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CHAPTER 1

Introduction and Motivation

The Basic Linear Algebra Subroutines1 (BLAS) and Linear Algebra PACKage2 (LAPACK) have
been around for many decades and serve as de facto standards for performance-portable and
numerically robust implementations of essential linear algebra functionality. Both are written
in Fortran, with C interfaces provided by CBLAS and LAPACKE, respectively.

BLAS and LAPACK will serve as building blocks for the SLATE project. However, their current
Fortran and C interfaces are not suitable for SLATE’s templated C++ implementation. The
primary issue is that the data type – single, double, complex-single, and complex-double –
is speci�ed in the routine name: sgemm, dgemm, cgemm, and zgemm, respectively. A templated
algorithm requires a consistent interface with the same function name to be called for all data
types. Therefore, we are proposing a new C++ interface layer on top of the existing BLAS and
LAPACK libraries.

We start with a survey of traditional BLAS and LAPACK libraries, both the Fortran and C
interfaces. Then we review various C++ linear algebra libraries to see the trends and features
available. Finally, Chapter 3 covers our proposed C++ API for BLAS and LAPACK.

1http://www.netlib.org/blas/
2http://www.netlib.org/lapack/
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CHAPTER 2

Standards and Trends

2.1 Programming Language Fortran

2.1.1 FORTRAN 77

The original FORTRAN 1 BLAS �rst proposed Level 1 BLAS routines for vectors operations
with O(n) work on O(n) data. Level 2 BLAS routines were added for matrix-vector operations
with O(n2) work on O(n2) data. Finally, Level 3 BLAS routines for matrix-matrix operations
bene�t from the surface-to-volume e�ect of O(n2) data to read forO(n3) work.

Routines are named to �t within FORTRAN 77’s 6 letter name limit. The pre�x denotes the
precision:

s single (�oat)
d double
c complex-single
z complex-double

For BLAS-2 and BLAS-3, a two letter combination gives the type of matrix:

1FORTRAN refers to FORTRAN 77 and earlier standards. All caps spelling has since been abandoned and
�rst-letter-capitalized spelling is now preferred and used uniformly throughout the standard documents.
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2.1. PROGRAMMING LANGUAGE FORTRAN CHAPTER 2. STANDARDS AND TRENDS

ge general rectangular
gb general band
sy symmetric
sp symmetric, packed storage
sb symmetric band
he Hermitian
hp Hermitian, packed storage
hb Hermitian band
tr triangular
tp triangular, packed storage

Finally, the root speci�es the operation, such as:

axpy y = αx+ y
copy y = x
scal scaling x = αx
mv matrix-vector multiply, y = αAx+ βy
mm matrix-matrix multiply, C = αAB + βC
rk rank-k update, C = αAAT + βC
r2k rank-2k update, C = αABT + αBAT + βC
sv matrix-vector solve, Ax = b, A triangular
sm matrix-matrix solve, AX = B, A triangular

and so forth. So, dgemm would be a double-precision, general matrix-matrix multiply.

There are a number of limitations of the original Fortran interfaces:

• Portability issues calling Fortran. Since Fortran is case-insensitive, compilers variously use
dgemm, dgemm\_, and DGEMM as the actual function name in the binary object �le. Typically
macros are used to abstract these di�erences in C/C++.

• Portability issues for routines returning numbers, such as nrm2 and dot (norm and dot
product). The Fortran standard doesn’t specify how numbers are returned, e.g., on the
stack or as an extra hidden argument, so compilers return them in various ways. f2c and
old g77 versions also returned singles as doubles (this remains an issue when using MacOS
X Accelerate, which is based on the f2c version of LAPACK/BLAS).

• Lacks mixed precision, e.g., y = AxwhereA is single and x is double. These are important
for mixed-precision iterative re�nement routines.

• Lacks mixed real/complex routines, e.g., y = Ax where A is complex and x is real. These
occur in some eigenvalue routines.

• Since the precision is encoded in the name, they can’t readily be used in precision-
independent template code (either C++ or Fortran 90).

3



2.2. PROGRAMMING LANGUAGE C CHAPTER 2. STANDARDS AND TRENDS

2.1.2 BLASTXBLAS

The BLAS technical forum2 (BLAST) added extended and mixed-precision BLAS routines,
termed the XBLAS, with su�xes to the routine name indicating the extended datatypes. Using
gemm as an example, the initial precision (e.g., z in zgemm) speci�ed the precision of the output
matrix C and scalars (α, β). For mixed precision a su�x of the form _a\_b was added, where a
and b are letters s, d, c, or z indicating the types of the A and B matrices, respectively. For
extended precision, a su�x _X was added that speci�ed it internally used extended precision.

While this added capabilities to the BLAS, there remain several issues:

• Extended precisionwas done only internally: output arguments were in standard precision.
For parallel algorithms, the output matrix needs to be in higher precision for reductions.
For instance, a parallel gemv would do gemv on each node with the local matrix, then a
parallel reduction to �nd the �nal product. To e�ectively use higher precision, the result
of the local gemvmust be in higher precision, with rounding to lower precision only a�er
the parallel reduction. XBLAS did not provide extended precision outputs.

• Many of the XBLAS routines are super�uous, not being useful in writing LAPACK and
ScaLAPACK, making implementation of XBLAS unnecessarily di�cult.

• XBLAS had no mechanism to support additional types such as half-precision (16 bit),
integer and quantized, �xed point, extended precision such as double-double (two 64-bit
quantities representing one value) or quad (128-bit).

• The XBLAS was not widely adopted or implemented. LAPACK can be built using XBLAS
in some routines. Intel MKL provides XBLAS implementations.

2.1.3 Fortran 90

TheBLASTforumalso introduced aFortran 90 interface, which includes precision-independent
wrappers around all the routines, and makes certain arguments optional with default values
(e.g., assume α = 1 or β = 0 if not given).

2.2 Programming Language C

2.2.1 Netlib CBLAS

The BLAS technical forum also introduced CBLAS, a C wrapper around the original Fortran
BLAS routines. CBLAS addresses a couple of inconveniences when using the Fortran interface
directly from C. It allows for passing of scalar arguments by value, rather than by reference,
it replaces character parameters by enumerated types, and it deals with mangling of Fortran
routine names by the compiler. Also, CBLAS supports the row-major matrix layout, in addition
to the standard column-major layout. Notably, this is handled without actually transposing the

2http://www.netlib.org/blas/blast-forum/blast-forum.html
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2.2. PROGRAMMING LANGUAGE C CHAPTER 2. STANDARDS AND TRENDS

matrices, but by changing the transposition, upper/lower, and dimension arguments. Netlib
CBLAS declarations reside in the cblas.h header �le. It contains declarations of a handful of
types, i.e.:

1 typedef enum {CblasRowMajor =101, CblasColMajor =102} CBLAS_LAYOUT;
2 typedef enum {CblasNoTrans =111, CblasTrans =112, CblasConjTrans =113} CBLAS_TRANSPOSE;
3 typedef enum {CblasUpper =121, CblasLower =122} CBLAS_UPLO;
4 typedef enum {CblasNonUnit =131, CblasUnit =132} CBLAS_DIAG;
5 typedef enum {CblasLeft =141, CblasRight =142} CBLAS_SIDE;

and signatures of all the functions, e.g.:

1 void cblas_dtrsm(CBLAS_LAYOUT layout , CBLAS_SIDE Side ,
2 CBLAS_UPLO Uplo , CBLAS_TRANSPOSE TransA ,
3 CBLAS_DIAG Diag , const int M, const int N,
4 const double alpha , const double *A, const int lda ,
5 double *B, const int ldb);
6
7 void cblas_ztrsm(CBLAS_LAYOUT layout , CBLAS_SIDE Side ,
8 CBLAS_UPLO Uplo , CBLAS_TRANSPOSE TransA ,
9 CBLAS_DIAG Diag , const int M, const int N,
10 const void *alpha , const void *A, const int lda ,
11 void *B, const int ldb);

Notably, Netlib CBLAS does not introduce a complex type, due to the lack of a standard C
complex type at that time. Instead, complex parameters are declared as void*. Routines that
return a complex value in Fortran are recast as subroutines in the C interface, with the return
value being an output parameter added to the end of the argument list, which allows them to
also be of type void*. Also, the name is su�xed by _sub:

1 void cblas_cdotu_sub(const int N, const void *X, const int incX ,
2 const void *Y, const int incY , void *dotu);
3 void cblas_cdotc_sub(const int N, const void *X, const int incX ,
4 const void *Y, const int incY , void *dotc);

CBLAS contains one function, i_amax, in 4 precision �avors, that returns an integer value used
for indexing an array. Keeping with C language conventions, it indexes from 0, instead of from
1 as the Fortran i_amax does. The type is int by default and can be changed to long by setting
the amusing �ag WeirdNEC:

1 #ifdef WeirdNEC
2 #define CBLAS_INDEX long
3 #else
4 #define CBLAS_INDEX int
5 #endif
6
7 CBLAS_INDEX cblas_isamax(const int N, const float *X, const int incX);
8 CBLAS_INDEX cblas_idamax(const int N, const double *X, const int incX);
9 CBLAS_INDEX cblas_icamax(const int N, const void *X, const int incX);
10 CBLAS_INDEX cblas_izamax(const int N, const void *X, const int incX);

In terms of style, CBLAS uses: capital snake case for type names, lower snake case for function
names, pre�xed with cblas_, and Pascal case for constant names. In function signatures, CBLAS
uses: lower case for scalars, single capital letter for arrays, and Pascal case for enumerations.
Also, CBLAS uses const for all read-only input parameters, both scalars and arrays.

To address the issue of Fortran name mangling, CBLAS allows for Fortran routine names
to be upper case, lower case, or lower case with an underscore, e.g.: DGEMM, dgemm, or dgemm_.
Appropriate renaming is done by C preprocessor macros.

5



2.2. PROGRAMMING LANGUAGE C CHAPTER 2. STANDARDS AND TRENDS

2.2.2 MKLCBLAS

MKL CBLAS follows most of the conventions of the Netlib CBLAS with two main exceptions.
First, CBLAS_INDEX is de�ned as size_t. Second, all integer parameters are of type MKL_INT,
which can be either 32 bit or 64 bit. Also, header �les in MKL are pre�xed with mkl_, and,
therefore, the CBLAS header �le is mkl_cblas.h.

2.2.3 Netlib lapack cwrapper

The lapack cwrapperwas an initial attempt to develop aCwrapper forLAPACK, similar in nature
to the Netlib CBLAS. Similarly to CBLAS, the lapack cwrapper replaced character parameters
with enumerated types, replaced passing of scalars by reference with passing by value, and dealt
with Fortran name mangling. The name of the main header �le was lapack.h.

