block and de�nes a parallel region. The
second pragma, #pragma omp single nowait, utilizes the single directive to cause all
threads but one to skip the next code block. The nowait clause disables the implicit barrier
associated with the single directive and allows the threads that skip the next code block to
move ahead to the barrier that concludes the parallel region.

Two tasks are used to acomplish the recursion, #pragma omp task shared(x), for the �rst
half of the �oat array, and #pragma omp task shared(y), for the second half. The task

construct de�nes an explicit task, which may be executed by the encountering thread, or de-
ferred for execution by any other thread in the pool. Each task uses a shared clause to declare
a variable shared with another task. Declaring these variables as shared ensures that values
stored in them will persist a�er tasks complete. The last pragma, #pragma omp taskwait,
causes execution to wait until all tasks have completed before combining the recursive
results.

float sum(const float *a, size_t n)
{

// base cases
if (n == 0) {

return 0;
}
else if (n == 1) {

return 1;
}

// recursive case
size_t half = n / 2;
float x, y;

#pragma omp parallel
#pragma omp single nowait
{

#pragma omp task shared(x)
x = sum(a, half);
#pragma omp task shared(y)
y = sum(a + half , n - half);
#pragma omp taskwait
x += y;

}
return x;

}

Figure 4.2: Task-recursive divide and conquer summation algorithm.

Next, the common example of adding two arrays, a and b, then storing the result in a third,
c, is utilized to examine how code can be o�oaded to a device. The target construct is
used to specify the region of code that should be o�oaded for execution onto the target
device as show in Figure 4.3 [53]. The construct also creates a device data environment by
mapping host bu�ers to the target for the extent of the associated region. The map clauses
of the target construct specify data movement from host to device before execution of the
o�oaded region, and device to host a�er execution of the o�oaded region.

In Figure 4.3, the \#pragma omp target construct initializes the the target region. A target
region begins as a single thread of execution. When a target construct is encountered, the
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float a[1024];
float b[1024];
float c[1024];
int size;

void vadd_openmp(float *a, float *b, float *c, int size)
{

#pragma omp target map(to:a[0: size],b[0: size],size) map(from: c[0: size])
{

int i;
#pragma omp parallel for
for (i = 0; i < size; i++)

c[i] = a[i] + b[i];
}

}

Figure 4.3: O�oading the task-recursive divide and conquer algorithm.

target region is executed by the implicit device thread and the encountering thread on the
host waits at the construct until the execution of the region completes. If a target device is
not present, or not supported, or not available, the target region is executed by the host
device. The variables a, b, c, and size initially reside in host memory. Upon encountering a
target construct:

• Space is allocated in device memory for variables a[0:size], b[0:size], c[0:size], and
size.

• Any variables annotated to within a map clause are copied from host memory to
device memory.

• The target region is executed on the device. The #pragma omp parallel for is used
to distribute iterations of the for loop across the device’s thread pool.

When exiting a target construct: Any variables annotated from within a map clause are
copied from device memory to host memory.

To further motivate an example use of device targets in the context of an application, a
basic ”escape time” algorithm for generating a Mandelbrot set is shown in Figure 4.4. The
code snippet in Figure 4.4 is based upon the Wikipedia example [83]. For each x, y point in
a rectangular plot area (ImageWidth× ImageHeight) an iterative calculation is performed.
The x and y locations of each point are used as starting values of the iterating calculation.
The real and imaginary values are checked during each iteration to see whether either have
reached a critical ”escape” condition. Because no complex number with a real or imaginary
values greater than 2 can be part of the set, a simple escape condition is to stop iterations
when either coe�cient exceeds 2. Visual representations of the Mandelbrot set may be
produced by translating the number of iterations required to escape from each pixel’s x, y
location to a color pallet.

One way of exploiting the data and task parallelism in the simple Mandelbrot set generation
algorithm shown in Figure 4.4 is to o�oad the iterative calculation work load for each x, y
point to a target device, as shown in shown in Figure 4.5. Several directives and clauses are
utilized to accomplish the o�oad to a single target device enumerated as device 0.
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int32_t ImageWidth = 1024;
int32_t ImageHeight = 1024;
uint32_t max_iter = 1000;
uint32_t in_vals[ImageHeight ][ ImageWidth ];
uint32_t count[ImageHeight ][ ImageWidth ];

for (int32_t y = 0; y < ImageHeight; ++y) {
for(int32_t x = 0; x < ImageWidth; ++x) {

uint32_t iteration = 1;
fcomplex z = in_vals[y][x];
for (int32_t i = 0; i < max_iter; i += 1) {

z = z * z + c;
int t = cabsf(z) < 2.0f;
iteration += t;
if (!t) { break;}

}
count[y][x] = iteration;

}
}

Figure 4.4: Serial implementation of a Mandelbrot set generation algorithm.

Similarly to the previous example, the #pragma omp target device(0) initializes the tar-
get region, in this code snippet it is speci�cally for device 0. A target region also begins as
a single thread of execution. When a target construct is encountered, the target region is
executed by the implicit device thread and the encountering thread on the host waits at
the construct until the execution of the region completes. If a target device is not present,
or not supported, or not available, the target region is executed by the host device. The
mapto:in_vals) clause designates that on entry to the target region in_vals will be copied
from the host to device(0). The map(from:count) clause designates that on exit from the
target region count will be copied from device(0) to the host.

#pragma omp parallel prepares all the threads in device(0)’s pool to execute the next
code block and de�nes a parallel region. #pragma omp for schedule(guided) distribute
iterations of the for loop across the the thread pool according to the schedule(guided)

clause. Guided scheduling uses OpenMP’s internal work queue to assign large chunks of
loop iterations to threads at �rst and then decrease the chunk size to better handle load
imbalances between iterations. The optional chunk parameter speci�es the minimum size
chunk to use. By default the chunk size is approximately loop count/number of threads.

The declare target construct speci�es that variables and functions are mapped to a device.
Each function speci�ed in a declare target region must have de�nitions for both the host
and target device. In the code snippet, shown in Figure 4.5, the function mandel is called
from within a target region. It’s prototype must be placed in a declare target region.

The #pragma omp simd construct enables the execution of multiple iterations of the associ-
ated loops concurrently by means of SIMD instructions. The safelen(16) clause is used to
specify that two iterations, executed concurrently with SIMD instructions, will not have
a greater distance in the logical iteration space than the value (16). The parameter of the
safelen clause must be a constant positive integer expression. The simdlen(16) clause
speci�es the preferred number of iterations to be executed concurrently. The parameter
of the simdlen clause must be a constant positive integer. The number of iterations that
are executed concurrently at any given time is implementation de�ned. Each concurrent
iteration will be executed by a di�erent SIMD lane. Each set of concurrent iterations is a
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SIMD chunk. Lexical forward dependencies in the iterations of the original loop must be
preserved within each SIMD chunk.

int32_t ImageWidth = 1024;
int32_t ImageHeight = 1024;
uint32_t max_iter = 1000;
uint32_t in_vals[ImageHeight ][ ImageWidth ];
uint32_t count[ImageHeight ][ ImageWidth ];

#pragma omp declare target
#pragma omp declare simd simdlen (16)
uint32_t mandel(fcomplex c)
{ // Computes number of iterations that it takes

// for parameter c to escape the mandelbrot set
uint32_t iteration = 1; fcomplex z = c;
for (int32_t i = 0; i < max_iter; i += 1) {

z = z * z + c;
int t = cabsf(z) < 2.0f;
iteration += t;
if (!t) { break;}

}
return iteration;

}
#pragma omp end declare target

#pragma omp target device (0) map(to:in_vals) map(from:count)
#pragma omp parallel
{

#pragma omp for schedule(guided)
for (int32_t y = 0; y < ImageHeight; ++y) {

#pragma omp simd safelen (16)
for(int32_t x = 0; x < ImageWidth; ++x) {

count[y][x] = mandel(in_vals[y][x]);
}

}
}

Figure 4.5: Parallel implementation of a Mandelbrot set generation algorithm highlighting
exemplar use of the target construct with the map clause and the simd construct with the
safelen clause.

4.1.3 OpenACC

OpenACC – an abbreviation for Open Accelerators – is a standard of compiler directives for
parallel programming on heterogeneous CPU/GPU systems. Announced in 2011 with its
�rst OpenACC 1.0 release [64], OpenACC has continued growing in functionality as evident
through its OpenACC 2.0 ( June 2013) and OpenACC 2.5 (October 2015) releases [65]. The
goal of these developments has been to provide the mechanisms for mapping parallelism -
simply annotated by directives in a single source - to di�erent hardware. Thus, to enable
e�cient mapping, powerful new features have been added to OpenACC, including nested
parallelism, atomics, ways to target multiple devices, unstructured data regions (to retain
data on accelerators between multiple OpenACC compute regions), asynchronous data
moves, queue management, as well as pro�ling and tracing interfaces. Most of the commu-
nities working on these extensions also share ideas and collaborate with OpenMP, which
also has been growing to currently support accelerators o�oad, as detailed in Section 4.1.2.
This inevitably raises the question of which one to use, or both, or whether OpenACC and
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Table 4.1: The most signi�cant features introduced in the OpenACC standard since the
standard’s introduction.

OpenACC 1.0 (2011) OpenACC 2.0 (2013) OpenACC 2.5 (2015)

Wait directive Routine directive Asynchronous data transfer
Cache directive Complex data lifetimes Queue management routines
Host data construct Nested paralellism Kernel construct sizes clauses
Loop construct Multiple device targets Interface for pro�ling and tracing
Data construct Atomic directive
Parallel construct
Kernels construct

OpenMP should just merge, which is discussed below in the context of developing linear
algebra libraries.

Compiler Support

The most mature OpenACC compilers are available as commercial so�ware. PGI, Cray,
and CAPS are leading the path for proprietary OpenACC compilers. The PGI Accelerator
Compilers version 2017 targets NVIDIA GPUs, with a support of the OpenACC 2.5 standard.
The collection includes C, C++, and Fortran compilers. The Cray Compilation Environment
(CCE) also supports OpenACC on Cray systems. CCE 8.2 supports OpenACC 2.0.

Development of open source OpenACC compilers is underway. The GNU Compiler GCC 6
release series provides a partial implementation of the OpenACC 2.0a speci�cation. It works
only for NVIDIA PTX targets. OpenARC is an open source compiler developed at ORNL.
It provides a full support for the v1.0 speci�cations and a subset of the 2.0 speci�cations.
Other open source projects include RoseACC (University of Delaware and LLNL), OpenUH
(University of Houston), and the Omni compiler (RIKEN AICS/University of Tsukuba).

OpenACC vs. OpenMP

OpenMP has been around for longer, has much more features, and as related to accelerators,
is also catching up by taking advantage of the innovations driven by OpenACC and the
developers/community that they share. Still, there are some signi�cant di�erences between
them. In particular, OpenACC continues to be more mature for scalable computing with
accelerators, vs. OpenMP for general purpose parallelism for multicore. A notable di�erence
that is o�en highlighted is also that OpenACC is more descriptive, vs. OpenMP being
more prescriptive. In other words, OpenACC gives more freedom to just annotate where
parallelism is, and thus leaves the rest to the compiler, vs. OpenMP provides more features
to be directed by the programmer to specify detail on the implementation. This has been
noted to leave OpenMP less performance portable across di�erent architectures, as tuning
parallelism for one architecture does not guarantee e�ciency for another.

However, this di�erence is not that critical for the development of high-performance linear
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Table 4.2: High level comparison of the latest released standards of OpenACC and OpenMP.

OpenACC 2.5 OpenMP 4.0

No goal of general purpose Focused on general purpose parallelism
Focused on accelerator hardware Focused on multicore, acceleration optional
Performance portability possible Performance portability requires e�ort
Descriptive (functional) Prescriptive (procedural)
Interoperability available Interoperability still evolving

algebra libraries, where developers can a�ord to concentrate on individual routines for
particular architectures. Typically, the goal is to still have a single source, but that source is
highly parameterized, so that the best-performing version can be automatically discovered
through empirically-based autotuning (vs. reliance on a compiler). Furthermore, high-level
libraries, like LAPACK, rely on a number of highly tuned kernels, e.g., BLAS, that are also
not derived as a single source, but rather, assembly implementations of algorithms that are
themselves speci�cally designed and tuned for target architectures.

Advantages and Disadvantages

OpenACC main advantages can be summarized as follows:

• Scientists and application programmers can quickly determine if their codes will
bene�t from acceleration. There is no need to develop low-level kernels to reach such
a decision.

• Since it is a directive based approach, it requires minimal structural code changes,
compared to lower-level languages such as CUDA and OpenCL.

• So�ware portability: the same code base can run on many platforms, with and without
accelerators. It can even be compiled using compilers with no OpenACC support,
since the directives will be ignored.

• Performance portability: the task of discovering parallelism and mapping it to the
hardware is le� to the compiler. The programmer just “hints” the compiler about
potential parallel regions. In general, the more hints, the more performance is
obtained.

• Cross platform: for example, the same code base runs on NVIDIA and AMD GPUs.
CAPS even provides support for OpenACC on the Intel Xeon Phi coprocessor.

• Interoperability: the programmer can choose to accelerate parts of the code using
directives, and other parts using calls to accelerated libraries (e.g. cuBLAS).

On the other hand, here are some downsides for development using OpenACC:

• Explicit management of data movement: In the case of separate memory spaces for
the host and the accelerator, the default assumption in OpenACC is that the data is in
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the host memory space (both inputs and outputs). Without explicit user control, the
compiler will create memory allocations and data copies as needed at every parallel
region. The resulting code, therefore, might be slower than the non-accelerated code.

• OpenACC is not yet fully adopted by major vendors like Intel and AMD.

• Compilers that fully support OpenACC are proprietary. No mature open source
alternatives are available yet.

• OpenACC accelerated codes are usually outperformed by those written in the lower-
level language (e.g. CUDA). The portability of OpenACC comes at the cost of the
inability of take advantage of some architecture speci�c features. However, OpenACC
provides some advanced optional controls through which programmers can improve
the performance of their codes.

The OpenACC AcceleratorModel

In order to ensure portability to multiple computing architectures, OpenACC de�nes an
abstract model for accelerated computing. This model exposes multiple levels of paral-
lelism that may appear in a processor, as well as a hierarchy of memories with varying
degrees of speed and addressability. The model ensures that OpenACC is applicable to
di�erent, current and future, architectures. At its core, OpenACC supports o�oading of
both computation and data from a host device to an accelerator device. These devices may
be the same or may be completely di�erent architectures. Such is the case of a CPU+GPU
con�guration. The two devices may also have separate memory spaces or a single memory
space. In the case that the two devices have di�erent memories, the OpenACC compiler
and runtime will analyze the code and handle any accelerator memory management and
the transfer of data between the host and the accelerator memories. Figure 4.6 shows a high
level diagram of the OpenACC abstract accelerator model.

OpenACC programmers should think of variables as objects, regardless of their locations.
This is di�erent from the common way of associating the variable name with the memory
space where it resides. For example, in a CPU+GPU con�gurations, that are programmed
using CUDA or OpenCL, a single variable A is expanded to variables that are actually copies
(e.g., h_A in the host memory and d_A in the accelerator memory). In the OpenACC model
it is preferred to decouple a variable from its location in order to avoid portability issues
on systems with a shared memory space between the host and the accelerator.

There are three levels of parallelism in OpenACC: gang, worker, and vector. There is also a
fourth level (seq) that indicates that a code segment should not be parallelized. The vector
level has the �nest granularity, while the gang level has the coarsest one. The worker level
is a medium level between the former two. A gang consists of one or more workers. A
worker operates on a vector of a certain length. Gangs are totally independent from each
other, and cannot synchronize. On the other hand, workers and vectors inside the same
gang can synchronize and share data through a fast memory level (e.g. a cache or shared
memory). Vector execution is similar to SIMD parallelsim, with a single instruction being
executed on multiple pieces of data (vector length). The OpenACC model exposes a cache
memory within each gang, which is shared by all workers and vectors of that gang. Figure 4.7
visualizes the OpenACC levels of parallelism.
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Figure 4.6: OpenACC abstract accelerator model.
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Figure 4.7: OpenACC levels of parallelism.

It should be noted that OpenACC programmers do not need to control these levels explicitly.
The default mode of operation is that the compilers maps parallel regions of the code
automatically into these levels according to its knowledge about the target device. However,
a programmer can control these levels of parallelism for the sake of having more control,
or further tuning for a speci�c hardware. The explicit programmer control comes, however,
at the cost of less portability for other devices.
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Recommended Porting Procedure to OpenACC

As the best practice, here are four main steps to accelerate an application using OpenACC:

1. Identify the most time consuming loops and blocks of the code. This can be done
using performance pro�ling tools.

2. Decorate parallel loops within the code with OpenACC directives that provide the
information necessary to parallelize the code for the target architecture.

3. Use OpenACC directives to optimize data locality and eliminate unnecessary copies
between the host and the accelerator. Since OpenACC targets systems with both the
same memory and separate memories, OpenACC compilers are conservative with
respect to data locality. Unless otherwise speci�ed by the user, the compiler will handle
accelerated regions as standalone transactions with the accelerator. Each transaction
consists of the copy-in, compute, and copy-out stages. Obviously, this model is
far from optimized, due to the redundancy in data movement. The programmer
can provide information to the compiler to keep the data as long as possible in the
accelerator memory, before it is copied back to the host, thus maximizing data locality.

4. Further loop-level optimization: compilers discover and map the parallelism of a loop
to the target hardware, based on internal heuristics and conservative rules. Additional
performance gains can be obtained by providing more information to the compiler
about the loop structure, and also tuning the o�oaded code to the accelerator.

Example Code: Jacobi Iteration

This section introduces an example code in C/C++ that will be considered for acceleration
using OpenACC. The code solves the 2D-Laplace equation with the iterative Jacobi solver.
Iterative methods are a common technique to approximate the solution of elliptic PDEs,
like the 2D-Laplace equation, within some acceptable tolerance. The code performs a
simple stencil calculation, where the value for each point is calculated as the mean of its
neighbors’ values. The algorithm continues to iterate until either the maximum change in
value, between two iterations, drops below some tolerance level or a maximum number of
iterations is reached. The main iteration loop, written in C/C++, is shown in Figure 4.8.

