
A re
ursive formulation of Cholesky fa
torizationof a matrix in pa
ked storage�Bjarne S. Anderseny Fred G. GustavsonzJerzy Wa�sniewskiyAbstra
tA new
ompa
t way to store a symmetri
 or triangular matrix
alled RPFfor Re
ursive Pa
ked Format is fully des
ribed. Novel ways to transformRPF to and from standard pa
ked format is in
luded. A new algorithm,
alled RPC for Re
ursive Pa
ked Cholesky that operates on the RPFformat is presented. Algorithm RPC is level 3 BLAS based and requirealgorithms TRSM and SYRK that work on RPF. We thus introdu
e andfully des
ribe novel re
ursive algorithms RP TRSM and RP SYRKthat the RPC algorithm requires. It turns out, that both RP TRSMand RP SYRK only
all GEMM. Hen
e RPC mostly
alls GEMMduring exe
ution.The advantage of this storage s
heme
ompared to traditional pa
kedstorage is demonstrated. First, both storage s
hemes use the minimalamount of storage for the symmetri
 or triangular matrix. Se
ond, RPCgives a level 3 implementation of Cholesky fa
torization that only requiresstandard full format GEMM whereas standard pa
ked implementationsare only level 2. Hen
e, performan
e wise our RPC implementation isde
idedly superior.We present performan
e measurements on several
urrent ar
hite
turesthat demonstrate order of magnitude improvements over the traditionalpa
ked routines. Also SMP parallel
omputations on the IBM SMP
om-puter are made. The Graphs, whi
h are atta
hed in the appendix of thepaper, show that the RPC algorithms are superior by a fa
tor of 2 to 9over the traditional pa
ked algorithms.�This work has been submitted for publi
ation. Copyright may be transferred withoutfurther noti
e and the a

epted version may then be posted by the publisher.yDanish Computing Center for Resear
h and Edu
ation (UNI�C), DTU, Building 304, DK-2800 Lyngby, Denmark, Bjarne.Stig.Andersen�uni-
.dk and Jerzy.Wasniewski�uni-
.dkrespe
tively.zIBM T.J. Watson Resear
h Center, P.O. Box 218, Yorktown Heights, NY 10598, USA,gustav�watson.ibm.
om
1

21 Introdu
tionA very important
lass of linear algebra problems are those in whi
h the
oef-�
ient matrix A is symmetri
 and positive de�nite [5, 11, 23℄. Be
ause of thesymmetry it is only ne
essary to store either the upper or lower triangular partof the matrix.Lower triangular
ase0BBBBBBBB� 12 93 10 174 11 18 255 12 19 26 336 13 20 27 34 417 14 21 28 35 42 49
1CCCCCCCCA

Upper triangular
ase0BBBBBBBB� 1 8 15 22 29 36 439 16 23 30 37 4417 24 31 38 4525 32 39 4633 40 4741 4849
1CCCCCCCCAFigure 1: The mapping of 7� 7 matrix for the LAPACK Cholesky Algorithmusing the full storage (LDA= 7 if in Fortran77)Lower triangular
ase0BBBBBBBB� 12 83 9 144 10 15 195 11 16 20 236 12 17 21 24 267 13 18 22 25 27 28

1CCCCCCCCA
Upper triangular
ase0BBBBBBBB� 1 2 4 7 11 16 223 5 8 12 17 236 9 13 18 2410 14 19 2515 20 2621 2728

1CCCCCCCCAFigure 2: The mapping of 7 � 7 matrix for the LAPACK Cholesky Algorithmusing the pa
ked storage1.1 LAPACK POTRF and PPTRF subroutinesThe LAPACK library[3℄ o�ers two di�erent kind of subroutines to solve the sameproblems, for instan
e POTRF1 and PPTRF both fa
torize symmetri
, positive1Four names SPOTRF, DPOTRF, CPOTRF and ZPOTRF are used in LAPACK for realsymmetri
 and
omplex Hermitian matri
es[3℄, where the �rst
hara
ter indi
ates the pre
isionand arithmeti
 versions: S { single pre
ision, D { double pre
ision, C {
omplex and Z { double
omplex. LAPACK95 uses one name LA POTRF for all versions[7℄. POTRF and/or PPTRFexpress, in this paper, any pre
ision, any arithmeti
 and any language version of the POand/or PP matrix fa
torization algorithms.

3de�nite matri
es by means of the Cholesky algorithm. The only di�eren
e isthe way the triangular matrix is stored (see �gures 1 and 2).In the POTRF
ase the matrix is stored in one of the lower left or upper righttriangles of a full square matrix[16, page 64℄ 2, the other triangle is wasted (see�gure 1). Be
ause of the uniform storage s
heme, blo
king and level 3 BLAS[8℄subroutines
an be employed, resulting in a high speed solution.In the PPTRF
ase the matrix is kept in pa
ked storage ([1℄, [16, page 74,75℄), whi
h means that the
olumns of the lower or upper triangle are stored
onse
utively in a one dimensional array (see �gure 2). Now the triangularmatrix only o

upies the stri
tly ne
essary storage spa
e but the nonuniformstorage s
heme means that use of full storage BLAS is impossible and only thelevel 2 BLAS[20, 9℄ pa
ked subroutines
an be employed, resulting in a lowspeed solution.To summarize, there is a
hoi
e between high speed with waste of memoryversus low speed with no waste of memory.1.2 A new Way of Storing Real Symmetri
 and ComplexHermitian and, in either
ase, Positive De�nite Ma-tri
esTogether with some new re
ursively formulated linear algebra subroutines, wepropose a new way of storing a lower or upper triangular matrix that solves thisdilemma[14, 24℄. In other words we obtain the speed of POTRF with the amountof memory used by PPTRF. The new storage s
heme is named RPF, re
ursivepa
ked format(see �gure 4), and it is explained below.The bene�t of re
ursive formulations of the Cholesky fa
torization and theLU de
omposition is des
ribed in the works of Gustavson [14℄ and Toledo [22℄.The symmetri
, positive de�nite matrix in the Cholesky
ase is kept in fullmatrix storage, and the emphasis in these works are the better data lo
alityand thus better utilization of the
omputers memory hierar
hy, that re
ursiveformulations o�er. However, the re
ursive pa
ked formulation also has thisproperty.We will provide a very short introdu
tion on a
omputer memory hierar-
hy and the Basi
 Linear Algebra Subprograms (BLAS) before des
ribing theRe
ursive Pa
ked Cholesky (RPC) and the Re
ursive Pa
ked Format (RPF).1.3 The Rationale behind introdu
ing our New Re
ursiveAlgorithm, RPC and the New Re
ursive Data Format,RPFComputers have several levels of memory. The
ow of data from the memoryto the
omputational units is the most important fa
tor governing performan
eof engineering and s
ienti�

omputations. The obje
t is to keep the fun
tionalunits running at their peak
apa
ity. Through the use of a memory hierar
hy2In Fortran
olumn major, in C row major.

