
A reursive formulation of Cholesky fatorizationof a matrix in paked storage�Bjarne S. Anderseny Fred G. GustavsonzJerzy Wa�sniewskiyAbstratA new ompat way to store a symmetri or triangular matrix alled RPFfor Reursive Paked Format is fully desribed. Novel ways to transformRPF to and from standard paked format is inluded. A new algorithm,alled RPC for Reursive Paked Cholesky that operates on the RPFformat is presented. Algorithm RPC is level 3 BLAS based and requirealgorithms TRSM and SYRK that work on RPF. We thus introdue andfully desribe novel reursive algorithms RP TRSM and RP SYRKthat the RPC algorithm requires. It turns out, that both RP TRSMand RP SYRK only all GEMM. Hene RPC mostly alls GEMMduring exeution.The advantage of this storage sheme ompared to traditional pakedstorage is demonstrated. First, both storage shemes use the minimalamount of storage for the symmetri or triangular matrix. Seond, RPCgives a level 3 implementation of Cholesky fatorization that only requiresstandard full format GEMM whereas standard paked implementationsare only level 2. Hene, performane wise our RPC implementation isdeidedly superior.We present performane measurements on several urrent arhiteturesthat demonstrate order of magnitude improvements over the traditionalpaked routines. Also SMP parallel omputations on the IBM SMP om-puter are made. The Graphs, whih are attahed in the appendix of thepaper, show that the RPC algorithms are superior by a fator of 2 to 9over the traditional paked algorithms.�This work has been submitted for publiation. Copyright may be transferred withoutfurther notie and the aepted version may then be posted by the publisher.yDanish Computing Center for Researh and Eduation (UNI�C), DTU, Building 304, DK-2800 Lyngby, Denmark, Bjarne.Stig.Andersen�uni-.dk and Jerzy.Wasniewski�uni-.dkrespetively.zIBM T.J. Watson Researh Center, P.O. Box 218, Yorktown Heights, NY 10598, USA,gustav�watson.ibm.om
1

21 IntrodutionA very important lass of linear algebra problems are those in whih the oef-�ient matrix A is symmetri and positive de�nite [5, 11, 23℄. Beause of thesymmetry it is only neessary to store either the upper or lower triangular partof the matrix.Lower triangular ase0BBBBBBBB� 12 93 10 174 11 18 255 12 19 26 336 13 20 27 34 417 14 21 28 35 42 49
1CCCCCCCCA

Upper triangular ase0BBBBBBBB� 1 8 15 22 29 36 439 16 23 30 37 4417 24 31 38 4525 32 39 4633 40 4741 4849
1CCCCCCCCAFigure 1: The mapping of 7� 7 matrix for the LAPACK Cholesky Algorithmusing the full storage (LDA= 7 if in Fortran77)Lower triangular ase0BBBBBBBB� 12 83 9 144 10 15 195 11 16 20 236 12 17 21 24 267 13 18 22 25 27 28

1CCCCCCCCA
Upper triangular ase0BBBBBBBB� 1 2 4 7 11 16 223 5 8 12 17 236 9 13 18 2410 14 19 2515 20 2621 2728

1CCCCCCCCAFigure 2: The mapping of 7 � 7 matrix for the LAPACK Cholesky Algorithmusing the paked storage1.1 LAPACK POTRF and PPTRF subroutinesThe LAPACK library[3℄ o�ers two di�erent kind of subroutines to solve the sameproblems, for instane POTRF1 and PPTRF both fatorize symmetri, positive1Four names SPOTRF, DPOTRF, CPOTRF and ZPOTRF are used in LAPACK for realsymmetri and omplex Hermitian matries[3℄, where the �rst harater indiates the preisionand arithmeti versions: S { single preision, D { double preision, C { omplex and Z { doubleomplex. LAPACK95 uses one name LA POTRF for all versions[7℄. POTRF and/or PPTRFexpress, in this paper, any preision, any arithmeti and any language version of the POand/or PP matrix fatorization algorithms.

3de�nite matries by means of the Cholesky algorithm. The only di�erene isthe way the triangular matrix is stored (see �gures 1 and 2).In the POTRF ase the matrix is stored in one of the lower left or upper righttriangles of a full square matrix[16, page 64℄ 2, the other triangle is wasted (see�gure 1). Beause of the uniform storage sheme, bloking and level 3 BLAS[8℄subroutines an be employed, resulting in a high speed solution.In the PPTRF ase the matrix is kept in paked storage ([1℄, [16, page 74,75℄), whih means that the olumns of the lower or upper triangle are storedonseutively in a one dimensional array (see �gure 2). Now the triangularmatrix only oupies the stritly neessary storage spae but the nonuniformstorage sheme means that use of full storage BLAS is impossible and only thelevel 2 BLAS[20, 9℄ paked subroutines an be employed, resulting in a lowspeed solution.To summarize, there is a hoie between high speed with waste of memoryversus low speed with no waste of memory.1.2 A new Way of Storing Real Symmetri and ComplexHermitian and, in either ase, Positive De�nite Ma-triesTogether with some new reursively formulated linear algebra subroutines, wepropose a new way of storing a lower or upper triangular matrix that solves thisdilemma[14, 24℄. In other words we obtain the speed of POTRF with the amountof memory used by PPTRF. The new storage sheme is named RPF, reursivepaked format(see �gure 4), and it is explained below.The bene�t of reursive formulations of the Cholesky fatorization and theLU deomposition is desribed in the works of Gustavson [14℄ and Toledo [22℄.The symmetri, positive de�nite matrix in the Cholesky ase is kept in fullmatrix storage, and the emphasis in these works are the better data loalityand thus better utilization of the omputers memory hierarhy, that reursiveformulations o�er. However, the reursive paked formulation also has thisproperty.We will provide a very short introdution on a omputer memory hierar-hy and the Basi Linear Algebra Subprograms (BLAS) before desribing theReursive Paked Cholesky (RPC) and the Reursive Paked Format (RPF).1.3 The Rationale behind introduing our New ReursiveAlgorithm, RPC and the New Reursive Data Format,RPFComputers have several levels of memory. The ow of data from the memoryto the omputational units is the most important fator governing performaneof engineering and sienti� omputations. The objet is to keep the funtionalunits running at their peak apaity. Through the use of a memory hierarhy2In Fortran olumn major, in C row major.