The while loop is the convergence loop, since it contains a check for the stopping criteria
(acceptable tolerance or maximum iterations). There are two properties of the convergence
loop that are not parallel-friendly across iterations. The �rst is that the execution of an
iteration is conditional based on the evaluation of the stopping criteria. The second is that
computing the values of A depends on the values computed in the previous iteration, which
imposes data dependencies among consecutive iterations.

However, the �rst loop nest has parallelization opportunities. This segment of the code
loops over the 2D domain to compute the new values of A. By using an additional workspace
Anew, all the computations of the new elements of A are independent, and can occur in
parallel. The same loop nest has a reduction operation to �nd the maximum absolute error
across the domain of A. Similarly, the second loop nest copies Anew back to A, which can
also occur in parallel. A basic pro�ling experiment shows that, obviously, the two loop
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while ( error > tol && iter < iter_max ) {
error = 0.0;
for( int j = 1; j < n-1; j++) {

for( int i = 1; i < m-1; i++ ) {
Anew[j][i] = 0.25 * ( A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i] );
error = fmax( error , fabs(Anew[j][i] - A[j][i]));

}
}

for( int j = 1; j < n-1; j++) {
for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];
}

}

if(iter % 100 == 0) printf("%5d, %0.6f\n", iter , error);
iter ++;

}

Figure 4.8: A sample Jacobi iteration. Error is printed every 100 iterations.

nests are the most time consuming parts of the whole solver. The next sections discuss the
di�erent OpenACC directives and how they can be applied to the Jacobi solver.

The kernels, parallel, and loop directives

These are the most common OpenACC directives for informing the compiler about code
parallelization. The kernels directive identi�es a region of code that may contain paral-
lelism, but relies on the automatic parallelization capabilities of the compiler to analyze
the region, identify which loops are safe to parallelize, and then accelerate these loops. De-
velopers with little or no parallel programming experience, or those working on functions
containing many loop nests that might be parallelized, will �nd the kernels directive a good
starting place for OpenACC acceleration. Figure 4.9 demonstrates the use of kernels in
C/C++.

#pragma acc kernels
{

for (i=0; i<N; i++) {
y[i] = 0.0f;
x[i] = (float)(i+1);

}

for (i=0; i<N; i++) {
y[i] = 2.0f * x[i] + y[i];

}
}

Figure 4.9: An example for the kernels directive.

The kernels directive does not assert parallelization. In fact, the kernels directive gives
the compiler the complete freedom to discover parallelism, analyze loops, and resolve
data dependencies. The programmer just “tells” the compiler to search for parallelism
opportunities in code enclosed between braces. The compiler will not parallelize loops
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or code segments unless it is certain about the safety to do so. In other words, a loop that
is legitimately parallel can be ignored by the compiler, because the loop does not pass its
conservative criteria for parallelization.

The parallel directive is more explicit, and is o�en associated with the loop directive. It
hints the compiler that this loop or code block is safe to parallelize. The same example in
Figure 4.9 can be parallelized using the combined parallel loop directive, as shown in
Figure 4.10. Unlike the kernels directive, each loop needs to be explicitly decorated with the
parallel loop directive. This is because the parallel directive relies on the programmer
to identify the parallelism in the code rather than performing its own compiler analysis of
the loops. In other words, the kernels directive may be thought of as a hint to the compiler
of where it should look for parallelism, while the parallel directive is an assertion to the
compiler of where there is parallelism. It is important to point out that only the availability
of parallelism is de�ned, but the compiler still has the sole responsibility of mapping the
parallelism to the target hardware, which is the ultimate requirement for portability.

#pragma acc parallel loop
for (i=0; i<N; i++) {

y[i] = 0.0f;
x[i] = (float)(i+1);

}

#pragma acc parallel loop
for (i=0; i<N; i++) {

y[i] = 2.0f * x[i] + y[i];
}

Figure 4.10: An example for the combined parallel loop directive.

Another notable di�erence between the kernels and parallel loop directives is data
movement. When using the kernels directive, any data copies occur at the beginning and
the end of the decorated block of code, meaning that the data will remain on the device
for the full extent of the region, or until it is needed again on the host within that region.
This means that, if multiple loops access the same data, it will be copied to the accelerator
once. When parallel loop is used for two subsequent loops that access the same data, the
compiler may or may not copy the data back and forth between the host and the device
between the two loops. For example, the compiler will generate an implicit data movement
for each parallel loop in Figure 4.10, but it will generate data movement once for the
kernels approach in Figure 4.9, which results in less communication by default.

The loop construct gives the compiler additional information about the very next loop
in the source code. The loop directive was shown above in connection with the parallel

directive, although it is also valid with the kernels directive. Loop clauses come in two
forms: clauses for correctness and clauses for optimization. Optimization clauses are
discussed later on. In order to maintain the correctness of the loop a�er parallelization,
some clauses can be appended to the loop directive:

1. The private clause, which is used as private(variable), speci�es that each loop
iteration requires its own copy of the listed variable(s). For example, if each loop
contains a temporary array named tmp, that it uses during its calculation, then this
variable is made private to each loop iteration in order to ensure correct results. If
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tmp is not declared private, then threads executing di�erent iterations may access this
shared variable in unpredictable ways, resulting in race conditions and potentially
incorrect results. Loop iterators are private by default. In addition, and unless other-
wise speci�ed, any scalar variable accessed within a parallel loop is made �rst private
by default, meaning that a private copy is made of the variable for each loop iteration
and it is initialized with the value of that scalar upon entering the region. Finally, any
variables that are declared within a loop in C or C++ is made private to the iterations
of that loop by default.

2. The reduction clause, which is written as reduction(operator:variable), works
similarly to the private clause in that a private copy of the a�ected variable is gener-
ated for each loop iteration, but reduction goes a step further to reduce all of those
private copies into one �nal result, which is returned from the region. For example,
the maximum of all private copies of the variable may be required or perhaps the sum.
A reduction may only be speci�ed on a scalar variable and only common speci�ed
operations can be performed, such as +, ∗, min, max, and many bitwise operations.

Parallelizing Jacobi Iteration using OpenACC

The example code shown in Figure 4.8 is dominated by the two loop nests, which can be
parallelized in OpenACC either using the parallel loop or the kernels directives. This
section shows both approaches.

Figure 4.11 shows the parallelization using the parallel loop directive, where each loop
nest is annotated with the directive. Some compilers will also analyze the innermost loops
and determine that it is also safely parallel. However, it is a better practice for portability to
explicitly inform the compiler about safely parallelizable loops. The directive on top of the
�rst loop nest also informs the compiler about the max reduction operation required on the
variable error. The innermost loops can be also annotated with parallel loop, although
most compilers will parallelize them using the parallel directive only.

Figure 4.12 shows the parallelization using the kernels directive. Note that the two loop
nests are combined into one parallel region that is annotated using the kernels directive.
This means that the programmer grants the compiler the freedom to analyze and discover
parallelism. For this relatively simple example, most compilers will be able to discover that
all loops are safely parallel.

The previous code examples discussed how to map parallelism to the accelerator, but
dropped the discussion about data movements between the host and the accelerator. This
is why the code examples of Figures 4.11 and 4.12 are unlikely to produce performance gains
against non-accelerated codes. In the absence of user-de�ned controls for communication,
the OpenACC compilers adopt a conservative strategy, with respect to data movements, by
copying the data back and forth between the host ans the accelerator at the beginning and
end of every parallel region. In this regard, the accelerated codes of Figures 4.11 and 4.12
will be dominated by data copies and the runtime overhead to setup such copies, with the
code shown in Figure 4.12 being faster, due to having just one parallel region instead of
two. This is why the user has to provide more information to the compiler regarding data
locality on the accelerator side.
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while ( error > tol && iter < iter_max ) {
error = 0.0;

#pragma acc parallel loop reduction(max:error)
for( int j = 1; j < n-1; j++) {

#pragma acc loop reduction(max:error)
for( int i = 1; i < m-1; i++ ) {

A[j][i] = 0.25 * ( Anew[j][i+1] + Anew[j][i-1] +
Anew[j-1][i] + Anew[j+1][i] );

error = fmax( error , fabs(A[j][i] - Anew[j][i]));
}

}

#pragma acc parallel loop
for( int j = 1; j < n-1; j++) {

#pragma acc loop
for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];
}

}

if(iter % 100 == 0) printf("%5d, %0.6f\n", iter , error);
iter ++;

}

Figure 4.11: Jacobi iteration using the parallel loop directive.

while ( error > tol && iter < iter_max ) {
error = 0.0;

#pragma acc kernels
{

for( int j = 1; j < n-1; j++) {
for( int i = 1; i < m-1; i++ ) {

A[j][i] = 0.25 * ( Anew[j][i+1] + Anew[j][i-1] +
Anew[j-1][i] + Anew[j+1][i] );

error = fmax( error , fabs(A[j][i] - Anew[j][i]));
}

}

for( int j = 1; j < n-1; j++) {
for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];
}

}
}

if(iter % 100 == 0) printf("%5d, %0.6f\n", iter , error);
iter ++;

}

Figure 4.12: Jacobi iteration using the kernels directive.

Improving Data Locality

This section discusses the main user-de�ned controls for improving data locality on the
accelerator. This is a must-do optimization when the host and the accelerator have two
separate memories.

A data region, which is de�ned using the data directive, is used to share data across multiple
parallel regions that are de�ned in the same scope. It can also be placed at a higher level in
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the program call tree to enable data sharing among parallel regions in multiple functions.
The data directive can be used in the code example shown in Figure 4.11, in order to
eliminate unnecessary data copies between the two loop nests. Figure 4.13 shows another
example, where the data region enables the x and y arrays to be reused between the two
parallel regions. This removes any data copies that happen between the two regions, but
it still does not guarantee optimal data movement. In order to provide the information
necessary to perform optimal data movement, the programmer can add data clauses to
the data region. Note that an implicit data region is created by each parallel and kernels

region.

#pragma acc data
{

#pragma acc parallel loop
for (i=0; i<N; i++) {

y[i] = 0.0f;
x[i] = (float)(i+1);

}

#pragma acc parallel loop
for (i=0; i<N; i++) {

y[i] = 2.0f * x[i] + y[i];
}

}

Figure 4.13: An example of a data region enclosing two parallel loops.

OpenACC supports a number of data clauses that enable the programmer to have more
control over data copies, allocations, and deallocations. Table 4.3 summarizes such clauses.

The OpenACC 1.0 and 2.0 standards also have present_or_* clauses (e.g. present_or_copy).
Such clauses inform the compiler to use the present copy of the listed variable if it ex-
ists. If it does not, then the compiler performs the normal action of the clause, as de-
scribed in Table 4.3. These clauses are frequently abbreviated, like pcopyin instead of
present_or_copyin. OpenACC 2.5 modi�es the behavior of the mentioned clauses so that
they all test the presence by default (e.g. copy becomes equivalent to present_or_copy).

Information about array sizes can be also passed to OpenACC compilers. This is par-
ticularly important for C/C++ compilers, which cannot implicitly deduce the size of the
array to be allocated or copied. The syntax of specifying array information takes the form
x[start:count], where start is the �rst element and count is the number of element. The
same syntax works for allocations and copies of arrays. Figure 4.14 shows an example code
that uses data clauses, and passes array information through OpenACC directives. The
example code has two safely parallel for loops. The input array x has N elements, and is
input only. Using the pcreat clause, the compiler allocates x only if it is not present on the
accelerator memory. A similar behavior occurs with y, except that the array is output only.
Without the use of data clauses, the compiler will perform unnecessary data copies, like
copying x and y at the beginning of the parallel region, which is not needed since the �rst
loop already sets them. Another unnecessary copy that is avoided is copying back x to the
host, since it is an input only array.

Having discussed the di�erent data clauses in OpenACC, it is time to show a more optimized
version of the Jacobi iteration case study that uses data clauses to improve locality on the
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Data clause Description
copy Create space for the listed variables on the device, initialize the

variable by copying data to the device at the beginning of the
region, copy the results back to the host at the end of the region,
and �nally release the space on the device when done.

copyin Create space for the listed variables on the device, initialize the
variable by copying data to the device at the beginning of the
region, and release the space on the device when done without
copying the data back the the host.

copyout Create space for the listed variables on the device but do not
initialize them. At the end of the region, copy the results back
to the host and release the space on the device.

create Create space for the listed variables and release it at the end of
the region, but do not copy to or from the device.

present The listed variables are already present on the device, so no
further action needs to be taken. This is most frequently used
when a data region exists in a higher-level routine.

deviceptr The listed variables use device memory that has been managed
outside of OpenACC, therefore the variables should be used on
the device without any address translation. This clause is gener-
ally used when OpenACC is mixed with another programming
model.

Table 4.3: OpenACC data clauses.

#pragma acc data pcreate(x[0:N]) pcopyout(y[0:N])
{

#pragma acc parallel loop
for (i=0; i<N; i++) {

y[i] = 0.0f;
x[i] = (float)(i+1);

}

#pragma acc parallel loop
for (i=0; i<N; i++) {

y[i] = 2.0f * x[i] + y[i];
}

}

Figure 4.14: An example code that uses data clauses with array information.

accelerator side. Figure 4.15 shows an example that uses parallel loop for parallelization,
and the data clauses copy and create for data movement. Note that the A array is copied to
the accelerator at the beginning of the parallel region, and then back to the host at the end
of it. The array Anew is used internally only, more like a workspace. Therefore, it is created
on the accelerator upon entry to the parallel region, with no copies required between the
host and the device. The data clauses for A/Anew use the array information to specify the
copy/allocation size, respectively.
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#pragma acc data copy(A[1:n][1:m]) create(Anew[n][m])
while ( error > tol && iter < iter_max ) {

error = 0.0;

#pragma acc parallel loop reduction(max:error)
for( int j = 1; j < n-1; j++) {

#pragma acc loop reduction(max:error)
for( int i = 1; i < m-1; i++ ) {

Anew[j][i] = 0.25 * ( A[j][i+1] + A[j][i-1] +
A[j-1][i] + A[j+1][i] );

error = fmax( error , fabs(Anew[j][i] - A[j][i]));
}

}

#pragma acc parallel loop
for( int j = 1; j < n-1; j++) {

#pragma acc loop
for( int i = 1; i < m-1; i++ ) {

A[j][i] = Anew[j][i];
}

}

if(iter % 100 == 0) printf("%5d, %0.6f\n", iter , error);
iter ++;

}

Figure 4.15: Improving data locality for a parallelized Jacobi iteration.

Advanced Programming using OpenACC

This section discusses some advanced features of OpenACC. These features give the pro-
grammer more controls that are not available through the basic directives for parallelization
and data movements.

Unstructured Data Scopes: The data directive discussed above assumes that the data are
allocated and deallocated in the same scope. In many cases, structured data lifetime
is not applicable. For example, assume a C++ class where the data is created using
a constructor, and then freed in a destructor. This is clearly a situation that cannot
be resolved using the data directive. Since OpenACC 2.0, it is possible to have
unstructured data scopes using the enter data and exit data directives.
The enter data directive accepts the create and copyin data clauses and may be
used to specify when data should be created on the device. The exit data directive
accepts the copyout and a special delete data clause to specify when data should
be removed from the device. Please note that multiple enter data directives may
place an array on the device, but when any exit data directive removes it from the
device, it will be immediately removed, regardless of how many enter data regions
reference it. Figure 4.16 shows a simple C++ class example that has a constructor, a
destructor, and a copy constructor. Note that the constructor copies the this pointer
to the accelerator as well, in order to ensure that the scalar member len and the pointer
arr are available on the accelerator as well as the host. The copy constructor uses a
parallel loop to perform the copy from an object that is resident in the accelerator
memory, hence the use of the present clause.

The updateDirective: The update directive provides a way to explicitly update the values
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template <class ctype > class Data
{

private:
int len; // length of the data array
ctype *arr; // data array

public:
// class constructor
Data(int length) {

len = length;
arr = new ctype[len];
#pragma acc enter data copyin(this)
#pragma acc enter data create(arr[0: len])

}

// copy constructor
Data(const Data <ctype > &d)
{

len = d.len;
arr = new ctype[len];
#pragma acc enter data copyin(this)
#pragma acc enter data create(arr[0: len])
#pragma acc parallel loop present(arr[0: len],d)
for(int i = 0; i < len; i++){

arr[i] = d.arr[i];
}

}

// class destructor
~Data() {

#pragma acc exit data delete(arr)
#pragma acc exit data delete(this)
delete arr;
len = 0;

}
};

Figure 4.16: An example of unstructured data scopes.

of host or device memory with the values of the other. This can be thought of as
synchronizing the contents of the two memories. As of OpenACC 2.0, the update

directive accepts a device clause for copying data from the host to the device and a
self clause for updating from the device to local memory, which is the host memory,
except in the case of nested OpenACC regions. Figure 4.17 shows an example of the
update directive that may be added to the C++ class in Figure 4.16.

void update_host () {
#pragma acc update self(arr[0:len])
;

}

void update_device () {
#pragma acc update device(arr [0:len])
;

}

Figure 4.17: An example of the update directive.

Loop Optimization: A programmer may choose to further optimize a loop by explicitly
mapping the parallelism to gangs, workers, and vectors. In fact, the loop directive
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can be combined with the following clauses:

1. A gang clause, which partitions the loop across gangs.

2. A worker clause, which partitions the loop across workers.

3. A vector clause, which vectorizes the loop.

4. A seq clause, which runs the loop sequentially.

These directives may also be combined for a particular loop. For example, a gang
vector loop would be partitioned across gangs, each of which with one worker implic-
itly, and then vectorized. The OpenACC speci�cation enforces that the outermost
loop must be a gang loop, the innermost parallel loop must be a vector loop, and
a worker loop may appear in between. A sequential loop may appear at any level.
The programmer can also control the number of gangs, workers, and vectors used in
partitioning the loop.

Routine Parallelism: If a function is called within a parallel loop, the compiler might not
be able to parallelize it correctly, since it has no information about the loop structure
of that function. OpenACC 1.0 either inlines all function calls in the parallel region,
or decides not to parallelize the region at all. The OpenACC 2.0 introduced a new
directive routine that is used to inform the compiler about potential parallelism in a
certain routine. The routine must be added to the function de�nition.