4system (see �gure 3), high performan
e
an be a
hieved by using lo
ality ofreferen
e within a program. In the present
ontext this is
alled blo
king.
pu Registers Ca
he Level 1 Ca
he Level 2 Ca
he Level 3 Lo
al Memory Shared Memory Distributed Memory Se
ondary Storage 1 Se
ondary Storage 2! Faster, sma
ller, more exp

ensive
Slower, larger

,
heaper
Figure 3: A
omputer memory hierar
hyAt the top of the hierar
hy is a Central Pro
essing Unit (CPU). It
ommu-ni
ates dire
tly with the registers. The number of the registers is usually verysmall. A Level 1
a
he is dire
tly
onne
ted to the registers. The
omputerwill run with almost peak performan
e if we are able to deliver the data to theL1 (level 1)
a
he in su
h way that the CPU is permanently busy. There areseveral books des
ribing problems asso
iated with the
omputer memory hier-ar
hy. The literature in [10, 5, 11℄ is adequate for Numeri
al Linear Algebraspe
ialists.The memories near the CPU (registers and
a
hes) have a faster a

ess toCPU than the memories further away. The fast memories are very expensiveand this is one of the reason that they are small. The register set is tiny. Ca
hememories are mu
h larger than the set of registers. However, L1
a
he is stillnot large enough for solving s
ienti�
 problems. Even a subproblem like matrixfa
torization does not �t into
a
he if the order of the matrix is large.A spe
ial set of Basi
 Linear Algebra Subprograms (BLAS) have been de-veloped to address the
omputer memory hierar
hy problem in the area of Nu-meri
al Linear Algebra. The BLAS are do
umented in [20, 9, 8, 6℄. BLAS arevery well summarized and explained for Numeri
al Linear Algebra spe
ialistsin [10, 5℄.There are three levels of BLAS: Level 1 BLAS shows ve
tor ve
tor opera-tions, Level 2 BLAS shows ve
tor matrix (and/or matrix ve
tor) operations,and Level 3 BLAS shows matrix matrix operations.For Cholesky fa
torization one
an make the following three observationswith respe
t to the BLAS.1. Level 3 implementations using full storage format run fast.2. Level 3 implementations using pa
ked storage format rarely exist. A level 3implementation was previously used in [16℄, however, at great program-ming
ost. Conventional Level 2 implementations using pa
ked storage

5format run, for large problem sizes,
onsiderably slower than the full stor-age implementations.3. Transforming
onventional pa
ked storage to RPF and using our RPCalgorithm produ
es a Level 3 implementation using the same amount ofstorage as pa
ked storage.1.4 Overview of the PaperSe
tion 2 des
ribes the new pa
ked storage data format and the data transfor-mations to and from
onventional pa
ked storage. Se
tion 2.1 des
ribes
on-ventional lower and upper triangular pa
ked storage. Se
tion 2.2 dis
usses howto transform in pla
e either a lower or upper trapezoid pa
ked data format tore
ursive pa
ked data format and vi
e versa. Se
tion 2.3 des
ribes the possi-bility to transpose the matrix while it is reordered from pa
ked to re
ursivepa
ked format and vi
e versa. Finally, in Se
tion 2.4 the re
ursive aspe
ts ofthe data transformation is des
ribed. These four subse
tions des
ribe the inpla
e transformation pi
torially via several �gures.In Se
tions 3.1 and 3.2, re
ursive TRSM and SYRK, both whi
h work onRPF, are des
ribed. Both routines do almost all their required
oating pointoperations by
alling level 3 BLAS GEMM. Finally, in Se
tion 3.3, the RPCalgorithm is des
ribed in terms of using the re
ursive algorithms of Se
tions 3.1and 3.2. As in Se
tion 2, all three algorithms are des
ribed pi
torially via several�gures. Note that the RPC algorithm only uses one Level 3 BLAS subroutine,namely GEMM. Usually the GEMM routine is very spe
ialized, highly tunedand done by the
omputer manufa
turer. If not, the ATLAS[25℄ GEMM
an beused.Se
tion 4 explains that the RPC algorithm is numeri
ally stable.Se
tion 5 des
ribes performan
e graphs of the pa
ked storage LAPACK[3℄algorithms and of our re
ursive pa
ked algorithms on several
omputers; themost typi
al
omputers like COMPACQ, HP, IBM SP, IBM SMP, INTEL Pen-tium, SGI and SUN were
onsidered (�gures 11, : : :, 17). All these resultsshow that the re
ursive pa
ked Cholesky fa
torization (RP PPTRF) and thesolution (RP PPTRS) are 4 { 9 times faster than the traditional pa
ked sub-routines. There are three more graphs. One demonstrates su

essful use ofOpenMP[17, 18℄ parallelizing dire
tives (�gure 18). The se
ond graph showsthat the re
ursive data format is also e�e
tive for the
omplex arithmeti
 (�g-ure 19). The third one shows the performan
e of all three algorithms for theCholesky fa
torization (POTRF, PPTRF and RP PPTRF) and the solution(POTRS, PPTRS and RP PPTRS) (�gure 20).Se
tion 6 dis
usses the most important developments in this paper.2 The re
ursive pa
ked storageA new way to store triangular matri
es in pa
ked storage
alled re
ursive pa
kedis presented. This is a storage s
heme by its own right, and a way to explain it,

6is to des
ribe the
onversion from pa
ked to re
ursive pa
ked storage and vi
eversa (see �gures 2 and 4). Lower triangular
ase0BBBBBBBB� 123 45 67 11 158 12 169 13 1710 14 18 1920 2122 2423 25 2627 28
1CCCCCCCCAUpper triangular
ase0BBBBBBBB� 1 2 34 56 7 10 13 168 11 14 179 12 15 1819 2021 22 2423 2526 2728
1CCCCCCCCAFigure 4: The mapping of 7 � 7 matrix for the Cholesky Algorithm using there
ursive pa
ked storage. The re
ursive blo
k division is illustrated.2.1 Lower and upper triangular pa
ked storageSymmetri
,
omplex hermitian or triangular matri
es may be stored in pa
kedstorage form (see LAPACK Users' Guide [3℄, IBM ESSL Library manual[16,pages 66{67℄ and �gure 2). The
olumns of the triangle are stored sequentiallyin a one dimensional array starting with the �rst
olumn. The mapping betweenpositions in full storage and in pa
ked storage for a triangular matrix of size mis, Ai;j i; j UPLOAPi+(j�1)j=2 1 � j � m1 � i � j 'U'APi+(j�1)(2m�j)=2 1 � j � mj � i � m 'L' 3The advantage of this storage is the saving of almost half 4 the memory
ompared to full storage.3For UPLO = 'U' upper triangular and for UPLO = 'L' lower triangular of A is stored.4At least m � (m � 1)=2. This formulae is a fun
tion of LDA (leading dimension of A)and m in Fortran77. The saving in Fortran77 is m� (2� LDA�m� 1)=2.