4system (see �gure 3), high performane an be ahieved by using loality ofreferene within a program. In the present ontext this is alled bloking. pu Registers Cahe Level 1 Cahe Level 2 Cahe Level 3 Loal Memory Shared Memory Distributed Memory Seondary Storage 1 Seondary Storage 2! Faster, sma
ller, more exp

ensive
Slower, larger

, heaper
Figure 3: A omputer memory hierarhyAt the top of the hierarhy is a Central Proessing Unit (CPU). It ommu-niates diretly with the registers. The number of the registers is usually verysmall. A Level 1 ahe is diretly onneted to the registers. The omputerwill run with almost peak performane if we are able to deliver the data to theL1 (level 1) ahe in suh way that the CPU is permanently busy. There areseveral books desribing problems assoiated with the omputer memory hier-arhy. The literature in [10, 5, 11℄ is adequate for Numerial Linear Algebraspeialists.The memories near the CPU (registers and ahes) have a faster aess toCPU than the memories further away. The fast memories are very expensiveand this is one of the reason that they are small. The register set is tiny. Cahememories are muh larger than the set of registers. However, L1 ahe is stillnot large enough for solving sienti� problems. Even a subproblem like matrixfatorization does not �t into ahe if the order of the matrix is large.A speial set of Basi Linear Algebra Subprograms (BLAS) have been de-veloped to address the omputer memory hierarhy problem in the area of Nu-merial Linear Algebra. The BLAS are doumented in [20, 9, 8, 6℄. BLAS arevery well summarized and explained for Numerial Linear Algebra speialistsin [10, 5℄.There are three levels of BLAS: Level 1 BLAS shows vetor vetor opera-tions, Level 2 BLAS shows vetor matrix (and/or matrix vetor) operations,and Level 3 BLAS shows matrix matrix operations.For Cholesky fatorization one an make the following three observationswith respet to the BLAS.1. Level 3 implementations using full storage format run fast.2. Level 3 implementations using paked storage format rarely exist. A level 3implementation was previously used in [16℄, however, at great program-ming ost. Conventional Level 2 implementations using paked storage

5format run, for large problem sizes, onsiderably slower than the full stor-age implementations.3. Transforming onventional paked storage to RPF and using our RPCalgorithm produes a Level 3 implementation using the same amount ofstorage as paked storage.1.4 Overview of the PaperSetion 2 desribes the new paked storage data format and the data transfor-mations to and from onventional paked storage. Setion 2.1 desribes on-ventional lower and upper triangular paked storage. Setion 2.2 disusses howto transform in plae either a lower or upper trapezoid paked data format toreursive paked data format and vie versa. Setion 2.3 desribes the possi-bility to transpose the matrix while it is reordered from paked to reursivepaked format and vie versa. Finally, in Setion 2.4 the reursive aspets ofthe data transformation is desribed. These four subsetions desribe the inplae transformation pitorially via several �gures.In Setions 3.1 and 3.2, reursive TRSM and SYRK, both whih work onRPF, are desribed. Both routines do almost all their required oating pointoperations by alling level 3 BLAS GEMM. Finally, in Setion 3.3, the RPCalgorithm is desribed in terms of using the reursive algorithms of Setions 3.1and 3.2. As in Setion 2, all three algorithms are desribed pitorially via several�gures. Note that the RPC algorithm only uses one Level 3 BLAS subroutine,namely GEMM. Usually the GEMM routine is very speialized, highly tunedand done by the omputer manufaturer. If not, the ATLAS[25℄ GEMM an beused.Setion 4 explains that the RPC algorithm is numerially stable.Setion 5 desribes performane graphs of the paked storage LAPACK[3℄algorithms and of our reursive paked algorithms on several omputers; themost typial omputers like COMPACQ, HP, IBM SP, IBM SMP, INTEL Pen-tium, SGI and SUN were onsidered (�gures 11, : : :, 17). All these resultsshow that the reursive paked Cholesky fatorization (RP PPTRF) and thesolution (RP PPTRS) are 4 { 9 times faster than the traditional paked sub-routines. There are three more graphs. One demonstrates suessful use ofOpenMP[17, 18℄ parallelizing diretives (�gure 18). The seond graph showsthat the reursive data format is also e�etive for the omplex arithmeti (�g-ure 19). The third one shows the performane of all three algorithms for theCholesky fatorization (POTRF, PPTRF and RP PPTRF) and the solution(POTRS, PPTRS and RP PPTRS) (�gure 20).Setion 6 disusses the most important developments in this paper.2 The reursive paked storageA new way to store triangular matries in paked storage alled reursive pakedis presented. This is a storage sheme by its own right, and a way to explain it,

6is to desribe the onversion from paked to reursive paked storage and vieversa (see �gures 2 and 4). Lower triangular ase0BBBBBBBB� 123 45 67 11 158 12 169 13 1710 14 18 1920 2122 2423 25 2627 28
1CCCCCCCCAUpper triangular ase0BBBBBBBB� 1 2 34 56 7 10 13 168 11 14 179 12 15 1819 2021 22 2423 2526 2728
1CCCCCCCCAFigure 4: The mapping of 7 � 7 matrix for the Cholesky Algorithm using thereursive paked storage. The reursive blok division is illustrated.2.1 Lower and upper triangular paked storageSymmetri, omplex hermitian or triangular matries may be stored in pakedstorage form (see LAPACK Users' Guide [3℄, IBM ESSL Library manual[16,pages 66{67℄ and �gure 2). The olumns of the triangle are stored sequentiallyin a one dimensional array starting with the �rst olumn. The mapping betweenpositions in full storage and in paked storage for a triangular matrix of size mis, Ai;j i; j UPLOAPi+(j�1)j=2 1 � j � m1 � i � j 'U'APi+(j�1)(2m�j)=2 1 � j � mj � i � m 'L' 3The advantage of this storage is the saving of almost half 4 the memoryompared to full storage.3For UPLO = 'U' upper triangular and for UPLO = 'L' lower triangular of A is stored.4At least m � (m � 1)=2. This formulae is a funtion of LDA (leading dimension of A)and m in Fortran77. The saving in Fortran77 is m� (2� LDA�m� 1)=2.