Asynchronous operations: It is possible to perform operations asynchronously using
OpenACC. The async clause allows a parallel region to be executed on the accel-
erator without the host waiting for it to �nish. The async clause can be used with
the kernels, parallel loop, and update directives. In order to synchronize the host
and the accelerator back, a wait directive can be used. Both async and wait accept a
non-negative integer value which indicates the queue id to execute in or to synchro-
nize against.If no queue is passed, the execution/synchronization occurs with respect
to the default queue.
Figure 4.18 shows an example that uses asynchronous operations. The code initializes
the arrays a and b using di�erent queues, so that they can be done concurrently. The
wait(1) async(2) statement makes all future launches in queue 2 dependent on the
completion of all tasks submitted to queue 1. The vector addition can be then safely
submitted to queue 2. the The code then updates the copy of c on the host on queue
2. Finally, the wait statement ensures that the host waits for all previous operations
to complete.

Multi-Device Acceleration: OpenACC supports multi-accelerator programming using
a set of APIs that can read the number of devices in a system, select a particular
accelerator, and get the ID of the currently selected accelerator. In the case of having
di�erent accelerator types, there are APIs that can query or set the type of a particular
accelerator in the system.

OpenACC Interoperability

OpenACC codes can be mixed with codes that use other programming models, such as
CUDA and OpenCL. In such case, the programmer should decide between either managing
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#pragma acc parallel loop async (1)
for (int i=0; i<N; i++){

a[i] = i;
}

#pragma acc parallel loop async (2)
for (int i=0; i<N; i++) {

b[i] = 2*i;
}

#pragma acc wait (1) async (2)
#pragma acc parallel loop async (2)
for (int i=0; i<N; i++) {
c[i] = a[i] + b[i]

}

#pragma acc update self(c[0:N]) async (2)
#pragma acc wait

Figure 4.18: Asynchronous operations in OpenACC.

the device memory inside the context of OpenACC or in the context of other programming
models. For example, there should be a way to pass device arrays created inside OpenACC
to other CUDA libraries (e.g. cuBLAS), and vice versa. In general there are two ways to
accomplish such interoperability.

1. The �rst is host data region, which is used when the device variables are created and
managed inside OpenACC. In such a case, the host can call other accelerated libraries
by extracting the device pointers from OpenACC using the host_data region. The
host_data region gives the programmer a way to expose the device address of a
given array to the host for passing into a function. This data must have already been
moved to the device previously. The region accepts only the use_device clause,
which speci�es which device variables should be exposed to the host. Figure 4.19
shows an example for two arrays, x and y, which are placed on the device using a data
region and then initialized in an OpenACC loop. These arrays are then passed to the
cublasSaxpy function as device pointers using the host_data region.

2. The second way is using device pointers. In this case, the device variables are created and
managed outside the OpenACC context. In order to pass such variables to OpenACC
regions, the device_ptr data clause must be used. Figure 4.20 shows an example for
coding an OpenACC equivalent to cublasSaxpy.

4.1.4 MPI

Message Passing Interface (MPI) de�nes a standard interfaces for cross-platform program-
ming on distributed-memory computers. It includes a wide range of functions that allow
the processes to pass messages in a portable fashion. It is designed by a group of experts
from both acadmia and industry, and is de�ned for both C and Fortran. The �rst release of
MPI, MPI-1.0, was in February 1993.
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#pragma acc data create(x[0:n]) copyout(y[0:n])
{

#pragma acc kernels
{

for( i = 0; i < n; i++) {
x[i] = 1.0f;
y[i] = 0.0f;

}
}

#pragma acc host_data use_device(x,y)
{

cublasSaxpy(n, 2.0, x, 1, y, 1);
}

}

Figure 4.19: OpenACC interoperability using host_data regions.

void saxpy(int n, float a, float * restrict x, float * restrict y) {
#pragma acc kernels deviceptr(x,y)
{

for(int i=0; i<n; i++) {
y[i] += a*x[i];

}
}

}

Figure 4.20: OpenACC interoperability using device_ptr data clause.

MPI-3

The most recent release of MPI is MPI-3.0 that was approved by the MPI Forum in Septem-
ber 2012, followed by MPI-3.1 in June 2015. The MPI-3.1 mostly consists of corrections and
clari�cations (e.g., for Fortran bindings), but also includes a few enhancements and new
features (e.g., for portablity and nonblocking I/O). There are several implementations of
MPI-3, including three open source implementations, MPICH and OpenMPI, and MVA-
PICH which is based on MPICH but adds a few features such as In�nitiband supports. Here
we describe the main new features of MPI-3.

Nonblocking Collectives: A set of non-blocking, or “immediate,” collectives are de�nted
(e.g., MPI_Ibcast, MPI_Ireduce, MPI_Iallreduce, and MPI_Ibarrier, and MPI_Test

or MPI_Wait to test or wait for the completion of the non-blocking collectives). Multi-
ple nonblocking collectives may be pipelined by calling multiple non-blocking collec-
tive functions before calling the corresponding waits, though they must be called in
the same order by all the processes. They allow the communication to overlap with
computation or with other communications. They may be also used to mitigate load
imbalance or system noise by avoiding immediate global synchronizations.

MPI_Ibcast(buf , count , type , root , comm , &request );
// do computation or communication
...
MPI_Wait (&request , &status );

In practice, its e�ectiveness to overlap the communication with the computation
depends on many factors, including their implementations, the target hardware,
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and the nature of communications and computations. The current releases of both
MPICH and OpenMPI implement the non-blocking collectives using TCP and IP-over-
In�niband, while in OpenMPI, the blocking collectives may directly take advantage
of Ini�nitiband. Hence, though the non-blocking communication may allow the
communication to overlap, the actual communication could be slower than the cor-
responding blocking communication. To ensure the progress of the communication,
both MPICH and OpenMPI provide an option to enable a progress thread. If the
progress thread and application threads use the same resource, these threads may
compete for the resource and slows down the execution of the application or the
communication. In order to reduce the interference of the MPI’s progress thread with
the application threads, each process may require a separate spare core, or a hyper
thread. Both MPICH and OpenMPI are actively working to improve the performance
of the non-blocking collective (e.g., under the ECP OMPI-X project).

Neighborhood collectives: The collective communications among a subset of processes,
named “neighbors,” are de�ned, e.g.:

• MPI_Neighbor_allgather,

• MPI_Neighbor_alltoall,

• MPI_Ineighbor_allgather,

• MPI_Ineighbor_alltoall.

Such neighbors can be de�ned based on an MPI Cartesian or virtual process topology
(MPI-2 introduced the creation of graph topology where each process speci�es its
neighbors).

// create a 2x2x2 3D periodic process grid
MPI_Cart_create(comm , 3, {2, 2, 2}, {1, 1, 1}, 1, &newcomm );
// start communication with neighbors
MPI_Ineighbor_alltoall (..., &newcomm , &req);
// do local computation
...
MPI_Wait (&req , MPI_STATUS_IGNORE );
// do boundary computation
...

Improved One-Sided Communication Interface: MPI-2 introduced one-sided commu-
nication between “origin” and “target” processes (e.g., MPI_Put and MPI_Get). This
allows an origin process to access remote memory without synchronizing with the
target process. Each process can assign its local memory as remotely accessible mem-
ory, which is called “window object” (using MPI_Win_create). There are three data
access models, referred to as “active,” “generalized active,” and “passive” targets. For
instance, for the active data access control, the process can create a “fence” and de�ne
an “epoch”, within which the window object becomes available for all the processes.
For the general active control, the process can specify which process it communicates
with (e.g., using MPI_Win_post and MPI_Win_start with MPI_Group), while the passive
control initiates the access to a speci�c rank.

// create window
MPI_Win window;
MPI_Win_create(local_memory , size , disp_unit , info , comm , &window );
// start of fence
MPI_Win_fence (( MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), window );
// one -sided communication
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MPI_Get(origin_addr , origin_count , origin_type ,
target_rank , target_distp , target_count , target_type , window );

MPI_Win_fence(MPI_MODE_NOSUCCEED , window );
// end of fence
MPI_Win_free (& window );

MPI-3 introduced new window creation routines (i.e., MPI_Win_allocate,
MPI_Win_create_dynamic, or MPI_Win_allocate_shared) and atomic opera-
tions (i.e., MPI_Get_accumulation, MPI_Fetch_and_op, and MPI_Compare_and_swap).
MPI-3 also allows “uni�ed memory model” if available.

Fortran 2008 Bindings: MPI-3 now complies with the Fortran standard (with the mpi_f08

module).

use mpi_f08
double precision , asynchronous :: buf (1000)
type(MPI_STATUS) :: status
type(MPI_Request) :: req
type(MPI_Comm) :: comm

call MPI_IRECV(buf , 1000, MPI_DOUBLE_PRECISION , 0, 0, comm , req)
... // computation or communication
call MPI_WAIT(req , status)

if (status%MPI_ERROR .eq. MPI_SUCCESS) then
if (.not. MPI_ASYNC_PROTECTS_NONBLOCKING) then

call MPI_F_SYNC_REF(buf);
end if

end if

Tools Interface: MPI-3 introduced an interface for tools, called MPI_T. The interface pro-
vides mechanisms to access the control and performance variables exposed by MPI. It
is complimentary to PMPI, and allows the performance pro�ler to extract information
about the MPI processes (e.g., number of packets sent, time spent blocking, bu�er
memory, etc.). Several control variables are available including:

• ALLTOALL_SHORT_MSG_SIZE,

• ALLTOALL_THROTTLE,

• BCAST_MIN_PROCS, etc.

The code below shows an example of changing a control variable (i.e., doubling the
short message size for alltoall):

MPI_T_init_thread(MPI_THREAD_SINGLE , &provided );
MPI_Init (&argc , &argv);
MPI_T_cvar_get_num (& cvar_num );
for (cvar_id = 0; cvar_id < cvar_num; cvar_id ++) {

MPI_T_cvar_get_info(cvar_id , name , &name_len , &verbosity , &dtype , &enumtype ,
desc , &desc_len , &bind , &scope);

if (strncmp(name , "ALLTOALL_SHORT_MSG_SIZE", STR_SZ) == 0) {
// double the message size
MPI_T_cvar_handle_alloc(cvar_id , NULL , &handle , &count );
MPI_T_cvar_read(handle , &msg_size );
msg_size *= 2;
MPI_T_cvar_write(handle , &msg_size );
MPI_T_cvar_handle_free (& handle );
break;

}
}
if (cvar_id == cvar_num) {

printf("Error: ALLTOALL_SHORT_MSG_SIZE not available\n");
}
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// do computation and communication including alltoall
...
MPI_Finalize ();
MPI_T_finalize ();

Available performance variables include:

• unexpected_recvq_length,

• unexpected_recvq_match_attempts,

• unexpected_recvq_buffer_size,

• mem_allocated,

• mv2_progress_poll_count, etc.

The code below shows an example of reading a performance variable:

MPI_T_pvar_get_num (& pvar_num );
for (pvar_id = 0; pvar_id < pvar_num; par_id ++) {

MPI_T_pvar_get_info(pvar_id , pvar_name , &name_len , &verbosity ,
&variable_class , &data_type , &enum_type ,
description , &description_len , &binding ,
&readonly , &continuous , &atomic );

if (strcmp(pvar_name , "mv2_progress_poll_count") == 0) {
MPI_T_pvar_session_create (& pvar_session );
MPI_T_pvar_handle_alloc(pvar_session , pvar_id , NULL ,

&progress_poll_count_handle , &count );
}

}

MPI_Isend(buf , buf_size , MPI_DOUBLE , 0, 0, MPI_COMM_WORLD , &req);
MPI_T_pvar_read(pvar_session , progress_poll_count_handle , &poll_count );
printf("progress poll count = %d\n", poll_count );

MPI_T_pvar_handle_free(pvar_session , &progress_poll_count_handle );
MPI_T_pvar_session_free (& pvar_session );

Besides these, MPI-3 includes thread-safe probe and receive, noncollective communicator
creation, and nonblocking communicator duplication.

MPI Features of Interests to SLATE

Thread Support: There are four levels of thread support that an MPI imlementation can
provide:

• MPI_THREAD_SINGLE: Application is single-threaded.

• MPI_THREAD_FUNNELED: Application may be multi-threaded, but only the main
thread makes the MPI calls.

• MPI_THREAD_SERIALIZED: Application is multi-threaded and any thread may
make MPI calls. However, only one thread will call the MPI function at a time.

• MPI_THREAD_MULTIPLE: Application is multi-threaded, and any thread may make
an MPI call at any time.

An application may request a certain level of thread support using MPI_Init_thread.
Then, the MPI implementation informs the application of the highest level of thread
suppor that it can provide.
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One use of the MPI’s multi-thread support could be to overlap the communica-
tion with the computation, or to pipeline di�erent communications. Although non-
blocking communication provides the potential to overlap or pipeline communi-
cation, without a progress thread, the non-blocking communication may progress
only when the application thread is blocked in an MPI call (i.e., MPI_Wait). This could
prevent the application from overlapping or pipelining the communication. Although
the MPI’s progress thread (with a spare core or hyper thread) may ensure the collective
to progress in the background, the current implementation of the non-blocking col-
lective may be based on TCP/IP while the corresponding blocking collective may be
able to directly supports In�niband. Hence, the non-blocking communication may be
slower than the blocking communication. Alternatively, using MPI’s thread support, if
one of the application threads blocks on the communication, while the other threads
perform the computation, or other communication, the application may achieve
better overlap (depending on the nature of the communication). However, even
when MPI supports multiple threads, its use from di�erent threads must be carefully
designed. For instance, if there are multiple outstanding all-reduce requests from
di�erent threads, the application must ensure that the requests are matched correctly
(e.g., using di�erent communicators). In addition, some blocking communications
(e.g., all-reduce) may not pipeline even when they are called from di�erent threads
at the same time. On the other hand, the nonblocking communications are under
active developments, and the aforementioned shortcomings of the non-blocking
communication may be addressed in the near-future releases.

GPU Support: CUDA-aware MPI detects if the message is in the host or device memory,
and enables the data transfer between the GPUs through the same interfaces. For
example, a simple code below transfers data in the device memory, but using CUDA-
aware MPI, the explicit transfer of the data from the device to the host memories are
not needed:

// copy message from device to host (not needed with CUDA -aware MPI)
cudaMemocpy(h_buffer , d_buffer , size*sizeof(double), cudaMemcpyDeviceToHost );

// start sending message through MPI
MPI_Isend(h_buffer , size , MPI_DOUBLE , 1, 100, MPI_COMM_WORLD , request );

The main advantage of the CUDA-aware MPI are:

• GPUDirect is utlized to avoid some memory copies between communication
bu�ers (e.g., host bu�er). CUDA 5.0 introduced the GPUDirect RDMA (Remote
Direct Memory Access). With this feature, the data can be directly moved from
the local device memory to the remote device memory as RDMA network mes-
sages. Figure 4.21 compares the inter-GPU communication with or without
CUDA-aware MPI.

• The di�erent steps of the message transfer are automatically pipelined (see
Figure 4.22d). It also eases the use of non-blocking communication between the
GPUs.

OpenMPI-1.7 introduced the CUDA-aware message-passing for all the send and re-
ceive APIs, and blocking collectives. CUDA-aware non-blocking collectives and one-
sided communication is not supported. MVAPICH2 also supports the CUDA-aware
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Figure 4.21: Illustration of GPUDirect (source: https://devblogs.nvidia.com/parallelforall/
introduction-cuda-aware-mpi/).

(a) Standard MPI. (b) CUDA-aware MPI.

(c) CUDA-aware MPI with CUDADirect. (d) Pipelining inter-GPU messaging.

Figure 4.22: Inter-node communication with CUDA-aware MPI with or without GPUDirect
(source: https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/).

communication since 1.8 release. CUDA 4.0 is required while CUDA 4.1 adds IPC sup-
port for fast data transfer between the GPUs on the same node. CUDA 5.0 introduced
GPUDirect RDMA.

MPI-4: Future Developments and Trends

MPI is a widely used library and, since its inception, has become ubiquitous in computational
science and engineering. Future developments will address a broad spectrum of issues
including:

• runtime interoperability for the MPI+X programming model,

• extending the MPI standard to better support the upcoming exascale architectures,
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• improvements to scalability and performance,

• support for more dynamic execution environments,

• resilience,

• MPI tools interface.

The MPI standard, �rst published in 1994, was originally designed for architectures that
were dramatically simpler than those of today, not to mention exascale. It has been evolved
through the years to provide support for recent systems. However, changes in both the
hardware and the so�ware environments need to be studied in order to accommodate
exascale computing. These key areas of concern have been identi�ed by the Department of
Energy, for the Exascale Computing Project.

MPI-4: Exascale So�ware Development Needs

Although current MPI implementations are well established, they do not provide everything
that be needed to support exascale systems. Future developments will require out a broad
spectrum of activities intended to address key concerns for exascale application.

• Since MPI typically now lives in a much more complex runtime environment than in
the past, current research focuses on addressing the issues related to runtime interop-
erability for the MPI+X programming model. This includes issues like interactions
with di�erent models of multithreading and accelerator o�oad.

• In order to better support exascale machines, with massively threaded nodes and
networks capable of very high bandwidths and message injection rates, recent e�orts
focus on issues such as: better scalability, resource management and isolation, pet-
ter performance of collective operations, optimization or MPI-3 RMA operations,
etc. MPI developers will work closely with application teams and library writers to
prototype, evaluate, and re�ne the standard and its implementations.

• As system environments grow more complex, there is a growing need to improve MPI
support for more dynamic execution environments. This includes enhancing MPI
implementations to facilitate intelligent decisions about process placement, as well as
opening up new capabilities to respond to, and even coordinate with, other network
users to manage contention. Memory hierarchies are also becoming deeper and more
complex, and thus MPI developers must address data placement and movement in
concert with other system components.

• Current work on error resilience of MPI is focused interoperability between the appli-
cations, the libraries, and the system so�ware. Interfaces are needed for MPI to work
e�ectively with sophisticated checkpoint/restart systems, which will be developed
by the ECP. There is a need to develop the interfaces necessary to connect MPI to
the supercomputer�s RAS subsystem, to allow more direct and more �exible error
detection, in support of better fault handling capabilities.