72.2 Reordering of a lower and upper trapezoidPa
ked storage
m-pp m-pp LAPACK pa
ked storage memory mapm(m + 1)=2 wordsbu�er p(p� 1)=2 wordsRe
ursive pa
ked storage memory mapm(m + 1)=2 wordsFigure 5: Reordering of the lower pa
ked matrix. First, the last p� 1
olumnsof the leading triangle are
opied to the bu�er. Then, in pla
e, the
olumns ofthe a

entuated re
tangle are assembled in the bottom spa
e of the trapezoid.Last, the bu�er is
opied ba
k to the top of the trapezoid.It is assumed that the matri
es are stored in
olumn major order, but the
on
epts in the paper are fully appli
able also if the matri
es are stored in rowmajor order. As an intermediate step to transform a pa
ked triangular ma-trix to a re
ursive pa
ked matrix, the matrix is divided into two parts alonga
olumn thus dividing the matrix in a trapezoidal and a triangular part asshown in �g. 5 and 6. The triangular part remains in pa
ked form, thetrapezoidal part is reordered so it
onsists of a triangle in pa
ked form, anda re
tangle in full storage form. The reordering demands a bu�er of the sizeof the triangle minus the longest
olumn. The reordering in the lower
ase,�g. 5, takes the following steps. First the
olumns of the triangular part ofthe trapezoid are moved to the bu�er (note that the �rst
olumn is in
or-re
t pla
e), then the
olumns of the re
tangular part of the trapezoid aremoved into
onse
utive lo
ations and �nally the bu�er is
opied ba
k to the
orre
t lo
ation in the reordered array. If p in �gure 5 is
hosen to bm=2
the re
tangular submatrix will be square or deviate from a square only by asingle
olumn. The bu�er size is p(p � 1)=2 and the addresses of the lead-

8

Pa
ked storage m-pp
m-pp

LAPACK pa
ked storage memory mapm(m + 1)=2 words bu�er(m� p)(m� p� 1)=2 wordsRe
ursive pa
ked storage memory mapm(m + 1)=2 wordsFigure 6: Reordering of the upper pa
ked matrix. First, the �rst m � p � 1
olumns of the trailing triangle are
opied to the bu�er. Then, in pla
e, the
olumns of the a

entuated re
tangle are assembled in the top spa
e of thetrapezoid. Last, the bu�er is
opied ba
k to the bottom of the trapezoid.ing triangle, the re
tangular submatrix and the trailing triangle are given by,� 1� 1 + p(p+ 1)=2� 1 +mp� p(p� 1)=2After the reordering the leading and trailing triangles are both in the samelower or upper pa
ked storage s
heme as the original triangular matrix. Thereordering
an be implemented as subroutines,subroutine TPZ TO TR(m; p;AP)and subroutine TR TO TPZ (m; p;AP)where TPZ TO TR means the reordering of the trapezoidal part from pa
kedformat to the triangular-re
tangular format just des
ribed. TR TO TPZ is theopposite reordering.

92.3 Transposition of the re
tangular partThe re
tangular part of the reordered matrix are now kept in full matrix storage.If desired, this o�ers an ex
ellent opportunity to transpose the matrix while it istransformed to re
ursive pa
ked format. If the re
tangular submatrix is squarethe transposition
an be done
ompletely in-pla
e. If it deviates from a square bya
olumn, a bu�er of the size of the
olumns is ne
essary to do the transposition,for this purpose we
an reuse the bu�er used for the reordering.2.4 Re
ursive appli
ation of the reorderingThe method of reordering is applied re
ursively to the leading and trailing tri-angles whi
h are still in pa
ked storage, until �nally the originally triangularpa
ked matrix is divided in re
tangular submatri
es of de
reasing size, all infull storage. The implementation of the
omplete transformation from pa
kedto re
ursive pa
ked format, P TO RP is (
ompare the �gures 2 and 4),re
ursive subroutine P TO RP(m;AP)if (m > 1) thenp = bm=2

all TPZ TO TR(m; p;AP)
all P TO RP(p;AP)
all P TO RP(m� p;AP(1 +mp� p(p� 1)=2))end ifendand the inverse transformation from re
ursive pa
ked to pa
ked, RP TO P is,re
ursive subroutine RP TO P(m;AP)if (m > 1) thenp = bm=2

all RP TO P(p;AP)
all TR TO TPZ (m; p;AP)
all RP TO P(m� p;AP(1 +mp� p(p� 1)=2))end ifendThe examples shown here
on
erns the lower triangular matrix, but the uppertriangular transformation, and the transformation with transposition followsthe same pattern. The �gure 7 illustrates the re
ursive division of small lowerand upper triangular matri
es.

10

Figure 7: The lower and upper triangular matri
es, in re
ursive pa
ked storagedata format, for m = 20. The re
tangular submatri
es, shown in the �gures,are kept in full storage in
olumn major order, in the array
ontaining the wholematri
es.3 Re
ursive formulation of the Cholesky algo-rithm and its ne
essary BLASTwo BLAS[6℄ operations, the triangular solver with multiple right hand sides,TRSM5 and the rank k update of a symmetri
 matrix, SYRK are needed for there
ursive Cholesky fa
torization and solution, RP PPTRF6 and RP PPTRS[2℄.In this se
tion RP TRSM, RP SYRK, RP PPTRF and RP PPTRS are for-mulated re
ursively and their use of re
ursive pa
ked operands are explained.TRSM, SYRK, PPTRF and PPTRS operate in various
ases depending of theoperands and the order of the operands. In the following we only
onsider singlespe
i�

ases, but the dedu
tion of the other
ases follows the same guidelines.All the
omputational work in the re
ursive BLAS routines RP TRSM andRP SYRK (and also RP TRMM) is done by the non re
ursive matrix-matrixmultiply routine GEMM[19, 25℄. This is a very attra
tive property, sin
e GEMMusually is or
an be highly optimized on most
urrent
omputer ar
hite
tures.The GEMM operation is very well do
umented and explained in [12, 13, 6℄.The speed of our
omputation depends very mu
h from the speed of a goodGEMM. Good GEMM implementations are usually developed by
omputermanufa
turers. The model implementation of GEMM
an be obtained from5On naming of TRSM, SYRK, HERK and GEMM see footnote of POTRF on page 1.6The pre�x RP indi
ates that the subroutine belongs to the Re
ursive Pa
ked library, forexample RP PPTRF is the Re
ursive Pa
ked Cholesky fa
torization routine.