72.2 Reordering of a lower and upper trapezoidPaked storage
m-pp m-pp LAPACK paked storage memory mapm(m + 1)=2 wordsbu�er p(p� 1)=2 wordsReursive paked storage memory mapm(m + 1)=2 wordsFigure 5: Reordering of the lower paked matrix. First, the last p� 1 olumnsof the leading triangle are opied to the bu�er. Then, in plae, the olumns ofthe aentuated retangle are assembled in the bottom spae of the trapezoid.Last, the bu�er is opied bak to the top of the trapezoid.It is assumed that the matries are stored in olumn major order, but theonepts in the paper are fully appliable also if the matries are stored in rowmajor order. As an intermediate step to transform a paked triangular ma-trix to a reursive paked matrix, the matrix is divided into two parts alonga olumn thus dividing the matrix in a trapezoidal and a triangular part asshown in �g. 5 and 6. The triangular part remains in paked form, thetrapezoidal part is reordered so it onsists of a triangle in paked form, anda retangle in full storage form. The reordering demands a bu�er of the sizeof the triangle minus the longest olumn. The reordering in the lower ase,�g. 5, takes the following steps. First the olumns of the triangular part ofthe trapezoid are moved to the bu�er (note that the �rst olumn is in or-ret plae), then the olumns of the retangular part of the trapezoid aremoved into onseutive loations and �nally the bu�er is opied bak to theorret loation in the reordered array. If p in �gure 5 is hosen to bm=2the retangular submatrix will be square or deviate from a square only by asingle olumn. The bu�er size is p(p � 1)=2 and the addresses of the lead-

8

Paked storage m-pp
m-pp

LAPACK paked storage memory mapm(m + 1)=2 words bu�er(m� p)(m� p� 1)=2 wordsReursive paked storage memory mapm(m + 1)=2 wordsFigure 6: Reordering of the upper paked matrix. First, the �rst m � p � 1olumns of the trailing triangle are opied to the bu�er. Then, in plae, theolumns of the aentuated retangle are assembled in the top spae of thetrapezoid. Last, the bu�er is opied bak to the bottom of the trapezoid.ing triangle, the retangular submatrix and the trailing triangle are given by,� 1� 1 + p(p+ 1)=2� 1 +mp� p(p� 1)=2After the reordering the leading and trailing triangles are both in the samelower or upper paked storage sheme as the original triangular matrix. Thereordering an be implemented as subroutines,subroutine TPZ TO TR(m; p;AP)and subroutine TR TO TPZ (m; p;AP)where TPZ TO TR means the reordering of the trapezoidal part from pakedformat to the triangular-retangular format just desribed. TR TO TPZ is theopposite reordering.

92.3 Transposition of the retangular partThe retangular part of the reordered matrix are now kept in full matrix storage.If desired, this o�ers an exellent opportunity to transpose the matrix while it istransformed to reursive paked format. If the retangular submatrix is squarethe transposition an be done ompletely in-plae. If it deviates from a square bya olumn, a bu�er of the size of the olumns is neessary to do the transposition,for this purpose we an reuse the bu�er used for the reordering.2.4 Reursive appliation of the reorderingThe method of reordering is applied reursively to the leading and trailing tri-angles whih are still in paked storage, until �nally the originally triangularpaked matrix is divided in retangular submatries of dereasing size, all infull storage. The implementation of the omplete transformation from pakedto reursive paked format, P TO RP is (ompare the �gures 2 and 4),reursive subroutine P TO RP(m;AP)if (m > 1) thenp = bm=2all TPZ TO TR(m; p;AP)all P TO RP(p;AP)all P TO RP(m� p;AP(1 +mp� p(p� 1)=2))end ifendand the inverse transformation from reursive paked to paked, RP TO P is,reursive subroutine RP TO P(m;AP)if (m > 1) thenp = bm=2all RP TO P(p;AP)all TR TO TPZ (m; p;AP)all RP TO P(m� p;AP(1 +mp� p(p� 1)=2))end ifendThe examples shown here onerns the lower triangular matrix, but the uppertriangular transformation, and the transformation with transposition followsthe same pattern. The �gure 7 illustrates the reursive division of small lowerand upper triangular matries.

10

Figure 7: The lower and upper triangular matries, in reursive paked storagedata format, for m = 20. The retangular submatries, shown in the �gures,are kept in full storage in olumn major order, in the array ontaining the wholematries.3 Reursive formulation of the Cholesky algo-rithm and its neessary BLASTwo BLAS[6℄ operations, the triangular solver with multiple right hand sides,TRSM5 and the rank k update of a symmetri matrix, SYRK are needed for thereursive Cholesky fatorization and solution, RP PPTRF6 and RP PPTRS[2℄.In this setion RP TRSM, RP SYRK, RP PPTRF and RP PPTRS are for-mulated reursively and their use of reursive paked operands are explained.TRSM, SYRK, PPTRF and PPTRS operate in various ases depending of theoperands and the order of the operands. In the following we only onsider singlespei� ases, but the dedution of the other ases follows the same guidelines.All the omputational work in the reursive BLAS routines RP TRSM andRP SYRK (and also RP TRMM) is done by the non reursive matrix-matrixmultiply routine GEMM[19, 25℄. This is a very attrative property, sine GEMMusually is or an be highly optimized on most urrent omputer arhitetures.The GEMM operation is very well doumented and explained in [12, 13, 6℄.The speed of our omputation depends very muh from the speed of a goodGEMM. Good GEMM implementations are usually developed by omputermanufaturers. The model implementation of GEMM an be obtained from5On naming of TRSM, SYRK, HERK and GEMM see footnote of POTRF on page 1.6The pre�x RP indiates that the subroutine belongs to the Reursive Paked library, forexample RP PPTRF is the Reursive Paked Cholesky fatorization routine.

11netlib [6℄; it works orretly but slowly. The Innovative Computing Labora-tory at the University of Tennessee in Knoxville developed an automati systemalled ATLAS[25℄ whih usually an produe a very fast GEMM subroutine. An-other automati ode generator sheme for GEMMwas developed at Berkeley[4℄.In ESSL, see [1℄, GEMM and all other BLAS are produed via bloking andhigh performane kernel routines. For example, ESSL produes a single kernelroutine, DATB, whih has the same funtion as the ATLAS on hip GEMMkernel. The priniples underlying the prodution of both kernels are similar.The major di�erene is that ESSL's GEMM ode is written by hand whereasATLAS' GEMM ode is parametrized and run over all parameter settings untila best parameter setting is found for the partiular mahine.3.1 Reursive TRSM based on non-reursive GEMMFig. 8 shows the splitting of the TRSM operands. The operation now onsistsof the three suboperations,X11AT11 = �B11 RP TRSMB̂12 = B12 � ��1X11AT21 GEMMX12AT22 = �B̂12 RP TRSMBased on this splitting, the algorithm an be programmed as follows,reursive subroutine RP TRSM (m;n; �;AP ; B)if (n == 1) thendo i = 1;mB(i; 1) = �B(i; 1)=AP (1)end doelsep = bn=2all RP TRSM (m; p; �;AP ; B)all GEMM (0N 0;0 T 0;m; n� p; p;���1; B;AP(1 + np� p(p� 1)=2);n� p; 1; B(1; p+ 1))all RP TRSM (m;n� p; �;AP(1 + np� p(p� 1)=2); B(1; p+ 1))end ifend3.2 Reursive SYRK based on non-reursive GEMMFig. 9 shows the splitting of the SYRK operands. The operation now onsistsof the three suboperations,