Enumerated types included all the types de�ned in CBLAS, and notably, preserved their integer
values.

1 enum lapack_order_type {
2 lapack_rowmajor = 101,
3 lapack_colmajor = 102 };
4
5 enum lapack_trans_type {
6 lapack_no_trans = 111,
7 lapack_trans = 112,
8 lapack_conj_trans = 113 };
9
10 enum lapack_uplo_type {
11 lapack_upper = 121,
12 lapack_lower = 122,
13 lapack_upper_lower = 123 };
14
15 enum lapack_diag_type {
16 lapack_non_unit_diag = 131,
17 lapack_unit_diag = 132 };
18
19 enum lapack_side_type {
20 lapack_left_side = 141,
21 lapack_right_side = 142 };

At the same time, many new types were introduced to cover all the other cases of character
constants in LAPACK, e.g.:

1 enum lapack_norm_type {
2 lapack_one_norm = 171,
3 lapack_real_one_norm = 172,
4 lapack_two_norm = 173,
5 lapack_frobenius_norm = 174,
6 lapack_inf_norm = 175,
7 lapack_real_inf_norm = 176,
8 lapack_max_norm = 177,
9 lapack_real_max_norm = 178 };
10
11 enum lapack_symmetry_type {
12 lapack_general = 231,
13 lapack_symmetric = 232,
14 lapack_hermitian = 233,
15 lapack_triangular = 234,
16 lapack_lower_triangular = 235,
17 lapack_upper_triangular = 236,

6



2.2. PROGRAMMING LANGUAGE C CHAPTER 2. STANDARDS AND TRENDS

18 lapack_lower_symmetric = 237,
19 lapack_upper_symmetric = 238,

Same as CBLAS, lapack cwrapper used the void* type for passing of complex arguments and
applied the const keyword to all read-only parameters, both scalars and arrays.

Notably, lapack cwrapper preserved all the semantics of the original API, did not introduce
support for row-major layout, did not introduce any extra checks, such as NaN checks, and did
not introduce automatic workspace allocation.

In terms of style, all names were snake case: types, constants, functions. In function signatures,
lapack cwrapper used small letters only. Function names were pre�xed with lapack_. Notably,
the name CLAPACK and pre�x clapack_ were not used, to avoid confusion with an incarnation
of LAPACK that was expressed in C, by automatically translating the Fortran codes using the
F2C tool. The confusing part was that, while being implemented in C, CLAPACK preserved the
Fortran calling convention.

2.2.4 LAPACKE

LAPACKE is another C language wrapper for LAPACK, originally developed by Intel and
later incorporated into LAPACK. Similarly to CBLAS, LAPACKE replaces passing of scalars by
reference with passing by value. LAPACKE also deals with Fortran name mangling in the same
manner as CBLAS. Unlike CBLAS and lapack cwrapper, LAPACKE did not replace character
parameters with enumerate types.

Unlike all the other C APIs, LAPACKE actually uses complex types for complex parameters.
LAPACKE introduces lapack_complex_float and lapack_complex_double, set by default to
float _Complex and double _Complex (relying on the de�nition of _Complex in complex.h). For
integers, LAPACKE uses lapack_int which is de�ned as int by default, and as long if the �ag
LAPACK_ILP64 is set.

Similarly to CBLAS, the �rst parameter in LAPACKE calls is the matrix layout. Two constants
are de�ned, with CBLAS compliant integer values:

1 #define LAPACK_ROW_MAJOR 101
2 #define LAPACK_COL_MAJOR 102

However, unlike in CBLAS, support for row-major layout cannot be implemented by changing
the values of transposition and lower/upper arguments. Here, the matrices have to be actually
transposed.

LAPACKE o�ers two interfaces: a higher level interface, with names pre�xed by LAPACKE_, and
a lower level interface, with names pre�xed by LAPACKE_ and su�xed by _work, e.g.:

1 lapack_int LAPACKE_zgecon( int matrix_layout , char norm , lapack_int n,
2 const lapack_complex_double* a, lapack_int lda ,
3 double anorm , double* rcond );
4
5 lapack_int LAPACKE_zgecon_work( int matrix_layout , char norm , lapack_int n,
6 const lapack_complex_double* a, lapack_int lda ,
7 double anorm , double* rcond ,
8 lapack_complex_double* work , double* rwork );

7



2.2. PROGRAMMING LANGUAGE C CHAPTER 2. STANDARDS AND TRENDS

In the case of matrix_layout=LAPACK_COL_MAJOR, the lower level interface (_work su�x)
serves only as a simple wrapper with no extra functionality added. In the case of
matrix_layout=LAPACK_ROW_MAJOR, the lower level interface performs out-of-place transpo-
sitions of all the input arrays and corresponding allocations and deallocations. At the same
time, the lower level interface preserves the LAPACK convention of leaving it up to the user to
allocate the required workspaces.

The higher level interface (no _work su�x) eliminates the requirement for the user to allocate
workspaces. Instead, the workspace allocation is done inside the routine, a�er the appropriate
query for the required size.

At the same time, the higher level interface performs NaN checks for all the input arrays, which
can be disabled, if LAPACKE is compiled from sources, by setting the LAPACK_DISABLE_NAN_CHECK
�ag (not possible in the case of a binary distribution).

2.2.5 Next Generation BLAS “G2”

A new, ongoing e�ort, �rst presented at the Batched, Reproducible, and Reduced Precision
BLAS workshop3, is to develop the next generation of BLAS, termed BLAS G2. This introduces
a new naming scheme for the lower level BLAS routines that is more �exible than the single
pre�x character in the original BLAS and XBLAS. It uses su�xes for data types, for example:

r16 half (16-bit �oat)
r32 single
r64 double
c32 complex-single
c64 complex-double
r64x2 extended double-double

Arguments can either share the same precision (e.g., all r64 for traditional dgemm), or can have
mixed precisions, such as blas_gemm_r32r32r64, which has single-precision matrices A and B,
and double-precision matrix C . It also de�nes extensions such as having di�erent input and
output matrices, Cin and Cout, having reproducible accumulators that give the same answer
regardless of runtime choices in parallelism or evaluation order.

This gives a mechanism to name the various routines. However, not all names that �t the
mechanism would be implemented. A set of recommended routines to implement will also be
de�ned.

It is expected that users would use higher level interfaces in C++ and Fortran that overload the
basic operations, e.g., C++ blas::gemm would call the correct lower-level routine depending on
the precision of the arguments it is given.

3http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/Batched-BLAS-2017/

8

http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/Batched-BLAS-2017/


2.3. PROGRAMMING LANGUAGE C++ CHAPTER 2. STANDARDS AND TRENDS

2.3 Programming Language C++

Anumber of C++ linear algebra libraries also exist. Most of these provide actual implementations
of BLAS-like functionality in C++, rather than being simply wrappers as CBLAS and LAPACKE
are. Some can also call the high-performance vendor-optimized traditional BLAS, at least in
some instances.

2.3.1 Boost::uBLAS

Boost is a widely used collection of C++ libraries covering many topics. Some of the features
developed in Boost have later been adopted into the C++ standard template library (STL). As
one library within Boost, uBLAS4 provides Level 1, 2, 3 BLAS functionality for dense, banded,
and sparse matrices. It is implemented using expression templates with lazy evaluation. Basic
expressions on whole matrices are easy to specify. Example gemm calls:

1 // C = alpha A B
2 C = alpha * prod( A, B );
3
4 // C = alpha AˆH B + beta C
5 noalias(C) = alpha * prod( herm(A), B ) + beta * C;

where noalias prevents creating a temporary result. (While use of noalias in this case is a bit
dubious, since C is on the RHS, the result appears to be correct.) It can access submatrices, both
contiguous ranges and slices (with stride between rows and cols). However, the syntax is rather
cumbersome:

1 noalias( project( C, range(0,i), range(0,j) ))
2 = alpha * prod( project( A, range(0,i), range(0,k) ),
3 project( B, range(0,k), range(0,j) ) )
4 + beta * project( C, range(0,i), range(0,j) );

Because code is templated, any combination of precisions, real, and complex values works. Its
interface is “mostly” conforming with C++ STL containers and iterators. Triangular, symmetric,
and Hermitian matrices are stored packed, saving about half the space but making operations
slower. For example, it implements spmv rather than symv. (It can use full matrices for triangular
solves, to do both trmm and tpmm.) It is not multi-threaded. It doesn’t interface to vendor BLAS,
although there is an experimental binding to work with ATLAS. There does not appear to be a
way to wrap existing matrices and vectors; i.e., they have to be copied into new uBLAS matrices
and vectors. Per the uBLAS FAQ, development has stagnated since 2008, so it is missing the
latest C++ features, and is not as fast as other libraries. Benchmarks showed it is 12–15× slower
than sequential MKL for n = 500 dgemm (with Linux, Intel Sandy Bridge, Intel icpc and GNU g++
compilers, -O3 -DNDEBUG �ags, cold cache).

Here is an example blocked Cholesky algorithm.

1 #include <boost/numeric/ublas/matrix.hpp >
2 #include <boost/numeric/ublas/vector.hpp >
3 #include <boost/numeric/ublas/matrix_proxy.hpp >
4 #include <boost/numeric/ublas/vector_proxy.hpp >
5 #include <boost/numeric/ublas/triangular.hpp >
6

4http://www.boost.org/doc/libs/1 64 0/libs/numeric/ublas/doc/index.html
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2.3. PROGRAMMING LANGUAGE C++ CHAPTER 2. STANDARDS AND TRENDS

7 using namespace boost:: numeric ::ublas;
8
9 template < typename T, typename Layout >
10 int potrf( matrix < T, Layout >& A )
11 {
12 // Assume uplo == lower. This is a left -looking version.
13 // Compute the Cholesky factorization A = L*LˆH.
14 int n = A.size1(), lda = n, nb = 8, info = 0;
15 for (int j = 0; j < n; j += nb) {
16 // Update and factorize the current diagonal block and test
17 // for non -positive -definiteness.
18 int jb = std::min( nb, n-j );
19 // herk: A(j:j+jb, j:j+jb) -= A(j:j+jb, 0:j) * A(j:j+jb, 0:j)ˆH
20 noalias( project( A, range(j, j+jb), range(j, j+jb) ))
21 -= prod( project( A, range(j, j+jb), range(0, j) ),
22 herm( project( A, range(j, j+jb), range(0, j) )));
23 lapack_potrf( 'l', jb, &A(j, j), lda , &info );
24 if (info != 0) {
25 info += j;
26 break;
27 }
28 if (j+jb < n) {
29 // Compute the current block column.
30 // gemm: A(j+jb:n, j:j+jb) -= A(j+jb:n, 0:j) * A(j:j+jb, 0:j)ˆH
31 noalias( project( A, range(j+jb, n), range(j, j+jb) ))
32 -= prod( project( A, range(j+jb, n), range(0, j) ),
33 herm( project( A, range(j, j+jb), range(0, j) )));
34
35 // trsm: A(j+jb:n, j:j+jb) = A(j+jb:n, j:j+jb) / A(j:j+jb, j:j+jb)ˆH # lower
36 // ==> A(j+jb:n, j:j+jb)ˆH = A(j:j+jb, j:j+jb) \ A(j+jb:n, j:j+jb)ˆH
37 // inplace_solve doesn't compile ... don't know why
38 // out -of-place solve will create a temporary. sigh.
39 project( A, range(j+jb, n), range(j, j+jb) )
40 = solve( project( A, range(j, j+jb), range(j, j+jb) ),
41 project( A, range(j+jb, n), range(j, j+jb) ),
42 lower_tag () );
43 }
44 }
45 return info;
46 }

2.3.2 MTL4: Matrix Template Library

MTL45 is a C++ library that supports dense, banded, and sparse matrices. For dense matrices, it
supports row-major (default), column-major, and a Morton recursive layout. It uses parts of
Boost, and in fact the default installation puts MTL as a sub-folder of Boost. For sparse matrices,
it supports CRS/CSR (compressed row storage/compressed sparse row), CCS/CSC (compressed
column storage/compressed sparse column), coordinate, and ELLPACK formats.