11netlib [6℄; it works
orre
tly but slowly. The Innovative Computing Labora-tory at the University of Tennessee in Knoxville developed an automati
 system
alled ATLAS[25℄ whi
h usually
an produ
e a very fast GEMM subroutine. An-other automati

ode generator s
heme for GEMMwas developed at Berkeley[4℄.In ESSL, see [1℄, GEMM and all other BLAS are produ
ed via blo
king andhigh performan
e kernel routines. For example, ESSL produ
es a single kernelroutine, DATB, whi
h has the same fun
tion as the ATLAS on
hip GEMMkernel. The prin
iples underlying the produ
tion of both kernels are similar.The major di�eren
e is that ESSL's GEMM
ode is written by hand whereasATLAS' GEMM
ode is parametrized and run over all parameter settings untila best parameter setting is found for the parti
ular ma
hine.3.1 Re
ursive TRSM based on non-re
ursive GEMMFig. 8 shows the splitting of the TRSM operands. The operation now
onsistsof the three suboperations,X11AT11 = �B11 RP TRSMB̂12 = B12 � ��1X11AT21 GEMMX12AT22 = �B̂12 RP TRSMBased on this splitting, the algorithm
an be programmed as follows,re
ursive subroutine RP TRSM (m;n; �;AP ; B)if (n == 1) thendo i = 1;mB(i; 1) = �B(i; 1)=AP (1)end doelsep = bn=2

all RP TRSM (m; p; �;AP ; B)
all GEMM (0N 0;0 T 0;m; n� p; p;���1; B;AP(1 + np� p(p� 1)=2);n� p; 1; B(1; p+ 1))
all RP TRSM (m;n� p; �;AP(1 + np� p(p� 1)=2); B(1; p+ 1))end ifend3.2 Re
ursive SYRK based on non-re
ursive GEMMFig. 9 shows the splitting of the SYRK operands. The operation now
onsistsof the three suboperations,

12
X11M

P

X12

N-P

*

A21
T

N-P

A11
T

P

A22
T

= αB11

P

αB12

N-P

M

Figure 8: The re
ursive splitting of the matri
es in the RP TRSM operation forthe
ase where SIDE=Right, UPLO=Lower and TRANSA=Transpose.C11 = �C11 + �A11AT11 RP SYRKC21 = �C21 + �A21AT11 GEMMC22 = �C22 + �A21AT21 RP SYRKBased on this splitting, the algorithm
an be programmed as follows,re
ursive subroutine RP SYRK (m;n; �;A; �;CP)if (m == 1) thenCP (1) = �CP (1)do j = 1;mCP(1) = CP(1) + �A(1; j)2end doelsep = bm=2

all RP SYRK (p; n; �;A; �;CP)
all GEMM (0N 0;0 T 0;m� p; p; n; �;A(p+ 1; 1); A;�;CP(1 + p(p+ 2)=2))
all RP SYRK (m� p; n; �;A(p+ 1; 1); �;CP(1 +mp� p(p� 1)=2)end ifend3.3 Re
ursive PPTRF and PPTRS based on re
ursiveTRSM and re
ursive SYRKFig. 10 shows the splitting of the PPTRF operand. The operation now
onsistsof four suboperations,

13
C11

P

C21M-P

P

C22
M-P

:=

βC11

βC21

P

βC22
M-P

+

αA11

αA21

N

*

A11
T

P

A21
T N

M-P

Figure 9: The re
ursive splitting of the matri
es in the RP SYRK operationfor the
ase where UPLO=Lower and TRANS=No transpose.A11 = L11LT11 RP PPTRFA21 = L21LT11 RP TRSMÂ22 = A22 � L21LT21 RP SYRKÂ22 = L22LT22 RP PPTRFBased on this splitting the algorithm
an be programmed as follows,re
ursive subroutine RP PPTRF (m;AP)if (m == 1) thenAP(1) =pAP(1)elsep = bm=2

all RP PPTRF (p;AP)
all RP TRSM (m� p; p; 1:0;AP ;AP(1 + p(p+ 1)=2);m� p)
all RP SYRK (m� p; p;�1:0;AP(1 + p(p+ 1)=2);m� p; 1:0;AP(1 +mp� (p� 1)=2))
all RP PPTRF (m� p;AP(1 +mp� p(p� 1)=2)end ifendThe solution subroutine RP PPTRS performs
onse
utive triangular solu-tions to the transposed and the non-transposed Cholesky fa
tor. This routineis not expli
itly re
ursive, as it just
alls the re
ursive RP TRSM twi
e.4 Stability of the Re
ursive AlgorithmThe paper [24℄ shows that the re
ursive Cholesky fa
torization algorithm isequivalent to the traditional algorithms in the books[5, 11, 23℄. The whole the-

14
A11

P

A21M-P

P

A22
M-P

=

L11

L21

P

L22
M-P

*

L11
T

P

L21
T

M-P

L22
T

Figure 10: The re
ursive splitting of the matrix in the RP PPTRF operationfor the
ase where UPLO=Lower.ory of the traditional Cholesky fa
torization and BLAS (TRSM and SYRK) al-gorithms
arries over to the re
ursive Cholesky fa
torization and BLAS (TRSMand SYRK) algorithms des
ribed in Se
tion 3. The error analysis and stabilityof these algorithms is very well des
ribed in the book of Ni
holas J. Higham[15℄.The di�eren
e between LAPACK algorithms PO, PP and RP7 is how innerprodu
ts are a

umulated. In ea
h
ase a di�erent order is used. They are allmathemati
ally equivalent, and, stability analysis shows that any summationorder is stable.5 Performan
e resultsIBM 4 x PowerPC 604e � 332 MHzIBM Power2 � 160 MHzSUN UltraSpar
 II � 400 MHzSGI R10000 � 195 MHzCOMPAQ Alpha EV6 � 500 MHzHP PA-8500 � 440 MHzINTEL Pentium III � 500 MHzTable 1: Computer namesThe new re
ursive pa
ked BLAS (RP TRSM and RP SYRK), and the newre
ursive pa
ked Cholesky fa
torization and solution (RP PPTRF and RP PPTRS)routines were
ompared to the traditional LAPACK subroutines, both
on
ern-ing the results and the performan
e. The
omparisons were made on seven7full, pa
ked and re
ursive pa
ked.

15di�erent ar
hite
tures, listed in the Table 1. The result graphs are atta
hed inthe appendix of this paper. The double pre
ision arithmeti
 in Fortran90[21℄was used in all
ases.IBM-PPC ESSL 3.1.0.0 -lesslsmpIBM-PW2 ESSL 2.2.2.0 -lesslp2SUN Sun Performan
e Library 2.0 -lsunperfSGI Standard Exe
ution Environment 7.3 -lblasCOMPAQ DXML V3.5 -ldxmp ev6HP HP-UX PA2.0 BLAS Library 10.30 -lblasINTEL ATLAS 3.0 BETA -latlasTable 2: Computer library versionsThe following pro
edure was used in
arrying out our performan
e tests.� On ea
h ma
hine the re
ursive and the traditional routines were
ompiledwith the same
ompiler and
ompiler
ags and they
all the same ven-dor optimized, or otherwise optimized, BLAS library. The BLAS libraryversions
an be seen in Table 2.� The
ompared re
ursive and traditional routines re
eived the same inputand produ
ed the same output for ea
h time measurement. The timespent in reordering the matrix to and from8 re
ursive pa
ked format isin
luded in the run time for both RP PPTRF and RP PPTRS. For thetraditional routines there was no data transformation
ost.� The CPU time is measured by the timing fun
tion ETIME ex
ept on thePowerPC ma
hine, whi
h is a 4 way SMP. On this ma
hine the run timewas measured by the wall
lo
k time by means of a spe
ial IBM utilityfun
tion
alled RTC. Ex
ept for the operating system no other programswere running during these test runs.� For ea
h ma
hine the timings were made for a sequen
e of matrix sizesranging from n = 300 to n = 3000 in steps of n = 100. In
ase of theHP and Intel ma
hines the matrix size starts at n = 500. We start atn = 500 be
ause the resolution of the ETIME utility was too
oarse. Thenumber of right hand sides were taken to be nrhs = n=10. Due to memorylimitations on the a
tual HP ma
hine, this test series
ould only range ton = 2500.� The operation
ounts for Cholesky fa
torization and solution areNFPfa
 = n3=3 and NFPsol = 2 (nrhs)n2;8However it is only ne
essary to perform the to transformation in RP PPTRF and notransformation in RP PPTRS, to get the
orre
t results.