12
X11M

P

X12

N-P

*

A21
T

N-P

A11
T

P

A22
T

= αB11

P

αB12

N-P

M

Figure 8: The reursive splitting of the matries in the RP TRSM operation forthe ase where SIDE=Right, UPLO=Lower and TRANSA=Transpose.C11 = �C11 + �A11AT11 RP SYRKC21 = �C21 + �A21AT11 GEMMC22 = �C22 + �A21AT21 RP SYRKBased on this splitting, the algorithm an be programmed as follows,reursive subroutine RP SYRK (m;n; �;A; �;CP)if (m == 1) thenCP (1) = �CP (1)do j = 1;mCP(1) = CP(1) + �A(1; j)2end doelsep = bm=2all RP SYRK (p; n; �;A; �;CP)all GEMM (0N 0;0 T 0;m� p; p; n; �;A(p+ 1; 1); A;�;CP(1 + p(p+ 2)=2))all RP SYRK (m� p; n; �;A(p+ 1; 1); �;CP(1 +mp� p(p� 1)=2)end ifend3.3 Reursive PPTRF and PPTRS based on reursiveTRSM and reursive SYRKFig. 10 shows the splitting of the PPTRF operand. The operation now onsistsof four suboperations,

13
C11

P

C21M-P

P

C22
M-P

:=

βC11

βC21

P

βC22
M-P

+

αA11

αA21

N

*

A11
T

P

A21
T N

M-P

Figure 9: The reursive splitting of the matries in the RP SYRK operationfor the ase where UPLO=Lower and TRANS=No transpose.A11 = L11LT11 RP PPTRFA21 = L21LT11 RP TRSMÂ22 = A22 � L21LT21 RP SYRKÂ22 = L22LT22 RP PPTRFBased on this splitting the algorithm an be programmed as follows,reursive subroutine RP PPTRF (m;AP)if (m == 1) thenAP(1) =pAP(1)elsep = bm=2all RP PPTRF (p;AP)all RP TRSM (m� p; p; 1:0;AP ;AP(1 + p(p+ 1)=2);m� p)all RP SYRK (m� p; p;�1:0;AP(1 + p(p+ 1)=2);m� p; 1:0;AP(1 +mp� (p� 1)=2))all RP PPTRF (m� p;AP(1 +mp� p(p� 1)=2)end ifendThe solution subroutine RP PPTRS performs onseutive triangular solu-tions to the transposed and the non-transposed Cholesky fator. This routineis not expliitly reursive, as it just alls the reursive RP TRSM twie.4 Stability of the Reursive AlgorithmThe paper [24℄ shows that the reursive Cholesky fatorization algorithm isequivalent to the traditional algorithms in the books[5, 11, 23℄. The whole the-

14
A11

P

A21M-P

P

A22
M-P

=

L11

L21

P

L22
M-P

*

L11
T

P

L21
T

M-P

L22
T

Figure 10: The reursive splitting of the matrix in the RP PPTRF operationfor the ase where UPLO=Lower.ory of the traditional Cholesky fatorization and BLAS (TRSM and SYRK) al-gorithms arries over to the reursive Cholesky fatorization and BLAS (TRSMand SYRK) algorithms desribed in Setion 3. The error analysis and stabilityof these algorithms is very well desribed in the book of Niholas J. Higham[15℄.The di�erene between LAPACK algorithms PO, PP and RP7 is how innerproduts are aumulated. In eah ase a di�erent order is used. They are allmathematially equivalent, and, stability analysis shows that any summationorder is stable.5 Performane resultsIBM 4 x PowerPC 604e � 332 MHzIBM Power2 � 160 MHzSUN UltraSpar II � 400 MHzSGI R10000 � 195 MHzCOMPAQ Alpha EV6 � 500 MHzHP PA-8500 � 440 MHzINTEL Pentium III � 500 MHzTable 1: Computer namesThe new reursive paked BLAS (RP TRSM and RP SYRK), and the newreursive paked Cholesky fatorization and solution (RP PPTRF and RP PPTRS)routines were ompared to the traditional LAPACK subroutines, both onern-ing the results and the performane. The omparisons were made on seven7full, paked and reursive paked.

15di�erent arhitetures, listed in the Table 1. The result graphs are attahed inthe appendix of this paper. The double preision arithmeti in Fortran90[21℄was used in all ases.IBM-PPC ESSL 3.1.0.0 -lesslsmpIBM-PW2 ESSL 2.2.2.0 -lesslp2SUN Sun Performane Library 2.0 -lsunperfSGI Standard Exeution Environment 7.3 -lblasCOMPAQ DXML V3.5 -ldxmp ev6HP HP-UX PA2.0 BLAS Library 10.30 -lblasINTEL ATLAS 3.0 BETA -latlasTable 2: Computer library versionsThe following proedure was used in arrying out our performane tests.� On eah mahine the reursive and the traditional routines were ompiledwith the same ompiler and ompiler ags and they all the same ven-dor optimized, or otherwise optimized, BLAS library. The BLAS libraryversions an be seen in Table 2.� The ompared reursive and traditional routines reeived the same inputand produed the same output for eah time measurement. The timespent in reordering the matrix to and from8 reursive paked format isinluded in the run time for both RP PPTRF and RP PPTRS. For thetraditional routines there was no data transformation ost.� The CPU time is measured by the timing funtion ETIME exept on thePowerPC mahine, whih is a 4 way SMP. On this mahine the run timewas measured by the wall lok time by means of a speial IBM utilityfuntion alled RTC. Exept for the operating system no other programswere running during these test runs.� For eah mahine the timings were made for a sequene of matrix sizesranging from n = 300 to n = 3000 in steps of n = 100. In ase of theHP and Intel mahines the matrix size starts at n = 500. We start atn = 500 beause the resolution of the ETIME utility was too oarse. Thenumber of right hand sides were taken to be nrhs = n=10. Due to memorylimitations on the atual HP mahine, this test series ould only range ton = 2500.� The operation ounts for Cholesky fatorization and solution areNFPfa = n3=3 and NFPsol = 2 (nrhs)n2;8However it is only neessary to perform the to transformation in RP PPTRF and notransformation in RP PPTRS, to get the orret results.