Many functions are global functions rather than member functions, for instance, num_rows(A)
instead of A.num_rows().

There is extensive documentation with numerous example codes. Still, the documentation
is somewhat di�cult to follow and hard to �nd how to do things, or what features are exactly
supported.

It has native C++ implementations for BLAS operations such asmatrix-multiply, so is not limited

5http://www.simunova.com/mtl4
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to the 4 precisions of traditional BLAS. By de�ning MTL_HAS_BLAS, it will interface to traditional
BLAS routines for gemm; searching the code it does not appear that other traditional BLAS
routines are called. However, benchmarks did not reveal any di�erence in dgemm performance
when MTL_HAS_BLAS was de�ned.

It has anMITopen source license, as well as a commercial Supercomputing Edition with parallel
and distributed support.

Compared to uBLAS, the syntax for accessing sub-matrices is nicer:

1 dense2D <T> Asub = sub_matrix( A, i1, i2, j1, j2 );
2 // or
3 dense2D <T> Asub = A[ irange(i1, i2) ][ irange(j1, j2) ];

Like uBLAS, MTL uses expression templates, providing e�cient implementations of BLAS
operations in a convenient syntax. The syntax is nicer than uBLAS, avoiding the noalias() and
prod() functions. Example calls:

1 C = alpha*A*B;
2
3 // gemm: C = alpha AˆT B + beta C
4 C = alpha * trans(A)*B + beta * C;
5
6 // gemv
7 y = alpha*A*x + beta*y;

It uses “move semantics” to make returning matrices from functions e�cient; i.e., it does a
shallow copy when returning matrices. Aliasing of arguments can be an issue; it detects some
aliasing and will throw an exception, e.g., in A = A*B. But if there is partial overlap, aliasing will
not be detected, and must be resolved by the user adding a temporary. (Traditional BLAS will
not detect aliasing, either.) It also throws exceptions if matrix sizes are incompatible. Exceptions
are disabled if NDEBUG is de�ned.

MTL has triangular-vector solves (trsv) available in upper_trisolve and lower_trisolve,
but does not appear to support triangular-matrix solve (trsm). This is an impedi-
ment to even a simple blocked Cholesky implementation. However, it provides a re-
cursive Cholesky implementation example. It supports recursive algorithms by provid-
ing a mtl::recursator that divides a matrix into quadrants (A11, A12, A21, A22), named
north_west, north_east, south_west, south_east, respectively.

It has support for symmetric eigenvalue problems, but otherwise it is unclear if it supports oper-
ations on symmetric matrices, such as symm, syrk, syr2k, etc. Outside of the symmetric eigen-
value problem, there is little mention of symmetric matrices, but there is an mtl::symmetric
tag.

It includes some matrix solver capabilities:

• LU, with and without pivoting

• QR orthogonalization

• Eigenvalue problems (QR iteration)

• SVD

11
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• ILU(0), IC(0), IMF(s) incomplete LU, Cholesky, and multifrontal sparse solvers

It interfaces with UMFPACK for sparse non-symmetric systems.

It optionally supports some modern C++11 features:

• move semantics (std::move, std::forward)

• static asserts (static_assert) for compile-time checks of templates (e.g., that a template
type is compatible)

• initializer lists: dense2D<T> A = {{ 3, 4 }, { 5, 6 }};

• for loops using range: for (int i : irange(size(v))) { ... }

Similar to uBLAS, benchmarks showed it is ≈ 14× slower than sequential MKL for n = 500
dgemm (with Linux, Intel Sandy Bridge, Intel icpc and GNU g++ compilers, -O3 -DNDEBUG
�ags, cold cache).

Here is an example blocked Cholesky algorithm, except lacking trsm.

1 #include <boost/numeric/mtl/mtl.hpp >
2
3 template < typename T, typename Layout >
4 int potrf( mtl::dense2D < T, Layout >& A )
5 {
6 // Assume uplo == lower. This is a left -looking version.
7 // Compute the Cholesky factorization A = L*LˆH.
8 int n = num_rows(A), lda = n, nb = 8, info = 0;
9 for (int j = 0; j < n; j += nb) {
10 // Update and factorize the current diagonal block and test
11 // for non -positive -definiteness.
12 int jb = std::min( nb, n-j );
13 // herk: A(j:j+jb, j:j+jb) -= A(j:j+jb, 0:j) * A(j:j+jb, 0:j)ˆH
14 if (j > 0) { // throws exception on empty matrices
15 sub_matrix( A, j, j+jb, j, j+jb )
16 -= sub_matrix( A, j, j+jb, 0, j ) *
17 adjoint( sub_matrix( A, j, j+jb, 0, j ));
18 }
19 lapack_potrf( 'l', jb, &A(j, j), lda , &info );
20 if (info != 0) {
21 info += j;
22 break;
23 }
24 if (j+jb < n) {
25 // Compute the current block column.
26 // gemm: A(j+jb:n, j:j+jb) -= A(j+jb:n, 0:j) * A(j:j+jb, 0:j)ˆH
27 if (j > 0) {
28 sub_matrix( A, j+jb, n, j, j+jb )
29 -= sub_matrix( A, j+jb, n, 0, j ) *
30 adjoint( sub_matrix( A, j, j+jb, 0, j ));
31 }
32 // trsm: A(j+jb:n, j:j+jb) = A(j+jb:n, j:j+jb) / A(j:j+jb, j:j+jb)ˆH # lower
33 // ==> A(j+jb:n, j:j+jb)ˆH = A(j:j+jb, j:j+jb) \ A(j+jb:n, j:j+jb)ˆH
34 // This solve doesn't compile: ambiguous (perhaps a bug in their API).
35 // Also , only trsv is supported , not trsm.
36 // lower_trisolve( sub_matrix( A, j, j+jb, j, j+jb ),
37 // sub_matrix( A, j+jb, n, j, j+jb ),
38 // sub_matrix( A, j+jb, n, j, j+jb ) );
39 }

12
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40 }
41 return info;
42 }

2.3.3 Eigen

Like uBLAS and MTL4, Eigen6 is based on C++ Expression Templates. It seems to be a more
mature product than uBLAS and MTL4. In addition to BLAS-type expressions, it includes:

• Linear solvers

– LU with partial pivoting or full pivoting

– Cholesky, Cholesky with pivoting (for semide�nite)

– QR, QR with column pivoting (rank revealing), QR with full pivoting

• Eigensolvers

– Hermitian (“Self Adjoint”)

– Generalized Hermitian (Ax = λBx where B is HPD)

– Nonsymmetric

• SVD

– 2-sided Jacobi

– bidiagonalization

It does not have a symmetric inde�nite solver such as Bunch-Kaufman pivoting, Rook pivoting,
or Aasen’s algorithm.

The syntax for blocks is more succinct than other libraries:
uBLAS: project( A, range( i, i+mb ), range( j, j+nb ))
MTL4: sub_matrix( A, i, i+mb, j, j+nb )
Eigen: A.block( i, j, mb, nb )
However, when using member functions in a template context, it requires extra “template”
keywords, which are annoying and clutter the code:
Eigen: A.template block( i, j, mb, nb )

It provides both triangular and Hermitian (self-adjoint) views on matrices. It does not ap-
pear to o�er complex-symmetric views, which are less frequently used but do occur in some
applications.

As with uBLAS andMTL, aliasing can be an issue. Component-wise operations where theC(i, j)
output entry depends on only the C(i, j) input entry of C and other matrices, are una�ected by
aliasing. Some operations like transpose have an in-place version available, and Eigen detects
obvious cases of aliasing in debug mode. Like uBLAS, matrix-multiply is assumed to alias, so
generates a temporary unless the user adds .noalias().

6http://eigen.tuxfamily.org/
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Therefore, while itmakes simple expressions like C = A*B simple, more complex expressions are
quicklybogged downbyextra function calls (block, triangularView, selfadjointView, solveInPlace,
noalias) and C++ syntax.

Eigen has a single class covering bothMatrices and Vectors, which also covers both compile-time
�xed size (good for small matrices) and runtime dynamic sizes. Either rows or columns can be
�xed at compile-time. Default storage is column-wise, but that is a template parameter. It also
has an Array class for component-wise operations such as x. ∗ y (in Matlab notation), and an
easy conversion between Matrix and Array classes:

1 VectorXd x(n), y(n);
2 double r = x.transpose () * y; // dot product
3 VectorXd w = x * y; // assertion error: invalid matrix product
4 VectorXd z = x.array() * y.array (); // component -wise product

Incompatible matrix dimensions in matrix-multiply are detected at runtime in debug mode
with an assert. Other errors such as aliasing are (sometimes) also detected and execution aborted
with an assert. These can be rede�ned to throw C++ exceptions, if desired.

Eigen supports multi-threading through OpenMP, unlike uBLAS and the open source MTL
release. Its performance is better, as well, though still less than vendor-optimized code in MKL.
For single-threaded dgemm, it is about 2× slower thanMKL for size 500 (compared to 14–15× for
uBLAS and MTL), while for multi-threaded, it is 2–4× slower than MKL (with Linux, 16-core
Intel Sandy Bridge, GNU g++ compiler, -O3 -DNDEBUG �ags, cold cache). Performance is
noticeably worse with Intel icpc.

However, Eigen can directly call BLAS and LAPACK functions, by setting EIGEN_USE_MKL_ALL,
EIGEN_USE_BLAS, or EIGEN_USE_LAPACKE. With one of these options, Eigen is between nearly the
same as MKL to 2× slower.