59



4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

• The availability of appropriate tools is critical to the ability of users to assess how well
MPI is working for them. Future work on MPI tools interfaces will address some of
the key emerging areas, including memory tracking, RMA performance data, access
to network performance counters, etc.

• Finally, in order to deliver production-quality implementations, MPI developers will
need to improve the testing infrastructure, and deploy extensive test suites.

4.2 Frameworks

4.2.1 PaRSEC

PaRSEC, short for Parallel Runtime Scheduling and Execution Controller, is a framework for
managing the scheduling and execution of tasks on distributed many-core heterogeneous
architectures [20, 21]. PaRSEC executes a workload de�ned as a Directed Acyclic Graph
(DAG) consisting of the tasks (nodes) and their data-dependencies (edges). Figure 4.23
illustrates the PaRSEC framework. Internally the PaRSEC framework uses a Parameterized
Task Graph (PTG) representation [26].

Figure 4.23: The PaRSEC framework.

It was �rst released in January 2012, followed by a couple of subreleases in 2014 (version 1.1
in January and 1.2 in April). It is now in the preparation for the 2.0 release. It has been used
for solving dense linear algebra problems, and its releases are coupled with the releases
of DPLASMA, the distributred memory counterpart of the PLASMA so�ware. However,
PaRSEC can be separately compiled on its own, and has been used for other purposes (e.g.,
sparse direct solver PaStiX and applications such as NWChem or TOTAL). Ongoing work
includes supports for fault-tolerance, performance pro�ling, tracing and visualization.
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Parameterized Task Graph

In the PTG, an algorithm is viewed as a DAG of tasks and the associated data�ow between
the tasks. The computational work consists of task classes, parameterized by their position
in the �ow of computation, and the predecessor-successor relation between instances of the
task classes is explicit in the task description, linking task instances by algebraic expressions
of the task parameters. Figures 4.24 and 4.25 show the serial implementation of the QR
factorization, and the PTG representation of the algorithm in the Job Description Format
( JDF), respectively. In addition to the task-dependencies, the user must specify the initial
data distribution, and the task is assigned to the process based on the data distribution. For
instance, in Figure 4.25a, the POTRF(k) task is assigned to the process that owns the diagonal
block dataA(k, k) as speci�ed in Line 5.

for( int k = 0; k < n; k++) {
potrf("Upper", A(k, k));

for (int j = k+1; j < n; j++)
trsm("Left", "Upper", "NoTrans", "NoTrans", A(k, k), A(k, j));

for( int i = 0; i < n; i++ ) {
syrk("Upper", "Trans", A(k, i), A(i, i));
for (int j = i+1; j < n; j++) {

gemm("Trans", "NoTrans", A(k, i), A(k, j), A(i, j))
}

}
}

Figure 4.24: Classic Cholesky factorization using loops and basic kernels.

All the relationships between tasks are described wiht these algebraic expressions which also
connect input-output data dependencies between tasks. A task can independently query
the parameter-range expressions for complete information about its data communication
and its relationships to other tasks. The size of the PTG is related to the number of task
classes, and not to the size of the problem being solved, so this compact representation can
easily be evaluated at each computing node, to provide details of both local and remote
operations.

From the point of view of the programmer, once a PTG has been de�ned, PaRSEC schedules
the tasks onto the hardware and handles the data communication transparently. The
binding of tasks to distributed memory nodes is determined at the task insertion time. By
default this binding is determined by the data layout, but the programmer can create other
task bindings at will. Within each node, the scheduling and execution of the tasks can be
dynamically managed at execution time, allowing PaRSEC to do node level load balancing.
The communication is managed by PaRSEC, and can be overlapped with computation. In
the current state, job stealing, to reduce load imbalance among nodes, is not implemented
yet.

Sequential Task Flow

The PaRSEC team is working on adding the Sequential Task Flow (STF) interface, to provide
a simpler alternative to writing applications using the PTG. Tasks are added to the DAG
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POTRF(k) [high_priority = on]
// Execution space
k = 0 .. descA.mt -1
// Parallel partitioning
:dataA(k, k)
// Parameters
RW T <- (k == 0) ?

dataA(k, k) : T SYRK(k-1, k)
-> T TRSM(k+1.. descA.mt -1, k)
-> dataA(k, k)

BODY
{

int tempkm = k == descA.mt -1 ?
descA.m - k*descA.mb : descA.mb;

int iinfo = 0;
int ldak = BLKLDD( descA , k );

CORE_dpotrf(
uplo , tempkm , T, ldak ,
&iinfo );

if ( iinfo != 0 && *INFO == 0 )
*INFO = k*descA.mb+iinfo;

}

(a) Factor a diagonal block.

SYRK(k, m) [high_priority = on]
// Execution space
k = 0 .. descA.mt -2
m = k+1 .. descA.mt -1
// Parallel partitioning
: dataA(m, m)
// Parameters
READ A <- C TRSM(m, k)
RW T <- (k == 0) ?

dataA(m, m) : T SYRK(k-1, m)
-> (m == k+1) ?

T POTRF(m) : T SYRK(k+1, m)
BODY
{

int tempmm = m == descA.mt -1 ?
descA.m - m*descA.mb : descA.mb;

int ldam = BLKLDD( descA , m );

CORE_dsyrk(
PlasmaLower , PlasmaNoTrans ,
tempmm , descA.mb,
(double )-1.0, A /*A(m, k)*/, ldam ,
(double) 1.0, T /*A(m, m)*/, ldam);

}
END

(b) Update a diagonal block.

TRSM(m, k) [high_priority = on]
// Execution space
m = 1 .. descA.mt -1
k = 0 .. m-1
// Parallel partitioning
: dataA(m, k)
// Parameters
READ T <- T POTRF(k)
RW C <- (k == 0) ?

dataA(m, k) : C GEMM(m, k, k-1)
-> A SYRK(k, m)
-> A GEMM(m, k+1..m-1, k)
-> B GEMM(m+1.. descA.mt -1, m, k)
-> dataA(m, k)

BODY
{

int tempmm = m == descA.mt -1 ?
descA.m - m * descA.mb : descA.mb;

int ldak = BLKLDD( descA , k );
int ldam = BLKLDD( descA , m );

CORE_dtrsm(
PlasmaRight , PlasmaLower ,
PlasmaTrans , PlasmaNonUnit ,
tempmm , descA.nb,
(double )1.0, T /*A(k, k)*/, ldak ,

C /*A(m, k)*/, ldam);
}
END

(c) Factor an o�-diagonal block.

GEMM(m, n, k)
// Execution space
k = 0 .. descA.mt -3
m = k+2 .. descA.mt -1
n = k+1 .. m-1
// Parallel partitioning
: dataA(m, n)
// Parameters
READ A <- C TRSM(m, k)
READ B <- C TRSM(n, k)
RW C <- (k == 0) ?

dataA(m, n) : C GEMM(m, n, k-1)
-> (n == k+1) ?

C TRSM(m, n) : C GEMM(m, n, k+1)
BODY
{

int tempmm = m == descA.mt -1 ?
descA.m - m * descA.mb : descA.mb;

int ldam = BLKLDD( descA , m );
int ldan = BLKLDD( descA , n );

CORE_dgemm(
PlasmaNoTrans , PlasmaTrans ,
tempmm , descA.mb, descA.mb ,
(double )-1.0, A /*A(m, k)*/, ldam ,

B /*A(n, k)*/, ldan ,
(double) 1.0, C /*A(m, n)*/, ldam);

}
END

(d) Update an o�-diagonal block.

Figure 4.25: PaRSEC Cholesky factorization subroutine based on JDF. The relationships
between the four kernel routines and the data�ow between them is expressed in the “Pa-
rameters” clause.

62



4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

sequentially, with the parameters tagged as read and/or write. The runtime can then use
the sequential task insertion order, and the data tags, to determine all the dependencies
and execute the workload correctly. This technique is o�en referred to as task-superscalar.
Figure 4.26 shows the PaRSEC implementation of the Cholesky factorization using the
insert-task interface.

In distributed systems there are limitations to the scalability of the STF approach. The
entire DAG must be discovered sequentially, by each node, i.e., each node must track all
the dependencies, even the remote ones.

for( int k = 0; k < n; k++) {
insert_task(handle , &kernel_potrf , priority , "POTRF",

PASSED_BY_REF , TILE_OF(A, k, k, 0), INOUT | REGION_FULL | AFFINITY ,
sizeof(int), &ldak , VALUE ,
0);

for (int j = k+1; j < n; j++)
insert_task(handle , &kernel_trsm , priority , "TRSM",

PASSED_BY_REF , TILE_OF(A, k, k, 0), INPUT | REGION_FULL ,
PASSED_BY_REF , TILE_OF(A, k, j, 0), INOUT | REGION_FULL | AFFINITY ,
0);

for( int i = 1; i <= n; i++ ) {
insert_task(handle , &kernel_syrk , priority , "SYRK",

PASSED_BY_REF , TILE_OF(A, k, i, 0), INPUT | REGION_FULL ,
PASSED_BY_REF , TILE_OF(A, i, i, 0), INOUT | REGION_FULL | AFFINITY ,
0);

for (int j = i+1; j <= n; j++) {
insert_task(handle , &kernel_gemm , priority , "GEMM",

PASSED_BY_REF , TILE_OF(A, k, i, 0), INPUT | REGION_FULL ,
PASSED_BY_REF , TILE_OF(A, k, j, 0), INPUT | REGION_FULL ,
PASSED_BY_REF , TILE_OF(A, i, j, 0), INOUT | REGION_FULL | AFFINITY ,
0);

}
dtd_data_flush(handle , TILE_OF(A, k, i, 0));

}
}

Figure 4.26: PaRSEC Cholesky factorization using the Sequential Task Flow (insert-task)
interface.

Accelerator Support

PaRSEC supports the use of accelerators, such as GPUs, and handles the communication to
these devices transparently. At present, the use of these devices is speci�ed in the PTG at
compile time, rather than being handled automatically at rumtime. In order to utilize the
computing power of GPUs e�ciently, current e�orts target support for “hiearchical DAGs”,
where smaller DAGs can be nested within larger ones.

What does PaRSEC do best?

• The compact DAG representation in PaRSEC (PTG) avoids many bottlenecks in the
generation and tracking of task dependencies. At the same time, the task-superscalar
scheduling, while much more convenient to use, is limited in scalability by the process
of sequential DAG unrolling.
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• PaRSEC minimizes the serial overheads and has good scalability to large numbers of
distributed memory nodes [10].

• PaRSEC is able to can use accelerators semi-transparently using kernels that are built
for the accelerator. However, the current scheduling mechanism does not abstract ex-
ecution to allow PaRSEC to dynamically choose accelerators versus CPUs, depending
on the executing workload. This decision is statically made by the programmer.

Where does PaRSEC not do well?

• Developing a compact DAG representation for an application is a challenging task,
which quickly gets more di�cult with the complexity of the dependencies in the
algorithm.

• PaRSEC does not easily support data-dependent DAGs. For example, computations
with “if” conditions depending on the data are not be supported. Workarounds are
usually possible.

• PaRSEC does not mix wiht synchronization techniques outside of its paradigm. For
instance, the LU factorization with partial pivoting requires an implementation of of
the panel factorization operation using a “gang” of tasks, synchronized using barriers.
Currently, PaRSEC does not facilitate such implementations, which has been a major
roadblock for building an a�cient implementation of the LU factorization.

• The tasks are not dynamically scheduled over all the distributed memory nodes at
execution time. There are some positive aspects to this, since the long term load
balancing may be better with the static binding, and data movement can be initiate
early.

PaRSEC Performance at Large Scale

PaRSEC has shown excellent performance and scalability. PaRSEC implementation of
the QR factorization of a M = N = 41, 472 matrix achieved performance many times
higher then that of the Cray LibSci library, when ran using 23, 868 cores of the Kraken
supercomputer at ORNL (Cray XT5) [10]. PaRSEC has also been shown to perform well on
distributed-memory hybrid, accelerator-based, machines [85].

Pros of using Parsec for SLATE:

• O�ers good scaling properties with PTGs.

• Takes care of scheduling work to accelerators.

• Handles asynchronous tasks scheduling and management.

• Enables deep lookaheads because it “sees” the entire DAG at once.

64



4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

Cons of using Parsec for SLATE:

• Complex algorithms are not easily expressed in the PTG notation.

• Does not mix well with other scheduling paradigms.

• Does not facilitate data-dependent scheduling.

4.2.2 Legion

Legion is a data-centric parallel programming system that deals primarily with inter-node
parallelism. Legion is a C++ framework (template, runtime, library) that provides annota-
tions and scheduling of data dependencies, and allows customized mapping from tasks/data
to hardware execution unit and memory. “Logical Region” is the core abstraction in Legion
to describe the structure of program data; “Mapping Interface” is the core mechanism to
map program data to physical memory and tasks to execution units.

Logical Region

A Legion program �rst decomposes the computation objects into logical regions. Regions
can be further partitioned into sub-regions. Regions can even overlap with each other.
Functions that specify which regions to touch, and the priviledges/coherence associated
with the regions, are called tasks. The Legion runtime features a so�ware out-of-order
scheduler performs parallel execution of tasks that honors data dependencies. Figure 4.27
shows an example of a circuit simulation reported by Bauer et al. [13]. There are four points
of interests in this example:

1. (line 5) In the task speci�cation, the regions (data) that the task is going to touch are
marked with privilege and coherence. RWE means Read-Write-Exclusive, i.e., the
task is going to read and write the regions; the coherence is exclusive meaning the
execution order is to be maintained.

2. (line 7 to 9) This is where data is partitioned into logical regions. The partition can be
marked as disjoint or aliased, depending on whether the partitions can overlap.
Tasks working on disjoint data can be run in parallel, while tasks working on shared
(aliased) data might require communication and synchronization.

3. (line 14) This is how the tasks are issued, in this case following three phases in each
time step. Note that the tasks are not necessarily run according to the issuing order;
the Legion scheduler will schedule the tasks concurrently and out of order, as long as
the data dependency allows. Also, note that there is no explicit synchronization or
communication involved.

4. (line 21 to 24) This is a task working on a region that consists of a private region, a
shared region, and also an aliased ghost region. This task will update the shared region
and the aliased region, which poses as potential con�ict for other tasks. Thus, the
task is marked as RdA (Reduction-Atomic) to enable concurrent update to the aliased
regions.

65



4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

1 struct Node {...};
2 struct Wire {...};
3 struct Circuit { region r_all_nodes; region r_all_wires; };
4
5 void simulate_circuit(Cicuit c, float dt) : RWE(c.r_all_nodes , c.r_all_wires)
6 {
7 partition <disjoint > p_wires = c.r_all_wires.partition(wire_map );
8 ...
9 partition <aliased > p_ghost_nodes = p_nodes_pvs [1]. partition(node_neighbor_map );

10
11
12 ...
13 for (t=0; t<TIME_STEPS; t++) {
14 spawn(i=0; i<MAX_PIECES; i++) distribute_charge(pieces[i],dt);
15 ...
16 }
17
18 }
19
20 void distribute_charge(CircuitPiece piece , float dt):
21 ROE(piece.rw_pvt), RdA(piece.rn_pvt , piece.rn_shr , piece.rn_ghost) {
22 foreach (w: piece.rw_pvt)
23 w->in_node ->new_charge += -dt * w->current;
24 w->out_node ->new_charge += dt * w->current;
25 }
26 }

Figure 4.27: A Circuit Simulator in Legion pseudo code (excerpt adapted from the article
by Bauer et al. [13]).

The mapping interface gives the program control over where tasks run and where re-
gion instances are placed (but when to run the tasks is determined by the SOOP
scheduler). The interface is invoked at runtime, which enables adaptive map-
ping based on input data. There are three most important mapping interfaces:
select_initial_processor, permit_task_steal, map_task_region. There is a default
mapper that has default policies for these interfaces. However, the essential �exibility
comes from the ability to customize the mapper, i.e., overriding certain aspects of the
default mapper. The mapping can be customized to be completely static, fully dynamic, or
something in between.

Tasks

In Legion, the task is the construct to describe computation. Tasks are asynchronous
and annotated with the regions that they access. The Legion runtime is responsible to
schedule the execution of tasks, and to maintain the sequential semantics of the Legion
program, under the constraints of data dependencies and other synchronization directives.
In addition to the task speci�cation and launch examples shown in Figure 4.27, tasks have
more features and nuances, as shown by the example in Figure 4.28 (adapted from Section
2.4 in the article by Bauer et al. [14]).

The following new concepts emerge from the Conjugate Gradient example in Figure 4.28:

Sub-tasks: A Legion program execution is carried out by a tree of tasks. During execution,
tasks can launch sub-tasks, with the containment property, which dictates that sub-
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1 struct SparseMatrix {
2 region lr;
3 partition <disjoint > part;
4 int n_rows , elmts_per_row;
5 }
6 struct Vector {
7 region lr;
8 partition <disjoint > part;
9 int n_elmts;

10 }
11
12 void CG(SparseMatrix a, Vector x): RWE(a.lr, x.lr) {
13 tunable int num_pieces;
14 a.part = a.lr.partition(num_pieces );
15 x.part = x.lr.partition(num_pieces );
16 Vector r_old(x.n elmts), p(x.n elmts), A_p(x.n elmts);
17
18 spawn <num pieces > spmv(a.part , x.part , A_p.part);
19 spawn <num pieces > subtract(b.part , A_p.part , r_old.part);
20 double L2Norm0 = spawn <num_pieces > L2norm(r_old.part);
21 copy(r_old , p);
22
23 predicate loop_pred = true;
24 future r2_old , pAp , alpha , r2_new , beta;
25 for (...) {
26 spawn <num pieces > @loop_pred spmv(A.part , p.part , A_p.part);
27 r2_old = spawn <num_pieces ><+> @loop_pred dot(r_old.part , r_old.part , r2_old );
28 pAp = spawn <num_pieces ><+> @loop_pred dot(p.part , A_p.part , alpha);
29 alpha = spawn @loop_pred divide <r2_old ,pAp);
30 spawn <num_pieces > @loop_pred daxpy(x.part , p.part , alpha);
31 spawn <num_pieces > @loop_pred daxpy(r_old.part , A_p.part , -alpha);
32 r2_new = spawn <num_pieces ><+> @loop_pred dot(r_old.part , r_old.part ,r2_new );
33 beta = spawn @loop_pred daxpy(r_old.part , p.part , beta);
34 future norm = spawn <num_pieces ><+> @loop_pred dot(r_old.part ,r_old.part ,L2norm );
35 loop_pred = spawn @loop_pred test_convergence(norm , L2norm) : false;
36 }
37 }

Figure 4.28: A Conjugate Gradient linear solver implementation in Legion. Pseudo-code
adapted from [14].
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tasks can only access a subset of the regions accessible from the parent task, with the
privileges equal or inferior to the privileges of the parent task. This requirement eases
the scheduling of the task trees.