16where n is the number of equations and nrhs the number of right handsides. These ounts were used to onvert run times to Flop rates.Ten �gures (�gure 11, : : :, �gure 20) show performane graph omparisons,between the new RPC algorithms and the traditional LAPACK algorithms. TheRPC algorithms use the RPF data format in all omparisons. As mentioned theost of transforming from paked format to RPF and from RPF to paked formatis inluded in the both the reursive paked fator and solve routines. TheLAPACK subroutines DPPTRF, ZPPTRF, DPPTRS and ZPPTRS use pakeddata format, and DPOTRF and DPOTRS use full data format. Figure 20ompares all three algorithms RPC, LAPACK full storage and LAPACK pakedstorage.Every �gure has two sub�gures and one aption. The upper sub�gure showsomparison urves for Cholesky fatorization. The lower sub�gures show om-parison urves of forward and bakward substitutions. The aptions desribedetails of the performane �gures. The �rst seven �gures (Figure 11, : : :, 17)desribe the same omparison of performane on several di�erent omputers.5.1 The IBM SMP PowerPCFigure 11 shows the performane on the the IBM 4-way PowerPC 604e 332 MHzomputer.The LAPACK routine DPPTRF (the upper sub�gure) performs at about100 MFlops. Performane of the 'U' graph is a little better than the 'L' graph.Performane remains onstant as the order of the matrix inreases.The performane of the RPC fatorization routine inreases as n inreases.The 'U' graph inreases from 50 MFlops to almost 600 MFlops and the 'L' graphfrom 200 MFlops to 650 MFlops. The 'U' graph performane is better than the'L' graph performane. The relative ('U', 'L') RPC algorithm performane is(4.9, 7.2) times better than the DPPTRF algorithm for large matrix sizes.The performane of the RPC solution routine (the lower sub�gure) for the'L' and 'U' graphs are almost equal. The DPPTRS routine performs about100 MFlops for all matrix sizes. The RPC algorithm urve inreases from 250MFlops to almost 800 MFlops. The relative ('U', 'L') performane of the RPCalgorithm is (5.7, 5.5) times faster than the DPPTRS algorithm for large matrixsizes.The matrix size varies from 300 to 3000 on these sub�gures.5.2 The IBM Power2Figure 12 shows the performane on the IBM Power2 160 MHz omputer.The LAPACK routine DPPTRF (the upper sub�gure) 'U' graph performsat about 200 MFlops, the 'L' graph performs at about 150 MFlops. There is noinrease in both graphs as the size of the matrix grows.The performane graphs of the RPC fatorization routine both inrease, the'U' graph from 300 to a little more than 400 MFlops, and the 'L' graph from

17200 MFlops to 450 MFlops. The 'L' graph is better than the 'U' graph whenthe matrix sizes are between 750 and 3000. The 'U' graph is better than the'L' graph when the matrix sizes are between 300 and 750. Both graphs growvery rapidly for matrix sizes between 300 and 500. The relative ('U', 'L') RPCalgorithm performane is (1.9, 3.1) times faster than the DPPTRF algorithmfor large matrix sizes.The performane of the RPC solution routine (the lower sub�gure) for the'L' and 'U' graphs are almost equal. The performane of the DPPTRS algorithmstays onstant at about 250 MFlops dereasing slightly as n ranges from 300 to3000. The performane of the RPC algorithm inreases from 350 to more than500 MFlops. The relative ('U', 'L') RPC algorithm performane is (2.3, 2.3)times faster than the DPPTRS algorithm for large matrix sizes.The matrix size varies from 300 to 3000 on these sub�gures.5.3 The Compaq Alpha EV6Figure 13 shows the performane on the the COMPAQ Alpha EV6 500 MHzomputer.The LAPACK routine DPPTRF (the upper sub�gure) 'U' graph performsbetter than the 'L' graph. The di�erene is about 50 MFlops. The performanestarts at about 300 MFlops, inreases to 400 MFlops and than drops down toabout 200 MFlops.The performane of the RPC fatorization routine inreases as n inreases.Both graphs (the 'U' and 'L' graphs) are almost equal. The 'U' graph is alittle higher for matrix sizes between 300 and 450. The relative ('U', 'L') RPCalgorithm performane is (3.4, 5.0) times faster than the DPPTRF algorithmfor large matrix sizes.For the routine DPPTRS the shape of the solution performane urves (thelower sub�gure) for the 'L' and 'U' graphs are almost equal. The performaneof the DPPTRS routine dereases from 450 to 250 MFlops as n inreases from300 to 3000. The RPC performane urves inreases from about 450 MFlopsto more than 750 MFlops. The performane ('U', 'L') of the RPC algorithm is(3.3, 3.3) times faster than DPPTRS algorithm for large matrix sizes.The matrix size varies from 300 to 3000 on these sub�gures.5.4 The SGI R10000Figure 14 shows the performane on the the SGI R10000 195 MHz omputer,on one proessor only.The LAPACK routine DPPTRF (the upper sub�gure) 'U' graph performsbetter than the 'L' graph for matrix sizes from 300 to about 2000, after whihboth the 'U' and the 'L' graphs are the same. The DPPTRF performane slowlydereases.The performane of the RPC fatorization routine ('U' and 'L' graphs) in-reases from about 220 to 300 MFlops as n inreases from 300 to about 1000,and stays onstant as n inrease to 3000. The relative ('U', 'L') RPC algorithm