Here is an example of Cholesky.

1 #include <Eigen >
2
3 template < typename T, int Rows , int Cols , int Layout >
4 int potrf( Eigen::Matrix < T, Rows , Cols , Layout >& A )
5 {
6 // Assume uplo == lower. This is a left -looking version.
7 // Compute the Cholesky factorization A = L*LˆH.
8 int n = A.rows(), lda = n, nb = 8, info = 0;
9 for (int j = 0; j < n; j += nb) {
10 // Update and factorize the current diagonal block and test
11 // for non -positive -definiteness.
12 int jb = std::min( nb, n-j );
13 // herk: A(j:j+jb, j:j+jb) -= A(j:j+jb, 0:j) * A(j:j+jb, 0:j)ˆH
14 A.template block( j, j, jb, jb )
15 .template selfadjointView < Eigen::Lower >()
16 .rankUpdate( A.template block( j, 0, jb, j ), -1.0 );
17 lapack_potrf( 'l', jb, &A(j, j), lda , &info );
18 if (info != 0) {
19 info += j;
20 break;
21 }
22 if (j+jb < n) {
23 // Compute the current block column.
24 // gemm: A(j+jb:n, j:j+jb) -= A(j+jb:n, 0:j) * A(j:j+jb, 0:j)ˆH
25 A.template block( j+jb, j, n - (j + jb), jb ) -=
26 A.template block( j+jb, 0, n - (j + jb), j ) *
27 A.template block( j, 0, jb, j ). adjoint ();

14



2.3. PROGRAMMING LANGUAGE C++ CHAPTER 2. STANDARDS AND TRENDS

28 // trsm: A(j+jb:n, j:j+jb) = A(j+jb:n, j:j+jb) * A(j:j+jb, j:j+jb)ˆ{-H} # lower
29 A.template block( j, j, jb, jb )
30 .template triangularView < Eigen::Lower >(). adjoint ()
31 .template solveInPlace < Eigen:: OnTheRight >(
32 A.template block( j+jb, j, n - (j + jb), jb ) );
33 }
34 }
35 return info;
36 }

2.3.4 Elemental

Elemental7 is an MPI-based, distributed memory linear algebra library. It includes a C++
interface to BLAS (excluding band and packed formats) and a selection of LAPACK routines.
Its BLAS interface is in the El::blas namespace, and functions are named a�er the traditional
BLAS routines, minus the precision pre�x, in Pascal case. For the standard 4 precisions (single,
double, complex-single, complex-double), it calls an optimized BLAS library. It also o�ers
a templated C++ reference implementation for arbitrary numeric datatypes such as int or
double-double.

Hermitian and symmetric routines are extended to all precisions, e.g., Herk (C = αAAH + βC ,
C is Hermitian) and Syrk (C = αAAT + βC, C is symmetric) are both available for both real
and complex datatypes. Dot products are also de�ned for both real and complex. This allows
for templated code to use the same name for all datatypes.

Arguments in its wrappers are similar to the traditional BLAS and LAPACK, including options,
dimensions, leading dimensions, and scalars. Dimensions use int; there is experimental support
for 64-bit integers. Options are a single char, corresponding to the traditional BLAS, contrasting
to CBLAS, which uses enums for options. For instance, a NoTrans, Transmatrix-matrix multiply
(C = αABT + βC) is:

1 El::blas::Gemm( 'N', 'T', m, n, k, alpha , A, lda , B, ldb , beta , C, ldc );

Elemental wraps a handful of LAPACK routines, mainly dealing with eigenvalue and singular
value problems. Instead of functions using the LAPACK acronym names (e.g., syevr), it uses
descriptive English names (HermitianEig).

In LAPACK, eigenvalue routines have a job parameter specifying whether to compute eigenval-
ues only or also eigenvectors. Some routines also have range parameters to specify computing
only a portion of the eigen/singular value spectrum. In Elemental’s wrappers, these di�erent
jobs are provided by overloaded functions, avoiding the need to specify the job parameter and
unused dummy arguments:

1 // factor A = Z lambda ZˆH, eigenvalues lambda and eigenvectors Z
2 HermitianEig( uplo , n, A, lda , lambda , tol=0 ) // lambda only
3 HermitianEig( uplo , n, A, lda , lambda , Z, ldz , tol=0 ) // lambda and Z
4 HermitianEig( uplo , n, A, lda , lambda , il, iu, tol=0 ) // il-th to iu-th lambda
5 HermitianEig( uplo , n, A, lda , lambda , Z, ldz , il, iu, tol=0 ) // il-th to iu-th lambda and Z
6 HermitianEig( uplo , n, A, lda , lambda , vl, vu, tol=0 ) // lambda in (vl, vu]
7 HermitianEig( uplo , n, A, lda , lambda , Z, ldz , vl, vu, tol=0 ) // lambda in (vl, vu] and Z

7http://libelemental.org/
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Elemental also provides wrappers around certain functionality in the MPI, ScaLAPACK, BLACS,
PBLAS, libFLAME, and PMRRR libraries.

It throws C++ exceptions (SingularMatrixException and NonHPDMatrixException) for runtime
numerical issues.

Elemental de�nes a dense matrix class, Matrix a distributed-memory matrix class, DistMatrix,
and sparse matrix classes, SparseMatrix and DistSparseMatrix. The Matrix class is templated
on datatype only. It uses column-major LAPACKmatrix layout, with a leading dimension that
may optionally be explicitly speci�ed, unlike most other C++ libraries reviewed here. AMatrix
can also be constructed as a view to an existing memory bu�er:

1 Matrix <double > A( m, n, data , lda );

Numerous BLAS, BLAS-like, LAPACK, and other algorithms are de�ned for Elemental’s matrix
types. In contrast to the lightweight wrappers described above, the dimensions are implicitly
known from matrix objects, rather than being passed explicitly. Options are speci�ed by
enums instead of by character values; however, the enums are named di�erently than in
CBLAS. Particularly, it has an Orientation enum instead of Transpose, with values El::NORMAL,
El::TRANSPOSE, and El::ADJOINT, corresponding to NoTrans, Trans, and ConjTrans. In addition
to standard BLAS routines, Elemental provides (among others):

Adjoint out-of-place conjugate transpose, B = AH

Axpy add matrices, Y = αX + Y
Broadcast parallel broadcast
DiagonalScale X = op(D)X
Dot matrix Hilbert-Schmidt inner product, vec(A)Hvec(B)
Hadamard element-wise product, C = A ◦B
QuasiTrsm Schur-form quasi-triangular solve
Reduce parallel reduction
Transpose out-of-place transpose, B = AT

Trrk Rank-k update limited to triangular portion (e.g., useful for syrk-like update
C = αAB + βC when AB is known to be symmetric; cf. syrkx in cuBLAS
and gemmt in Intel MKL)

TwoSidedTrmm A = LHAL
TwoSidedTrsm A = L−1AL−H

In addition to standard LAPACK algorithms, Elemental provides pivoted Cholesky, no-pivoting
LU, and complete pivoting LU. It also has a number of other matrix factorizations and ap-
plications such as pseudospectra, polar decomposition, matrix square root, and matrix sign
function.

The syntax for accessing submatrices is very concise, using the IR( low, hi ) Integer Range
class, which provides the half-open range [low, hi):

1 Matrix <double > A( m, n );
2 auto Asub = A( IR(j, j+jb), IR(j, n) );

Because C++ can’t take a non-const reference of a temporary, the output submatrix of each call
must be a local variable, i.e., one can’t write:

1 El::Herk( El::LOWER , El::NORMAL ,
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2 -1.0, A( IR(j,j+jb), IR(0,j) ),
3 1.0, A( IR(j,j+jb), IR(j,j+jb) ) );

but must instead make the local variable Ajj:

1 auto Ajj = A( IR(j,j+jb), IR(j,j+jb) );
2 El::Herk( El::LOWER , El::NORMAL ,
3 -1.0, A( IR(j,j+jb), IR(0,j) ),
4 1.0, Ajj );

Here is an example of Cholesky.

1 #include <El.h>
2
3 // throws NonHPDMatrixException
4 template < typename T >
5 void potrf( El::Matrix <T>& A )
6 {
7 assert( A.Height () == A.Width() );
8 int n = A.Height ();
9 int nb = 8;
10
11 using El::IR;
12 // Assume uplo == lower. This is a left -looking version.
13 // Compute the Cholesky factorization A = L*LˆH.
14 for (int j = 0; j < n; j += nb) {
15 // Update and factorize the current diagonal block and test
16 // for non -positive -definiteness.
17 int jb = std::min( nb, n-j );
18 // herk: A(j:j+jb, j:j+jb) -= A(j:j+jb, 0:j) * A(j:j+jb, 0:j)ˆH
19 auto Ajj = A( IR(j,j+jb), IR(j,j+jb) );
20 El::Herk( El::LOWER , El::NORMAL ,
21 -1.0, A( IR(j,j+jb), IR(0,j) ),
22 1.0, Ajj );
23 El:: Cholesky( El::LOWER , Ajj );
24 if (j+jb < n) {
25 // Compute the current block column.
26 // gemm: A(j+jb:n, j:j+jb) -= A(j+jb:n, 0:j) * A(j:j+jb, 0:j)ˆH
27 auto Acol = A( IR(j+jb,n), IR(j,j+jb) );
28 El::Gemm( El::NORMAL , El::ADJOINT ,
29 -1.0, A( IR(j+jb,n), IR(0,j) ),
30 A( IR(j,j+jb), IR(0,j) ),
31 1.0, Acol );
32 // trsm: A(j+jb:n, j:j+jb) = A(j+jb:n, j:j+jb) * A(j:j+jb, j:j+jb)ˆ{-H} # lower
33 El::Trsm( El::RIGHT , El::LOWER , El::ADJOINT , El::UNIT ,
34 1.0, A( IR(j,j+jb), IR(j,j+jb) ),
35 Acol );
36 }
37 }
38 }

2.3.5 Intel DAAL

The Intel Data Analytics Acceleration Library (DAAL)8 provides highly optimized algorithmic
building blocks for data analysis, including: preprocessing, transformation, analysis, modeling,
validation, etc. DAAL contains routines for, e.g.: principal component analysis, linear regression,
classi�cation, clustering, etc. DAAL is designed to handle data that is too big to �t in memory,
and instead comes in chunks, which can be referred to as an “out-of-core” mode of operation.

8https://software.intel.com/en-us/intel-daal
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It is also designed for distributed processing using popular data analytics platforms: Hadoop,
Spark, R, and Matlab. DAAL can access data from memory, �les, and SQL databases.

