On computing Givens rotations reliably and efficiently

D. Bindel* J. Demmel† W. Kahan‡ O. Marques§

August 23, 2000

Abstract

We consider the efficient and accurate computation of Givens rotations. When \(f \) and \(g \) are positive
real numbers, this simply amounts to computing the values of
\[
c = \frac{f}{\sqrt{f^2 + g^2}}, \quad s = \frac{g}{\sqrt{f^2 + g^2}}, \quad r = \sqrt{f^2 + g^2}.
\]
This apparently trivial computation merits closer consideration for the following three reasons. First, while the definitions of \(c \), \(s \) and \(r \) seem obvious in the case of two nonnegative arguments \(f \)
and \(g \), there is enough freedom of choice when one or more of \(f \) and \(g \) are negative, zero or complex
that LAPACK auxiliary routines SLARTG, CLARTG, SLARF and CLARF can compute rather different
values of \(c \), \(s \) and \(r \) for mathematically identical values of \(f \) and \(g \). To eliminate this unnecessary
ambiguity, the BLAS Technical Forum chose a single consistent definition of Givens rotations that we
will justify here. Second, computing accurate values of \(c \), \(s \) and \(r \) as efficiently as possible and reliably
despite over/underflow is surprisingly complicated. For complex Givens rotations, the most efficient
formulas require only one real square root and one real divide (as well as several much cheaper additions
and multiplications), but a reliable implementation has a number of cases. On a Sun Ultra-10, the new
implementation is 20% faster than the previous LAPACK implementation in the most common case,
and nearly 4 times faster than the corresponding vendor, reference or ATLAS routines. It is also more
reliable; all previous codes occasionally suffer from large inaccuracies due to over/underflow. Third, the
design process that led to this reliable implementation is quite systematic, and could be applied to the
design of similarly reliable subroutines.

1 Introduction

Givens rotations are widely used in numerical linear algebra. Given \(f \) and \(g \), a Givens rotation is a
2-by-2 unitary matrix \(R(c, s) \) such that

\[
R(c, s) \cdot \begin{bmatrix} f \\ g \end{bmatrix} \equiv \begin{bmatrix} c & s \\ -\bar{s} & c \end{bmatrix} \cdot \begin{bmatrix} f \\ g \end{bmatrix} = \begin{bmatrix} r \\ 0 \end{bmatrix}
\]

(1)

The fact that \(R(c, s) \) is unitary implies

\[
R(c, s) \cdot (R(c, s))^* = \begin{bmatrix} c & s \\ -\bar{s} & c \end{bmatrix} \cdot \begin{bmatrix} \bar{c} & -s \\ \bar{s} & \bar{c} \end{bmatrix} = \begin{bmatrix} c\bar{c} + s\bar{s} & -cs + \bar{c}s \\ -\bar{c}s + \bar{s}c & c\bar{c} + s\bar{s} \end{bmatrix} \]

\[
= \begin{bmatrix} |c|^2 + |s|^2 & s(c - \bar{c}) \\ \bar{s}(c - \bar{c}) & |c|^2 + |s|^2 \end{bmatrix} = I
\]

*Computer Science Division University of California, Berkeley, CA 94720 (dbindel@cs.berkeley.edu).
†Computer Science Division and Mathematics Dept., University of California, Berkeley, CA 94720
(demmel@cs.berkeley.edu). This material is based in part upon work supported by the Advanced Research Projects
Agency contract No. DAAH04-95-1-0077 (via subcontract No. ORA4400.02 with the University of Tennessee), the Department
of Energy grant No. DE-FG03-94ER25219, and contract No. W-31-109-Eng-38 (via subcontract Nos. 20552-02 and 941322401
with Argonne National Laboratory), the National Science Foundation grants ASC-9313958 and ASC-9813301, and NSF
Infrastructure Grant No. CDA-8722788 and CDA-9011556.
‡Computer Science Division and Mathematics Dept., University of California, Berkeley, CA 94720
(vkahan@cs.berkeley.edu).
§NERSC, Lawrence Berkeley National Lab, (nersc.gov).
From this we see that
\[|f|^2 + |s|^2 = 1 \quad \text{and} \quad c - \bar{c} = 0, \quad \text{i.e.} \quad c \text{ is real} \tag{2} \]

When \(f \) and \(g \) are real and positive, the widely accepted convention is to let
\[
\begin{align*}
c & = f / \sqrt{|f|^2 + |g|^2} \\
s & = g / \sqrt{|f|^2 + |g|^2} \\
r & = \sqrt{|f|^2 + |g|^2}
\end{align*}
\]

However, the negatives of \(c, s \) and \(r \) also satisfy conditions (1) and (2). And when \(f = g = 0 \), any \(c \) and \(s \) satisfying (2) also satisfy (1). So \(c, s \) and \(r \) are not determined uniquely. This slight ambiguity has led to a surprising diversity of inconsistent definitions in the literature and in software. For example, the LAPACK routines SLARTG, CLARTG, SLARGV and CLARGV, as well as Algorithm 5.1.5 in [3] can get significantly different answers for mathematically identical inputs.

To avoid this unnecessary diversity, the BLAS (Basic Linear Algebra Subroutines) Technical Forum, in its design of the new BLAS standard [1], chose to pick a single definition of Givens rotations. Section 2 below presents and justifies the design.

The BLAS Technical Forum is also providing reference implementations of the new standard. In the case of computing Givens rotation and a few other kernel routines, intermediate over/underflows in straightforward implementations can make the output inaccurate (or perhaps even stop execution) even though the true mathematical answer might be unexceptional. To compute \(c, s \) and \(r \) as efficiently as possible and reliably despite over/underflow flow is surprisingly complicated, particularly for complex \(f \) and \(g \).

Square root and division are by far the most expensive real floating point operations on current machines, and it is easy to see that one real square root and one real division (or perhaps a single reciprocal-square-root operation) are necessary to compute \(c, s \) and \(r \). With a little algebraic manipulation, we also show that a single square root and division are also sufficient (along with several much cheaper additions and multiplications) to compute \(c, s \) and \(r \) in the complex case.

However, these formulas for \(c, s \) and \(r \) that use just one square root and one division are susceptible to over/underflow, if we must store all intermediate results in the same precision as \(f \) and \(g \). Define \(\|f\|_\infty = \max(|\Re f|, |\Im g|) \). We systematically identify the values of \(f \) and \(g \) for which these formulas are reliable (i.e. guaranteed not to underflow in such a way that unnecessarily loses relative precision, nor to overflow) by generating a set of simultaneous linear inequalities in \(\log \|f\|_\infty \) and \(\log \|g\|_\infty \), which define a (nonconvex) 2D polygonal region \(S \) (for Safe) in \((\log \|f\|_\infty, \log \|g\|_\infty) \) space in which the formulas may be used. This is the most common situation, which we call Case 1 in the algorithm. In this case, the new algorithm runs 20% faster than LAPACK’s CLARTG routine, and nearly 4 times faster than the crotg routine in the vendor BLAS on a Sun Ultra-10, ATLAS BLAS, or Fortran reference BLAS.

If \((\log \|f\|_\infty, \log \|g\|_\infty) \) lies outside \(S \), there are two possibilities: scaling \(f \) and \(g \) by a constant to fit inside \(S \), or using different formulas. Scaling may be interpreted geometrically as shifting \(S \) parallel to the diagonal line \(\log \|f\|_\infty = \log \|g\|_\infty \) in \((\log \|f\|_\infty, \log \|g\|_\infty) \) space. The region covered by shifted images of \(S \) (\(S \)’s “shadow”) is the region in which scaling is possible. In part of this shadow (case 4 in the algorithm), we do scale \(f \) and \(g \) to lie inside \(S \) and then use the previous formula.

The remaining region of \((\log \|f\|_\infty, \log \|g\|_\infty) \) space, including space outside \(S \)’s shadow, consists of regions where \(\log \|f\|_\infty \) and \(\log \|g\|_\infty \) differ so much that \(|f|^2 + |g|^2 \) rounds either to \(|f|^2 \) (Case 2 in the algorithms) or \(|g|^2 \) (Case 3). Replacing \(|f|^2 + |g|^2 \) by either \(|f|^2 \) or \(|g|^2 \) simplifies the algorithm, and different formulas are used.

In addition to the new algorithm being significantly faster than previous routines, it is more accurate. All earlier routines have inputs that exhibit large relative errors, whereas ours is always nearly fully accurate.