Index Space Tasks: Legion provides the mechanism to launch many sub-tasks simulta-
neously through Index Space Tasks Launch. This can reduce runtime overhead of
launching many tasks, and also provide the opportunity to express properties of
group tasks, such as the ability to synchronize within a group.

Futures: As seen in the CG example in Figure 4.28 Legion supports a construct called a
future. This is a similar construct to futures in many other languages, such as the C++11,
and indicates a value that promises to be available sometime in the future. A task can
wait on the availability of a future value, i.e., using it which will block the task. Better
yet, it can pass the future along, into sub-tasks, to avoid blocking (line 34, 35).

Predicated Execution: Legion allows sub-task launches to be predicated on a boolean value
that is not resolved. In the CG example in Figure 4.28 the main iteration (lines 25-36)
will stop based on the result of test_convergence(). However the next iteration will
not wait until the result of the test_convergence() is available. The new tasks will
be spawned and allows the analysis of the task dependencies to not block on the
availability of the test result. Whether the execution of the tasks can be predicated is
a separate issue.

Task Variants and Quali�ers: Legion allows multiple variants of the same task to support
optimization in di�ering execution environments. Tasks can also be tagged with the
quali�ers: leaf, inner, and idempotent. Leaf tasks do not generate sub-tasks. Inner tasks
on the contrary, do nothing but generate sub-tasks. These two quali�ers aid in the
analysis of the dependencies and scheduling. An idempotent task has no side e�ects,
except for the declared regions. This quali�er helps with resilience.

What does Legion do and not do?

The central role of Legion is to schedule tasks in a way that preserves “locality” and “inde-
pendence”. Legion deals with when to run the tasks, while leaving the question of where to
run the tasks, and where to place the data, to the user.

Legion does not automatically generate tasks. Legion does not automatically map tasks/data
to hardware. Legion does not automatically decompose the program. Legion does not put
the �rst priority on productivity.

Performance of Legion at large scale

In the article by Bauer et al. [14] a production-quality combustion simulation S3D was
ported to Legion and demonstrated to be 3× faster than state-of-the-art S3D written in
MPI/OpenACC, when run using 8,192 nodes.

68



4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

Implications in using Legion for SLATE:

• Legion depends on GASNet for inter-node communication. There is no explicit
communication involved, thus the user has no direct control over communication.

• If SLATE uses Legion, will applications have to use Legion as well for parallelizing
their other components?

• One of the desirable feature of Legion is the ability to control where to run tasks and
where to place data, which is essential in obtaining high performance.

• The dynamic out-of-order task scheduler seems appealing for numerical linear alge-
bra at large scale on heterogeneous nodes.

• Legion seems to struggle with performance when running load balanced applications
on homogeneous machines (see page 95 in the Sandia report by Bennett et al. [15]).

4.2.3 DARMA

DARMA was a response to the 2015 study by Bennett et al. Bennett et al. [15] in assessing
the leading Asynchronous Many-Task (AMT) runtimes. The report studies extensively the
three major AMT systems, Charm++, Legion, and Uintah, in the context of ASC applications.
Charm++ implements a low-level actor model and replaces MPI messages with remote
procedure calls. Legion is a data centric model with declarative program expression (see
Section 4.2.2). Uintah is a scienti�c domain-speci�c system for PDE on structured grids.
Uintah is too domain-speci�c, and will not be discussed further. It is instructive to read the
comparative study on the performance, expressive style, programmability, and scalability
of the three AMT runtime systems in the context of the MiniAero application. The report
provides three primary conclusions:

• AMT systems are promising for large scale heterogeneous computing.

• APIs of the AMT systems vary.

• There is a need for identifying best practices and standards.

Thus DARMA was created to provide a uni�ed AMT API that (potentially) maps to multiple
backends (Legion, Charm++, etc.) for providing a single uni�ed API, and for studying AMT
best practices, speci�cally for Sandia’s requirements. As of the writing of this document it
maps to Charm++.

DARMA can be considered as a two layer system as shown in Figure 4.29: the frontend
and backend. The frontend interfaces with the application by providing abstractions to
express data-task dependencies. The backend consists of glue code and runtime system to
smoothly map to existing AMT systems (Charm++, Legion) for scheduling and executing
the tasks.

The core abstractions of the frontend is the data abstraction and the task abstraction. Data are
wrapped with the darma::AccessHandle<T> or darma::AccessHandleCollection<T> con-
structs. Tasks are created using darma::create_work or darma::create_concurrent_work,
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Figure 4.29: The structure of DARMA (source: 2017 Sandia slides by Markosyan et al.).

with the code for the task encoded in a C++ lambda function or a functor. These constructs
enforce sequential semantics, which is commonly assumed by the programmer if no parallel
processing occurs. The system extracts concurrency by constructing a data-task dependency
DAG and scheduling the execution of tasks in parallel, much like an out-of-order processor
does for instructions. An example illustrating the use of these constructs and the execution
order is shown in Figure 4.30. Note that the 2nd and 3rd tasks have the annotation that
they only read my_data; the other two tasks default to updating my_data. It turns out that
task 2 and 3 can execute in parallel, a�er the execution of task 1, and before the execution
of task 4.

AccessHandle <int > my_data;
darma:: create_work ([=]{

my_data.set_value (29);
});
darma:: create_work(

reads(my_data), [=]{
cout << my_data.get_value ();

}
);
darma:: create_work(

reads(my_data), [=]{
cout << my_data.get_value ();

}
);
darma:: create_work ([=]{

my_data.set_value (31);
});

Figure 4.30: An example of DARMA code (source: 2017 Sandia slides by Bennett et al.).

An important extension to the scalar data abstraction AccessHandle is the collection of
data abstractions AccessHandleCollection. An example of this collection object is shown
in Figure 4.31. In this case, the mycol variable will be a collection of vector<double>, with
an index range Range1D(10) meaning the elements in the collection can be accessed via
indices 0-9. An associated extension deals with creating a collection of tasks with access to a

70



4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

collection of data. Each task is similarly created with an index range, and the programmer
decides the elements in the data collection to use in the task, based on its task index.

AccessHandleCollection <vector <double >, Range1D > mycol =
darma:: initial_access_collection(index_range=Range1D (10));

Figure 4.31: Example of the AccessHandleCollection construct.

DARMA supports another interesting communication pattern, other than passing data
access handles to tasks, a pub/sub semantic called publish/fetch in DARMA terminology.
When creating access handles for the data a string “key” can be attached. The access handle
can be “published” using its publish() method with a version string. Other tasks can
create access an handle to the same piece of data using its “key” name and version, via the
read_access() method. Thus the publish/fetch semantics seem to create a distributed
key-value space.

4.2.4 Kokkos

Kokkos [38] is a performance portability layer for intra-node parallel programming. In
this regards, it competes with OpenMP and OpenACC. However, Kokkos is not a language
extension; it is a C++ templated library and a runtime. The unique characteristic of Kokkos is
the combination of both parallel execution abstraction and architecture optimized memory
layout multi-dimensional array abstraction. Although both Kokkos and OpenMP/OpenACC
allow for parallelizing (serial) loops, Kokkos relies on parallel patterns instead of loops. Kokkos
maps the parallel patterns into a serial loop for single thread, multithreaded loops for
multiple threads, or GPU threads for a GPU. Here is an example of the parallel-for pattern:
// Serial
for (int i=0;i<n;i++) {

// loop body
}

// OpenMP
#pragma omp parallel for
for (int i=0;i<n;i++) {

// loop body
}

// Kokkos
parallel_for(n, [=] (const int i) {

// loop body
});

Besides the parallel for pattern, Kokkos also has the reduction pattern parallel reduce,
and also parallel scan. It also seems to include DAG task pattern, but we have not seen it
discussed anywhere, other than Kokkos SC’16 tutorial slides.

The central claim of Kokkos is that it can achieve portable performance over multi-core,
many-core, and GPU systems through a multi-dimensional array abstraction called a View.
Figure 4.32 shows a declaration of a 4-dimensional view. Depending on the execution target,
the array abstraction will have di�erent data layout in memory. The layout is determined
at compile time. Like in RAJA, the serial a loop in a program needs to be expressed using
one of the patterns (for, reduce, task-graph), and the loop body needs to be expresses using
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lambdas or functors in C++. The work then is mapped to threads according to the execution
target (mapping indexes in contiguous chunks on CPUs, and strided on GPUs).

// The following declares a N*M*8*3 array with both
// runtime and compile time determined dimensions.
View <double **[8][3] , Device > a("A",N,M);

// 8x8 tiled layout used in PLASMA
View <double**, LayoutTileLeft <8,8>, Device > b("B",N, M);

a(i,j,k,l) = value;

Figure 4.32: Declaration of a multidimensional array (View) in Kokkos.

Kokkos introduces the concept of an execution space and amemory space. The execution space
indicates where the code is executed (CPU or GPU), while the memory space indicates
where the array (View) is stored (host memory or device memory).

Execution Space: Heterogeneous nodes have one or more execution spaces (host, device).
The programmer controls where the code is run by a template parameter for the
execution policy. The execution place of a certain piece of code is thus determined at
compile time.

Memory Space: Heterogeneous nodes have one or more memory spaces (HostSpace, Cud-
aSpace, CudaUVMSpace). The code that runs in the HostSpace cannot directly access
views from CudaSpace for example; there are two solutions: 1) declare the views in
CudaUVMSpace instead of CudaSpace; 2) create a “mirror” of the desired view in a
di�erent memory space. The former will likely su�er from bad performance, as the
runtime may have to handle suboptimal data movement; the latter takes more space
and requires manual data copies.

E�cient memory access is then achieved by Kokkos by mapping parallel work and multidi-
mensional array layout optimally to the architecture (see Figure 4.33). Every View has a
Layout speci�ed at compile time through a template parameter. LayoutRight (C array style)
and LayoutLe� (Fortran array style) are the most common, although the layout can be
arbitrarily customized (tile layout for example, as used in PLASMA [24]). For performance,
the memory access pattern on CPUs should allow for good caching, while on GPUs it should
allow for good coalescing. Kokkos allows for mapping multidimensional arrays to assure
e�cient memory access for each type of target hardware. In contrast, OpenMP/OpenAC-
C/OpenCL has no notion of data layout customization; multiple versions of the code must
be maintained for execution on CPUs and GPUs.

Memory Traits

Beyond Layout and Space, Views can have memory traits, such as Atomic, Read-only, and
Random. These traits indicate the access pattern to the view, thus allowing for hardware-
speci�c optimizations to be performed. For example, views with the Atomic trait can be
instantiated using atomic instructions on a supported architecture. Views with read-only
trait can be put into texture memory on GPUs.
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Figure 4.33: Di�erent mapping of the data layout for a CPU and a GPU in Kokkos.
(source: https://github.com/kokkos/kokkos-tutorials/blob/master/SC2016/KokkosTutorial
SC2016.pdf)

template <typename T> T atomic_exchange(T *dest , T val);
template <typename T> bool atomic_compare_exchange_strong(T *dest , T comp , Tval);

Figure 4.34: Atomic exchange for arbitary data types in Kokkos.

Scalable Thread Safety with Atomics

Perhaps the most popular synchronization primitives used in low-count CPU threading
is locking. The performance however is not satisfactory for scaling to many-core systems.
Kokkos provides atomic operations (Kokkos::atomic_add()) as a scalable thread safety
solution. The canonical example, where such synchronization is needed, is a multi-threaded
histogram update. A typical scenario is one, where each thread iterates through a portion of
the data, and updates the corresponding bins. Multiple threads might try to update the same
bin, thus creating a race condition. The Kokkos atomic operation provides thread safety
with very low overhead, at low contention, by using backend atomics (OpenMP, CUDA,
Phi) whenever possible. The atomics only exist for certain data types though. Another
synchronization primitive atomic exchange exists for any data type (�gure 4.34).
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Hierarchical Parallelism

Node architectures of modern HPC systems are characterized by hierarchical parallelism.
For example, in a multi-socket CPU systems, there are 4 levels of parallelism:

1. multiple CPU sockets in each node, sharing the same memory;

2. multiple cores in each socket, typically sharing the last level cache (LLC);

3. mulitple hyperthreads in a core sharing the L1/L2 caches and some functional units;

4. multiple SIMD lanes sharing instructions.

The situation is similar for NVIDIA GPUs, where multiple levels of parallelism exist:

1. multiple GPUs in a node, sharing the uni�ed address space;

2. multiple SMs in a GPU, sharing the same device memory;

3. multiple waprs in each SM, sharing registers and caches;

4. multiple threads in each warp, sharing the same instruction stream.

As the architectures features hierarchical parallelism, the parallel programming system
should also provide hierarchical abstractions to e�ciently exploit the hardware. The core
concept in Kokkos is called thread teams. A thread team is a collection of threads which can
synchronize, and share a scratchpad memory, e.g., shared memory in CUDA. In Kokkos
there are three levels of parallelism: team level, thread level, and vector level.

The most basic hierarchical parallelism concept is the thread team, which is a team of
threads that can synchronize and access a shared scratchpad memory. Kokkos’ thread thus
is identi�ed by two indexes: the league index, which identi�es the team, and the thread
index, which identi�es the thread within the team. This arrangement is analogous to the 1-D
grid of 1-D blocks in the CUDA nomenclature. Similarly to CUDA, threads from di�erent
teams do not synchronize or share scratchpad memory.

Consider the following example. Suppose that we want to calculate the inner product yTAx.
We could employ two level nested parallelism here: each team is assigned a row of A, and
each thread in assigned a column in that row (Figure 4.35). We can see that there is a nested
parallel_reduce() inside the main parallel_reduce(), one using team_policy and the
other using TeamThreadRange. Again, within a team, the mapping between indexes and
threads should be abstracted, which allows architecture dependent policies – contiguous
mapping on CPUs and strided mapping on GPUs. Note that the inner parallel policy is
always TeamThreadRange and cannot be further nested.

Another aspect of hierarchical parallelism is the scratchpad memory that is private to a team
of threads.
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parallel_reduce(
team_policy(N, Kokkos ::AUTO),
KOKKOS_LAMBDA(member_type & teamMember ,double &update) {

int row = teamMember.league_rank ();
double thisRowsSum = 0;
parallel_reduce(TeamThreadRange(teamMember , M),

[=] (int col , double &innerUpdate) {
innerUpdate += A(row , col) * x(col);

}, thisRowsSum );
if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;
}

}, result );

Figure 4.35: Two-level parallel inner product in Kokkos

DAGTasking

It seems that the DAG tasking is a 2017 June milestone for the Kokkos project. At the time
of writing this document, support for DAG tasking is unclear.

Implications of using Kokkos for SLATE

Kokkos provides polymorphic data layout in multi-dimensional array to support portable
performance across CPUs and GPUs. However, optimal performance may not only de-
pend on data layout but also on algorithms. The simple execution pattern abstractions
in Kokkos (parallel for/reduce/scan) might only go so far in expressing more involved
algorithms. As such, multiple versions of code or code paths still are needed to achieve
portable performance.

4.2.5 RAJA

RAJA is a portability layer that leverages the �ne-grained parallelism at the node level (similar
to OpenMP, OpenACC, CUDA, etc.), with a cross-platform support. RAJA was initially
developed for the large ASC hydrodynamics codes at LLNL (LULESH, Ares, Kull, and
ALE3D), and is, therefore, primarily tailored to the problem structures and parallelization
challenges in these codes. The fundamental conceptual abstraction in RAJA is an inner loop,
where the overwhelming majority of computational work in most physics codes occurs.
These loops can then be executed in a parallel fashion, using the available resources. The
main features of RAJA, which are discussed in detail later on, are as follows:

1. RAJA uses an abstract execution policy for loop execution. An execution policy is a
template parameter that encapsulates the details of the loop execution, e.g. sequential
execution, parallel execution, enable SIMD, etc. Since the description of di�erent exe-
cution policies exists in the headers, RAJA codes can easily switch between execution
policies without retouching the loop body.

2. RAJA uses IndexSets to partition the iteration space and handle data placement. An
IndexSet is an object that encapsulates a complete iteration space, which is partitioned
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into a collection of segments, of the same or di�erent types. RAJA IndexSets are
similar to the iterators available in the LUA language.

3. RAJA uses C++ lambda functions, which enable capturing the loop body without
modi�cation.

4. To hide non-portable compiler directives and data attributes, RAJA uses data type
encapsulation, e.g., “Real type” and “Real ptr” instead of “double” and “double*.”

5. RAJA requires the C++11 standard.

Porting Existing So�ware to RAJA

A typical RAJA integration approach involves the following steps:

1. Transform the loops to be RAJA-enabled. This is a straightforward process in most
cases. Such initial transformation makes the code portable by enabling it to execute
on both the CPU and the GPU by choosing various parallel programming model
back-ends at compile-time.

2. Choose the execution policy. The choice(s) can be re�ned based on an analysis of
loops. Careful categorization of loop patterns and workloads is key to selecting the
best choices for mapping loop execution to available hardware resources for high
performance. Important considerations include:

(a) The arithmetic intensity of the operation executed by the loop.

(b) The existence of control �ow and branching operations.

(c) The available parallelism across di�erent iterations.

3. If required, a deeper analysis of the algorithm can lead to utilizing more advanced
features of RAJA that are platform-speci�c. Such advanced mechanisms can be
implemented in RAJA transparently, and then propagated to all codes that have a
similar pattern and target the same platform.

Decoupling Loop Body from Loop Traversal

RAJA relies on separating the body of a loop from the mechanism that executes it (its
traversal). This allows the same traversal method to be an abstraction that is applicable to
many di�erent loop bodies. It also allows di�erent traversals to be applied to the same loop
body for di�erent execution scenarios. In RAJA, the decoupling is achieved by recasting a
loop into the generally-accepted ”parallel for“ idiom. As an example, Figure 4.36 shows an
example for a simple C++ loop and its RAJA equivalent.