DAAL calls BLAS through wrappers, de�ned as static members of the Blas class tem-
plate. For example, a call to the SYRK function, in the computeXtX method of the
ImplicitALSTrainKernelCommon class, looks like this:

1 #include "service_blas.h"
2 template <typename algorithmFPType , CpuType cpu >
3 void computeXtX(size_t *nRows , size_t *nCols , algorithmFPType *beta ,
4 algorithmFPType *x, size_t *ldx ,
5 algorithmFPType *xtx , size_t *ldxtx)
6 {
7 char uplo = 'U';
8 char trans = 'N';
9 algorithmFPType alpha = 1.0;
10 Blas <algorithmFPType , cpu >:: xsyrk(&uplo , &trans ,
11 (DAAL_INT *)nCols , (DAAL_INT *)nRows ,
12 &alpha , x, (DAAL_INT *)ldx ,
13 beta , xtx , (DAAL_INT *)ldxtx);
14 }

The service_blas.h header �le contains the de�nition of the Blas class template:
1 #include "service_blas_mkl.h"
2 template <typename fpType , CpuType cpu , template <typename , CpuType > class _impl=mkl::MklBlas >
3 struct Blas
4 {
5 typedef typename _impl <fpType ,cpu >:: SizeType SizeType;
6 static void xsyrk(char *uplo , char *trans , SizeType *p, SizeType *n,
7 fpType *alpha , fpType *a, SizeType *lda ,
8 fpType *beta , fpType *ata , SizeType *ldata)
9 {
10 _impl <fpType ,cpu >:: xsyrk(uplo , trans , p, n, alpha , a, lda , beta , ata , ldata);
11 }

This relies in turn on the mkl::MklBlas class template, de�ned in service_blas_mkl.h, which
contains partial specializations of the BLAS routines for double precision:

1 template <CpuType cpu >
2 struct MklBlas <double , cpu >
3 {
4 typedef DAAL_INT SizeType;
5 static void xsyrk(char *uplo , char *trans , DAAL_INT *p, DAAL_INT *n,
6 double *alpha , double *a, DAAL_INT *lda ,
7 double *beta , double *ata , DAAL_INT *ldata)
8 {
9 __DAAL_MKLFN_CALL(blas_ , dsyrk , (uplo , trans , p, n, alpha , a, lda , beta , ata , ldata ));
10 }

and for single precision:
1 template <CpuType cpu >
2 struct MklBlas <float , cpu >
3 {
4 typedef DAAL_INT SizeType;
5 static void xsyrk(char *uplo , char *trans , DAAL_INT *p, DAAL_INT *n,
6 float *alpha , float *a, DAAL_INT *lda ,
7 float *beta , float *ata , DAAL_INT *ldata)
8 {
9 __DAAL_MKLFN_CALL(blas_ , ssyrk , (uplo , trans , p, n, alpha , a, lda , beta , ata , ldata ));
10 }

The call passes through a couple of macro de�nitions
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1 #define __DAAL_MKLFN_CALL(f_pref ,f_name ,f_args) __DAAL_MKLFN_CALL1(f_pref ,f_name ,f_args)
2
3 #define __DAAL_MKLFN_CALL1(f_pref ,f_name ,f_args) \
4 if(avx512 == cpu) \
5 { \
6 __DAAL_MKLFN(avx512_ ,f_pref ,f_name) f_args; \
7 } \
8
9 #define __DAAL_MKLFN(f_cpu ,f_pref ,f_name) __DAAL_CONCAT4(fpk_ ,f_pref ,f_cpu ,f_name)
10
11 #if !defined(__DAAL_CONCAT4)
12 #define __DAAL_CONCAT4(a,b,c,d) __DAAL_CONCAT41(a,b,c,d)
13 #define __DAAL_CONCAT41(a,b,c,d) a##b##c##d
14 #endif

before reaching the actual reference to an MKL function, e.g.: avx512_blas_syrk().

Calls to LAPACK are handled in a similar manner. DAAL calls LAPACK through wrappers,
de�ned as static members of the Lapack class template. For example, a call to the POTRF function,
in the solvemethod of the ImplicitALSTrainKernelBase class, looks like this:

1 #include "service_lapack.h"
2 template <typename algorithmFPType , CpuType cpu >
3 void ImplicitALSTrainKernelBase <algorithmFPType , cpu >:: solve(
4 size_t *nCols ,
5 algorithmFPType *a, size_t *lda ,
6 algorithmFPType *b, size_t *ldb)
7 {
8 char uplo = 'U';
9 DAAL_INT iOne = 1;
10 DAAL_INT info = 0;
11 Lapack <algorithmFPType , cpu >:: xxpotrf (&uplo , (DAAL_INT *)nCols ,
12 a, (DAAL_INT *)lda , &info);

The service_lapack.h header �le contains the de�nition of the Lapack class template:

1 #include "service_lapack_mkl.h"
2 template <typename fpType , CpuType cpu , template <typename , CpuType > class _impl=mkl::MklLapack >
3 struct Lapack
4 {
5 typedef typename _impl <fpType ,cpu >:: SizeType SizeType;
6 static void xxpotrf(char *uplo , SizeType *p,
7 fpType *ata , SizeType *ldata , SizeType *info)
8 {
9 _impl <fpType ,cpu >:: xxpotrf(uplo , p, ata , ldata , info);
10 }

This relies in turn on the mkl::MklLapack class template, de�ned in service_lapack_mkl.h,
which contains partial specializations of the LAPACK routines for double precision:

1 template <CpuType cpu >
2 struct MklLapack <double , cpu >
3 {
4 typedef DAAL_INT SizeType;
5 static void xpotrf(char *uplo , DAAL_INT *p, double *ata , DAAL_INT *ldata , DAAL_INT *info)
6 {
7 __DAAL_MKLFN_CALL(lapack_ , dpotrf , (uplo , p, ata , ldata , info ));
8 }

and for single precision:

1 template <CpuType cpu >
2 struct MklLapack <float , cpu >
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3 {
4 typedef DAAL_INT SizeType;
5 static void xpotrf(char *uplo , DAAL_INT *p, float *ata , DAAL_INT *ldata , DAAL_INT *info)
6 {
7 __DAAL_MKLFN_CALL(lapack_ , spotrf , (uplo , p, ata , ldata , info ));
8 }

In summary, DAAL calls BLAS and LAPACK through static member functions of the Blas and
Lapack class templates. Also, DAAL uses the legacy BLAS calling convention (Fortran), were
parameters are passed by reference, and there is no parameter to specify the layout (column-
majoror row-major). Finally, DAALcontains templates only for theBLAS andLAPACKfunctions
that it actually uses. It contains specializations only for single and double precision.

One potential problem with making the datatype a class template parameter is supporting
mixed or extended precision – the class has only one datatype, and it is unclear how to extend
it to multiple datatypes.

2.3.6 Trilinos

Trilinos9 is a collection of open-source so�ware libraries, called packages, linked together by a
common infrastructure, and intended to be used as building blocks for the development of
scienti�c applications. Trilinos was developed at SandiaNational Laboratories from a core group
of existing algorithms and utilities. Trilinos supports distributed-memory parallel computation
through the Message Passing Interface (MPI) and has growing support for shared-memory
parallel computation, and also GPUs. This happens by the means of the Kokkos package,
which provides a common C++ interface over various parallel programming models, including
OpenMP, POSIX Threads, and CUDA.

Trilinos provides two sets of wrappers that interface with BLAS and LAPACK. The more generic
interface is contained in the Teuchos package, while a much more concrete implementation is
included in the Epetra package. One worthwhile feature of both of these interfaces is that the
actual BLAS or LAPACK function call is nearly identical between the two. The only di�erence
is the instantiation of the library object. That object serves as a pseudo namespace for all the
subsequent calls to the wrapper functions. See the examples below for more details.

Another shared aspect of both packages is that only the column-major order of matrix elements
is supported and no provisions are made for row-major layout.

Teuchos

The main package within Trilinos that provides BLAS and LAPACK interface is called Teuchos.
More precisely, there are two subpackages that constitute an interface: Teuchos::BLAS and
Teuchos::LAPACK. These two subpackages constitute a rather thin layer on top of the existing
linear algebra libraries, especially when compared with the rest of features and so�ware services
that Teuchos provides such as memorymanagement, message passing, OS portability and so
on.

9https://trilinos.org/
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The interface is heavily templated. The �rst two template parameters refer to the numeric data
type for matrix/vector elements and the integral type for dimensions. In addition, traits are
used throughout Teuchos in a manner similar to the string character traits in the standard C++
library. MagnitudeType corresponds to magnitude of scalars with a corresponding trait method
squareroot that enforces non-negative arguments through the type system. ScalarType is used
for scalars and its trait methods include magnitude and conjugate.

In addition to a generic interface and wrappers around low-level BLAS and LAPACK, Teuchos
also contains reference implementations of a majority of BLAS routines. The implementations
are vector-oriented and unlikely to yield e�cient code, but are useful for instantiation of
Teuchos for more exotic data types that are not necessarily supported by hardware.

An example code that calls Level 1 BLAS looks like this:

1 #include "Teuchos_BLAS.hpp"
2 int example(int n, double alpha , double *x, int incx) {
3 // instantiate BLAS class for integer dimensions and double -precision numerics
4 Teuchos ::BLAS <int , double > blas;
5 blas.SCAL( n, alpha , x, incx );
6 return blas.IAMAX( n, x, incx );
7 }

An example code that invokes dense solver routines for a system of linear equations given by a
square matrix is as follows:

1 #include "Teuchos_LAPACK.hpp"
2 void example(int n, int nrhs , double *A, int ldA , int *piv , double *B, int& info) {
3 Teuchos ::LAPACK <int , double > lapack;
4 lapack.GETRF(n, n, A, ldA , piv , &info);
5 lapack.GETRS('N', n, nrhs , A, ldA , piv , B, ldB , &info);
6 }

Note the use of character integral types instead of enumerated types for standard LAPACK
enumeration parameters. Also, the error handling requires explicit use of an integral type
commonly referred to as info.

The LAPACK routines available in the Teuchos::LAPACK class are called through member func-
tions that are not inlined:

1 // File Teuchos_LAPACK.hpp
2 namespace Teuchos {
3 template <typename OrdinalType , typename ScalarType >
4 class LAPACK
5 {
6 public:
7 void POTRF(const char UPLO , const OrdinalType n,
8 ScalarType* A, const OrdinalType lda , OrdinalType* info) const;
9 }
10 }

This separates declaration from the implementation and adds additional overhead of non-
virtual member call:

1 // File Teuchos_LAPACK.cpp
2 namespace Teuchos {
3 void LAPACK <int , float >:: POTRF(const char UPLO , const int n,
4 float* A, const int lda , int* info) const {
5 SPOTRF_F77(CHAR_MACRO(UPLO), &n, A, &lda , info);
6 }
7 }
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Note that the implementation contains the resolution of name-mangling scheme generated
by the FORTRAN 77 compiler. This creates an implicit coupling at link time between Teuchos
and LAPACK implementation that depends on the naming scheme. As a result, multiple
implementations of the Teuchos LAPACK wrapper must exist for every naming scheme of
interest to the user on the target platform.