When a format with a wider exponent range is available to store intermediate results, we may use our main new formula without fear of over/underflow, drastically simplifying the algorithm. For example, IEEE double precision (with an 11-bit exponent) can be used when inputs \(f \) and \(g \) are IEEE single precision numbers (with 8-bit exponents). On a Sun Ultra-10, this mixed-precision algorithm is nearly exactly as fast in Case 1 of the single precision algorithm described above, and usually rather faster in Cases 2 through 4, making it the algorithm of choice. On an Intel machine double extended floating point (with 15-bit exponents) can be used for single or double precision inputs, and this would be the algorithm of choice. However,
with double precision inputs on a machine like a Sun Ultra-10 without double-extended arithmetic, or when double precision is much slower than single precision, our new algorithm with 4 cases is the best we know.

The rest of this paper is organized as follows. Section 2 presents and justifies the proposed definition of Givens rotations. Section 3 details the differences between the proposed definition and existing LAPACK code. Section 4 describes our assumptions about floating point arithmetic. Section 5 presents the algorithm in the complex case, assuming that neither overflow nor underflow occur (Case 1). Section 6 shows alternate formulas for complex Givens rotations when \(f \) and \(g \) differ greatly in magnitude (Cases 2 and 3). Section 7 describes scaling when \(f \) and \(g \) are comparable in magnitude but both very large or very small (Case 4). Section 8 compares the accuracy of our new complex Givens routine and several alternatives; only ours is accurate in all cases. Section 9 discusses performance of our complex Givens routine. Section 10 briefly discusses real Givens rotations, which are rather easier. Section 11 draws conclusions. The actual software is included in an appendix.

2 Defining Givens rotations

We will use the following function, defined for a complex variable \(x \), in what follows:

\[
\text{sign}(x) \equiv \begin{cases}
 x/|x| & \text{if } x \neq 0 \\
 1 & \text{if } x = 0
\end{cases}
\]

\(\text{sign}(x)\) is clearly a continuous function away from \(x = 0 \). When \(x \) is real the definition simplifies to

\[
\text{sign}(x) \equiv \begin{cases}
 -1 & \text{if } x < 0 \\
 1 & \text{if } x \geq 0
\end{cases}
\]

As stated in the introduction, we need extra requirements besides (1) and (2) in order to determine \(c \) and \(s \) (and hence \(r \)) uniquely. For when at least one of \(f \) and \(g \) are nonzero, the most that we can deduce from the first component of \(R(c,s)[f,g]^T = [r,0]^T \) in (1) is that

\[
c = e^{i\theta} \frac{|f|}{\sqrt{|f|^2 + |g|^2}} \\
s = e^{i\theta} \text{sign}(f) \frac{g}{\sqrt{|f|^2 + |g|^2}} \\
r = e^{i\theta} \text{sign}(f) \sqrt{|f|^2 + |g|^2}
\]

for \(i = \sqrt{-1} \) and some real \(\theta \). From the fact that \(c \) must be real we deduce that if \(f \neq 0 \) then

\[
c = \pm \frac{|f|}{\sqrt{|f|^2 + |g|^2}} \\
s = \pm \text{sign}(f) \frac{g}{\sqrt{|f|^2 + |g|^2}} \\
r = \pm \text{sign}(f) \sqrt{|f|^2 + |g|^2}
\]

and if \(f = 0 \) and \(g \neq 0 \) then

\[
c = 0 \\
s = e^{i\theta} \\
r = e^{i\theta} g
\]

As stated before, when \(f = g = 0 \), \(c \) and \(s \) can be chosen arbitrarily, as long as they satisfy (2).

The extra requirements initially chosen by the BLAS Technical Forum to help resolve the choice of \(\pm \) sign in (3) and \(\theta \) in (4) are as follows.

R1 The definitions for real and complex data should be consistent, so that real data passed to the complex algorithm should result in the same answers (modulo roundoff) as from the real algorithm.
R2 Current LAPACK subroutines that use Givens rotations should continue to work correctly with the new definition.

The current LAPACK subroutines SLARTG and CLARTG (which compute a single real and complex Givens rotation, resp.) do not satisfy requirement 1. Furthermore, the LAPACK subroutines SLARGV and CLARGV for computing multiple Givens rotations do not compute the same answers as SLARTG and CLARTG, resp. The differences are described in section 3 below. So some change in practice is needed to have consistent definitions. (Indeed, this was the original motivation for BLAS Technical Forum not simply adopting the LAPACK definitions unchanged.)

However, R1 and R2 do not immediately resolve the choice of sign in \((1)\). To proceed we add requirement

R3 The mapping from \((f, g)\) to \((c, s, r)\) should be continuous whenever possible.

Continuity of \(c\) and \(s\) as functions of \(f\) and \(g\) is not possible everywhere, because as real \(f\) and \(g\) approach \((0,0)\) along the real line \(g = f \cdot \tan \alpha, c = \pm \cos \alpha, s = \pm \sin \alpha, \) so \(c\) and \(s\) must be discontinuous at \((0,0)\).

But consider \(c, s, r\) as functions of \((f, g) = (e^{i\alpha}, 1)\) as \(\alpha\) increases from 0 to \(2\pi\), i.e. \(f\) traverses the unit circle in the complex plane. At \(\alpha = 0\), \((f, g) = (1,1)\) and consider the common convention \((c, s) = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\). As \(\alpha\) increases, \(|c| = |s|\) remains equal to \(\frac{1}{\sqrt{2}}\). Since \(c\) is real, continuity implies \(c\) stays fixed at \(c = \frac{1}{\sqrt{2}}\) for all \(\alpha\), and hence \(s = e^{i\alpha}/\sqrt{2}\) and \(r = e^{i\alpha}/\sqrt{2}\) are continuous as desired. Thus requirement R3 implies that \(c\) must be nonnegative. Together with \((3)\), this implies that when \(f \neq 0\) we have

\[
\begin{align*}
c & \equiv \frac{|f|}{\sqrt{|f|^2 + |g|^2}} \\
s & \equiv \text{sign}(f) \frac{g}{\sqrt{|f|^2 + |g|^2}} \\
r & \equiv \text{sign}(f) \frac{\bar{g}}{\sqrt{|f|^2 + |g|^2}}
\end{align*}
\]

Formulas (5) obviously define \(f, g, r\) continuously away from \(f = 0\). When \(g = 0\), they simplify to \(c = 1, s = 0\) and \(r = f\). This is attractive because \(R(1,0)\) is the identity matrix, so using it to multiply an arbitrary pair of vectors requires no work.

When \(f = 0\) but \(g \neq 0\) we reexamine \((4)\) in the light of requirement R3. Since \(c\) and \(s\) are not continuous at \(f = 0\), because \(\text{sign}(f)\) can change arbitrarily in a small complex neighborhood of 0, we cannot hope to define \(\theta\) by a continuity argument that includes complex \(f\). Instead, we ask just that \(c, s, r\) be continuous functions of real \(f \geq 0\) and complex \(g \neq 0\), i.e. they should be continuous as \(f\) approaches zero from the right. This limit is easily seen to be

\[
\begin{align*}
c & \equiv 0 \\
s & \equiv \text{sign}(\bar{g}) \\
r & \equiv |g|
\end{align*}
\]

which we take as the definition for \(f = 0\) and complex \(g \neq 0\).

Finally we consider the case \(f = g = 0\). This is impossible to define by continuity, since \(f\) and \(g\) can approach 0 from any direction, so instead we add requirement

R4 Given a choice of \(c\) and \(s\), choose those requiring the least work.

Since \(R(c, s)\) is typically used to multiply a pair of vectors, and \(R(1,0) = I\) requires no work to do this, we set \(c = 1\) and \(s = 0\) when \(f = g = 0\).

In summary, the algorithm for complex or real \(f\) and \(g\) is as follows.

Algorithm 1: Computing Givens Rotations

1. **if** \(g = 0\) (includes the case \(f = g = 0\))
2. \(c = 1\)
3. \(s = 0\)
4. \(r = f\)
elseif \(f = 0 \) (\(g \) must be nonzero)
\[
c = 0
s = \text{sign}(\tilde{g})
r = |g|
\]
else (\(f \) and \(g \) both nonzero)
\[
c = \frac{|f|}{\sqrt{|f|^2 + |g|^2}}
 s = \text{sign}(f) \frac{\tilde{g}}{\sqrt{|f|^2 + |g|^2}}
r = \text{sign}(f) \sqrt{|f|^2 + |g|^2}
\]
endif

When \(f \) and \(g \) are real, the algorithm can be slightly simplified by replacing \(\tilde{g} \) by \(g \).

3 Differences from current LAPACK codes

Here is a short summary of the differences between Algorithm 1 and the algorithms in LAPACK 3.0 and earlier versions. The LAPACK algorithms in question are SLRTG, CLRTG, SLAVG and CLAVG. All the LAPACK release 3.0 test code passed as well with the new Givens rotations as with the old ones (indeed, one test failure in the old code disappeared with the new rotations), so the new definition of Givens rotations satisfies requirement R2.