16where n is the number of equations and nrhs the number of right handsides. These
ounts were used to
onvert run times to Flop rates.Ten �gures (�gure 11, : : :, �gure 20) show performan
e graph
omparisons,between the new RPC algorithms and the traditional LAPACK algorithms. TheRPC algorithms use the RPF data format in all
omparisons. As mentioned the
ost of transforming from pa
ked format to RPF and from RPF to pa
ked formatis in
luded in the both the re
ursive pa
ked fa
tor and solve routines. TheLAPACK subroutines DPPTRF, ZPPTRF, DPPTRS and ZPPTRS use pa
keddata format, and DPOTRF and DPOTRS use full data format. Figure 20
ompares all three algorithms RPC, LAPACK full storage and LAPACK pa
kedstorage.Every �gure has two sub�gures and one
aption. The upper sub�gure shows
omparison
urves for Cholesky fa
torization. The lower sub�gures show
om-parison
urves of forward and ba
kward substitutions. The
aptions des
ribedetails of the performan
e �gures. The �rst seven �gures (Figure 11, : : :, 17)des
ribe the same
omparison of performan
e on several di�erent
omputers.5.1 The IBM SMP PowerPCFigure 11 shows the performan
e on the the IBM 4-way PowerPC 604e 332 MHz
omputer.The LAPACK routine DPPTRF (the upper sub�gure) performs at about100 MFlops. Performan
e of the 'U' graph is a little better than the 'L' graph.Performan
e remains
onstant as the order of the matrix in
reases.The performan
e of the RPC fa
torization routine in
reases as n in
reases.The 'U' graph in
reases from 50 MFlops to almost 600 MFlops and the 'L' graphfrom 200 MFlops to 650 MFlops. The 'U' graph performan
e is better than the'L' graph performan
e. The relative ('U', 'L') RPC algorithm performan
e is(4.9, 7.2) times better than the DPPTRF algorithm for large matrix sizes.The performan
e of the RPC solution routine (the lower sub�gure) for the'L' and 'U' graphs are almost equal. The DPPTRS routine performs about100 MFlops for all matrix sizes. The RPC algorithm
urve in
reases from 250MFlops to almost 800 MFlops. The relative ('U', 'L') performan
e of the RPCalgorithm is (5.7, 5.5) times faster than the DPPTRS algorithm for large matrixsizes.The matrix size varies from 300 to 3000 on these sub�gures.5.2 The IBM Power2Figure 12 shows the performan
e on the IBM Power2 160 MHz
omputer.The LAPACK routine DPPTRF (the upper sub�gure) 'U' graph performsat about 200 MFlops, the 'L' graph performs at about 150 MFlops. There is noin
rease in both graphs as the size of the matrix grows.The performan
e graphs of the RPC fa
torization routine both in
rease, the'U' graph from 300 to a little more than 400 MFlops, and the 'L' graph from

17200 MFlops to 450 MFlops. The 'L' graph is better than the 'U' graph whenthe matrix sizes are between 750 and 3000. The 'U' graph is better than the'L' graph when the matrix sizes are between 300 and 750. Both graphs growvery rapidly for matrix sizes between 300 and 500. The relative ('U', 'L') RPCalgorithm performan
e is (1.9, 3.1) times faster than the DPPTRF algorithmfor large matrix sizes.The performan
e of the RPC solution routine (the lower sub�gure) for the'L' and 'U' graphs are almost equal. The performan
e of the DPPTRS algorithmstays
onstant at about 250 MFlops de
reasing slightly as n ranges from 300 to3000. The performan
e of the RPC algorithm in
reases from 350 to more than500 MFlops. The relative ('U', 'L') RPC algorithm performan
e is (2.3, 2.3)times faster than the DPPTRS algorithm for large matrix sizes.The matrix size varies from 300 to 3000 on these sub�gures.5.3 The Compaq Alpha EV6Figure 13 shows the performan
e on the the COMPAQ Alpha EV6 500 MHz
omputer.The LAPACK routine DPPTRF (the upper sub�gure) 'U' graph performsbetter than the 'L' graph. The di�eren
e is about 50 MFlops. The performan
estarts at about 300 MFlops, in
reases to 400 MFlops and than drops down toabout 200 MFlops.The performan
e of the RPC fa
torization routine in
reases as n in
reases.Both graphs (the 'U' and 'L' graphs) are almost equal. The 'U' graph is alittle higher for matrix sizes between 300 and 450. The relative ('U', 'L') RPCalgorithm performan
e is (3.4, 5.0) times faster than the DPPTRF algorithmfor large matrix sizes.For the routine DPPTRS the shape of the solution performan
e
urves (thelower sub�gure) for the 'L' and 'U' graphs are almost equal. The performan
eof the DPPTRS routine de
reases from 450 to 250 MFlops as n in
reases from300 to 3000. The RPC performan
e
urves in
reases from about 450 MFlopsto more than 750 MFlops. The performan
e ('U', 'L') of the RPC algorithm is(3.3, 3.3) times faster than DPPTRS algorithm for large matrix sizes.The matrix size varies from 300 to 3000 on these sub�gures.5.4 The SGI R10000Figure 14 shows the performan
e on the the SGI R10000 195 MHz
omputer,on one pro
essor only.The LAPACK routine DPPTRF (the upper sub�gure) 'U' graph performsbetter than the 'L' graph for matrix sizes from 300 to about 2000, after whi
hboth the 'U' and the 'L' graphs are the same. The DPPTRF performan
e slowlyde
reases.The performan
e of the RPC fa
torization routine ('U' and 'L' graphs) in-
reases from about 220 to 300 MFlops as n in
reases from 300 to about 1000,and stays
onstant as n in
rease to 3000. The relative ('U', 'L') RPC algorithm