It solves the problem with the compiler-generated object code growth because the
Teuchos::LAPACK class is templated with dimension and storage template types for LAPACK
matrices, vectors, and scalar. The Teuchos::LAPACK class has to be instantiated explicitly. This
could be optimized by using static methods but it is only supported in the newer C++ standards.
To reduce the overhead of constructing an object of the Teuchos::LAPACK class for every calling
scope, the user may choose to keep a global object for all calls. But because the constructor
is empty and de�ned in the header �le, code inlining would likely eliminate the construction
overhead. The similar argument applies to the object destruction with the caveat that the
destructor was made virtual which might trigger creation of the vtable. This is despite the
fact that it is hard to imagine the need for a virtual destructor because deriving from the base
Teuchos::LAPACK class is unlikely due to the lack of internal state and the fact that the LAPACK
interface is stable in syntax and semantics, with only occasional additions of new routines.
However, Teuchos contains an additional abstract interface layer that derives from the base
Teuchos::LAPACK class to accommodate various matrix and vector objects. More concretely, the
band, dense, QR, and SPD (symmetric positive de�nite) solvers derive from the base class to
call the speci�c LAPACK routines’ wrappers:

1 namespace Teuchos {
2 template <typename OrdinalType , typename ScalarType > class SerialBandDenseSolver
3 : public CompObject ,
4 public Object ,
5 public BLAS <OrdinalType , ScalarType >,
6 public LAPACK <OrdinalType , ScalarType > ;
7 template <typename OrdinalType , typename ScalarType > class SerialDenseSolver
8 : public CompObject ,
9 public Object ,
10 public BLAS <OrdinalType , ScalarType >,
11 public LAPACK <OrdinalType , ScalarType > ;
12 template <typename OrdinalType , typename ScalarType > class SerialQRDenseSolver
13 : public CompObject ,
14 public Object ,
15 public BLAS <OrdinalType , ScalarType >,
16 public LAPACK <OrdinalType , ScalarType > ;
17 template <typename OrdinalType , typename ScalarType > class SerialSpdDenseSolver
18 : public CompObject ,
19 public Object ,
20 public BLAS <OrdinalType , ScalarType >,
21 public LAPACK <OrdinalType , ScalarType > ;
22 }

These derived classes contain generic methods for factorization, solving-with-factors, and
inversion implemented by factor(), solve(), and invert()methods, respectively. Additional
methods may include equilibration, error estimation, and conditioning estimation.

For completeness, it should bementioned that Teuchos includes additional objects and functions
that could be used to perform linear algebra operations. This additional interface layer is above
the level of abstraction that is the aim of this document. An example code that calls a linear
solve is shown below:

1 #include "Teuchos_SerialDenseMatrix.hpp"
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2 #include "Teuchos_SerialDenseSolver.hpp"
3 #include "Teuchos_RCP.hpp" // reference -counted pointer
4 #include "Teuchos_Version.hpp"
5
6 void example(int n) {
7 Teuchos :: SerialDenseMatrix <int ,double > A(n, n);
8 Teuchos :: SerialDenseMatrix <int ,double > X(n,1), B(n,1);
9 Teuchos :: SerialDenseSolver <int ,double > solver;
10 solver.setMatrix( Teuchos ::rcp( &A, false ) );
11 solver.setVectors( Teuchos ::rcp( &X, false ), Teuchos ::rcp( &B, false ) );
12
13 A.random ();
14 X.putScalar (1.0); // set X to all 1's
15 B.multiply( Teuchos ::NO_TRANS , Teuchos ::NO_TRANS , 1.0, A, X, 0.0 );
16 X.putScalar (0.0); // set X to all 0's
17
18 info = solver.factor ();
19 info = solver.solve ();
20 }

Epetra

Epetra abbreviates “essential Petra” – the foundational functionality of Trilinos that aims, above
all, for portability across hardware platforms and compiler versions. As such, Epetra shuns the
use of templates and thus its code is much closer to hardware and implementation artifacts.

Complex-valued matrix elements are not supported by either Epetra_BLAS or Epetra_LAPACK –
only single and double precision real interface are provided.

An example

1 #include <Epetra_BLAS.h>
2 void example(int n, float *fx, double *dx, int inc , float& fsum , double& dsum) {
3 Epetra_BLAS () blas;
4 fsum = blas.ASUM(n, fx, inc);
5 dsum = blas.ASUM(n, dx, inc);
6 }

An example code that invokes dense solver routines for a system of linear equations given by a
square matrix is as follows:

1 #include <Epetra_LAPACK.h>
2 void example(int n, int nrhs , double *A, int ldA , int *piv , double *B, int& info) {
3 Epetra_LAPACK () lapack;
4 lapack.GETRF(n, n, A, ldA , piv , &info);
5 lapack.GETRS('N', n, nrhs , A, ldA , piv , B, ldB , &info);
6 }
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CHAPTER 3

C++ API Design

3.1 Stateless Interface

The interface shall be stateless, with any implementation-speci�c setting handled outside of
this interface. Initialization and library cleanup will be performed with calls that are speci�c to
the BLAS and LAPACK implementations if any such operations are required.

Rationale: It is possible to include the state in the layer of the C++ interface which could then be
manipulated with calls not available in the original BLAS and LAPACK libraries. However, this
was decided against as this creates confusion when the same call with the same call arguments
behaves di�erently due to the hidden state. The only way for the user to ensure consistent
behavior for every call would be to switch the internal state to the desired setting. And there
would still remain the issue of threaded and asynchronous calls that could alter the internal
state in-between the state reset and, for example, the factorization call.

3.2 Supported BLAS and LAPACK Storage Types

In order to support templated algorithms, BLAS and LAPACK need to have precision-
independent names, for instance gemm instead of sgemm, dgemm, cgemm, zgemm. This will also
provide future compatibility with mixed and extended precisions, where the arguments have
di�erent precisions, as proposed by the Next Generation BLAS (Section 2.2.5). A further goal is
to make function calls consistent across all data types, resolving any di�erences that currently
exist.

Our C++ API de�nes a set of overloaded wrappers that call the traditional vendor-optimized
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BLAS and LAPACK routines. Our initial implementation focuses on full matrices (“ge”, “sy”,
“he”, “tr” pre�xes). It is readily extendable to band (“gb”, “sb”, “hb”) and packed (“sp”, “hp”, “tp”)
matrices.

3.3 Acceptable Constructs and C++ Language Standard

The C++ language standard has a long history, which results in practical considerations that
we try to adapt in this document. In short, the very latest version of the standard is rarely
implemented across the majority of compilers and supporting tools. Consequently, it is wise to
restrict the range of constructs and limit the syntax in a working code to a subset of one of the
standard versions. Accordingly, we will use only the features from the C++11 standard due to its
wide acceptance by the so�ware we use and on the hardware platforms we target.

3.4 Naming conventions

C++ interfaces to BLAS routines and associated constants are in the blas namespace. They are
made available by including the blas.hh header:

1 #include <blas.hh>
2
3 using namespace blas;

C++ interfaces to LAPACK routines are in the lapack namespace. They are made available by
including the lapack.hh header:

1 #include <lapack.hh>
2
3 using namespace lapack;

Most C++ routines are named the same as in traditional BLAS and LAPACK, sans precision, and
all lowercase, e.g., blas::gemm, lapack::posv. Arguments are named the same as in BLAS and
LAPACK. In general, matrices are uppercase, e.g., A, B, vectors are lowercase, e.g., x, y, scalars
are lower case Greek letters spelled out in English, e.g., alpha, beta, following common math
notation.

Rationale: Lowercase namespace convention was chosen per usage in standard libraries
(std namespace), Boost (boost namespace), and other common use cases such as the Google style
guide. For C++-only headers, the �le extension .hh was chosen to distinguish it from C-only .h
headers. This goes against some HPC libraries such as Kokkos and Trilinos that capitalize the
�rst letter, but this naming does not �t any of the standards that are followed in our so�ware.

3.5 Real vs. Complex Routines: the Case for Uni�ed Syntax

Some routines in the traditional BLAS have di�erent names for real and complex matrices,
for instance herk for complex Hermitian matrices and syrk for real symmetric matrices. This
prevents templating algorithms for both real and complex matrices, so in these cases, both

25



3.5. REAL VS. COMPLEX ROUTINES CHAPTER 3. C++ API DESIGN

names are extended to apply to both real and complex matrices. For real matrices, herk and
syrk are synonyms, both meaning C = αAAH + βC = αAAT + βC , where C is symmetric. For
complex matrices, herkmeans C = αAAH + βC, where C is complex Hermitian, while syrk
means C = αAAT + βC, where C is complex symmetric. Some complex-symmetric routines
such as csymv and csyr are not in the traditional BLAS standard, but are provided by LAPACK.
Some complex-symmetric routines are missing from BLAS and LAPACK, such as [cz]syr2,
which can be performed using [cz]syr2k, albeit suboptimally. We provide all these routines in
C++ BLAS, for consistency. LAPACK routines pre�xed with sy and he are handled similarly.

The dot product has di�erent names in real and complex. We extend dot to mean dotc in
complex, and extend dotc and dotu both to mean dot in real.

Additionally in LAPACK, the un pre�x denotes a complex unitary matrix and the or pre�x
denotes a real orthogonal matrix. For these cases, we extend the un-pre�xed names to real
matrices. The term “orthogonal” is not applicable to complex matrices, so or-pre�xed routines
apply only to real matrices.

Mapping of C++ generic name to traditional BLAS names:

C++ name real complex
blas::hemv [sd]symv [cz]hemv
blas::symv [sd]symv [cz]symv †
blas::her [sd]syr [cz]her
blas::syr [sd]syr [cz]syr †
blas::her2 [sd]syr2 [cz]her2
blas::syr2 [sd]syr2 [cz]syr2 ‡
blas::herk [sd]syrk [cz]herk
blas::syrk [sd]syrk [cz]syrk
blas::her2k [sd]syr2k [cz]her2k
blas::syr2k [sd]syr2k [cz]syr2k
blas::hemm [sd]symm [cz]hemm
blas::symm [sd]symm [cz]symm

blas::dot [sd]dot [cz]dotc
blas::dotc [sd]dot [cz]dotc
blas::dotu [sd]dot [cz]dotu
†[cz]symv and [cz]syr provided by LAPACK instead of BLAS.
‡[cz]syr2 not available; can substitute [cz]syr2k with k = 1.