SLRTG When \(f = 0 \) and \(g \neq 0 \), Algorithm 1 returns \(s = \text{sign}(g) \) whereas SLRTG returns \(s = 1 \). The comment in SLRTG about “saving work” does not mean SBDSQR assumes \(s = 1 \). When \(|f| \leq |g| \) and \(f < 0 \) (so both \(f \) and \(g \) are nonzero), SLRTG returns the negatives of the values of \(c \), \(s \) and \(r \) returned by Algorithm 1.

CLRTG Algorithm 1 is mathematically identical to CLRTG. But it is not numerically identical, see section 8 below.

SLAVG When \(f = g = 0 \), SLAVG returns \(c = 0 \) and \(s = 1 \) instead of \(c = 1 \) and \(s = 0 \). When \(f \neq 0 \) and \(g = 0 \), SLAVG returns \(c = \text{sign}(f) \) instead of \(c = 1 \). When \(f = 0 \) and \(g \neq 0 \), SLAVG returns \(s = 1 \) instead of \(s = \text{sign}(g) \). When \(f \neq 0 \) and \(g \neq 0 \), SLAVG returns \(\text{sign}(c) = \text{sign}(f) \) instead of \(c \geq 0 \).

CLAVG When \(f = g = 0 \), CLAVG return \(c = 0 \) and \(s = 1 \) instead of \(c = 1 \) and \(s = 0 \). When \(f = 0 \) and \(g \neq 0 \), CLAVG returns \(s = 1 \) instead of \(s = \text{sign}(\tilde{g}) \).

4 Assumptions about floating point arithmetic

In LAPACK, we have the routines SLAMCH and DLAMCH available, which return various machine constants that we will need. In particular, we assume that \(\varepsilon \) = machine epsilon is available, which is a power of the machine radix. On machine with IEEE floating point arithmetic, it is either \(2^{-24} \) in single or \(2^{-53} \) in double. Also, we use SAFMIN, which is intended to be the smallest normalized power of the radix whose reciprocal can be computed without overflow. On IEEE machines this should be the underflow threshold, \(2^{-126} \) in single and \(2^{-1022} \) in double. However, on machines where complex division is implemented in the compiler by the fastest but risky algorithm

\[
\frac{a + ib}{c + id} = \frac{ac + bd}{c^2 + d^2} + i \frac{bc - ad}{c^2 + d^2}
\]

the exponent range is effectively halved, since \(c^2 + d^2 \) can over/underflow even though the true quotient is near 1. On these machines SAFMIN may be set to \(\sqrt{\text{SAFMIN}} \) to indicate this. As a result, our scaling algorithms make no assumptions about the proximity of SAFMIN to the actual underflow threshold, and indeed any tiny value rather less than \(\varepsilon \) will lead to correct code, though the closer SAFMIN is to the underflow threshold the fewer scaling steps are needed in extreme cases.
Our algorithms also work correctly and accurately whether or not underflow is gradual. This is important on the processors where default “fast mode” replaces all underflowed quantities by zero. This means that the effective underflow threshold is SAFMIN/ε, since underflow in x can cause a relative error in SAFMIN/ε + x of at most ε, the same as roundoff.

In our scaling algorithms we will use the quantity $z = (ε/\text{SAFMIN})^{1/4}$ rounded to the nearest power of the radix. Thus we use $z^{-4} = \text{SAFMIN}/ε$ as the effective underflow threshold, and $z^4 = ε/\text{SAFMIN}$ as the overflow threshold. Note that we may safely add and subtract many quantities bounded in magnitude by z^4 without incurring overflow. We repeat that the algorithms work correctly, if more slowly, if a conservative estimate of SAFMIN is used (i.e. one that is too large). The powers of z used by the software are computed on the first call, and then saved and reused for later calls. The values of z and its powers for IEEE machines with SAFMIN equal to the underflow threshold are as follows.

<table>
<thead>
<tr>
<th></th>
<th>Single Precision</th>
<th>Double Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAFMIN</td>
<td>$2^{-126} \approx 1 \cdot 10^{-38}$</td>
<td>$2^{-1022} \approx 2 \cdot 10^{-308}$</td>
</tr>
<tr>
<td>ε</td>
<td>$2^{-24} \approx 6 \cdot 10^{-8}$</td>
<td>$2^{-53} \approx 1 \cdot 10^{-16}$</td>
</tr>
<tr>
<td>z</td>
<td>$2^{205} \approx 3 \cdot 10^7$</td>
<td>$2^{242} \approx 7 \cdot 10^7$</td>
</tr>
<tr>
<td>z^{-1}</td>
<td>$2^{-25} \approx 3 \cdot 10^{-8}$</td>
<td>$2^{-242} \approx 1 \cdot 10^{-73}$</td>
</tr>
<tr>
<td>z^{-4}</td>
<td>$2^{-100} \approx 7 \cdot 10^{-31}$</td>
<td>$2^{-968} \approx 4 \cdot 10^{-292}$</td>
</tr>
</tbody>
</table>

The assiduous reader will have noted that Algorithm 1 leaves ambiguous how the sign of zero is treated. Different implementations are free to return +0 or −0 whenever a zero is to be delivered. There seems to be little to be gained by insisting, for example, that $r = -0$ when $f = -0$ and $g = -0$, which is what would actually be computed if $R(1, +0)$ were multiplied by the vector $[-0, -0]^T$.

In later discussion we denote the actual overflow threshold by OV, the underflow threshold by UN, and the smallest nonzero number by m, which is 2 ε-UN on a machine with gradual underflow, and UN otherwise.

5 Complex Algorithm

In what follows we use the convention of capitalizing all variable names, so that C, S and R are the data to be computed from F and G. We use the notation $\text{re}(F)$ and $\text{im}(F)$ to mean the real and imaginary parts of F, and $||w||_{\infty} = \max(|\text{re}(w)|, |\text{im}(w)|)$ for any complex number w. We begin by eliminating the easy cases where at least one of F and G is zero. Variables F, G, S and R are complex, and the rest are real.

Algorithm 2: Computing Givens Rotations when $f = 0$ or $g = 0$

```plaintext
if G = 0
    ... includes the case F = G = 0
    C = 1
    S = 0
    R = F
else if F = 0
    ... G must be nonzero
    C = 0
    scale G by powers of $z^{-4}$ so that $z^{-2} \leq ||G||_{\infty} \leq z^2$
    D1 = sqrt(re(G)**2+im(G)**2)
    R = D1
    D1 = 1/D1
    S = conj(G)*D1
    unscale R by powers of $z^{-4}$
else
    ... both F and G are nonzero
    ... use algorithm described below
endif
```
We note that even though $F = 0 \neq G$ is an “easy” case we need to scale G to avoid over/underflow when computing $\text{re}(G)*\text{im}(G)*2$.

Now assume F and G are nonzero. We can compute C, S and R with the following code fragment, which employs only one division and one square root. The last column shows the algebraically exact quantity computed by each line of code. We assume that real*complex multiplications are performed by two real multiplications (the Fortran implementation does this explicitly rather than relying on the compiler). Variables F, G, R and S are complex, and the rest are real.

Algorithm 3: Fast Complex Givens Rotations when f and g are “well scaled”

1. $F2 := \text{re}(F)*2 + \text{im}(F)*2 \quad |f|^2$
2. $G2 := \text{re}(G)*2 + \text{im}(G)*2 \quad |g|^2$
3. $FG2 := F2 + G2 \quad |f| + |g|^2$
4. $D1 := 1/\sqrt{|F2*FG2|} = 1/(|f|\sqrt{|f|^2 + |g|^2})$
5. $C := F2*D1 \quad |f|/\sqrt{|f|^2 + |g|^2}$
6. $FG2 := FG2*D1 \quad \sqrt{|f|^2 + |g|^2}/|f| = \sqrt{1 + |g|^2/|f|^2}$
7. $R := F*FG2 \quad f\sqrt{1 + |g|^2/|f|^2} = \text{sign}(f)\sqrt{|f|^2 + |g|^2}$
8. $S := F*D1 \quad 1/\sqrt{|f|^2 + |g|^2}$
9. $S := \text{conj}(G)*S \quad 1/\sqrt{|f|^2 + |g|^2}$

Now recall $z = (\varepsilon/\text{SAFE_MIN})^{1/4}$, so that z^2 is an effective overflow threshold and z^{-1} is an effective underflow threshold. The region where the above algorithm can be run reliably is described by the following inequalities, which are numbered to correspond to lines in the above algorithm. All logarithms are to the base 2.