18performan
e is (4.9, 4.9) times faster than the DPPTRF algorithm for largematrix sizes.For the routine DPPTRS the shape of the solution performan
e
urves (thelower sub�gure) for the 'L' and 'U' graphs are almost equal. The performan
eof the DPPTRS routine de
reases from 130 MFlops to 60 MFlops as n in
reasesfrom 300 to 3000. The Performan
e of the RPC solution routine in
reases in thebeginning, and then runs
onstantly at about 300 MFlops. The performan
e('U', 'L') of the RPC algorithm is (5.1, 5.2) times faster than the DPPTRSalgorithm for large matrix sizes.The matrix size varies from 300 to 3000 on these sub�gures.5.5 The SUN UltraSpar
 IIFigure 15 shows the performan
e on the the SUN UltraSpar
 II 400 MHz
om-puter.The LAPACK routine DPPTRF (the upper sub�gure) 'U' and 'L' graphsshow almost equal performan
e when n > 1500. These fun
tions start between200 and 225 MFlops and then de
rease down to about 50 MFlops.For the RPC fa
torization routine, the performan
e of the 'U' and 'L' graphs,are also almost equal over the whole interval. Their fun
tion values start from250 MFlops, qui
kly rise to 350 MFlops and then slowly in
rease to about 450MFlops. The RPC fa
torization ('U', 'L') algorithm is (9.7, 10.2) times fasterthan the DPPTRF algorithm for large matrix sizes.The performan
e of the RPC solution routine (the lower sub�gure) for the 'L'and 'U' graphs are almost equal. The DPPTRS performan
e graphs de
reasesfrom 225 to 50 MFlops. The performan
e for the RPC solution graphs in
reasesfrom 330 to almost 450 MFlops. The RPC solution ('U', 'L') algorithm is (10.0,9.4) times faster than the DPPTRS algorithm for large matrix sizes.The matrix size varies from 300 to 3000 on these sub�gures.5.6 The HP PA-8500Figure 16 shows the performan
e on the the HP PA-8500 440 MHz
omputer.The LAPACK routine DPPTRF (the upper sub�gure) 'U' and 'L' graphsare de
reasing fun
tions. The 'U' graph fun
tion values go from about 370 to100 MFlops. The 'L' graph fun
tion goes from 280 to about 180 MFlops.The performan
e of the RPC fa
torization graphs are in
reasing fun
tions asthe matrix size in
reases from 1000 to 3000. The performan
e varies for matrixsizes between 500 and 1500. The 'U' graph fun
tion values range from about700 MFlops to almost 800 MFlops, the 'L' graph fun
tion values range from 600MFlops to a little more than 700 MFlops. The RPC algorithm ('U', 'L') is (4.7,6.7) times faster than the DPPTRF algorithm for large matrix sizes.The performan
e of the RPC solution routine (the lower sub�gure) for the 'L'and 'U' graphs are almost equal. The DPPTRS routine performan
e de
reasesfrom 300 MFlops to 200 MFlops. The RPC algorithm
urve in
reases from 550

19MFlops to almost 810 MFlops. The RPC algorithm ('U', 'L') is (5.2, 5.0) timesfaster than the DPPTRS algorithm for large matri
es in the solution
ase.The matrix size varies from 500 to 2500 on these sub�gures.5.7 The INTEL Pentium IIIFigure 17 shows the performan
e on the INTEL Pentium III 500 MHz
omputer.The LAPACK routine DPPTRF (the upper sub�gure) 'U' and 'L' graphsare de
reasing fun
tions. The 'U' graph fun
tion ranges from about 100 to 80MFlops. The 'L' graph fun
tion ranges from less than 50 to about 25 MFlops.For the RPC fa
torization routine the 'U' and the 'L' graphs are almostequal. The graphs are in
reasing fun
tions from about 200 to 310 MFlops.The RPC fa
torization algorithm ('U', 'L') is (4.2, 9.2) times faster than theDPPTRF algorithm for large matri
es.The performan
e of the RPC solution routine (the lower sub�gure) for the 'L'and 'U' graphs are almost equal. The DPPTRS performan
e graphs de
reasesfrom about 80 to about 50 MFlops. The RPC algorithm
urves in
reases from240 to about 330 MFlops. The RPC algorithm ('U', 'L') is (5.9, 6.0) times fasterthan the DPPTRS algorithm for large matri
es.The matrix size varies from 500 to 3000 on these sub�gures.5.8 The IBM SMP PowerPC with OpenMP dire
tivesFigure 18 shows the performan
e on the the IBM 4-way PowerPC 604e 332 MHz
omputer.These graphs demonstrate su

essful use of OpenMP[17, 18℄ parallelizingdire
tives. The
urves LAPACK(L), LAPACK(U), Re
ursive(L) and Re
ur-sive(U) are identi
al to the
orresponding
urves of �gure 11. We
ompare
urvesRe
ursive(L), Re
ursive(U), Re
.Par(L) and Re
.Par(U). The Re
.Par(L) andRe
.Par(U)
urves result from double parallelization. The RPC algorithms
alla parallelized DGEMM and they are parallelized themselves by the OpenMPdire
tives.The Re
.Par(L)
urve is not mu
h faster than Re
ursive(L), sometimes itis slower. The Re
.Par(U) is the fastest, spe
ially for large size matri
es. Thedoubly parallelized RPC algorithm (Re
.Par(U)) is about 100 MFlops fasterthan the ordinary RPC algorithm (Re
ursive(U)). The relative ('U', 'L') RPCfa
torization algorithm performan
e is (5.6, 7.6) times faster than the DPPTRFalgorithm for large matri
es.The RPC double parallelization algorithm for the solution (lower sub�gure)ex
eeds 800 MFlops. The relative ('U', 'L') RPC solution algorithm performan
eis (6.5, 6.6) times faster than the DPPTRF algorithm for large matri
es.The matrix size varies from 300 to 3000 on these sub�gures.5.9 The INTEL Pentium III running Complex Arithmeti
Figure 19 shows the performan
e on the INTEL Pentium III 500 MHz
omputer.