Mapping of C++ generic name to traditional LAPACK names (incomplete list):

C++ name real complex
lapack::hesv [sd]sysv [cz]hesv
lapack::sysv [sd]sysv [cz]sysv

lapack::unmqr [sd]ormqr [cz]unmqr
lapack::ormqr [sd]ormqr —
lapack::ungqr [sd]orgqr [cz]ungqr
lapack::orgqr [sd]orgqr —

Where applicable, options that apply conjugate-transpose in complex are interpreted to apply
transpose in real. For instance, in LAPACK’s zlarfb, trans takes NoTrans and ConjTrans but not
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Trans, while in dlarfb it takes NoTrans and Trans but not ConjTrans. We extend this to allow
ConjTrans in the real case to mean Trans. This is already true for BLAS routines such as dgemm,
where ConjTrans and Trans have the same meaning.

In LAPACK, for non-symmetric eigenvalues, dgeev takes a split complex representation with two
double-precision vectors for eigenvalues, one vector for real components, one for imaginary
components, while zgeev takes single vector of complex values. In C++, geev follows the complex
routine in taking a single vector of complex values in both the real and complex cases.

Other instances where there are di�erences between real and complex matrices will be resolved
to provide a consistent interface across all data types.

3.6 Use of const Speci�er

Array arguments (matrices and vectors) that are read-only are declared const in the interface.
Dimension-related and scalar arguments are passed by value, so are not declared const as there
is no bene�t at the call site.

3.7 Enum constants

As in CBLAS, options such as transpose, uplo (upper-lower), etc. are provided by enums.
Strongly typed C++11 enums are used. Constants have similar names to those in CBLAS, minus
the Cblas pre�x, but the value is le� unspeci�ed and implementation dependent. Enums and
constants are Title Case.

Enums for BLAS (values for example only; see implementation note below):

1 enum class Layout : char { ColMajor='C', RowMajor='R' };
2 enum class Op : char { NoTrans ='N', Trans ='T', ConjTrans='C' };
3 enum class Uplo : char { Upper ='U', Lower ='L' };
4 enum class Diag : char { NonUnit ='N', Unit ='U' };
5 enum class Side : char { Left ='L', Right ='R' };

Note CBLAS_ORDER was renamed CBLAS_LAYOUT around LAPACK 3.6.0.

In most cases, the name of the enum is also similar to the name in CBLAS. However, for
transpose, because Transpose::NoTrans could easily be misread as transposed, rather than not
transposed, the enum is named Op, which is already frequently used in the documentation, such
as for zgemm:

1 TRANSA = 'N' or 'n', op( A ) = A.
2 TRANSA = 'T' or 't', op( A ) = AˆT.
3 TRANSA = 'C' or 'c', op( A ) = AˆH.

In some cases, BLAS and LAPACK take identical options such as uplo. For consistency within
each library, typedef aliases for the �ve BLAS enums above are provided, such as blas::Uplo
and lapack::Uplo.

For some routines, LAPACK supports a wider set of values for an enum category than provided
by BLAS. For instance, in BLAS, uplo = Lower or Upper, while in LAPACK, laset and lacpy take
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uplo = Lower, Upper, or General; and lascl takes 8 di�erent matrix types. Instead of having an
extended enum, the C++ API consistently uses the standard pre�xes (ge, he, tr, etc.) to indicate
the matrix type, rather than using the la auxiliary pre�x and di�erentiating matrix types based
on an argument. Thus, these new names are introduced, with their mapping to LAPACK names:

C++ API LAPACK matrix type
gescl lascl with type=G general
trscl( uplo ) lascl with type=uplo triangular or Hermitian
gbscl lascl with type=Z general band
hbscl( uplo ) lascl with type=B (Lower) or Q (Upper) Hermitian band
hsscl lascl with type=H Hessenberg
gecpy lacpy with uplo=G general
trcpy( uplo ) lacpy with same uplo triangular or Hermitian
geset laset with uplo=G general
trset( uplo ) laset with same uplo triangular or Hermitian

Implementation note: 3 potential implementations are readily apparent. Enumeration values
could be:

1. Default values (0, 1, ...). This is used by cuBLAS.

2. Same value as in CBLAS, e.g., NoTrans = 111.

3. Character values used in Fortran, e.g., NoTrans = 'n' (as shown above).

If the C++ API calls Fortran BLAS, the �rst two options require a switch, if-then, or lookup table
to determine the equivalent character constant (e.g., NoTrans=111maps to 'n'). The third option
is trivially converted using a cast, and is easier to understand if printed out for debugging.

If the C++ API calls CBLAS, obviously option 2 is the easiest.

If the C++ API calls some other BLAS library such as cuBLAS or clBLAS, a switch, if-then, or
lookup table is probably required in all three cases.

We leave the enumeration values unspeci�ed and implementation-dependent.

Rationale: In C++, the old style enumeration type, that was borrowed from C, is of integral
type without exact size speci�ed. This may cause problems for binary interfaces when the C
compiler used the default int representation and C++ compiler use a di�erent storage size. We
do not face this issue here as we only target C++ as the calling language and C or Fortran as the
likely implementation language.

3.8 Workspaces

Many LAPACK routines take workspaces, with both minimum and optimal sizes. These are
typically of size O(n× nb), for a matrix of dimension n and an optimal block size nb. Notable
exceptions are eigenvalue and singular value routines, which o�en take workspaces of sizeO(n2).
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As memory allocation is typically a minor amount of time, the C++ LAPACK interface allocates
optimal workspace sizes internally, removing workspaces from the interface. Traditional BLAS
routines do not take workspaces.

If this becomes a performance bottleneck, workspaces could be added as optional arguments,
with a default value of nullptr indicating that the wrapper should allocate workspace, without
breaking code written with the C++ LAPACK API.

Rationale: As needed, there is a possibility of adding an overloaded function call that takes a
user-de�ned memory allocator as an argument. This may serve memory-constrained imple-
mentations that insist on controlled memory usage.

3.9 Errors

Traditional BLAS routines call xerbla when an error occurs, such as lda < m. All errors that
BLAS detects are bugs. LAPACK likewise calls xerbla for invalid parameters (which are bugs),
but not for runtime numerical errors like a singular matrix in getrf or an inde�nite matrix in
potrf. The default implementation of xerbla aborts execution.1

Instead, we adopt C++ exceptions for errors, such as invalid arguments. Two new exceptions
are introduced: blas::error and lapack::error, which are subclasses of std::exception. The
what()member function yields a description of the error.

For runtime numerical errors, the traditional info value is returned. Zero indicates success.
Note these are o�en not fatal errors: an application may want to know whether a matrix is
positive de�nite, and the easiest, fastest test is to attempt Cholesky factorization.

We do not implement NaN or Inf checks. These add O(n2) work and memory tra�c, with
little added bene�t. Ideally, a robust BLAS library would ensure that NaN and Inf values are
propagated, meaning that if there is a NaN or Inf in the input, there is one in the output. (Aside
fromoptimizations when alpha=0 or beta=0. In gemm, for instance, if beta=0, then it is speci�cally
documented in the reference BLAS that C need not be initialized.) The current reference
BLAS implementation does not always propagate NaN and Inf; see the Next Generation BLAS
(Section 2.2.5) for examples and proposed new routines that are guaranteed to propagate NaN
and Inf values.

Rationale: Occasionally, users express concern about the overhead of error checks. For even
modestly sized matrices, error checks take negligible time. However, for very small matrices,
with n < 20 or so, there can be noticeable overhead. Intel introduced MKL_DIRECT_CALL to
disable error checks in these cases2. However, libraries compiled for speci�c sizes, either via
templating or JIT compilation, provide an even larger performance boost for these small sizes.
For instance, see Intel’s libxsmm3 for extra small matrix-multiply, or batched BLAS for sets
of small matrices. Thus users with such small matrices are encouraged to use special purpose
interfaces, rather than trying to optimize overheads in a general purpose interface.

1See explanation in Batched BLAS document why xerbla is a hideous monstrosity for parallel codes or multiple
libraries.

2https://software.intel.com/en-us/articles/improve-intel-mkl-performance-for-small-problems-the-use-of-mkl-direct-call
3https://github.com/hfp/libxsmm
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3.10 Return values

Most C++ BLAS routines are void. The exceptions are asum, nrm2, dot*, and iamax, which
return their result, as in the traditional Fortran interface. dot returns a complex value in the
complex case (unlike CBLAS, where the complex result is an output argument). This makes the
interface consistent across real and complex data types.

Most C++ LAPACK routines return an integer status code, corresponding to positive info values
in LAPACK, indicating numerical errors such as a singular matrix in getrf. Zero indicates
success. LAPACK norm functions return their result.

3.11 Complex numbers

C++ std::complex is used. Unlike CBLAS, complex scalars are passed by value, the same as real
scalars. This avoids inconsistencies that would prevent templated code from calling BLAS. For
type safety, arguments are speci�ed as std::complex, rather than as void* as CBLAS uses.

3.12 Object Dimensions as 64-bit Integers

The interface will require 64-bit integers to specify object sizes using cstdint header and
int64_t integral data type.

In the recent years, 32-bit so�ware has been in decline with both vendors and open source
projects dropping support for 32-bit versions and opting exclusively for 64-bit only. This has
also taken place in HPC so�ware and there are examples of 64-bit vendors, for example Intel
with MKL, MathWorks with MATLAB. In fact, 32-bit version is more of a legacy issue with
the increasing memory sizes and the demand of larger models that require large matrices and
vectors.

BLAS and LAPACK libraries can easily address this because sizing dense matrices and vectors
has negligible cost. Even on a 32-bit systems, an overhead of using 64-bit integers is not an
issue with the exception of storage for pivots, which arises in LU and pivoted QR as well as
accompanying routines that operate on these pivots such as laswp. The overhead for those
could be O(n) where n is the number of swapped rows.

3.13 Matrix Layout

Traditional Fortran BLAS assumes column-major matrices. CBLAS added support for row-
major matrices. In many cases, this can be accomplished with essentially no overhead by swap-
ping matrices, dimensions, upper-lower, and transposes, and then calling the column-major
routine. For instance, cblas_dgemv simply changes trans=NoTrans into Trans, or trans=Trans
into NoTrans, swaps m <=> n, and calls (column-major) dgemv. However, some routines require
a little extra e�ort for complex matrices. For cblas_zgemv, trans=ConjTrans can be changed to
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NoTrans, but then the matrix isn’t conjugated. This can be resolved by conjugating y and a copy
of x, calling zgemv with m <=> n swapped and trans=NoTrans, then conjugating y again. Several
other Level 2 BLAS routines have similar solutions. So, with minimal overhead, row-major
matrices can be supported in BLAS.

We propose the same mechanism for the C++ BLAS API, either by calling CBLAS and relying
on the row-major support in CBLAS, or by reimplementing similar solutions in C++ and calling
the Fortran BLAS.