1. We assume $\|f\|_\infty \leq z^2$ to prevent overflow in computation of $F2$
2. We assume $\|g\|_\infty \leq z^2$ to prevent overflow in computation of $G2$
3. This line is safe given previous assumptions.
4a. We assume $z^{-2} \leq \|f\|_\infty$ to prevent underflow of $F2$ and consequent division by zero in the computation of $D1$
4b. We assume $\|f\|_\infty \leq z$ to prevent overflow from the $|f|^4$ term in $F2*FG2$ in the computation of $D1$
4c. We assume $\|f\|_\infty \|g\|_\infty \leq z^2$ to prevent overflow from the $|f|^2|g|^2$ term in $F2*FG2$ in the computation of $D1$

Either

4d. $z^{-1} \leq \|f\|_\infty$

4e. $z^{-2} \leq \|f\|_\infty \|g\|_\infty$

to prevent underflow of $F2*FG2$ and consequent division by zero in the computation of $D1$
5. This line is safe given previous assumptions. If C underflows, it is deserved.
6. $\|g\|_\infty / \|f\|_\infty \leq z^4$ to prevent overflow of $G2$ since $\sqrt{1 + |g|^2/|f|^2} = O(|g|/|f|)$ if $|g|/|f|$ is large.
7. This line is safe given previous assumptions, returning $|R|$ roughly between z^{-1} and z^2. If the smaller component of R underflows, it is deserved.
8. This line is safe given previous assumptions, returning $|S|$ roughly between z^{-2} and 1. The smaller component of S may underflow, but this error is very small compared to the other component of S.
9. This line is safe given previous assumptions. If S underflows, it is deserved.

Note that all the inequalities in the above list describe half planes in $(\log \|f\|_\infty, \log \|g\|_\infty)$ space. For example inequality 6 becomes $\log \|g\|_\infty - \log \|f\|_\infty \leq 4 \log z$.

The region described by all inequalities is shown in figure 1. Each inequality is described by a thin line marked by arrows indicating the side on which the inequality holds. The heavy line borders the safe region S satisfying all the inequalities, where the above algorithm can be safely used.
Figure 1: Inequalities describing the region of no unnecessary over/underflow. UN and OV are the over/underflow thresholds; m is the smallest representable positive number.
It remains to say how to decide whether a point lies in S. The boundary of S is complicated, so the
time to test for membership in S can be nontrivial. Accordingly, we use the simplest tests that are likely to
succeed first, and only then do we use more expensive tests. In particular, the easiest tests are threshold
comparsions with $\|f\|_\infty$ and $\|g\|_\infty$. So we test for membership in the subset of S labeled (1) in Figure 2 by
the following algorithm:

\[
\begin{align*}
\text{if } \|f\|_\infty & \leq z \text{ and } \|f\|_\infty \geq z^{-1} \text{ and } \|g\|_\infty \leq z \text{ then } \\
f, g & \text{ is in Region (1)} \\
\end{align*}
\]

endif

This is called Case 1 in the software.

Region (1) contains all data where $\|f\|_\infty$ and $\|g\|_\infty$ are not terribly far from 1 in magnitude (between
$z^{-1} = 2^{128} \approx 10^{-57}$ and in single between $z^{-1} = 2^{122} \approx 10^{-71}$ in double), which we expect to be most
arguments, especially in double.

The complement of Region (1) in S is shown bounded by dashed lines in Figure 2. It is harder to test for,
because its boundaries require doing threshold tests on the product $\|f\|_\infty \cdot \|g\|_\infty$, which could overflow.
So we will not test for membership in this region explicitly in the case, but do something else instead.

6 When f and g differ greatly in magnitude

When $|g|^2 \leq \varepsilon |f|^2$, then $|f|^2 + |g|^2$ rounds to $|f|^2$, and the formulas for c, s and r may be greatly simplified
and very accurately approximated by

\[
\begin{align*}
c & \approx 1 \\
s & \approx \text{sign}(f) \frac{\tilde{g}}{|f|^2} = \frac{f \cdot \tilde{g}}{|f|^2} \\
r & \approx f
\end{align*}
\]

This region is closely approximated by the regions $\|g\|_\infty \approx \varepsilon^{1/2} \|f\|_\infty$ marked (2) in Figure 2.

When instead $|f|^2 \leq \varepsilon |g|^2$, then $|f|^2 + |g|^2$ rounds to $|g|^2$, and the formulas for c, s and r may be greatly
simplified and very accurately approximated by

\[
\begin{align*}
c & \approx \frac{|f|}{|g|} = \frac{|f|^2}{|f| \cdot |g|} \\
s & \approx \text{sign}(f) \frac{\tilde{g}}{|g|^2} = \frac{f \cdot \tilde{g}}{|f| \cdot |g|} \\
r & \approx \text{sign}(f) |g| = \frac{|g|^2}{|f| \cdot |g|}
\end{align*}
\]

This region is closely approximated by the region $\|f\|_\infty \leq \varepsilon^{1/2} \|g\|_\infty$ marked (3) in Figure 2.

An important difference between the formulas in (7) and (8) versus the formula (3) is that (7) and (8) are independently homogeneous in f and g. In other words, we can scale f and g independently instead of
by the same scalar in order to evaluate them safely. Thus the “shadow” of the region in which the above formulas are safe covers all (f, g) pairs. In contrast in formula (3) f and g must be scaled by the same value.

Here are the algorithms implementing (7) and (8) without scaling. Note that (7) does not even require
a square root.
Algorithm 4: Computing complex Given rotations when $\|g\|_\infty \leq \sqrt{\varepsilon} \|f\|_\infty$, using formulas (7), without scaling

\[
\begin{align*}
\text{if } \|G\|_\infty \leq \sqrt{\varepsilon} \cdot \|F\|_\infty \text{ then} \\
& C = 1 \\
& R = F \\
& D1 = 1/sqrt(\text{re}(F)**2 + \text{im}(F)**2) \\
& S = F \times \text{conj}(G) \\
& S = S \times D1 \\
\text{endif}
\end{align*}
\]

Algorithm 5: Computing complex Given rotations when $\|f\|_\infty \leq \sqrt{\varepsilon} \|g\|_\infty$, using formulas (8), without scaling

\[
\begin{align*}
\text{if } \|F\|_\infty \leq \sqrt{\varepsilon} \cdot \|G\|_\infty \text{ then} \\
& F2 = \text{re}(F)**2 + \text{im}(F)**2 \\
& G2 = \text{re}(G)**2 + \text{im}(G)**2 \\
& FG2 = F2 \times G2 \\
& D1 = 1/sqrt(FG2) \\
& C = F2 \times D1 \\
& S = F \times \text{conj}(G) \\
& S = S \times D1 \\
& D1 = D1 \times G2 \\
& R = D1 \times F \\
\text{endif}
\end{align*}
\]

We may now apply the same analysis as in the last section to these formulas, deducing linear inequalities in $\log ||f||_\infty$ and $\log ||g||_\infty$ which must be satisfied in order to guarantee safe and accurate execution. We simply summarize the results here. In both cases, we get regions with boundaries that, like S, are sets of line segments that may be vertical, horizontal or diagonal. We again wish to restrict ourselves to tests on $||f||_\infty$ and $||g||_\infty$ alone, rather than their product (which might overflow). This means that we identify a smaller safe region (like region (1) within S in Figure 2) where membership can be easily tested. This safe region for Algorithm 4 is the set satisfying

\[
\begin{align*}
z^{-2} \leq ||f||_\infty \leq z^2 \text{ and } z^{-2} \leq ||g||_\infty \leq z^2
\end{align*}
\]

This safe region for Algorithm 5 is the smaller set satisfying

\[
\begin{align*}
z^{-1} \leq ||f||_\infty \leq z \text{ and } z^{-1} \leq ||g||_\infty \leq z
\end{align*}
\]

This leads to the following algorithms, which incorporate scaling.

Algorithm 6: Computing complex Given rotations when $||g||_\infty \leq \sqrt{\varepsilon} ||f||_\infty$, using formulas (7), with scaling

\[
\begin{align*}
\text{if } \|G\|_\infty \leq \sqrt{\varepsilon} \cdot \|F\|_\infty \text{ then} \\
& C = 1 \\
& R = F \\
& \text{scale } F \text{ by powers of } z^{\pm 4} \text{ so } z^{-2} \leq ||F||_\infty \leq z^2 \\
& \text{scale } G \text{ by powers of } z^{\pm 4} \text{ so } z^{-2} \leq ||G||_\infty \leq z^2 \\
& D1 = 1/sqrt(\text{re}(F)**2 + \text{im}(F)**2) \\
& S = F \times \text{conj}(G) \\
& S = S \times D1 \\
& \text{unscale } S \text{ by powers of } z^{\pm 4} \text{ to undo scaling of } F \text{ and } G \\
\text{endif}
\end{align*}
\]
Algorithm 7: Computing complex Given rotations when $\|f\|_{\infty} \leq \sqrt{\|g\|_{\infty}}$, using formulas (8), with scaling

if $\|F\|_{\infty} \leq \sqrt{\|G\|_{\infty}}$ then
 scale F by powers of z^{-2} so $z^{-1} \leq \|F\|_{\infty} \leq z$
 scale G by powers of z^{-2} so $z^{-1} \leq \|G\|_{\infty} \leq z$
 $F2 = \text{re}(F)^{**2} + \text{im}(F)**2$
 $G2 = \text{re}(G)^{**2} + \text{im}(G)**2$
 $FG2 = F2 * G2$
 $D1 = 1/\sqrt{\text{sqrt}(FG2)}$
 $C = F2 * D1$
 $S = F * \text{conj}(G)$
 $S = S * D1$
 $D1 = D1 * G2$
 $R = D1 * F$
endif

Note in Algorithm 7 that the value of S is unaffected by independent scaling of F and G.