18performane is (4.9, 4.9) times faster than the DPPTRF algorithm for largematrix sizes.For the routine DPPTRS the shape of the solution performane urves (thelower sub�gure) for the 'L' and 'U' graphs are almost equal. The performaneof the DPPTRS routine dereases from 130 MFlops to 60 MFlops as n inreasesfrom 300 to 3000. The Performane of the RPC solution routine inreases in thebeginning, and then runs onstantly at about 300 MFlops. The performane('U', 'L') of the RPC algorithm is (5.1, 5.2) times faster than the DPPTRSalgorithm for large matrix sizes.The matrix size varies from 300 to 3000 on these sub�gures.5.5 The SUN UltraSpar IIFigure 15 shows the performane on the the SUN UltraSpar II 400 MHz om-puter.The LAPACK routine DPPTRF (the upper sub�gure) 'U' and 'L' graphsshow almost equal performane when n > 1500. These funtions start between200 and 225 MFlops and then derease down to about 50 MFlops.For the RPC fatorization routine, the performane of the 'U' and 'L' graphs,are also almost equal over the whole interval. Their funtion values start from250 MFlops, quikly rise to 350 MFlops and then slowly inrease to about 450MFlops. The RPC fatorization ('U', 'L') algorithm is (9.7, 10.2) times fasterthan the DPPTRF algorithm for large matrix sizes.The performane of the RPC solution routine (the lower sub�gure) for the 'L'and 'U' graphs are almost equal. The DPPTRS performane graphs dereasesfrom 225 to 50 MFlops. The performane for the RPC solution graphs inreasesfrom 330 to almost 450 MFlops. The RPC solution ('U', 'L') algorithm is (10.0,9.4) times faster than the DPPTRS algorithm for large matrix sizes.The matrix size varies from 300 to 3000 on these sub�gures.5.6 The HP PA-8500Figure 16 shows the performane on the the HP PA-8500 440 MHz omputer.The LAPACK routine DPPTRF (the upper sub�gure) 'U' and 'L' graphsare dereasing funtions. The 'U' graph funtion values go from about 370 to100 MFlops. The 'L' graph funtion goes from 280 to about 180 MFlops.The performane of the RPC fatorization graphs are inreasing funtions asthe matrix size inreases from 1000 to 3000. The performane varies for matrixsizes between 500 and 1500. The 'U' graph funtion values range from about700 MFlops to almost 800 MFlops, the 'L' graph funtion values range from 600MFlops to a little more than 700 MFlops. The RPC algorithm ('U', 'L') is (4.7,6.7) times faster than the DPPTRF algorithm for large matrix sizes.The performane of the RPC solution routine (the lower sub�gure) for the 'L'and 'U' graphs are almost equal. The DPPTRS routine performane dereasesfrom 300 MFlops to 200 MFlops. The RPC algorithm urve inreases from 550

19MFlops to almost 810 MFlops. The RPC algorithm ('U', 'L') is (5.2, 5.0) timesfaster than the DPPTRS algorithm for large matries in the solution ase.The matrix size varies from 500 to 2500 on these sub�gures.5.7 The INTEL Pentium IIIFigure 17 shows the performane on the INTEL Pentium III 500 MHz omputer.The LAPACK routine DPPTRF (the upper sub�gure) 'U' and 'L' graphsare dereasing funtions. The 'U' graph funtion ranges from about 100 to 80MFlops. The 'L' graph funtion ranges from less than 50 to about 25 MFlops.For the RPC fatorization routine the 'U' and the 'L' graphs are almostequal. The graphs are inreasing funtions from about 200 to 310 MFlops.The RPC fatorization algorithm ('U', 'L') is (4.2, 9.2) times faster than theDPPTRF algorithm for large matries.The performane of the RPC solution routine (the lower sub�gure) for the 'L'and 'U' graphs are almost equal. The DPPTRS performane graphs dereasesfrom about 80 to about 50 MFlops. The RPC algorithm urves inreases from240 to about 330 MFlops. The RPC algorithm ('U', 'L') is (5.9, 6.0) times fasterthan the DPPTRS algorithm for large matries.The matrix size varies from 500 to 3000 on these sub�gures.5.8 The IBM SMP PowerPC with OpenMP diretivesFigure 18 shows the performane on the the IBM 4-way PowerPC 604e 332 MHzomputer.These graphs demonstrate suessful use of OpenMP[17, 18℄ parallelizingdiretives. The urves LAPACK(L), LAPACK(U), Reursive(L) and Reur-sive(U) are idential to the orresponding urves of �gure 11. We ompare urvesReursive(L), Reursive(U), Re.Par(L) and Re.Par(U). The Re.Par(L) andRe.Par(U) urves result from double parallelization. The RPC algorithms alla parallelized DGEMM and they are parallelized themselves by the OpenMPdiretives.The Re.Par(L) urve is not muh faster than Reursive(L), sometimes itis slower. The Re.Par(U) is the fastest, speially for large size matries. Thedoubly parallelized RPC algorithm (Re.Par(U)) is about 100 MFlops fasterthan the ordinary RPC algorithm (Reursive(U)). The relative ('U', 'L') RPCfatorization algorithm performane is (5.6, 7.6) times faster than the DPPTRFalgorithm for large matries.The RPC double parallelization algorithm for the solution (lower sub�gure)exeeds 800 MFlops. The relative ('U', 'L') RPC solution algorithm performaneis (6.5, 6.6) times faster than the DPPTRF algorithm for large matries.The matrix size varies from 300 to 3000 on these sub�gures.5.9 The INTEL Pentium III running Complex ArithmetiFigure 19 shows the performane on the INTEL Pentium III 500 MHz omputer.

20This �gure demonstrate the suessful use of RPC algorithm for Hermitianpositive de�nite matries. The performane is measured in Complex MFlops.To ompare with the usual real arithmeti MFlops the Complex MFlops shouldbe multiplied by 4.The LAPACK routine ZPPTRF (the upper sub�gure) 'U' graph performs alittle better than the 'L' graph. These routine performs at about 80 MFlops.The RPC Hermitian fatorization routine 'U' graph performs better thanthe 'L' graph. The RPC performane graphs are inreasing funtions. Theygo from 240 up to 320 MFlops. The RPC Hermitian fatorization algorithm('U', 'L') is (3.8, 4.3) times faster than the ZPPTRF algorithm for the large sizematries.The performane of the RPC solution routine (the lower sub�gure) for the'L' and 'U' graphs are almost equal. The ZPPTRS performane dereases fromabout 108 to 80 MFlops. The RPC solution algorithm inreases from about 240up to more than 320 MFlops. The RPC algorithm ('U', 'L') is (3.9, 3.7) timesfaster than the ZPPTRS algorithm for large Hermitian matries.The matrix size varies from 500 to 3000 on these sub�gures.5.10 The INTEL Pentium III with all three Cholesky Al-gorithmsFigure 20 shows the performane on the INTEL Pentium III 500 MHz omputer.The graphs on this �gure depit all three Cholesky algorithms, the LAPACKfull storage (DPOTRF and DPOTRS) algorithms, the LAPACK paked storage(DPPTRF and DPPTRS) algorithms and the RPC (fatorization and solution)algorithms.The LAPACK paked storage algorithms (DPPTRF and DPPTRS) are pre-viously explained on �gure 17.The DPOTRF routine (the upper sub�gure), for both the 'U' and 'L' ases,performs better than the RPC fatorization routine for smaller matries. Forlarger matries the RPC fatorization algorithm performs equally well or slightlybetter than the DPOTRF algorithm.The performane of the DPOTRS algorithms ('U' and 'L' graphs) are betterthan the RPC performane for this omputer.However, the POTRF and POTRS storage requirement is almost twie thestorage requirement of the RPC algorithms.The matrix size varies from 500 to 3000 on these sub�gures.6 ConlusionWe summarize and emphasize the most important developments desribed inour paper.� A reursive paked Cholesky fatorization algorithm based on BLAS Level 3operations has been developed.