There are several key di�erences to note in the RAJA loop shown in Figure 4.36:

1. The for loop construct is replaced by a call to a traversal template method
(RAJA::forall), where the template parameter is the loop execution policy.
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double* x ; double* y ;
double a , tsum = 0 . 0 , tmin = MYMAX;
/* some code */
for ( int i = begin ; i < end ; ++i ) {

y[i] += a * x [i] ;
tsum += y [ i ] ;
if( y[i] < tmin ) tmin = y[i];

}

double* x; double* y;
RAJA:: SumReduction <reduce_policy , double > tsum (0.0);
RAJA:: MinReduction <reduce_policy , double > tmin(MYMAX );
/* some code */
RAJA::forall <execpolicy >(begin , end , [=]( int i){

y[i] += a * x[i];
tsum += y[i];
tmin.min( y[i] );

}

Figure 4.36: A RAJA equivalent to a simple loop in C++.

2. The loop body is passed to the traversal template as a C++ lambda function.

3. The reduction variables are converted to RAJA objects with templated reduction
policy and reduction data type.

It is important to note that the original for loop explicitly expresses all the execution
details in the source code, such as iteration order and data accesses. Changing any aspect of
execution requires changes to this source code. Decoupling the loop body from traversal as
in the RAJA version, iteration orders, data layout and access patterns, parallel execution
strategies, etc. can be altered without changing the way the loop is written. Apart from the
slight di�erence in syntax for the min reduction, the loop body is the same as the C-style
version. The C++11 lambda function capability enables the key RAJA design goal, which is
to achieve portability with minimal disruption to the application source code.

RAJA EncapsulationModel

Figure 4.37 describes four main encapsulation features in RAJA, each with a di�erent color,
that can be used to manage architecture-speci�c concerns.

RAJA::Real ptr x, RAJA::Real ptr y;
RAJA::Real type a;
RAJA::SumReduction<..., Real type> tsum (0);
RAJA::MinReduction<..., Real type> tmin(MYMAX);

RAJA::forall<exec policy>( IndexSet, [=]( Index type i) {
y[i] += a * x[i];
tsum += y[i];
tmin.min( y[i] );

} );

Figure 4.37: Di�erent encapsulations in RAJA.

77



4.2. FRAMEWORKS CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

Traversals and execution policies [blue]: A traversal method, specialized with an execu-
tion policy template parameter, de�nes how the loop will be executed. For example, a
traversal may run the loop sequentially, as multithreaded parallel loop using OpenMP,
or may launch the loop iterations as a CUDA kernel to run on a GPU.

IndexSets [purple]: Figure 4.36 shows that the begin and the end loop bounds are passed
as arguments to the traversal method. While RAJA can process explicitly bounded
loop iterations in various execution schemes that are transparent to the source code,
the RAJA IndexSet abstraction in Figure 4.37 enables much more �exible and powerful
ways to control loop iterations. IndexSets allow loop iteration order to be changed in
ways which can, for example, enable parallel execution of a non-data-parallel loop
without rewriting it. Typically, an IndexSet is used to partition an iteration space
into segments; i.e., ”chunks“ of iterations. Then, di�erent subsets of iterations may be
launched in parallel or run on di�erent hardware resources. IndexSets also provide
the ability to manage dependencies among segments to resolve thread safety issues,
such as data races. In addition, IndexSet segments enable coordination of iteration
and data placement; speci�cally, chunks of data and iterations can be mapped to
individual cores on a multi-core architecture. While IndexSets provide the �exibility
to be de�ned at runtime, compilers can optimize execution of kernels for di�erent
segment type implementations at compile-time.

Data type encapsulation [red]: RAJA provides data and pointer types, that can be used to
hide non-portable compiler directives and data attributes, such as alignment, restrict,
etc. These compiler-speci�c data decorations o�en enhance the compiler’s ability to
optimize the code. For any parallel reduction operation, RAJA requires a reduction
class template to be used. Template specialization of a reduction enables a portable
reduction operation while hiding the programming of model-speci�c reduction
constructs from application code.

C++ lambda functions [brown]: The standard C++11 lambda feature captures all variables
used in the loop body which allows the loop construct to be transformed, with minimal
modi�cation, to the original code.

The RAJA encapsulation features described here can be used individually or combined
together, depending on the portability and performance needs of the application. They may
also be combined with application-speci�c implementations. This allows a multi-tiered
approach to performance tuning for a particular architecture. Most loops in a typical HPC
application can be parameterized using basic RAJA encapsulation features. Other kernels
may require a combination of RAJA entities and customized implementations suited to a
particular algorithm.

Basic Traversal Methods and Execution Policies

We consider the code example of Figure 4.36. Since the execution policy is passed as a
template parameter, the same loop can be executed in di�erent ways. We assume that the
policy template parameters are de�ned as typedefs in a header �le.

A CPU serial execution can be realized using one of RAJA’s built-in execution policies. This
requires the following de�nition:
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typedef RAJA:: sequential exec_policy;
typedef RAJA:: seq_reduce reduce_policy;

Such de�nition leads to a traversal template that looks like:

template <typename LB >
void forall(sequential , Index_type begin , Index_type end , LB body){

#pragma novector
for (int i = begin; i < end; ++i) body(i);

}

Note that the novector pragma option prevents the compiler from generating SIMD
vectorization optimizations for this case. Changing exec_policy to RAJA::simd allows
the compiler to generate SIMD optimizations if it decides to do so.

The following de�nition leads to a parallel CPU execution using OpenMP:

typedef RAJA:: omp_parallel_for exec_policy;
typedef RAJA:: omp_reduce reduce_policy;

It tells RAJA to use a traversal template of the form:

template <typename LB >
void forall(omp_parallel_for , Index_type begin , Index_type end , LB body){

#pragma omp parallel for
for (int i = begin; i < end; ++i) body(i);

}

RAJA supports multiple ways to o�oad the execution on an accelerator. Considering GPU
execution for example, a possible way is to use the OpenMP 4 accelerator model, which
requires a de�nition of the form:

typedef RAJA:: omp_parallel_for_acc exec_policy;
typedef RAJA:: omp_acc_reduce reduce_policy;

Such de�nition leads to a traversal template of the form:

template < typename LB >
void forall(omp_parallel_for_acc , Index_type begin , Index_type end , LB body){

#pragma omp target
#pragma omp parallel for
for(int i = begin; i < end; ++i) body(i);

}

Note that the RAJA template cannot explicitly setup the GPU device data environment with
an OpenMP map clause. The map clauses are used to specify how storage associated with
speci�cally named variables is moved between host and device memories. Since a RAJA
traversal is generic with respect to the loop body, it knows nothing about the data used in
the loop. The OpenMP 4 standard �lls the gaps to support ”unstructured data mapping“
that allows one to set up the proper device data environment before o�oading via a RAJA
traversal. We expect to manage such host-device data transfers in real application codes
using a similar encapsulation approach to the way MPI communication is typically hidden.

For a CUDA-based execution, the notion of loops is absent, and execution should be mapped
to a CUDA kernel, which is launched over a group of thread blocks on a CUDA-enabled
GPU device. Each iteration executes on a di�erent CUDA thread. To launch the loop as a
CUDA kernel, the template parameters are:

typedef RAJA:: cuda_acc exec_policy;
typedef RAJA:: cuda_reduce reduce_policy;
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The following code snippets illustrate RAJA backend code for CUDA. So that the loop code
continues to look like a loop, the loop body is passed to the traversal template (B), which
has the same arguments as other traversals. This template launches a GPU kernel template
(A) that executes each loop iteration on a separate GPU thread:

// (A) kernel template
template <typename LB >
__global__ void forall_cuda_kernel(Index_type begin , Index_type len , LB body){

Index_type i = blockIdx.x * blockDim.x + threadIdx.x;
if(i < len){

body(begin+i) ;
}

}

// (B) traversal template that launches CUDA GPU kernel
template <typename LB >
void forall( cuda_acc , int begin , int end , LB body){

size_t blockSize = THREADS_PER_BLOCK;
size_t gridSize = (end - begin + blockSize - 1) / blockSize ;
Index_type len = end - begin ;
forall_cuda_kernel <<<gridSize , blockSize >>>(body , begin , len) ;

}

To manage data transfers between host and device, when using CUDA, we have multiple
options. Using CUDA Uni�ed Memory is the simplest and least intrusive method. Memory
allocations are replaced with calls to cudaMallocManaged(), which allows data to be accessed
in the same way on either the host or device with no explicit transfer operations. However,
this may not yield desired performance in many situations. When this is the case, we
can encapsulate CUDA memory copy routines in a manner similar to how we would use
OpenMP unstructured data mapping.

IndexSets and Additional Traversal Features

Mesh-based multi-physics applications contain loops that iterate over mesh elements, and
thus data arrays representing �elds on a mesh, in a variety of ways. Some operations involve
stride-1 array data access while others involve unstructured accesses using indirection
arrays. O�en, these di�erent access patterns occur in the same physics operation. For code
maintenance, such loop iterations are usually coded using indirection arrays since this
makes the code �exible and relatively simple. In this section, some key features of RAJA
IndexSets are described, along with their use to manage complex loop iteration patterns
and address a variety of performance concerns. In particular, IndexSets provide a powerful
mechanism to balance runtime iteration space de�nition with compile-time optimizations.

A RAJA IndexSet is an object that encapsulates a complete loop iteration space that is
partitioned into a collection of segments, of the same or di�erent segment types. Figure 4.38
shows two di�erent types of simple Segments, a range and a list that may be used to iterate
over di�erent portions of an array. A RAJA RangeSegment object de�nes a contiguous set of
iteration indexes with constraints applied to the iteration bounds and to the alignment of
data arrays with memory constructs. For example, range Segments can be aligned multiples
of the SIMD width or the SIMT width, to help compilers generate more e�cient code. A
RAJA ListSegment is a chunk of iterations that do not meet the range Segment criteria. It
is important to note, that, with RAJA, we emphasize the tight association between a loop
iteration and a footprint of data array elements in memory.
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Array

Rang Segment List Segment

Figure 4.38: IndexSet segments in RAJA.

To illustrate some simple IndexSet mechanics, consider the following set of array indexes
to process:
int num_elements = 21;
int elemenst [] = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 14 , 27 , 36 ,

40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 87 , 117 };

Such a set of indexes may enumerate elements on a mesh containing a particular material
in a multi-material simulation, for example. The indexes may be assembled at runtime
into an IndexSet object by manually creating and adding Segments to the IndexSet object.
A more powerful alternative is to use one of several parameterized RAJA IndexSet builder
methods to partition an iteration space into a collection of ”work Segments“ according to
some architecture-speci�c constraints. For example,
RAJA:: Indexset segments = RAJA:: createIndexset(elems , num elems);

might generate an IndexSet object containing two range Segments ({0, · · · , 7}, {40, · · · , 47})
and two list segments ({14, 27, 36}, {87, 117}).

When the IndexSet object is passed along with a loop body (lambda function) to a RAJA
iteration template, the operation will be dispatched automatically to execute each of the
Segments:
RAJA::forall <exec_policy >( Segments , [=] ( ... ) {

/* loop body */
} );

That is, a specialized iteration template will be generated at compile-time for each Segment
type. Iteration over the range Segments may involve a simple for-loop such as:
for(int i = begin; i < end; ++i) loop_body(i);

or iteration over the list Segments in a for-loop, with indirection applied:
for(int i = 0; i < seglen ; ++i) loop_body( Segment[i] );

IndexSet builder methods can be customized to tailor segments to hardware features
and execution patterns to balance compile-time and runtime considerations. Presently,
IndexSets enable a two-level hierarchy of scheduling and execution. A dispatch policy is
applied to the collection of Segments. An execution policy is applied to the iterations within
each segment. Examples include:

• Dispatch each segment to a CPU thread so segments run in parallel and execute range
segments using SIMD vectorization.

• Dispatch segments sequentially and use OpenMP within each segment to execute
iterations in parallel.

• Dispatch segments in parallel and launch each segment on either a CPU or a GPU as
appropriate.
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Figure 4.39: Zone-to-node sum with two loop ordering options in RAJA.

Loop Reordering and Tiling

RAJAIndexSets can expose available parallelism in loops that are not written using a parallel
pattern. For example, a common operation in a staggered-mesh code, sums zonal values to
surrounding nodes as is illustrated in the le� image of Figure 4.39. IndexSets can be used to
reorder loop iterations to achieve ”data parallel“ execution without modifying the loop body
code. Figure 4.39 shows two di�erent ordering possibilities, (A) and (B). Di�erent colors
indicate independent groups of computation, which can be represented as segments in
indexSets. For option A, we iterate over groups (Segments) sequentially (group 1 completes,
then group 2, etc.) and operations within a group (Segment) can be run in parallel. For
option B, we process zones in each group (row) sequentially and dispatch rows of each
color in parallel. It is worth emphasizing that no source code modi�cations are required to
switch between these parallel iteration patterns. RAJA Segments can also represent arbitrary
tilings of loop iterations that can be tuned and sized for speci�c architecture and memory
con�gurations. When loop iterations are encapsulated in IndexSet Segments, data arrays
can be permuted for better locality and cache reuse.

Kokkos vs. RAJA

Kokkos and RAJA are very similar in their objectives (both aiming at providing a per-
formance portability layer for node level parallelism) and approaches (both focusing on
abstracting away from serial loops; both are C++ templates/libraries/runtimes instead of
language extensions, etc.). However there is one di�erence that is most relevant to the pur-
pose of the SLATE project. Kokkos supports multi-dimensional arrays (Views) and allows
customized data layout for the array, while RAJA only supports one-dimensional arrays
with more support of random access. As multi-dimensional arrays are central to dense
linear algebra, and the data layout of the array has a signi�cant impact on performance, the
�exibility of Kokkos arrays is better suited for SLATE purposes.

82



4.3. CONSEQUENCES FOR SLATE CHAPTER 4. SOFTWARE TECHNOLOGY TRENDS

4.3 Consequences for SLATE

The ongoing evolution of the so�ware technology, described in this chapter, creates unique
opportunities for the development of the SLATE project. Here we summarize the most
impactful aspects:

So�ware Engineering: While there is no question about the robustness of procedural
languages, such as modern C and Fortran, for scienti�c computing, modern so�ware
engineering demands encapsulation, polymorphism, generic programming, etc.,
which are just so much easier to express in C++. It is only natural for SLATE to
adopt C++ as its implementation language, to leverage its support for object oriented
programming, as well as a plethora of other great features (exception handling, smart
pointers, etc.).

Portability: As the OpenACC and OpenMP standards mature, and are adopted by the
major compilers, there is less and less reasons to rely on proprietary solution for
programming accelerators. While the actual implementations of the accelerator
programming extensions may have some de�ciencies for some time, solid foundations
are already in place. There are no reasons to believe that OpenACC and/or OpenMP
will not be able to ful�ll SLATE’s requirements for handling node-level memory
consistency. On the other hand, portable frameworks, such as Kokkos and RAJA,
should ful�ll the need for custom kernel development, on rare occasions of gaps in the
coverage of vendor libraries. Finally, MPI is the interface of choice for communication,
and will be for the foreseeable future. At the same time, emerging programming
frameworks, such as PaRSEC and Legion, are not to be dismissed, as a viable option
for targeting exascale.

Platform Scalability: As SLATE will combine distributed memory programming with
node-level programming and accelerator o�oad, it has the potential for becoming
the solution of choice for all levels of the platform ladder: single node, multi-node,
no GPU, single GPU, multi-GPU, Cloud instance, embedded system, mobile device.
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Matrix Layout Considerations

The BLAS standard de�ned the memory layout for matrices. In the original standard, a
matrix is synonymous with a 2D Fortran array, meaning column-major storage. The CBLAS
interface also supports 2D arrays stored in row-major, synonymous with the C language.
Notably, the support for row-major does not require a separate implementation, but can
be accomplished by switching the values of transposition and upper / lower parameters.
One way or the other, the 2D array abstraction is a higher level language construct, which
provides programming convenience, but causes highly suboptimal data access patterns
when computing matrix multiplication. Historically, the signi�cance of this fact used to
be smaller, but becomes more prominent, as �oating point capabilities of modern chips
keep outpacing the memory systems. As a result, virtually all high performance BLAS
implementations copy the input arrays to internal formats, in order to achieve maximum
e�ciency. This pays o� in the case of large matrices, when the O(N2) cost of the copy is
negligible compared to the O(N3) cost of the matrix multiplication. Traditionally, large
matrices are the target of BLAS optimizations, since LAPACK and ScaLAPACK are structured
to call large GEMM operations.

5.1 ATLAS Layouts

All the information about the inner workings of ATLAS, described in this section, was provided by
the author of ATLAS, Cline Whaley.

From the standpoint of a BLAS implementation it is ideal if memory is accessed com-
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pletely sequentially (consecutive memory locations). This results in the lowest possible
bandwidth demand - best utilization of caches, highest bene�t from prefetch operations,
etc. The standard column-major or row-major format by no means allows for such access.
The optimal access patter for the GEMM kernel is a function of loop optimizations and
SIMD’zation. The main loop optimization technique used in ATLAS is unroll and jamwith
register blocking.

While the canonical form of matrix multiply looks like this:

for (i=0; i < M; i++)
for (j=0; j < N; j++)

for (k=0; k < K; k++)
C(i,j) = C(i,j) + A(i,k) * B(k,j);

unrolled and jammed version looks like this:

for (i=0; i < M; i += 3)
for (j=0; j < N; j += 2)

for (k=0; k < K; k++)
{

C(i,j) += A(i,k) * B(k,j);
C(i+1,j) += A(i+1,k) * B(k,j);
C(i+2,j) += A(i+2,k) * B(k,j);
C(i,j+1) += A(i,k) * B(k,j+1);
C(i+1,j+1) += A(i+1,k) * B(k,j+1);
C(i+2,j+1) += A(i+2,k) * B(k,j+1);

}

and like this with register blocking:

for (i=0; i < M; i += 3)
for (j=0; j < N; j += 2)
{

register c00 , c10 , c20 , c01 , c11 , c21;
c00 = c10 = c20 = c01 = c11 = c21 = 0.0;
for (k=0; k < K; k++)
{

register a0=A(i,k), a1=A(i+1,k), a2=A(i+2,k);
register b0=B(k,j), b1=B(k,j+1);
c00 += a0 * b0;
c10 += a1 * b0;
c20 += a2 * b0;
c01 += a0 * b1;
c02 += a1 * b1;
c03 += a2 * b1;

}
C(i,j) += c00;
C(i+1,j) += c10;
C(i+2,j) += c20;
C(i,j+1) += c01;
C(i+1,j+1) += c11;
C(i+2,j+1) += c21;

}

At the same time, virtually all modern CPUs get their performance from SIMD vectorization,
which has further consequences for the data layout.