7 Scaling in Regions 4a and 4b

For any point (f, g) that does not lie in regions (1), (2) or (3) of Figure 2 we can use the following algorithm:

1. Scale (f, g) to a point $(\text{scale} \cdot f, \text{scale} \cdot g)$ that does lie in S.
2. Apply Algorithm 3 to $(\text{scale} \cdot f, \text{scale} \cdot g)$, yielding c, s, \hat{r}.
3. Unscale to get $r = \hat{r}/\text{scale}$.

This scaling in Figure 2 corresponds to shifting f, g parallel to the diagonal line $f = g$ by $\log \text{scale}$ until it lies in S. It is geometrically apparent that the set of points scalable in regions (4a) and (4b) of Figure 2 lie in the set of all diagonal translates of S, i.e. the “shadow” of S, and can be scaled to lie in S. Indeed, all point in region (2) and many (but not all) points in region (3) can be scaled to lie in S, but in regions (2) and (3) cheaper formulas discussed in the last section are available.

First suppose that (f, g) lies in region (4a). Let $s = \max(||f||_{\infty}, ||g||_{\infty})$. Then if $s > z^2$, we can scale f and g down by z^{-2}. Eventually (f, g) will lie in the union of the two arrow-shaped regions A1 and A2 in Figure 3. Then, if s still exceeds z, i.e. (f, g) is in A1, we multiply f and g by z^{-1}, putting it into A2. Thus, we guarantee that the scaled f and g are in A2, where it is safe to use Algorithm 3.

Next suppose that (f, g) lies in region (4b). Now let $s = ||f||_{\infty}$. Then if $s < z^{-2}$, we can scale f and g up by z^2. Eventually (f, g) will lie in the union of the two parallelograms B1 and B2 in Figure 4. Then, if s is still less than z^{-1}, i.e. (f, g) is in B1, we multiply f and g by z, putting it into B2. Thus, we guarantee that the scaled f and g are in B2, where it is safe to use Algorithm 3.

These considerations lead to the following algorithm.
Algorithm 8: Computing complex Givens rotations when \((f, g)\) is in region (4a) or (4b), with scaling.

... this code is only executed if \(f\) and \(g\) are in region (4a) or (4b)

if \(\|F\|_\infty > 1\)
 scale \(F\) and \(G\) down by powers of \(z^{-2}\) until \(\max(\|F\|_\infty, \|G\|_\infty) \leq z^2\)
 if \(\max(\|F\|_\infty, \|G\|_\infty) > z\), scale \(F\) and \(G\) down by \(z^{-1}\)
else
 scale \(F\) and \(G\) up by powers of \(z^{2}\) until \(\|F\|_\infty \geq z^{-2}\)
 if \(\|F\|_\infty < z\), scale \(F\) and \(G\) up by \(z\)
endif
compute the Givens rotation using Algorithm 3
undo the scaling of \(R\) caused by scaling of \(F\) and \(G\)

We call the overall algorithm new CLARTG, to distinguish from old CLARTG, which is part of the LAPACK 3.0 release. The entire source code in included in the Appendix. It contains 237 noncomment lines, as opposed to 20 in the reference crotg implementation.
Figure 3: Scaling when (f, g) is in Region (4a).

Figure 4: Scaling when (f, g) is in Region (4b).
8 Accuracy Results

The algorithm was run for $43^4 = 3418801$ values of f and g, where the real and imaginary part of f and g independently took on 43 different values ranging from the smallest denormalized number to the overflow threshold, with intermediate values chosen just above and just below the threshold values determining all the edges and corners in Figures 1 through 4, and thus barely satisfying (or not satisfying) all possible branches in the algorithm. The correct answer was computed using a straightforward implementation of Algorithm 1 using double precision arithmetic, in which no overflow nor underflow is possible for the arguments tested. The maximum errors in r, c and s were computed as follows. Here r_s was computed in single using the new algorithm and r_d was computed straightforwardly in double precision; the subscripted c and s variables have analogous meanings. In the absence of gradual underflow, the error metric for r_s is

$$|r_s - r_d|/\max(\varepsilon |r_d|, SAFMIN)$$

and with gradual underflow it is

$$|r_s - r_d|/\max(\varepsilon |r_d|, SAFMIN \times 2 \times \varepsilon)$$

with the maximum taken over all 434 test cases. (The few values of f and g where the true answer overflowed were excluded from the error bound calculation.) Note that $SAFMIN \times 2 \times \varepsilon$ is the smallest denormalized number. Analogous metrics were computed for s, and c.

The routines were first tested on a Sun Ultra-10 using $f77$ with the -fast -O5 flags, which means gradual underflow is not used, i.e. results less than SAFMIN are replaced by 0. Therefore we expect the measure (11) to be at least 1, and hopefully just a little bigger than 1, meaning that the error $|r_s - r_d|$ is either just more than machine epsilon ε times the true result, or a small multiple of the underflow threshold, which is the inherent uncertainty in the arithmetic.

The routines were also tested without any optimization flags, which means gradual underflow is used, so we expect the more stringent measure (12) to be close to 1.

The results are as follows:

<table>
<thead>
<tr>
<th>Without Gradual Underflow</th>
<th>Max error in r_s</th>
<th>Max error in s_s</th>
<th>Max error in c_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>New CLARTG</td>
<td>3.04</td>
<td>2.96</td>
<td>2.46</td>
</tr>
<tr>
<td>Old CLARTG</td>
<td>70588</td>
<td>70588</td>
<td>70292</td>
</tr>
<tr>
<td>Reference cortg</td>
<td>NAN</td>
<td>NAN</td>
<td>NAN</td>
</tr>
<tr>
<td>Modified Reference cortg</td>
<td>3.59</td>
<td>3.41</td>
<td>3.22</td>
</tr>
<tr>
<td>ATLAS cortg</td>
<td>NAN</td>
<td>NAN</td>
<td>NAN</td>
</tr>
<tr>
<td>Limited ATLAS cortg</td>
<td>2.88</td>
<td>1.7 \times 10^7</td>
<td>3.11</td>
</tr>
<tr>
<td>Vendor cortg</td>
<td>NAN</td>
<td>NAN</td>
<td>NAN</td>
</tr>
<tr>
<td>Limited Vendor cortg</td>
<td>3.59</td>
<td>1.7 \times 10^7</td>
<td>3.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>With Gradual Underflow</th>
<th>Max error in r_s</th>
<th>Max error in s_s</th>
<th>Max error in c_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>New CLARTG</td>
<td>3.04</td>
<td>2.96</td>
<td>3.04</td>
</tr>
<tr>
<td>Old CLARTG</td>
<td>4.60</td>
<td>4.27</td>
<td>4913930</td>
</tr>
<tr>
<td>Reference cortg</td>
<td>NAN</td>
<td>NAN</td>
<td>NAN</td>
</tr>
<tr>
<td>Modified Reference cortg</td>
<td>6949350</td>
<td>6952960</td>
<td>6949350</td>
</tr>
</tbody>
</table>

Here is why the old CLARTG fails to be accurate. First consider the situation without gradual underflow. When $|g|$ is just above ε^{-2}, and $|f|$ is just below, the algorithm will decide that scaling is unnecessary. As a result $|f|^2$ may have a nonnegligible relative error from underflow, which creates a nonnegligible relative error in r, s and c. Now consider the situation with gradual underflow. The above error does not occur, but a different one occurs. When $1 \gg |g| \gg |f|$, and f is denormalized, then the algorithm will not scale. As a result $|f|$ suffers a large loss of relative accuracy when it is rounded to the nearest denormalized number, and then $c \approx |f|/|g|$ has the same large loss of accuracy.
Here is why the reference BLAS crot can fail, even though it tries to scale to avoid over/underflow. The scale factor $|f| + |g|$ computed internally can overflow even when $|r| = \sqrt{|f|^2 + |g|^2}$ does not. Now consider the situation without gradual underflow. The sine is computed as $s = (\frac{f}{|f|}) \cdot \frac{(g)}{\sqrt{|f|^2 + |g|^2}}$, where the multiplication is done first. All three quantities in parentheses are quite accurate, but the entries of $f/|f|$ are both less than one, causing the multiplication to underflow to zero, when the true s exceeds 4. This can be repaired by inserting parentheses $s = (\frac{f}{|f|}) \cdot \frac{(g)}{\sqrt{|f|^2 + |g|^2}}$ so the division is done first. Excluding these very large cases, and inserting parentheses, we get the errors on the line “Modified Reference crotg”. Now consider the situation with gradual underflow. Then rounding intermediate quantities to the nearest denormalized number can cause large relative errors, such as s and c both equaling 1 instead of $1/\sqrt{2}$.