20This �gure demonstrate the su

essful use of RPC algorithm for Hermitianpositive de�nite matri
es. The performan
e is measured in Complex MFlops.To
ompare with the usual real arithmeti
 MFlops the Complex MFlops shouldbe multiplied by 4.The LAPACK routine ZPPTRF (the upper sub�gure) 'U' graph performs alittle better than the 'L' graph. These routine performs at about 80 MFlops.The RPC Hermitian fa
torization routine 'U' graph performs better thanthe 'L' graph. The RPC performan
e graphs are in
reasing fun
tions. Theygo from 240 up to 320 MFlops. The RPC Hermitian fa
torization algorithm('U', 'L') is (3.8, 4.3) times faster than the ZPPTRF algorithm for the large sizematri
es.The performan
e of the RPC solution routine (the lower sub�gure) for the'L' and 'U' graphs are almost equal. The ZPPTRS performan
e de
reases fromabout 108 to 80 MFlops. The RPC solution algorithm in
reases from about 240up to more than 320 MFlops. The RPC algorithm ('U', 'L') is (3.9, 3.7) timesfaster than the ZPPTRS algorithm for large Hermitian matri
es.The matrix size varies from 500 to 3000 on these sub�gures.5.10 The INTEL Pentium III with all three Cholesky Al-gorithmsFigure 20 shows the performan
e on the INTEL Pentium III 500 MHz
omputer.The graphs on this �gure depi
t all three Cholesky algorithms, the LAPACKfull storage (DPOTRF and DPOTRS) algorithms, the LAPACK pa
ked storage(DPPTRF and DPPTRS) algorithms and the RPC (fa
torization and solution)algorithms.The LAPACK pa
ked storage algorithms (DPPTRF and DPPTRS) are pre-viously explained on �gure 17.The DPOTRF routine (the upper sub�gure), for both the 'U' and 'L'
ases,performs better than the RPC fa
torization routine for smaller matri
es. Forlarger matri
es the RPC fa
torization algorithm performs equally well or slightlybetter than the DPOTRF algorithm.The performan
e of the DPOTRS algorithms ('U' and 'L' graphs) are betterthan the RPC performan
e for this
omputer.However, the POTRF and POTRS storage requirement is almost twi
e thestorage requirement of the RPC algorithms.The matrix size varies from 500 to 3000 on these sub�gures.6 Con
lusionWe summarize and emphasize the most important developments des
ribed inour paper.� A re
ursive pa
ked Cholesky fa
torization algorithm based on BLAS Level 3operations has been developed.

21� The RPC fa
torization algorithm works with almost the same speed asthe traditional full storage algorithm but o

upies the same data storageas the traditional pa
ked storage algorithm. Also see bullet 4.� The user interfa
e of the new pa
ked re
ursive subroutines (RP PPTRFand RP PPTRS) is exa
tly the same as the traditional LAPACK sub-routines (PPTRF and PPTRS). The user will see identi
al data formats.However, the new routines run mu
h faster.� Two separate routines are des
ribed here: RP PPTRF and RP PPTRS.The data format is always
onverted from LAPACK pa
ked data formatto the re
ursive pa
ked data format before the routine starts its operationand
onverted ba
k to LAPACK data format afterwards. The RP PPSVsubroutine exists in our pa
kage whi
h is equivalent to the LAPACK PPSVroutine. In the RP PPSV subroutine the data is not
onverted betweenthe fa
torization and the solution.� New re
ursive pa
ked Level 3 BLAS, RP TRSM and RP SYRK, writtenin Fortran90[21℄ were developed. They only
all the GEMM routine.� This GEMM subroutine
an be developed either by the
omputer manufa
-turer or generated by ATLAS system[25℄. The ATLAS generated GEMMsubroutine is usually
ompatible with the manufa
turer developed routine.A
knowledgementsThis resear
h was partially supported by the LAWRA proje
t, the UNI�C
ol-laboration with the IBM T.J. Watson Resear
h Center at Yorktown Heights.The last two authors were also supported by the Danish Natural S
ien
e Re-sear
h Coun
il through a grant for the EPOS proje
t (EÆ
ient Parallel Algo-rithms for Optimization and Simulation).Referen
es[1℄ R.C. Agawal, F.G. Gustavson, and M. Zubair. Exploiting fun
tional par-allelism on power2 to design high-performan
e numeri
al algorithms. IBMJournal of Resear
h and Development, 38(5):563{576, September 1994.[2℄ B.S. Andersen, F. Gustavson, A. Karaivanov, J. Wa�sniewski, and P.Y.Yalamov. LAWRA { Linear Algebra with Re
ursive Algorithms. InR. Wyrzykowski, B. Mo
hna
ki, H. Pie
h, and J. Szopa, editors, Pro-
eedings of the 3th International Conferen
e on Parallel Pro
essing andApplied Mathemati
s, PPAM'99, pages 63{76, Kazimierz Dolny, Poland,1999. Te
hni
al University of Cz�esto
howa.[3℄ E. Anderson, Z. Bai, C. Bis
hof, S. Bla
kford, J. Demmel, J. Don-garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. M
Kenney, andD. Sorensen. LAPACK Users' Guide. So
iety for Industrial and AppliedMathemati
s, Philadelphia, PA, third edition, 1999.

22[4℄ J. Bilmes, K. Asanovi�
, C.W. Chin, and J. Demmel. Optimizing ma-trix multiply using PHIPAC: a portable, high-performan
e, ansi

odingmethodology. In Pro
eedings of the International Conferen
e on Super
om-puting, Vienna, Austria, Jul 1997. ACM Sigar
.[5℄ J.W. Demmel. Applied Numeri
al Linear Algebra. SIAM, Philadelphia,1997.[6℄ J. Dongarra et al. BLAS (Basi
 Linear Algebra Subprograms).http://www.netlib.org/blas/. Ongoing Proje
ts at the Innovative Compu-ting Laboratory, Computer S
ien
e Department, University of Tennesseeat Knoxville, USA.[7℄ J. Dongarra and J. Wa�sniewski. High Performan
e Linear Algebra Pa
kage{ LAPACK90. In P.M. Pardalos and S. Rajasekaran, editors, Advan
es inRandomized Parallel Computing, volume 5 of Combinatorial Optimization,pages 241{275. Kluwer A
ademi
 Publishers, 1999. Available also fromhttp://www.netlib.org/lapa
k/lawns/lawn134.ps.[8℄ J. J. Dongarra, J. Du Croz, I. S. Du�, and S. Hammarling. A set of Level 3Basi
 Linear Algebra Subprograms. ACM Trans. Math. Soft., 16(1):1{28,Mar
h 1990.[9℄ J. J. Dongarra, J. Du Croz, S. Hammarling, and Ri
hard J. Hanson. Anextended set of FORTRAN basi
 linear algebra subroutines. ACM Trans.Math. Soft., 14(1):1{32, Mar
h 1988.[10℄ J.J. Dongarra, I.S. Du�, D.C. Sorensen, and H.A. van der Vorst. Numeri
alLinear Algebra for High{Performan
e Computers. SIAM, 1998.[11℄ G. Golub and C. F. Van Loan. Matrix Computations. Johns HopkinsUniversity Press, Baltimore, MD, third edition, 1996.[12℄ F. Gustavson, A. Henriksson, I. Jonsson, B. K�agstr�om, and P. Ling. Re-
ursive Blo
ked Data Formats and BLAS' for Dense Linear Algebra Algo-rithms. In B. K�agstr�om, J. Dongarra, E. Elmroth, and J. Wa�sniewski, edi-tors, Pro
eedings of the 4th International Workshop, Applied Parallel Com-puting, Large S
ale S
ienti�
 and Industrial Problems, PARA'98, number1541 in Le
ture Notes in Computer S
ien
e Number, pages 195{206, Ume�a,Sweden, June 1998. Springer.[13℄ F. Gustavson, A. Henriksson, I. Jonsson, B. K�agstr�om, and P. Ling. Super-s
alar GEMM-based Level 3 BLAS { The On-going Evolution of Portableand High-Performan
e Library. In B. K�agstr�om, J. Dongarra, E. Elmroth,and J. Wa�sniewski, editors, Pro
eedings of the 4th International Workshop,Applied Parallel Computing, Large S
ale S
ienti�
 and Industrial Problems,PARA'98, number 1541 in Le
ture Notes in Computer S
ien
e Number,pages 207{215, Ume�a, Sweden, June 1998. Springer.