The term access-major layout was coined by Clint Whaley to describe an arrangement of
matrix elements in memory corresponding to the access pattern of the GEMM implemen-
tation. I.e., the GEMM routine produces a consecutive memory access pattern during its
execution. This has some profound consequences. First, one GEMM kernel is likely to
have di�erent storage patterns for each of its three operands. Second, two di�erent GEMM
kernels are likely to have incompatible storage patterns.
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Currently, ATLAS is based on a new framework that supports several access-major storage
patterns. The framework autogenerates routines that copy the data between the standard
layout and the access-major layout, for the input arrays (A and B), and for the output
array (C). Once the operands are in access-major storage, the ATLAS GEMM kernel always
accesses them sequentially, generating the most e�cient memory tra�c.

The GEMM routine in ATLAS is based on a lower level building block called the access-major
matrix multiply Kernel (ammmK). The dimensions of the ammmK are selected such that
it �ts in some level of cache. I.e., cache blocking is taken care of at a higher level, such
that it is not a concern for the ammmK kernel itself. The focus of the ammmK kernel
is instruction level parallelism, accomplished through loop optimizations, vectorization,
register blocking, while implementing the access-major layout.

“The arrays used by ammmK have a more complex storage pattern, where the matrix
has been permuted so that all arrays are naturally accessed in a purely sequential fashion
when the computation is being performed. Completely sequential access allows us to
minimize cache line con�icts, maximize cache line packing & hardware prefetch accuracy,
and ensures that our bus access is as ‘smooth’ as possible (i.e. it minimizes the number of
cache misses that happen at any one time).” – Clint Whaley

5.2 MKL Packed GEMM

Intel recently introduced MKL routines for multiplying matrices stored in a packed form,
meaning internal, proprietary, opaque layout that is optimal for performance. Since the
layout is opaque, MKL provides routines for allocating the space, translating the matrices,
computing the multiplication, and freeing the space.

First, the space for copies of A and/or B needs to be allocated using one of the allocation
functions (depending on precision):

float* cblas_sgemm_alloc (const CBLAS_IDENTIFIER identifier ,
const MKL_INT m, const MKL_INT n, const MKL_INT k);

double* cblas_dgemm_alloc (const CBLAS_IDENTIFIER identifier ,
const MKL_INT m, const MKL_INT n, const MKL_INT k);

Then the matrices can be packed using:

void cblas_sgemm_pack (const CBLAS_LAYOUT Layout , const CBLAS_IDENTIFIER identifier ,
const CBLAS_TRANSPOSE trans ,
const MKL_INT m, const MKL_INT n, const MKL_INT k,
const float alpha , const float *src , const MKL_INT ld ,
float *dest);

void cblas_dgemm_pack (const CBLAS_LAYOUT Layout , const CBLAS_IDENTIFIER identifier ,
const CBLAS_TRANSPOSE trans ,
const MKL_INT m, const MKL_INT n, const MKL_INT k,
const double alpha , const double *src , const MKL_INT ld,
double *dest);

And then matrix multiplication can be performed using:

void cblas_sgemm_compute (const CBLAS_LAYOUT Layout ,
const MKL_INT transa , const MKL_INT transb ,
const MKL_INT m, const MKL_INT n, const MKL_INT k,
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const float *a, const MKL_INT lda ,
const float *b, const MKL_INT ldb ,
const float beta , float *c, const MKL_INT ldc);

void cblas_dgemm_compute (const CBLAS_LAYOUT Layout ,
const MKL_INT transa , const MKL_INT transb ,
const MKL_INT m, const MKL_INT n, const MKL_INT k,
const double *a, const MKL_INT lda ,
const double *b, const MKL_INT ldb ,
const double beta , double *c, const MKL_INT ldc);

The packed copies can be free using:

void cblas_sgemm_free (float *dest);
void cblas_dgemm_free (double *dest);

The identifier parameter indicates if the operation (allocation, packing) applies to the A
matrix or the B matrix (CblasAMatrix or CblasBMatrix).

The Layout parameter takes the standard CBLAS values (CblasRowMajor orCblasColMajor).
However, it must use the same value for the entire sequence of related cblas_?gemm_pack()

and cblas_?gemm_compute() calls. Also, for multithreaded calls, the same number of
threads must be used for packing A and B. Intel also recommends that the same number of
threads is used for packing and computing.

The cblas_?gemm_compute function can be called using any combination of packed or un-
packed matrices A and B. The transa and transb parameters indicate if the corresponding
matrix is packed. In addition to the standard CBLAS values (CblasTrans, CblasNoTrans,
CblasConjTrans), they can also take the value CblasPacked, in which case the lda / ldb
parameters are ignored.

Figure 5.1: Performance of sgemm_compute() on Xeon Phi (source: https://software.intel.
com/en-us/articles/introducing-the-new-packed-apis-for-gemm).
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5.3 GPU Batched GEMM

Traditionally, dense matrices are stored in Fortran-style, column-major, layout. LAPACK
relies on this layout, and ScaLAPACK relies on this layout to store the node-local portion
of the matrix in the 2D block cyclic distribution. At the same time, there are numerous
advantages of storing the matrix by tiles of relatively small size (128, 192, 256, ...). The
PLASMA project stores matrices by tiles, with tiles arranged in a column-major layout and
elements within tiles arranged in a column-major layout. The DPLASMA project relies on
tile layout for storing node-local portions of distributed matrices.

Tile layout creates challenges for GPU acceleration. The standard GEMM routine cannot be
used, as GPUs are not capable of executing them e�ciently for small problems, one at a time.
The solution is the use of batch GEMM operations, which execute a large number of small
matrix multiplies concurrently. The question remains about the performance of batch
operations compared to standard GEMMs, speci�cally the case of the Schur complement
operations, critical to the performance of dense matrix factorizations.

Figure 5.2 shows the performance of the Schur complement operation using the NVIDIA
Pascal GPU and the CUDA 8.0 SDK. The operation is C = C − A × B, with C of size
40, 000× 40, 000, A of size 40, 000× k, and B of size k× 40, 000. The darker curve shows the
performance when the matrices are stored in the canonical, column-major layout, and the
regular GEMM is used. The lighter curve shows the performance when the matrices are
stored by tiles of size k × k and batched GEMM is used. Double precision is used in both
cases.
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Figure 5.2: Performance of Schur complement on NVIDIA Pascal.
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There are no surprises here. The standard GEMM curve is smooth, while the batched
GEMM curve has a sawtooth shape, with peaks at the values of 192, 256, 320, 384, 448, 512,
due to internal blocking of the GEMM implementations with the factor of 64. This is because
very e�cient code is used to handle 64-divisible regions, and much less e�cient code is
used to handle the remainder. In the case of the standard GEMM, the ine�ciency only
a�ects the outskirts of the large matrix. In the case of the batched GEMM, the ine�ciency
a�ects every tile.

The irregular pattern is by no means a problem for SLATE, as the tiling size may be chosen
to match the tiling of the batched GEMM implementation. At the same time, it is not a
fundamental challenge for GPU vendors to implement batched GEMM which matches
the performance of the standard GEMM for certain tiling sizes. Therefore, the use of tile
layout seems to be a legitimate choice for SLATE.

5.4 Consequences for SLATE

The observations of this chapter lead us to the following conclusions:

Presenting OpaqueMatrix Layout makes perfect sense for SLATE, as this is the de facto
modus operandi at the BLAS level anyways. At the same time, the transparency of the
ScaLAPACK layout does not really provide much comfort in the face of its complexity.

Facilitating Packing is a great idea for SLATE, as two mainstream BLAS implementations,
MKL and ATLAS, openly promote the solution, and the performance bene�ts of
packing can be staggering (over 75% improvement reported by Intel).

Tiling is a legitimate option for SLATE, as GPUs are no longer handicapped by tile
opeartions, due in large part to the ongoing standardization of batch BLAS routines,
and their availability in vendor supplied libraries.
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CHAPTER 6

Algorithmic Considerations

6.1 LU

Solving a dense, non-symmetric, system of linear equations is a fundamental dense linear
algebra capability, and the LU factorization is usually the method of choice, because of its
practical numerical stability and low operation count, compared to more robust methods.
It is commonly know as the operation behind the MATLAB backslash operator, and as the
benchmark of the TOP500 list. Because of its role as a benchmark, it is usually one of the
�rst workloads implemented and optimized for new architectures.

The Netlib implementation of the High Performance LINPACK (HPL) benchmark [37] is a
testimony to the optimization e�orts required for maximum performance of the LU factor-
ization on distributed memory systems, especially when compared to the implementation
of the LU factorization routine in ScaLAPACK, which could be taken as the baseline here.
One thing that the HPL inherited from ScaLAPACK is the 2D block cyclic data distribution.
Otherwise, the Netlib HPL is basically a custom implementation.

Most optimization e�ort goes into dealing with the bottleneck of the panel factorization,
which is inherently ine�cient and lies on the critical path of the algorithm. To ensure
fast execution of the panel factorization, HPL moved from an iterative approach to a
recursive approach, and actually provides a couple of di�erent recursive implementations.
It also relies on a few di�erent custom implementations of the collective communication
operations, in order to be able to overlap communication with computation, as at the time
of writing the code MPI did not support non-blocking collectives. Finally, HPL utilizes the
idea of lookahead, which allows to overlap the panel factorization with the update of the
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trailing submatrix, so that the ine�cient operations run in the background of the e�cient
matrix multiplication. At the same time, the Netlib HPL is an outdated code, as it has no
notion of multicore CPUs or GPUs, and is usually heavily modi�ed before being used to
benchmark modern machines.

There have also been numerous attempts at improving the algorithms in order to remove
the panel factorization bottleneck. In the 2014 survey, we analyzed the impact of di�erent
approaches on the performance and numerics of the algorithm [31]. Speci�cally, we looked
at the e�ects of: incremental pivoting, tournament pivoting, and applying random butter�y
transformation to the input matrix instead of pivoting. When the numerical accuracy
su�ered, we tried to recover it with iterative re�nement. The consensus of that work was,
more less, that the traditional algorithm with partial pivoting, works best if implemented
well. This study was done in the context of multicore CPUs only - no GPUs, no distributed
memory.

An important contribution to the topic is the idea of Parallel Cache Assignment (PCA) intro-
duced by Castaldo and Whaley [25]. It relies on the observation that BLAS 2 operations
are e�cient if executed in cache. For maximum performance on multicores, the panel
factorization is multithreaded, with static assignment of chunks of the panel to threads /
cores. At the same time, synchronization is done using the memory consistency protocol
implemented in hardware, instead of slower so�ware mechanisms, such as mutexes.

Subsequently, we applied the idea of cache residency to a recursive implementation [32,
34], which became the basis for the panel factorization in the PLASMA library. This
implementation delivered performance way in excess of the memory barrier and scaled
very well with the number of cores. However, a short study was conducted before porting the
PLASMA library from the QUARK runtime to the OpenMP runtime, which showed inferior
performance of plain recursion compared to simple blocking. Therefore, the current
PLASMA implementation is based on cache residency and low level synchronization,
but blocking rather than recursion. Precise performance experiments for the new panel
factorization routine have not been conducted yet. The added bene�t of the blocked
implementation is its reduced complexity.

Given the level of trust that the technical computing community has for the LU factorization
with partial pivoting, this algorithm is the most likely target for SLATE implementation.
Ideally, the SLATE implementation of the LU factorization and solve should serve as a
replacement for the HPL benchmark for the CORAL machines and the exascale machines
to follow. Critical to accomplishing this objective is a fast implementation of the panel
factorization and application of the lookahead technique.
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6.2 LDLT

Many applications require the solution of dense linear systems of equations, whose coe�-
cient matrices are symmetric inde�nite. To solve such linear systems on a shared-memory
computer, LAPACK computes the LDLT factorization of the matrix using the Bunch Kauf-
man [22] or rook pivoting [9], or the LTLT factorization using the Aasen’s algorithm [6, 71].
The main challenge is that in order to maintain the numerical stability of the factorization,
the algorithms require symmetric pivoting. This symmetric pivoting leads to the data
accesses and dependencies that make it di�cult to obtain high performance of the factor-
ization. For instance, with the symmetric pivoting, it becomes a challenge to integrate the
lookahead, which was a critical component in obtaining the high performance of the LU
factorization (Section 6.1). ScaLAPACK still does not support a symmetric inde�nite solver.

Even with the performance challenges, the symmetric inde�nite factorization has several
numerical and structural advantages over the nonsymmetric factorization. For instance,
under the symmetric factorization, the matrix inertia stays the same. Moreover, when
factorizing a diagonal block of a symmetric matrix, it is critical to maintain the symme-
try in order to maintain the computational and storage costs of the overall symmetric
factorization.

To improve the performance of the LTLT factorization, a communication-avoiding (CA)
variant of the Aasen’s algorithm has been proposed [12]. The algorithm �rst reduces the
symmetric matrix into a band form based on the tiled Aasen’s algorithm. At each step, the
algorithm factorizes a block column, or panel, by �rst updating the panel in a le�-looking
fashion and then LU factorizing the panel. Finally, in the second stage of the algorithm, the
band matrix is factorized. The advantage of this algorithm is that the �rst stage dominates
the computational cost of the whole factorization process, and for this �rst stage, we can
utilize the optimized LU panel factorization (Section 6.1), while the rest of the computation
is mostly based on BLAS-3.

We have studied the performance of the CA Aasen’s algorithm with PLASMA [7]. Compared
with the right-looking update of the symmetric inde�nite factorization in LAPACK, the
CA Aasen’s le�-looking update has a limited parallelism. To increase the parallelism for
updating each tile of the panel, PLASMA applies a parallel reduction and accumulate a set of
independent updates into a user-supplied workspace. How much parallelism the algorithm
can exploit depends on the number of tiles in the panel and the amount of the workspace
provided by the user. Then, the panel is factorized using the PLASMA’s multi-threaded LU
panel factorization routine. Finally, we use the PLASMA’s band LU factorization routine
for the second stage of the factorization. Since there is no explicit global synchronization
between the stages, a task to factorize the band matrix can be started as soon as all the
data dependencies are satis�ed. This allows the execution of these two algorithms to be
merged, improving the parallel performance, especially since both algorithms have limitted
amount of parallelism that can be exploited. Our performance studies have demonstrated
that especially on a manycore architecture, the CA Aasen’s algorithm, combined with the
runtime, can obtain signi�cant speedups over the threaded MKL.
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6.3 QR/LQ

The QR factorization is a fail-safe method of solving linear systems of equations and
the method of choice for solving linear least squares problems. While QR is rarely an
attractive option for solving linear systems of equations, where usually the practical stability
of the cheaper LU factorization su�ces, it is the main option for solving least squares
problems. Here, however, it faces the challenge of dealing with highly overdetermined
systems, resulting in very tall and thin matrices, usually referred to as tall and skinny.

The basic problem is that a thin matrix does not expose much parallelism if the traditional
algorithms is applied, which eliminates one full column of the matrix at a time. To address
this issue, classes of algorithms were developed referred to as Tall and Skinny QR (TSQR)
and Communication Avoiding QR (CAQR). Seminal work in this area was done by Demmel et
al. [28]. The basic idea is that the panel is split vertically, into shorter subpanels, which can
be reduced in parallel. The initial parallel reduction leaves unreduced elements (R factors
from each subpanel reduction), which can them be pairwise reduced in a tree-like pattern.
This approach has tremendous performance bene�ts for factoring tall matrices in parallel.

This idea was taken to extremes in the PLASMA project producing the class of tile algo-
rithms [23, 24]. In the basic tile QR factorization, the panel is reduced incrementally, one
square tile at a time. This allows for simultaneously applying updates to the trailing sub-
matrix, resulting in perfect pipelining and producing outstanding strong scaling. On the
other hand, a naive implementation leads to a staggering 50% overhead in �oating point
operations. The remedy is internal blocking of the algorithm by a factor IB << NB, where
NB is the tile size. While this reduces the extra operations, it moves the algorithm away
from being compute intensive and closer to being memory intensive.

Interesting work has been done on analyzing di�erent reduction patterns in order to
minimize the length of the critical path [33]. This led to the implementation of a few
di�erent patterns in the PLASMA library, along with a mechanism for easy generation and
application of the Q matrix for arbitrary reduction patterns.

However, the real Achilles heal of the tile QR factorization is the complexity of the required
kernels, speci�cally the fact that the update of the trailing submatrix is not a simple matrix
multiplication, but a series of smaller matrix multiplications. This exposes the kernel to
multiple overheads. One source of overheads is the fact that most BLAS implementations
(MKL, ATLAS) copy the input matrices to a performance-oriented layout before the actual
operation. Another is the overhead of invoking cleanup code when the input is not divisible
by the internal blocking factors. Finally, while GEMM-based updates can be implemented
easily on GPUs using the batched interface, the tile QR updates require custom kernels,
which can rarely match the performance of vendor provided GEMM.

While TSQR/CAQR algorithms solidi�ed their credibility in the dense matrix community,
the tile algorithms have not really gained that much traction and, due to their demand for
custom kernels, failed to penetrate the GPU computing �eld. Therefore, it seems to be the
best choice for SLATE to utilize the TSQR/CAQR class of algorithms, but not go as far as
tile QR algorithms. This will require a fast parallel implementation of a LAPACK-style QR
panel factorization, but will provide the performance bene�t for using simple GEMM calls
for updating the trailing submatrix.
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6.4 Mixed Precision

On modern architectures, single precision 32-bit �oating point arithmetic (FP32) is usually
twice as fast as double precision 64-bit �oating point arithmetic (FP64). The reason for this
is that the amount of bytes moved through the memory system is essentially halved and the
circuit logic inside the �oating-point units (FPUs) allows to double the execution rate for
twice as short data types. Indeed, on most current multicore CPUs, high-end AMD GPUs
(e.g., FirePro W9100), Intel Xeon Phi, and NVIDIA Pascal GPUs, the single precision peak is
twice the double precision peak. On most high-end NVIDIA GPUs (e.g., the GeForce GTX
Titan Black and server Kepler cards) the ratio of single precision peak vs. double precision
peak is 3-fold, but can go up to 32× (e.g., on the Titan X) depending on the ratio of the
available 32-bit to the 64-bit CUDA cores.