The ATLAS and vendor version of crotg were only run with the full optimizations suggested by their authors, which means gradual underflow was not enabled. They also return NaNs for large arguments even when the true answer should have been representable. We did not modify these routines, but instead ran them on the limited subset of examples where $|f| + |g|$ was less than overflow. They still occasionally had large errors that we suspect are due to underflow, since they occurred for small arguments, between SAFMIN and SAFMIN/\varepsilon.

In summary, our systematic procedure produced a provably reliable implementation whereas there are errors in all previous implementations that yield inaccurate results without warning, or fail unnecessarily due to overflow. The latter only occurs when the true r is close to overflow, and so it is hard to complain very much, but the former problem deserves to be corrected.

9 Timing Results

For complex Givens rotations, we compared the new algorithm described above, the old CLARTG from LAPACK, and crotg from the references BLAS. Timings were done on a Sun Ultra-10 using the f77 compiler with optimization flags `-fast -O5`. Each routine was called 10^6 times for arguments through the f, g plane shown in Figure 2. Indeed, 29 cases were tried in all, exercising all paths in the new CLARTG code. The input data is shown in a table below. Each input was run 10 times and the average time taken; the range of timings for each (f, g) input was typically only a few percent.

The timing results are in the Figures 5 and 6. Five algorithms are compared:

1. New CLARTG is the algorithm presented in this report
2. OLD CLARTG is the algorithm in LAPACK 3.0
3. Ref CROTG is the reference BLAS
4. ATLAS CROTG is the ATLAS BLAS
5. Vendor CROTG is Sun’s vendor BLAS

Figure 5 shows absolute times in microseconds, and Figure 6 shows times relative to new CLARTG. The vertical tick marks delimit the cases in the code, as described in the table below.

The most common case is Case 1, at the left of the plots. We see that the new CLARTG is about 20% faster than old CLARTG, and nearly 4 times faster than any version of CROTG.

To get an absolute speed limit, we also ran a version of the algorithm that only works in Case 1; i.e. it omits all tests for scaling of f and g and simply applies the algorithm appropriate for Case 1. This ultimate version ran in about 243 microseconds, about 68% of the time of the new CLARTG. This is the price of reliability. Alternatively, on a system with fast exception handling, one could run this algorithm and then check if an underflow, overflow, or division-by-zero exception occurred, and only recompute in this rare case.

Here is an alternative approach that avoids all need to scale and is fastest overall on the above architecture for IEEE single precision inputs: After testing for the cases $f = 0$ or $g = 0$, use Algorithm 3 in IEEE double precision. The three extra exponent bits eliminate over/underflow. On this machine, this algorithm takes .365 microseconds for all nonzero inputs f and g, nearly exactly the same as Case 1 entirely in single. This algorithm is the algorithm of choice for single precision on this machine, since it is not only the fastest in
most cases, but much simpler. Of course it would not work if the input data were in double, since a wider format is not available on this architecture.

<table>
<thead>
<tr>
<th>Case</th>
<th>Case in code</th>
<th>(f)</th>
<th>(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(0.11E+01, 0.22E+01)</td>
<td>(0.33E+01, 0.44E+01)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(0.31E+08, 0.74E+08)</td>
<td>(0.33E+01, 0.44E+01)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>(0.12E+16, 0.25E+16)</td>
<td>(0.11E+09, 0.15E+09)</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>(0.42E+23, 0.83E+23)</td>
<td>(0.37E+16, 0.50E+16)</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>(0.14E+31, 0.28E+31)</td>
<td>(0.12E+24, 0.17E+24)</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>(0.14E+31, 0.28E+31)</td>
<td>(0.33E+01, 0.44E+01)</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>(0.14E+31, 0.28E+31)</td>
<td>(0.26E-29, 0.35E-29)</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>(0.14E+31, 0.28E+31)</td>
<td>(0.26E-29, 0.35E-29)</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>(0.29E-22, 0.58E-22)</td>
<td>(0.26E-29, 0.35E-29)</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>(0.98E-15, 0.20E-14)</td>
<td>(0.87E-22, 0.12E-21)</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>(0.33E-08, 0.66E-08)</td>
<td>(0.29E-14, 0.39E-14)</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>(0.11E+01, 0.22E+01)</td>
<td>(0.11E+09, 0.15E+09)</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>(0.37E+08, 0.74E+08)</td>
<td>(0.37E+16, 0.50E+16)</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>(0.12E+16, 0.25E+16)</td>
<td>(0.12E+24, 0.17E+24)</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>(0.42E+23, 0.83E+23)</td>
<td>(0.42E+31, 0.56E+31)</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>(0.11E+01, 0.22E+01)</td>
<td>(0.42E+31, 0.56E+31)</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>(0.87E-30, 0.17E-29)</td>
<td>(0.42E+31, 0.56E+31)</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>(0.87E-30, 0.17E-29)</td>
<td>(0.33E+01, 0.44E+01)</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>(0.87E-30, 0.17E-29)</td>
<td>(0.87E-22, 0.12E-21)</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>(0.29E-22, 0.58E-22)</td>
<td>(0.29E-14, 0.39E-14)</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>(0.98E-15, 0.20E-14)</td>
<td>(0.98E-07, 0.13E-06)</td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td>(0.37E+08, 0.74E+08)</td>
<td>(0.11E+09, 0.15E+09)</td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>(0.12E+16, 0.25E+16)</td>
<td>(0.37E+16, 0.50E+16)</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>(0.42E+23, 0.83E+23)</td>
<td>(0.12E+24, 0.17E+24)</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>(0.14E+31, 0.28E+31)</td>
<td>(0.42E+31, 0.56E+31)</td>
</tr>
<tr>
<td>26</td>
<td>4</td>
<td>(0.33E-08, 0.66E-08)</td>
<td>(0.98E-08, 0.13E-07)</td>
</tr>
<tr>
<td>27</td>
<td>4</td>
<td>(0.98E-15, 0.20E-14)</td>
<td>(0.29E-14, 0.39E-14)</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>(0.29E-22, 0.58E-22)</td>
<td>(0.87E-22, 0.12E-21)</td>
</tr>
<tr>
<td>29</td>
<td>4</td>
<td>(0.87E-30, 0.17E-29)</td>
<td>(0.26E-29, 0.35E-29)</td>
</tr>
</tbody>
</table>

10 Computing real Givens Rotations

When both \(f \) and \(g \) are nonzero, the following algorithm minimizes the amount of work:

Algorithm 9: Real Given rotations when \(f \) and \(g \) are nonzero, without scaling

\[
\begin{align*}
FG2 &= F**2 + G**2 \\
R &= \sqrt{FG2} \\
RR &= 1/R \\
C &= abs(F)*RR \\
S &= G*RR \\
\text{if } F < 0 \text{ then} \\
\quad S &= -S \\
\quad R &= -R \\
\end{align*}
\]

We may now apply the same kind of analysis that we applied to Algorithm 3. We just summarize the results here.
Figure 5: Time to compute complex Givens rotations.

Algorithm 10: Real Given rotations when f and g are nonzero, with scaling

```
scale = max( abs(F) , abs(G) )
if scale > $z^{-2}$ then
    scale F, G and scale down by powers of $z^{-2}$ until scale $\leq z^{-2}$
else if scale < $z^{-2}$ then
    scale F, G and scale up by powers of $z^2$ until scale $\geq z^{-2}$
endif
FG2 = F**2 + G**2
R = sqrt(FG2)
RR = 1/R
C = abs(F)*RR
S = G*RR
if F < 0 then
    S = -S
    R = -R
endif
unscale R if necessary
```

The worst case error, measured as in section 8 was 1.45 for r and 1.81 for c and s, with or without gradual underflow. The complete code is located in the Appendix. It contains 74 noncomment lines of code, as opposed to 22 for the reference BLAS srotg.
11 Conclusions

We have justified the specification of Givens rotations put forth in the recent BLAS Technical Forum standard. We have shown how to implement the new specification in a way that is both faster than previous implementations in the most common cases, and more reliable. We used a systematic design process for such kernels that could be used whenever accuracy, reliability against over/underflow, and efficiency are simultaneously desired. A side effect of our approach is that the algorithms are much longer than before.