21� The RPC fatorization algorithm works with almost the same speed asthe traditional full storage algorithm but oupies the same data storageas the traditional paked storage algorithm. Also see bullet 4.� The user interfae of the new paked reursive subroutines (RP PPTRFand RP PPTRS) is exatly the same as the traditional LAPACK sub-routines (PPTRF and PPTRS). The user will see idential data formats.However, the new routines run muh faster.� Two separate routines are desribed here: RP PPTRF and RP PPTRS.The data format is always onverted from LAPACK paked data formatto the reursive paked data format before the routine starts its operationand onverted bak to LAPACK data format afterwards. The RP PPSVsubroutine exists in our pakage whih is equivalent to the LAPACK PPSVroutine. In the RP PPSV subroutine the data is not onverted betweenthe fatorization and the solution.� New reursive paked Level 3 BLAS, RP TRSM and RP SYRK, writtenin Fortran90[21℄ were developed. They only all the GEMM routine.� This GEMM subroutine an be developed either by the omputer manufa-turer or generated by ATLAS system[25℄. The ATLAS generated GEMMsubroutine is usually ompatible with the manufaturer developed routine.AknowledgementsThis researh was partially supported by the LAWRA projet, the UNI�C ol-laboration with the IBM T.J. Watson Researh Center at Yorktown Heights.The last two authors were also supported by the Danish Natural Siene Re-searh Counil through a grant for the EPOS projet (EÆient Parallel Algo-rithms for Optimization and Simulation).Referenes[1℄ R.C. Agawal, F.G. Gustavson, and M. Zubair. Exploiting funtional par-allelism on power2 to design high-performane numerial algorithms. IBMJournal of Researh and Development, 38(5):563{576, September 1994.[2℄ B.S. Andersen, F. Gustavson, A. Karaivanov, J. Wa�sniewski, and P.Y.Yalamov. LAWRA { Linear Algebra with Reursive Algorithms. InR. Wyrzykowski, B. Mohnaki, H. Pieh, and J. Szopa, editors, Pro-eedings of the 3th International Conferene on Parallel Proessing andApplied Mathematis, PPAM'99, pages 63{76, Kazimierz Dolny, Poland,1999. Tehnial University of Cz�estohowa.[3℄ E. Anderson, Z. Bai, C. Bishof, S. Blakford, J. Demmel, J. Don-garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. MKenney, andD. Sorensen. LAPACK Users' Guide. Soiety for Industrial and AppliedMathematis, Philadelphia, PA, third edition, 1999.

22[4℄ J. Bilmes, K. Asanovi�, C.W. Chin, and J. Demmel. Optimizing ma-trix multiply using PHIPAC: a portable, high-performane, ansi odingmethodology. In Proeedings of the International Conferene on Superom-puting, Vienna, Austria, Jul 1997. ACM Sigar.[5℄ J.W. Demmel. Applied Numerial Linear Algebra. SIAM, Philadelphia,1997.[6℄ J. Dongarra et al. BLAS (Basi Linear Algebra Subprograms).http://www.netlib.org/blas/. Ongoing Projets at the Innovative Compu-ting Laboratory, Computer Siene Department, University of Tennesseeat Knoxville, USA.[7℄ J. Dongarra and J. Wa�sniewski. High Performane Linear Algebra Pakage{ LAPACK90. In P.M. Pardalos and S. Rajasekaran, editors, Advanes inRandomized Parallel Computing, volume 5 of Combinatorial Optimization,pages 241{275. Kluwer Aademi Publishers, 1999. Available also fromhttp://www.netlib.org/lapak/lawns/lawn134.ps.[8℄ J. J. Dongarra, J. Du Croz, I. S. Du�, and S. Hammarling. A set of Level 3Basi Linear Algebra Subprograms. ACM Trans. Math. Soft., 16(1):1{28,Marh 1990.[9℄ J. J. Dongarra, J. Du Croz, S. Hammarling, and Rihard J. Hanson. Anextended set of FORTRAN basi linear algebra subroutines. ACM Trans.Math. Soft., 14(1):1{32, Marh 1988.[10℄ J.J. Dongarra, I.S. Du�, D.C. Sorensen, and H.A. van der Vorst. NumerialLinear Algebra for High{Performane Computers. SIAM, 1998.[11℄ G. Golub and C. F. Van Loan. Matrix Computations. Johns HopkinsUniversity Press, Baltimore, MD, third edition, 1996.[12℄ F. Gustavson, A. Henriksson, I. Jonsson, B. K�agstr�om, and P. Ling. Re-ursive Bloked Data Formats and BLAS' for Dense Linear Algebra Algo-rithms. In B. K�agstr�om, J. Dongarra, E. Elmroth, and J. Wa�sniewski, edi-tors, Proeedings of the 4th International Workshop, Applied Parallel Com-puting, Large Sale Sienti� and Industrial Problems, PARA'98, number1541 in Leture Notes in Computer Siene Number, pages 195{206, Ume�a,Sweden, June 1998. Springer.[13℄ F. Gustavson, A. Henriksson, I. Jonsson, B. K�agstr�om, and P. Ling. Super-salar GEMM-based Level 3 BLAS { The On-going Evolution of Portableand High-Performane Library. In B. K�agstr�om, J. Dongarra, E. Elmroth,and J. Wa�sniewski, editors, Proeedings of the 4th International Workshop,Applied Parallel Computing, Large Sale Sienti� and Industrial Problems,PARA'98, number 1541 in Leture Notes in Computer Siene Number,pages 207{215, Ume�a, Sweden, June 1998. Springer.