6.4.1 Linear Systems

A common approach to the solution of dense linear systems is to perform the LU factoriza-
tion of the coe�cient matrix using Gaussian elimination. First, the coe�cient matrix A is
factored into the product of a lower triangular matrix L and an upper triangular matrix
U . Partial row pivoting is used to improve numerical stability resulting in a factorization
PA = LU , where P is a permutation matrix. The solution for the system is achieved by
�rst solving Ly = Pb (forward substitution) and then solving Ux = y (backward substitution).
Due to round-o� errors, the computed solution x carries a numerical error magni�ed by
the condition number κ(A) of the coe�cient matrix A.

In order to improve the computed solution, we can apply an iterative process which
produces a correction to the computed solution at each iteration, which then yields the
method that is commonly known as the iterative re�nement algorithm. As Demmel points
out [29], the non-linearity of the round-o� errors makes the iterative re�nement process
equivalent to the Newton’s method applied to the function f(x) = b−Ax. Provided that the
system is not too ill-conditioned, the algorithm produces a solution correct for the working
precision. Iterative re�nement in double/double precision is a fairly well understood
concept and was analyzed by Wilkinson [84], Moler [60], and Stewart [78].

The algorithm can be modi�ed to use a mixed precision approach. The factorization
PA = LU , the solution of the triangular systems Ly = Pb, and Ux = y are computed using
single precision arithmetic. The residual calculation and the update of the solution are
computed using double precision arithmetic and the original double precision coe�cients.
The most computationally expensive operation, the factorization of the coe�cient matrix
A, is performed using single precision arithmetic and takes advantage of its higher speed.
The only operations that must be executed in double precision are the residual calculation
and the update of the solution. The only operation with computational complexity ofO(n3)
is handled in single precision, while all operations performed in double precision are of at
most O(n2) complexity.

The only drawpack is the memory overhead. The coe�cient matrixA is converted to single
precision for the LU factorization and the resulting factors are stored in single precision
while the initial coe�cient matrix A needs to be kept in memory. Therefore, the algorithm
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requires 50% more memory than the standard double precision algorithm.

Currently, mixed precision iterative re�nement linear systems solvers are implemented
in LAPACK, as well as the PLASMA and MAGMA libraries. On standard multicore CPUs,
iterative re�nement typically delivers speedups between 1.6× and 1.8×. The impact of
iterative re�nement is the highest for artchitectures, with seriously handicapped double
precision performance. The historical reference is the Cell processor, where double preci-
sion arithmetic was 14× slower, resulting in 7× speedup [56, 57] The technique is also used
in the MAGMA library for GPUs and multi-GPU systems [81]. Recent experiments on the
Titan X GPU, where double precision is 32× slower, produced 26× speedups.

6.4.2 Other Algorithms

We have shown how to derive the mixed precision versions of a variety of algorithms for
solving general linear systems of equations. In the context of overdetermined least squares
problems, the iterative re�nement technique can be applied to either the augmented system,
where both the solution and the residual are re�ned [27], or to the QR factorization, or to
the semi-normal equations, or to the normal equations [19]. Iterative re�nement can also
be applied to eigenvalue computations [36] and to singular value computations [35].

Recently, we developed an innovative mixed-precision QR for tall-and-skinny matrices [86]
that uses higher-precision at critical parts of the algorithm, resulting in increased numerical
stability and several times speedup over the standard algorithms (like CGS, MGS, or House-
holder QR factorizations). In particular, the algorithm starts from a Cholesky QR algorithm,
which is known to be fast (expressed as Level 3 BLAS) but numerically unstable, as the
computation goes through normal equations. However, computing the normal equations
and other critical parts of the algorithm in double-double precision is shown to be stable,
while preserving the performance pro�le for Level-3 BLAS operations [87].
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6.5 Matrix Inversion

Matrix inversion is not an appropriate method for solving a linear system of equations. The
appropriate method is matrix factorization, such as LU or Cholesky, followed by forward
and backward substitution. At the same time, multiple applications require the computation
of the actual inverse. A canonical example is the computation of the variance-covariance
matrix in statistics. Higham lists more such applications [51]. The need for computing
the inverse was also expressed by some of the ECP apps teams (computational chemistry,
material science).

Computing the matrix inversion has been an attractive target for research because of its
optimization opportunities [8, 17], the Cholesky-based inversion more so than the LU-based
inversion. State of the art implementation of the Cholesky inversion is implemented in the
PLASMA library. Top performance is achieved by removal of anti-dependencies, careful
ordering of loops, and pipelining of all the stages of the algorithm.

Anti-Dependencies Removal: LAPACK and ScaLAPACK take a very conservative approach
to memory management. As a result, all stages of the matrix inversion are performed
in place, as the input matrix is gradually overwritten by the output result. From the
standpoint of work scheduling, this creates a lot of anti-dependencies, which prevent
e�cient execution. This is remedied by allocating temporary storage and performing
operations out of place. In the case of matrix inversion all anti-dependencies can be
removed this way.

Optimal Loop Ordering: The three stages constituting the matrix inversion: factorization
(POTRF), triangular inversion (TRTRI) and triangular matrix multiplication (LAUUM),
all contain a large number of GEMM operations, which are commutative. At the
same time, their ordering heavily impacts the length of the critical path. The shortest
critical path, and the maximum parallelism, is achieved through the correct ordering.
The work by Agullo contains detailed analysis [8].

Complete Pipelining of Stages: Finally, in the case of LAPACK and ScaLAPAC, the three
stages (POTRF, TRTRI, LAUUM) are executed in a sequence, one at a time, and each
one is a�ected by the load imbalance towards the end of the execution. A superior
approach is to form a single task graph, encompassing all three stages, and schedule all
tasks, based on their data dependencies. This leads to a very high degree of pipelining
between the stages and superior performance.

6.6 Eigenvalue and Singular Value Problems

Eigen decomposition is a fundamental workload of dense linear algebra, with critical im-
portance to structural engineering, quantum mechanics, and many other areas of technical
and scienti�c computing. So is the singular value decomposition (SVD) with applications in
principal component analysis, digital image processing, information retrieval systems, to
just name a few.
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The eigenvalue problem is the problem of �nding an eigenvector x and eigenvalue λ that
satisfyAx = λx, whereA is a symmetric or nonsymmetric n×nmatrix. Eigendecompositin
of a matrix is a decomposition of the for A = XΛX−1, where Λ is a diagonal matrix of
eigenvalues and X is a matrix of eigenvectors.

The objective of the singular value decomposition is to �nd orthogonal matrices U and V ,
and a diagonal matrix Σ with nonnegative elements, such that A = UΣV T , where A is an
m× n matrix. The diagonal elements of Σ are the singular values of A, while the columns
of U and V are its le� and right singular vectors, respectively.

Typically, solutions to singular value problems and the eigenvalue problems are found by
following the similar three stage process:

Reduction: Orthogonal transformations are applied to the input matrix from the le� and
from the right to reduce it to a condensed form (bidiagonal for SVD, tridiagonal for
symmetric eigendecomposition, and Hessenberg for non symmetric eigendecompo-
sition).

Solution : An iterative solver is applied to further condense the matrix in order to �nd its
eigenvalues or singular values.

Vector Computation: If desired, the eingenvectors or singular vectors are computed, by
�rst �nding the eigen/singular vectors of the condensed matrix and then �nding the
eigen/singular vectors of the original matrix in the process of back-transformation.

6.6.1 Singular Value Decomposition

For the singular value decomposition (SVD), two orthogonal matrices Q and P are applied
on the le� and right side of A, respectively, to reduce A to bidiagonal form, B = QTAP .
Divide and conquer or QR iteration is then used as a solver to �nd both the singular values
and the le� and the right singular vectors of B as B = ŨΣṼ T , yielding the singular values
of A. If desired, singular vectors of B are back-transformed to singular vectors of A as
U = QŨ and V T = PT Ṽ T . In this section we describe, in detail, the three computational
phases involved in the Singular Values Decomposition.

Classic Reduction to Bidiagonal Form

Due to its high computational complexity of O( 8
3n

3) (for square matrices) and interdepen-
dent data access patterns, the bidiagonal reduction phase is the most challenging phase.
In the classic approach of LAPACK, referred to as the “one-stage algorithm”, orthogonal
transformations are used reduce the dense matrix to the bidiagonal form in one sweep.
Performance of this algorithms is capped by the memory-bound Level 2 BLAS gemv
routine.

In the case when all singular vectors are computed, reduction to the bidiagonal form
requires more than 70% of all computational time. When only singular values are needed,
the reduction requires about 90% of the total time. Because of the ine�ciency of the
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the classic approach, a new technique has been developed, referred to as the “two-stage”
algorithms [18, 45–47, 58, 59] Im the two-stage algorithm, the matrix is �rst reduced to
a band form, and then reduced to the “proper” bidiagonal form in the process of band
reduction.

Two Stage Reduction to Bidiagonal Form

The two-stage reduction is designed to overcome the limitations of the one-stage reduction,
which relies heavily on memory-bound operations. The algorithm is split into the �rst
stage, which reduces the original matrix to a band matrix, and the second stage, which band
matrix to the canonical bidiagonal form.

The computational cost of the �rst stage is ∼ 8
3n

3 �oating point operations. This stage is
compute bound and has a high degree of parallelism. Therefore, it can be implemented very
e�ciently. The second stage is much less compute intensive and has much lower degree of
parallelism, but is also responsible for a much smaller amount of overall operations. Also,
it can be implemented in a cache friendly manner, colloquially referred to as Level 2.5
BLAS [45, 47].

Bidiagonal Singular Solver

A bidiagonal singular solver computes the spectral decomposition of a bidiagonal matrix
B such that B = ŨΣṼ H , with Ũ ŨH = I and Ṽ Ṽ H = I , where Ũ and Ṽ H are the singular
vectors, and Σ are the singular values of B. The solution is usually found either using the
QR algorithm [42], or the divide and conquer algorithm [44, 55].

Singular Vector Computation

In the case of the two-stage approach, the �rst stage reduces the original dense matrix A
to a band matrix Aband such that QH

1 AP1 = Aband. Similarly, the second stage reduces the
band matrix Aband to the bidiagonal form such that QH

2 AbandP2 = B. Consequently, the
singular vectors are computed be multiplied by both Q∗ and P∗, according to the formula:

U = Q1Q2Ũ = (I −G1T1G
H
1 )(I −G2T2G

H
2 )Ũ ,

V H = Ṽ HPH
2 P

H
1 = Ṽ T (I −W2Tr

H
2 W

H
2 )(I −W1Tr

H
1 W

H
1 ),

where (G1, T1 and W1, T r1) and (G2, T2 and W2, T r2) represent the le� and the right House-
holder re�ectors generated during the �rst and the second stages of the reduction to the
bidiagonal form. It is clear that the two-stage approach introduces a non-trivial amount of
extra computation - the application of Q2 and PH

2 - for the case when the singular vectors
are needed.

Experiments showed that the two-stage algorithm can reach between 2× and 3× speedup
when both the le� and the right singular vectors are computed. At the same time, when
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only the singular values are needed, the two-stage approach can reach more than 7×
speedup [49].

6.6.2 Symmetric Eigenvalue Problem

Reduction to Tridiagonal Form

Wile singular value decomposition requires reduction to the bidiagonal form, symmetric
eigendecomposition requires reduction to the tridiagonal form. Similarly to the singular
value decomposition, the fast tridiagonal reduction algorithm is based on a two stage
reduction. In the �rst stage the full symmetric matrix is reduced to a band symmetric
matrix (A −→ Aband), and in the second stage, the band matrix is reduced to the tridiagonal
matrix, in a process very similar to the one used for SVD [48, 50, 75].

Tridiagonal Eigensolver

A tridiagonal eigensolver is used to compute eigenpairs of the tridiagonal matrix, T = ZΛZT ,
where Z is the matrix of orthogonal eigenvectors of T , and Λ is the diagonal matrix of
eigenvalues. Four algorithms are available: QR iterations, Bisection and Inverse Iteration
(BI), Divide and Conquer (D&C), and Multiple Relatively Robust Representations (MRRR).
Discussion of the �rst two algorithms can be found in the book by Demmel [29]. A per-
formance comparison of di�erent symmetric tridiagonal solvers, by Demmel et al. [30],
shows that the D&C and the MRRR solvers are the fastest available.

While D&C requires a larger extra workspace, MRRR is less accurate. Accuracy is a fun-
damental parameter, because the tridiagonal eigensolver is known to be the part of the
overall symmetric eigensolver where accuracy can be lost. D&C is more robust than MRRR,
which can fail to provide an accurate solution in some cases. In theory, MRRR is a O(n2)
algorithm, whereas D&C is between O(n2) and O(n3), depending on the matrix properties.
In many real-life applications, D&C is o�en less than cubic while MRRR seems to be slower
than expected due to the number of �oating point divisions and the cost of the iterative
process. The main advantage of MRRR is that computation of a subset of eigenpairs is
possible, reducing the complexity to O(nk) for computing k eigenpairs.

Eigenvector Computation

A�er the reduction to condensed form, the eigensolver �nds the eigenvalues Λ and eigen-
vectors Z of T . The eigenvalues are the same as for the original matrix A. To �nd the
eigenvectors of the original matrix A, the eigenvectors Z of T need to be back-transformed
by applying the same orthogonal matrices, Q1 and Q2, that were used in the reduction
to the condensed form. This step is a series of DGEMM operations, usually achieves a high
fraction of the machine’s peak performance, and ends up being a small percentage of the
total execution time.

The two-stage approach to the eigendecomposition has similar performance characteristics
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as the two-stage approach to the singular value decomposition, and delivers up to 3×
speedup when all the eigenvectors are computed, and up to 7× speedup when only the
eigenvalues are computed.

6.6.3 Nonsymmetric Eigenvalue Problem

The nonsymmetric eigenvalue problem is to �nd the scalar λ and the vector x satisfying
Ax = λx, when A is a nonsymmetric n×n matrix. In addition to this le� eigenvector x, there
is also the right eigenvector y, such that yTA = λyT . In the symmetric case, le� and right
eigenvectors are identical.

Similarly to the symmetric case, the solution to the nonsymmetric eigendecomposition
consists of three phases [43]. First, the matrix is reduced to the upper Hessenberg form by
applying orthogonal transformations to form H = QT

1 AQ1. Then QR iteration is applied,
which reduces the Hessenberg matrix to the upper triangular Schur form, S = QT

2HQ2,
revealing the eigenvalues of A as the diagonal elements of S. Finally, the eigenvectors Z
of the Schur form S are computed, and transformed to the eigenvectors X of the original
matrix A in the process of back-transformation.

Unfortunately, the two-stage approach is not easily applicable to the Hessenberg reduction.
While a full matrix can be e�ciently reduced to the band Hessenberg form [16], there is
no e�cient process for the band reduction. The only consolation is that the traditional
Hessenberg reduction can easily be o�oaded to GPUs to take advantage of their high
memory bandwidth [80]. Recent developments in non symmetric eigenvalue solvers also
include improvement of the eigenvector calculations by using Level 3 BLAS operations in
the step of back transformation [41].

6.7 Consequences for SLATE

The experiences of the past decade of algorithmic developments in dense linear algebra
indicate that SLATE should:

• Implement the canonical LU factorization with partial (row) pivoting. This is the
most trusted linear solver algorithm of the technical computing community, and
performs well when implemented well. Ideally, the SLATE implementation of the LU
factorization and solve should be hard to beat by a hand optimized implementation
of the HPL benchmark.

• Implement the LDLT factorization based on the communication avoiding variant of
the Aasen’s algorithms. The algorithm provides undeniable performance bene�ts,
without substantially worsening numerical stability.

• Implement the communication-avoiding variants of the QR/LQ factorizations, but
stop short of implementing the tile QR/LQ algorithms. While the communication
avoiding features provide massive performance boost for tall and skinny matrices, the
tile rendition shows performance limitations on CPUs and demands custom kernels
on GPUs.
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• Equip all its linear solvers with mixed precision capabilities, as the technique is
generally bene�cial on current hardware, if numerical properties of the input matrices
grant its usage.

• Exploit pipelining potential of the matrix inversion routines for the performance
boost and improved strong scaling properties.

• Implement singular value routines and eigenvalue routines based on the two-stage
approach, which is clearly superior to the traditional algorithms on current hardware.
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CHAPTER 7

Conclusions

This chapter contains a brief summary of all the �ndings of the previous chapters. More
detailed conclusions can be found in the sections titled “Consequences for SLATE” included
at the end of each chapter. The main �ndings of this document are:

SLATE is essential to the success of a large number of ECP applications, as a modern
replacement for LAPACK and ScaLAPACK.

SLATE needs to target powerful nodes, with large numbers of cores, and powerful acceler-
ators. This implies the use of breath-�rst (right-looking) algorithms, which produce
large amounts of parallel work at a time, and the use of batch operations.

SLATE needs to cope with bandwidth limitations, which calls for very conservative use of
the network. This implies heavy reliance on collective communication, preferably
non-blocking collectives.

SLATE needs to target complex and deep memory systems. This implies the need for
alternatives to the 2D block cyclic matrix layout of ScaLAPACK. SLATE needs to o�er
a much higher level of �exibility in laying out the matrix in the memory.

SLATE needs to leverage the tremendous progress in so�ware technology, that took
place since the introduction of ScaLAPACK. This includes new programing models
of OpenMP and OpenACC, as well as major improvements to the basic distributed
programming model of MPI. This also includes emerging technologies, such as node-
level programing solutions, like Kokkos and RAJA, and distributed tasking systems,
like PaRSEC and Legion.
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SLATE needs to take advantage of the tremendous progress in dense linear algebra algo-
rithms, made in the last decade, as major improvements were made to most of the
algorithms of ScaLAPACK.
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