References

A SLARTG

SUBROUTINE SLARTG(F, G, CS, SN, R)
*
* -- LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* July 23, 2000
* *
.. Scalar Arguments ..
REAL CS, F, G, R, SN
* *
Purpose
* =========
* SLARTG generate a plane rotation so that
* *
[CS SN] . [F] = [R] where CS**2 + SN**2 = 1.
[-SN CS] [G] [0]
* *
This is a slower, more accurate version of the BLAS1 routine SR0TG,
* with the following other differences:
* F and G are unchanged on return.
* If F=0 and G=0, then CS=1, SN=0, and R=0.
* If F.ne. 0 and G=0, then CS=1, SN=0, and R=F.
* If F=0 and G.ne. 0, then CS=0, SN=sign(G), and R=abs(G).
* If F.ne. 0 and (G .ne. 0), then
 CS = abs(F)/sqrt(F**2 + G**2)
 SN = sign(F)*G/sqrt(F**2 + G**2)
 R = sign(F)*sqrt(F**2 + G**2)
* *
This is the only definition with the following properties:
* 1) CS is always nonnegative.
* 2) R is real and nonnegative if F=0.
* 3) CS=1 and SN=0 when F=G=0.
* *
The complex routine CLARTG returns the same
* CS and SN on complex inputs (F,0) and (G,0).
* *
Arguments
* =========
* *
F (input) REAL
* The first component of vector to be rotated.
* *
G (input) REAL
* The second component of vector to be rotated.
* *
CS (output) REAL
* The cosine of the rotation.
* *
SN (output) REAL
* The sine of the rotation.
* R (output) REAL
* The nonzero component of the rotated vector.
*
* ==
* .. Parameters ..
REAL ZERO
PARAMETER (ZERO = 0.0E0)
REAL ONE
PARAMETER (ONE = 1.0E0)
REAL TWO
PARAMETER (TWO = 2.0E0)
*
* ..
* .. Local Scalars ..
LOGICAL FIRST
INTEGER COUNT, I
REAL EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALE
REAL SCL
*
* ..
* .. External Functions ..
REAL SLAMCH
EXTERNAL SLAMCH
*
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, INT, LOG, MAX, SQRT, SIGN
*
* ..
* .. Save statement ..
SAVE FIRST, EPS, SAFMX2, SAFMIN, SAFMN2, SAFMN
SAVE SAFMX
*
*..
* .. Data statements ..
DATA FIRST / .TRUE. /
*
*..
* .. Executable Statements ..
*
IF(FIRST) THEN
*
 On first call to SLARTG, compute
 SAFMN2 = sqrt(SAFMIN/EPS) rounded down to the nearest power
 of the floating point radix
 This means that scaling by multiplication by SAFMN2 and its
 reciprocal SAFMX2 cause no roundoff error
*
 FIRST = .FALSE.
 SAFMIN = SLAMCH('S')
 EPS = SLAMCH('E')
 SAFMN2 = SLAMCH('B')**INT(LOG(SAFMIN / EPS) /
 LOG(SLAMCH('B')) / TWO)
 SAFMN = SAFMN2**2
 SAFMX2 = ONE / SAFMN2
 SAFMX = SAFMX2**2
END IF
IF(G.EQ.ZERO) THEN
* Includes the case F=G=0
*
CS = ONE
SN = ZERO
R = F
ELSE IF(F.EQ.ZERO) THEN
*
* G must be nonzero
*
CS = ZERO
SN = SIGN(ONE, G)
R = ABS(G)
ELSE
*
* Both F and G must be nonzero
*
F1 = F
G1 = G
SCALE = MAX(ABS(F1), ABS(G1))
COUNT = 0
IF(SCALE.GE.SAFMX2) THEN
*
* Handle case where F1**2 + G1**2 might overflow
*
SCL = SAFMX2
10 CONTINUE
COUNT = COUNT + 1
F1 = F1*SAFMN2
G1 = G1*SAFMN2
SCALE = SCALE*SAFMN2
IF(SCALE.GE.SAFMX2)
 GO TO 10
ELSE IF(SCALE.LE.SAFMN2) THEN
*
* Handle case where F1**2 + G1**2 might underflow
*
SCL = SAFMN2
30 CONTINUE
COUNT = COUNT + 1
F1 = F1*SAFMX2
G1 = G1*SAFMX2
SCALE = SCALE*SAFMX2
IF(SCALE.LE.SAFMN2)
 GO TO 30
ENDDIF
R = SQRT(F1**2+G1**2)
RR = ONE/R
CS = ABS(F1) * RR
SN = G1 * RR
IF (F .LT. ZERO) THEN
 R = -R
 SN = -SN
ENDDIF
DO 40 I = 1, COUNT
 R = R*SCL
40 CONTINUE
ENDIF
RETURN
*
* End of SLARTG
*
END
B CLARTG

SUBROUTINE CLARTG(F, G, CS, SN, R)
*
* -- LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* July 22, 2000
*
* .. Scalar Arguments ..
REAL CS
COMPLEX F, G, R, SN
*
* Purpose
* ======
* CLARTG generates a plane rotation so that
* *
* [CS SN] [F] [R]
* [-- --] . [] = [] where CS**2 + |SN||SN|**2 = 1.
* [-SN CS] [G] [0]
* *
* This is a faster version of the BLAS1 routine CRUTG, except for
* the following differences:
* F and G are unchanged on return.
* If F=0 and G=0, then CS=1, SN=0, and R=0.
* If F .ne. 0 and G=0, then CS=1, SN=0, and R=F.
* If F=0 and G .ne. 0, then CS=0, SN=conj(G)/abs(G), and R=abs(G).
* If F .ne. 0 and G .ne. 0, then
* CS = abs(F)/sqrt(F**2 + G**2)
* SN = (F/abs(F))*conj(G)/sqrt(F**2 + G**2)
* R = (F/abs(F))*sqrt(F**2 + G**2)
* *
* This is the only definition with the following properties:
* 1) CS is always real and nonnegative.
* 2) R is real and nonnegative if F=0.
* 3) CS=1 and SN=0 when F=G=0.
* *
* The real routine SLARTG returns the same
* CS and SN if the inputs F and G are real.
* *
* Arguments
* ========
*
* F (input) COMPLEX
* The first component of vector to be rotated.
* *
* G (input) COMPLEX
* The second component of vector to be rotated.
* *
* CS (output) REAL
* The cosine of the rotation.
* SN (output) COMPLEX
 * The sine of the rotation.
* R (output) COMPLEX
 * The nonzero component of the rotated vector.
*
* ==
* .. Parameters ..
REAL FOUR, ONE, ZERO
PARAMETER (FOUR = 4.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0)
COMPLEX CZERO
PARAMETER (CZERO = (0.0E+0, 0.0E+0))
* ..
* .. Local Scalars ..
LOGICAL FIRST, AGAIN
INTEGER COUNT, I
REAL D1, EPS, F2, G2, SAFMIN,
$ SAFMN2, SAFMX2, SAFMN4, SAFMX4, SAFMN, SAFMX,
$ SCALEF, SCALEG, SCALEFG, FG2, SQREPS
COMPLEX FF, FS, GS
* ..
* .. External Functions ..
REAL SLAMCH, SLAPY2
EXTERNAL SLAMCH, SLAPY2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, CMPLX, CONJG, INT, LOG, MAX, REAL,
$ SQRT
* ..
* .. Statement Functions ..
REAL ABS1, ABSSQ
* ..
* .. Save statement ..
SAVE FIRST, SAFMIN, EPS, SQREPS
SAVE SAFMX2, SAFMX4, SAFMN2, SAFMN4, SAFMN, SAFMX
* ..
* .. Data statements ..
DATA FIRST / .TRUE. /
* ..
* .. Statement Function definitions ..
ABS1(FF) = MAX(ABS(REAL(FF)), ABS(AIMAG(FF)))
ABSSQ(FF) = REAL(FF)**2 + AIMAG(FF)**2
* ..
* .. Executable Statements ..
*
IF(FIRST) THEN
 *
 On first call to SLARTG, compute
 *
 SAFMN4 = (SAFMIN/EPS)**.25 rounded down to the nearest power
 of the floating point radix
 * SAFMN2 = (SAFMIN/EPS)**.5 rounded down to the nearest power
 of the floating point radix
*
24
This means that scaling by SAFMN(2,4) and their
reciprocals SAFMX(2,4) causes no roundoff error

FIRST = .FALSE.
SAFMIN = SLAMCH('S')
EPS = SLAMCH('E')
SQREPS = SQRT(EPS)
SAFMIN4 = SLAMCH('B')**INT(LOG(SAFMIN / EPS) /
 LOG(SLAMCH('B')) / FOUR)
$
SAFMIN2 = SAFMIN4**2
SAFMN = SAFMN2**2
SAFMX4 = ONE / SAFMN4
SAFMX2 = SAFMX4**2
SAFMX = SAFMX2**2
ENDIF