23[14℄ F.G. Gustavson. Reursion leads to automati variable bloking for denselinear-algebra algorithms. IBM Journal of Researh and Development,41(6), November 1997.[15℄ N.J. Higham. Auray and Stability of Numerial Algorithms. SIAM, 1996.[16℄ IBM. IBM Engineering and Sienti� Subroutine Library for AIX, Version3, Volume 1 edition, Deember 1997. Pub. number SA22{7272{0.[17℄ IBM. XL Fortran AIX, Language Referene, �rst edition, De 1997. Version5, Release 1.[18℄ IBM. XL Fortran AIX, User's Guide, �rst edition, Nov 1997. Version 5,Release 1.[19℄ B. K�agstr�om, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High-Performane Model Implementations and Performane Evaluation Benh-mark. ACM Trans. Math. Software, 24(3):268{302, 1998.[20℄ C. L. Lawson, R. J. Hanson, D. Kinaid, and F. T. Krogh. Basi linearalgebra subprograms for Fortran usage. ACM Trans. Math. Soft., 5:308{323, 1979.[21℄ M. Metalf and J. Reid. FORTRAN 90/95 Explained. Oxford UniversityPress, Oxford, UK, seond edition, 1996.[22℄ S. Toledo. Loality of Referene in LU Deomposition with Partial Pivoting.SIAM Journal of Matrix Analysis and Appliations, 18(4), 1997.[23℄ L.N. Trefethen and D. Bau. Numerial Linear Algebra. SIAM, Philadelphia,1997.[24℄ J. Wa�sniewski, B.S. Andersen, and F. Gustavson. Reursive Formula-tion of Cholesky Algorithm in Fortran 90. In B. K�agstr�om, J. Dongarra,E. Elmroth, and J. Wa�sniewski, editors, Proeedings of the 4th Interna-tional Workshop, Applied Parallel Computing, Large Sale Sienti� andIndustrial Problems, PARA'98, number 1541 in Leture Notes in ComputerSiene Number, pages 574{578, Ume�a, Sweden, June 1998. Springer.[25℄ R.C. Whaley and J. Dongarra. Automatially Tuned Linear Algebra Soft-ware (ATLAS). http://www.netlib.org/atlas/, 1999. University of Ten-nessee at Knoxville, Tennessee, USA.

24Appendix: Performane Graphs

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on IBM 4-way PowerPC 604e 332 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on IBM 4-way PowerPC 604e 332 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 11: Performane of the reursive Cholesky fatorization and solution onIBM 4 x PowerPC 604e, � 332 MHz. The reursive results inlude the timeonsumed by onverting from paked to reursive paked storage and vie versa.All routines all the optimized BLAS for the PowerPC arhiteture.

25

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on IBM Power2 160 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on IBM Power2 160 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 12: Performane of the reursive Cholesky fatorization and solution onIBM Power2, � 160 MHz. The reursive results inlude the time onsumed byonverting from paked to reursive paked storage and vie versa. All routinesall the optimized BLAS for the Power2 arhiteture.

26

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on COMPAQ Alpha EV6 500 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on COMPAQ Alpha EV6 500 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 13: Performane of the reursive Cholesky fatorization and solutionon COMPAQ Alpha EV6, � 500 MHz. The reursive results inlude the timeonsumed by onverting from paked to reursive paked storage and vie versa.All routines all the optimized BLAS for the Alpha arhiteture.

27

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on SGI R10000 195 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on SGI R10000 195 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 14: Performane of the reursive Cholesky fatorization and solution onSGI R10000 � 195 MHz. The reursive results inlude the time onsumed byonverting from paked to reursive paked storage and vie versa. All routinesall the optimized BLAS for this SGI arhiteture.

28

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on SUN UltraSparc II 400 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on SUN UltraSparc II 400 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 15: Performane of the reursive Cholesky fatorization and solutionon SUN UltraSpar II, � 400 MHz. The reursive results inlude the timeonsumed by onverting from paked to reursive paked storage and vie versa.All routines all the optimized BLAS for this SUN arhiteture.

29

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on HP PA-8500 440 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on HP PA-8500 440 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 16: Performane of the reursive Cholesky fatorization and solution onHP PA-8500, � 440 MHz. The reursive results inlude the time onsumed byonverting from paked to reursive paked storage and vie versa. All routinesall the optimized BLAS for this HP arhiteture.

30

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on Intel Pentium III 500 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on Intel Pentium III 500 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 17: Performane of the reursive Cholesky fatorization and solutionon INTEL Pentium III, � 500 MHz. The reursive results inlude the timeonsumed by onverting from paked to reursive paked storage and vie versa.All routines all the optimized ATLAS BLAS.

31

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on IBM 4-way PowerPC 604e 332 MHz

Rec.Par(L)
Rec.Par(U)

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on IBM 4-way PowerPC 604e 332 MHz, NRHS=N/10

Rec.Par(L)
Rec.Par(U)

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 18: Performane of the reursive Cholesky fatorization and solutionon IBM 4 x PowerPC 604e, � 332 MHz. The reursive results inlude thetime onsumed by onverting from paked to reursive paked storage and vieversa. All routines all the optimized BLAS for the PowerPC arhiteture.These graphs demonstrate suessful use of OpenMP parallelizing diretives.The Re.Par(L) and Re.Par(U) urves are results of the doubly parallelizedRPC algorithms. They all the parallelized ESSL DGEMM and are parallelizedthemselves by the OpenMP diretives.

32

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000

C
om

pl
ex

 M
flo

p/
s

matrix size

Z_RP_PPTRF performance on Intel Pentium III 500 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000

C
om

pl
ex

 M
flo

p/
s

matrix size

Z_RP_PPTRS performance on Intel Pentium III 500 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 19: Performane of the reursive Hermitian Cholesky fatorization andsolution on INTEL Pentium III, � 500 MHz. The reursive results inlude thetime onsumed by onverting from paked to reursive paked storage and vieversa. All routines all the optimized ATLAS BLAS (ZGEMM).

33

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on Intel Pentium III 500 MHz

Recursive(L)
Recursive(U)

LAPACK(L) Full
LAPACK(U) Full

LAPACK(L)
LAPACK(U)

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on Intel Pentium III 500 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L) Full
LAPACK(U) Full

LAPACK(L)
LAPACK(U)

Figure 20: Performane of the reursive Cholesky fatorization and solutionon INTEL Pentium III, � 500 MHz. The urves on this �gure ompare allthree Cholesky fatorization and solution algorithms. The LAPACK full stor-age (DPOTRF and DPOTRS), the LAPACK paked storage (DPPTRF andDPPTRS) and RPC (fatorization and solution) algorithms. The reursive re-sults inlude the time onsumed by onverting from paked to reursive pakedstorage and vie versa. All routines all the optimized ATLAS BLAS routines.