We also build the same option into the C++ LAPACK API, for future support. However, initially
it would be unimplemented, causing an exception to be thrown. This is because for some
routines such getrf there can be substantial overhead in calling the traditional Fortran LAPACK
implementation, because a transpose is required. Other routines such as matrix norms, QR,
LQ, SVD, and operations on symmetric matrices can readily be translated to LAPACK calls with
essentially no overhead, without physically transposing the matrix in memory.

Row-major layout is speci�ed the same as in CBLAS, using the blas::Layout or lapack::Layout
enum as the �rst parameter of C++ BLAS and LAPACK functions. (Perhaps it should be moved
to the end to make it an optional argument with default value ColMajor.)

3.14 Templated versions

As a future extension, in addition to overloaded wrappers around traditional BLAS routines,
generic templated versions that work for any data type could be provided. For instance, these
would support half precision, double-double or quad precision, and integer types. The data
types need only basic arithmetic operations (+ - * /) and functions (e.g., conj, sqrt, abs, real,
imag) to be de�ned. Initially, such templated versions could be based on the reference BLAS,
but these can be optimized using well-known techniques such as blocking and vectorization.

3.15 Prototype implementation

To make our proposal concrete, we include a prototype implementation of wrappers for
blas::gemm matrix-matrix multiply and lapack::potrf Cholesky factorization. For brevity,
only the complex<double> datatype is shown; code for other precisions is analogous. The only
compile-time parameters are the Fortran name-mangling convention (here assumed to be
lowercase with appended underscore, “ ”) and BLAS_ILP64, which indicates whether it will be
linked with an ILP64 (64-bit integer) BLAS/LAPACK library version.

blas.hh

1 #ifndef BLAS_HH
2 #define BLAS_HH
3
4 #include <cstdint >
5 #include <exception >
6 #include <complex >
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7 #include <string >
8
9 namespace blas {
10
11 // -----------------------------------------------------------------------------
12 // Fortran name mangling depends on compiler , generally one of:
13 // UPPER
14 // lower
15 // lower ## _
16 #ifndef FORTRAN_NAME
17 #define FORTRAN_NAME( lower , UPPER ) lower ## _
18 #endif
19
20 // -----------------------------------------------------------------------------
21 // blas_int is the integer type of the underlying Fortran BLAS library.
22 // BLAS wrappers take int64_t and check for overflow before casting to blas_int.
23 #ifdef BLAS_ILP64
24 typedef long long blas_int;
25 #else
26 typedef int blas_int;
27 #endif
28
29 // -----------------------------------------------------------------------------
30 enum class Layout : char { ColMajor='C', RowMajor='R' };
31 enum class Op : char { NoTrans ='N', Trans ='T', ConjTrans='C' };
32 enum class Uplo : char { Upper ='U', Lower ='L' };
33 enum class Diag : char { NonUnit ='N', Unit ='U' };
34 enum class Side : char { Left ='L', Right ='R' };
35
36 // -----------------------------------------------------------------------------
37 class Error: public std:: exception
38 {
39 public:
40 Error (): std:: exception () {}
41 Error( const char* msg ): std:: exception(), msg_( msg ) {}
42 virtual const char* what() { return msg_.c_str (); }
43 private:
44 std:: string msg_;
45 };
46
47 // -----------------------------------------------------------------------------
48 // internal helper function; throws Error if cond is true
49 // called by throw_if_ macro
50 inline void throw_if__( bool cond , const char* condstr )
51 {
52 if (cond) {
53 throw Error( condstr );
54 }
55 }
56
57 // internal macro to get string #cond; throws Error if cond is true
58 #define throw_if_( cond ) \
59 throw_if__( cond , #cond )
60
61 // -----------------------------------------------------------------------------
62 // Fortran prototypes
63 // sgemm , dgemm , cgemm omitted for brevity
64 #define f77_zgemm FORTRAN_NAME( zgemm , ZGEMM )
65
66 extern "C"
67 void f77_zgemm( char const* transA , char const* transB ,
68 blas_int const* m, blas_int const* n, blas_int const* k,
69 std::complex <double > const* alpha ,
70 std::complex <double > const* A, blas_int const* lda ,
71 std::complex <double > const* B, blas_int const* ldb ,
72 std::complex <double > const* beta ,
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73 std::complex <double >* C, blas_int const* ldc );
74
75 // -----------------------------------------------------------------------------
76 // lightweight overloaded wrappers: converts C to Fortran calling convention.
77 // calls to sgemm , dgemm , cgemm omitted for brevity
78 inline void gemm_( char transA , char transB ,
79 blas_int m, blas_int n, blas_int k,
80 std::complex <double > alpha ,
81 std::complex <double > const* A, blas_int lda ,
82 std::complex <double > const* B, blas_int ldb ,
83 std::complex <double > beta ,
84 std::complex <double >* C, blas_int ldc )
85 {
86 f77_zgemm( &transA , &transB , &m, &n, &k,
87 &alpha , A, &lda , B, &ldb , &beta , C, &ldc );
88 }
89
90 // -----------------------------------------------------------------------------
91 // templated wrapper checks arguments , handles row -major to col -major translation
92 template < typename T >
93 void gemm( Layout layout , Op transA , Op transB ,
94 int64_t m, int64_t n, int64_t k,
95 T alpha ,
96 T const* A, int64_t lda ,
97 T const* B, int64_t ldb ,
98 T beta ,
99 T* C, int64_t ldc )
100 {
101 // determine minimum size of leading dimensions
102 int64_t Am, Bm, Cm;
103 if (layout == Layout :: ColMajor) {
104 Am = (transA == Op:: NoTrans ? m : k);
105 Bm = (transB == Op:: NoTrans ? k : n);
106 Cm = m;
107 }
108 else {
109 // RowMajor
110 Am = (transA == Op:: NoTrans ? k : m);
111 Bm = (transB == Op:: NoTrans ? n : k);
112 Cm = n;
113 }
114
115 // check arguments
116 throw_if_( layout != Layout :: RowMajor && layout != Layout :: ColMajor );
117 throw_if_( transA != Op:: NoTrans && transA != Op::Trans && transA != Op:: ConjTrans );
118 throw_if_( transB != Op:: NoTrans && transB != Op::Trans && transB != Op:: ConjTrans );
119 throw_if_( m < 0 );
120 throw_if_( n < 0 );
121 throw_if_( k < 0 );
122 throw_if_( lda < Am );
123 throw_if_( ldb < Bm );
124 throw_if_( ldc < Cm );
125
126 // check for overflow in native BLAS integer type , if smaller than int64_t
127 if (sizeof(int64_t) > sizeof(blas_int )) {
128 throw_if_( m > std:: numeric_limits <blas_int >::max() );
129 throw_if_( n > std:: numeric_limits <blas_int >::max() );
130 throw_if_( k > std:: numeric_limits <blas_int >::max() );
131 throw_if_( lda > std:: numeric_limits <blas_int >::max() );
132 throw_if_( ldb > std:: numeric_limits <blas_int >::max() );
133 throw_if_( ldc > std:: numeric_limits <blas_int >::max() );
134 }
135
136 if (layout == Layout :: ColMajor) {
137 gemm_( (char) transA , (char) transB ,
138 (blas_int) m, (blas_int) n, (blas_int) k,
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139 alpha ,
140 A, (blas_int) lda ,
141 B, (blas_int) ldb ,
142 beta ,
143 C, (blas_int) ldc );
144 }
145 else {
146 // RowMajor: swap (transA , transB), (m, n), and (A, B)
147 gemm_( (char) transB , (char) transA ,
148 (blas_int) n, (blas_int) m, (blas_int) k,
149 alpha ,
150 B, (blas_int) ldb ,
151 A, (blas_int) lda ,
152 beta ,
153 C, (blas_int) ldc );
154 }
155 }
156
157 } // namespace blas
158
159 #endif // #ifndef BLAS_HH

lapack.hh

1 #ifndef LAPACK_HH
2 #define LAPACK_HH
3
4 #include <cstdint >
5 #include <exception >
6 #include <complex >
7
8 #include "blas.hh"
9
10 namespace lapack {
11
12 // assume same int_type as BLAS
13 typedef blas:: int_type int_type;
14
15 // alias types from BLAS
16 typedef blas:: Layout Layout;
17 typedef blas::Op Op;
18 typedef blas::Uplo Uplo;
19 typedef blas::Diag Diag;
20 typedef blas::Side Side;
21
22 // omitted for brevity: lapack ::Error , throw_if_ similar to blas.hh
23
24 // -----------------------------------------------------------------------------
25 // Fortran prototypes
26 // spotrf , dpotrf , cpotrf omitted for brevity
27 #define f77_zpotrf FORTRAN_NAME( zpotrf , ZPOTRF )
28
29 extern "C"
30 void f77_zpotrf( char const* uplo , int_type const* n,
31 std::complex <double >* A, int_type const* lda ,
32 int_type* info );
33
34 // -----------------------------------------------------------------------------
35 // lightweight overloaded wrappers: converts C to Fortran calling convention.
36 // calls to spotrf , dpotrf , cpotrf omitted for brevity
37 inline void potrf_( char uplo , int_type n,
38 std::complex <double >* A, int_type lda ,
39 int_type* info )
40 {
41 f77_zpotrf( &uplo , &n, A, &lda , info );
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42 }
43
44 // -----------------------------------------------------------------------------
45 // templated wrapper checks arguments , handles row -major to col -major translation
46 template < typename T >
47 int64_t potrf( Layout layout , Uplo uplo , int64_t n, T* A, int64_t lda )
48 {
49 // check arguments
50 throw_if_( layout != Layout :: RowMajor && layout != Layout :: ColMajor );
51 throw_if_( uplo != Uplo::Upper && uplo != Uplo::Lower );
52 throw_if_( n < 0 );
53 throw_if_( lda < n );
54
55 // check for overflow in native BLAS integer type , if smaller than int64_t
56 if (sizeof(int64_t) > sizeof(int_type )) {
57 throw_if_( n > std:: numeric_limits <int_type >::max() );
58 throw_if_( lda > std:: numeric_limits <int_type >::max() );
59 }
60
61 int_type info = 0;
62 if (layout == Layout :: ColMajor) {
63 potrf_( (char) uplo , n, A, lda , &info );
64 }
65 else {
66 // RowMajor: change upper <=> lower; no need to conjugate
67 Uplo uplo_swap = (uplo == Uplo::Lower ? Uplo::Upper : Uplo::Lower);
68 potrf_( (char) uplo_swap , (int_type) n, A, (int_type) lda , &info );
69 }
70 return info;
71 }
72
73 } // namespace lapack
74
75 #endif // #ifndef LAPACK_HH
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