SCALEF = ABS1(F)
SCALEG = ABS1(G)
IF(SCALEF .EQ. ZERO) THEN
 Includes the case F=G=0
 CS = ONE
 SN = CZERO
 R = F
ELSEIF(SCALEF .EQ. ZERO) THEN
 G must be nonzero
 CS = ZERO
 GS = G
 COUNT = 0
 IF(SCALEG .GT. SAFMX2) THEN
 CONTINUE
 COUNT = COUNT + 1
 GS = GS * SAFMN
 SCALEG = SCALEG * SAFMN
 IF(SCALEG .GT. SAFMX2) GOTO 1
 SCALE = SAFMX
 ELSEIF(SCALEG .LT. SAFMN2) THEN
 CONTINUE
 COUNT = COUNT + 1
 GS = GS * SAFMX
 SCALEG = SCALEG * SAFMX
 IF(SCALEG .LT. SAFMN2) GOTO 2
 SCALE = SAFMN
 ENDIF
 D1 = SQRT(REAL(GS)**2 + AIMAG(GS)**2)
 R = D1
 D1 = ONE/D1
 SN = CMPLX(REAL(GS)*D1, -AIMAG(GS)*D1)
 DO 3 I = 1, COUNT
 R = CMPLX(REAL(R)*SCALE, AIMAG(R)*SCALE)
 3 CONTINUE
CONTINUE
ELSE

* Both F and G must be nonzero
*
IF (SCALEF.LE.SAFMX4 .AND. SCALEF.GE.SAFMN4 .AND.
 SCALEG.LE.SAFMX4) THEN

* Case 1: neither F nor G too big or too small, minimal work
*
 F2 = ABSSQ(F)
 G2 = ABSSQ(G)
 FG2 = F2*G2
 D1 = ONE/SQRT(F2*FG2)
 CS = F2*D1
 FG2 = FG2 * D1
 R = CMPLX(REAL(F)*FG2, AIMAG(F)*FG2)
 SN = CMPLX(REAL(F)*D1 , AIMAG(F)*D1)
 SN = CONJG(G) * SN
ELSEIF(SCALEF .LT. SQREPS*SCALEF) THEN

* Case 2: ABS(F)**2 + ABS(G)**2 rounds to ABS(F)**2
*
 CS = ONE
 R = F
 FS = F
 GS = G
 COUNT = 0
 IF (SCALEF .GT. SAFMX2) THEN
 CONTINUE
 COUNT = COUNT + 1
 FS = FS * SAFMN
 SCALEF = SCALEF * SAFMN
 IF (SCALEF .GT. SAFMX2) GOTO 10
 ELSEIF(SCALEF .LT. SAFMN2) THEN
 CONTINUE
 COUNT = COUNT - 1
 FS = FS * SAFMX
 SCALEF = SCALEF * SAFMX
 IF (SCALEF .LT. SAFMN2) GOTO 20
 ENDIF
 IF (SCALEF .GT. SAFMX2) THEN
 CONTINUE
 COUNT = COUNT - 1
 GS = GS * SAFMN
 SCALEF = SCALEF * SAFMN
 IF (SCALEF .GT. SAFMX2) GOTO 30
 ELSEIF(SCALEF .LT. SAFMN2) THEN
 CONTINUE
 COUNT = COUNT + 1
 GS = GS * SAFMX
 SCALEF = SCALEF * SAFMN
 IF (SCALEF .LT. SAFMN2) GOTO 40
 ENDIF
D1 = ONE/(REAL(FS)**2 + AIMAG(FS)**2)
SN = FS * CONJG(GS)
SN = CMPLX(REAL(SN)*D1 , AIMAG(SN)*D1)
IF(COUNT .GT. 0) THEN
 DO 50 I = 1, COUNT
 SN = CMPLX(REAL(SN)*SAFMN , AIMAG(SN)*SAFMN)
 CONTINUE
ELSEIF(COUNT .LT. 0) THEN
 DO 60 I = 1, -COUNT
 SN = CMPLX(REAL(SN)*SAFMX , AIMAG(SN)*SAFMX)
 CONTINUE
ENDIF
ELSEIF(SCALEF .LT. SQREPS*SCALEG) THEN
 *
 * Case 3: ABS(F)**2 + ABS(G)**2 rounds to ABS(G)**2
 *
 FS = F
 GS = G
 COUNTF = 0
 COUNTG = 0
IF(SCALEF .GT. SAFMX4) THEN
 CONTINUE
 COUNTF = COUNTF + 1
 FS = FS * SAFMN2
 SCALEF = SCALEF * SAFMN2
 IF(SCALEF .GT. SAFMN4) GOTO 70
ELSEIF(SCALEF .LT. SAFMN4) THEN
 CONTINUE
 COUNTF = COUNTF - 1
 FS = FS * SAFMX2
 SCALEF = SCALEF * SAFMX2
 IF(SCALEF .LT. SAFMN4) GOTO 80
ENDIF
IF(SCALEG .GT. SAFMX4) THEN
 CONTINUE
 COUNTG = COUNTG + 1
 GS = GS * SAFMN2
 SCALEG = SCALEG * SAFMN2
 IF(SCALEG .GT. SAFMN4) GOTO 90
ELSEIF(SCALEG .LT. SAFMN4) THEN
 CONTINUE
 COUNTG = COUNTG - 1
 GS = GS * SAFMX2
 SCALEG = SCALEG * SAFMX2
 IF(SCALEG .LT. SAFMN4) GOTO 100
ENDIF
F2 = REAL(FS)**2 + AIMAG(FS)**2
G2 = REAL(GS)**2 + AIMAG(GS)**2
D1 = ONE/SQRT(F2*G2)
CS = F2*D1
SN = FS * CONJG(GS)
SN = CMPLX(REAL(SN)*D1 , AIMAG(SN)*D1)
D1 = G2*D1
R = CMPLX(REAL(FS)*D1 , AIMAG(FS)*D1)
COUNT = COUNTF - COUNTG
IF(COUNT .GT. 0) THEN
 DO 110 I = 1, COUNT
 CS = CS*SAFMX2
 CONTINUE
110
ELSEIF(COUNT .LT. 0) THEN
 DO 120 I = 1, -COUNT
 CS = CS*SAFMN2
 CONTINUE
120
ENDIF
IF(COUNTG .GT. 0) THEN
 DO 130 I = 1, COUNTG
 R = CMPLX(REAL(R)*SAFMX2, AIMAG(R)*SAFMX2)
 CONTINUE
130
ELSEIF(COUNTG .LT. 0) THEN
 DO 140 I = 1, -COUNTG
 R = CMPLX(REAL(R)*SAFMN2, AIMAG(R)*SAFMN2)
 CONTINUE
140
ENDIF
ELSE
 * Case 4: Scale F and G up or down and use formula from Case 1
 *
 FS = F
 GS = G
 COUNT = 0
 AGAIN = .FALSE.
 SCALEFG = MAX(SCALEF, SCALEG)
 IF(SCALEFG .GT. ONE) THEN
 SCALE = SAFMX2
 CONTINUE
 IF(SCALEFG .LE. SAFMX2) GOTO 151
 COUNT = COUNT + 1
 FS = FS * SAFMN2
 GS = GS * SAFMN2
 SCALEFG = SCALEFG * SAFMN2
 GOTO 150
151
 CONTINUE
 IF(SCALEFG .GT. SAFMX4) THEN
 SCALE2 = SAFMX4
 AGAIN = .TRUE.
 FS = FS * SAFMN4
 GS = GS * SAFMN4
 ENDIF
ELSE
 SCALE = SAFMN2
 CONTINUE
 COUNT = COUNT + 1
 FS = FS * SAFMX2
 GS = GS * SAFMX2
 SCALEF = SCALEF * SAFMX2
 IF(SCALEF .LT. SAFMN2) GOTO 160
 IF(SCALEF .LT. SAFMN4) THEN
 SCALE2 = SAFMN4
 ENDIF
160
AGAIN = .TRUE.
FS = FS * SAFMX4
GS = GS * SAFMX4
ENDIF
ENDIF
F2 = ABSSQ(FS)
G2 = ABSSQ(GS)
FG2 = F2+G2
D1 = ONE/SQRT(F2*FG2)
CS = F2*D1
FG2 = FG2 * D1
R = CMPLX(REAL(FS)*FG2, AIMAG(FS)*FG2)
SN = CMPLX(REAL(FS)*D1 , AIMAG(FS)*D1)
SN = CONJG(GS) * SN
DO 170 I = 1, COUNT
 R = CMPLX(REAL(R) * SCALE, AIMAG(R) * SCALE)
170 CONTINUE
IF (AGAIN)
 $ R = CMPLX(REAL(R) * SCALE2, AIMAG(R) * SCALE2)
ENDIF
ENDIF
RETURN
*
* End of CLARTG
*
END