23[14℄ F.G. Gustavson. Re
ursion leads to automati
 variable blo
king for denselinear-algebra algorithms. IBM Journal of Resear
h and Development,41(6), November 1997.[15℄ N.J. Higham. A

ura
y and Stability of Numeri
al Algorithms. SIAM, 1996.[16℄ IBM. IBM Engineering and S
ienti�
 Subroutine Library for AIX, Version3, Volume 1 edition, De
ember 1997. Pub. number SA22{7272{0.[17℄ IBM. XL Fortran AIX, Language Referen
e, �rst edition, De
 1997. Version5, Release 1.[18℄ IBM. XL Fortran AIX, User's Guide, �rst edition, Nov 1997. Version 5,Release 1.[19℄ B. K�agstr�om, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High-Performan
e Model Implementations and Performan
e Evaluation Ben
h-mark. ACM Trans. Math. Software, 24(3):268{302, 1998.[20℄ C. L. Lawson, R. J. Hanson, D. Kin
aid, and F. T. Krogh. Basi
 linearalgebra subprograms for Fortran usage. ACM Trans. Math. Soft., 5:308{323, 1979.[21℄ M. Met
alf and J. Reid. FORTRAN 90/95 Explained. Oxford UniversityPress, Oxford, UK, se
ond edition, 1996.[22℄ S. Toledo. Lo
ality of Referen
e in LU De
omposition with Partial Pivoting.SIAM Journal of Matrix Analysis and Appli
ations, 18(4), 1997.[23℄ L.N. Trefethen and D. Bau. Numeri
al Linear Algebra. SIAM, Philadelphia,1997.[24℄ J. Wa�sniewski, B.S. Andersen, and F. Gustavson. Re
ursive Formula-tion of Cholesky Algorithm in Fortran 90. In B. K�agstr�om, J. Dongarra,E. Elmroth, and J. Wa�sniewski, editors, Pro
eedings of the 4th Interna-tional Workshop, Applied Parallel Computing, Large S
ale S
ienti�
 andIndustrial Problems, PARA'98, number 1541 in Le
ture Notes in ComputerS
ien
e Number, pages 574{578, Ume�a, Sweden, June 1998. Springer.[25℄ R.C. Whaley and J. Dongarra. Automati
ally Tuned Linear Algebra Soft-ware (ATLAS). http://www.netlib.org/atlas/, 1999. University of Ten-nessee at Knoxville, Tennessee, USA.

24Appendix: Performan
e Graphs

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on IBM 4-way PowerPC 604e 332 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on IBM 4-way PowerPC 604e 332 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 11: Performan
e of the re
ursive Cholesky fa
torization and solution onIBM 4 x PowerPC 604e, � 332 MHz. The re
ursive results in
lude the time
onsumed by
onverting from pa
ked to re
ursive pa
ked storage and vi
e versa.All routines
all the optimized BLAS for the PowerPC ar
hite
ture.

25

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on IBM Power2 160 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on IBM Power2 160 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 12: Performan
e of the re
ursive Cholesky fa
torization and solution onIBM Power2, � 160 MHz. The re
ursive results in
lude the time
onsumed by
onverting from pa
ked to re
ursive pa
ked storage and vi
e versa. All routines
all the optimized BLAS for the Power2 ar
hite
ture.

26

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on COMPAQ Alpha EV6 500 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on COMPAQ Alpha EV6 500 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 13: Performan
e of the re
ursive Cholesky fa
torization and solutionon COMPAQ Alpha EV6, � 500 MHz. The re
ursive results in
lude the time
onsumed by
onverting from pa
ked to re
ursive pa
ked storage and vi
e versa.All routines
all the optimized BLAS for the Alpha ar
hite
ture.

27

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on SGI R10000 195 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on SGI R10000 195 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 14: Performan
e of the re
ursive Cholesky fa
torization and solution onSGI R10000 � 195 MHz. The re
ursive results in
lude the time
onsumed by
onverting from pa
ked to re
ursive pa
ked storage and vi
e versa. All routines
all the optimized BLAS for this SGI ar
hite
ture.

28

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on SUN UltraSparc II 400 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on SUN UltraSparc II 400 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 15: Performan
e of the re
ursive Cholesky fa
torization and solutionon SUN UltraSpar
 II, � 400 MHz. The re
ursive results in
lude the time
onsumed by
onverting from pa
ked to re
ursive pa
ked storage and vi
e versa.All routines
all the optimized BLAS for this SUN ar
hite
ture.

29

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on HP PA-8500 440 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on HP PA-8500 440 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 16: Performan
e of the re
ursive Cholesky fa
torization and solution onHP PA-8500, � 440 MHz. The re
ursive results in
lude the time
onsumed by
onverting from pa
ked to re
ursive pa
ked storage and vi
e versa. All routines
all the optimized BLAS for this HP ar
hite
ture.

30

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on Intel Pentium III 500 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on Intel Pentium III 500 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 17: Performan
e of the re
ursive Cholesky fa
torization and solutionon INTEL Pentium III, � 500 MHz. The re
ursive results in
lude the time
onsumed by
onverting from pa
ked to re
ursive pa
ked storage and vi
e versa.All routines
all the optimized ATLAS BLAS.

31

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on IBM 4-way PowerPC 604e 332 MHz

Rec.Par(L)
Rec.Par(U)

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on IBM 4-way PowerPC 604e 332 MHz, NRHS=N/10

Rec.Par(L)
Rec.Par(U)

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 18: Performan
e of the re
ursive Cholesky fa
torization and solutionon IBM 4 x PowerPC 604e, � 332 MHz. The re
ursive results in
lude thetime
onsumed by
onverting from pa
ked to re
ursive pa
ked storage and vi
eversa. All routines
all the optimized BLAS for the PowerPC ar
hite
ture.These graphs demonstrate su

essful use of OpenMP parallelizing dire
tives.The Re
.Par(L) and Re
.Par(U)
urves are results of the doubly parallelizedRPC algorithms. They
all the parallelized ESSL DGEMM and are parallelizedthemselves by the OpenMP dire
tives.

32

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000

C
om

pl
ex

 M
flo

p/
s

matrix size

Z_RP_PPTRF performance on Intel Pentium III 500 MHz

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000

C
om

pl
ex

 M
flo

p/
s

matrix size

Z_RP_PPTRS performance on Intel Pentium III 500 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L)
LAPACK(U)

Figure 19: Performan
e of the re
ursive Hermitian Cholesky fa
torization andsolution on INTEL Pentium III, � 500 MHz. The re
ursive results in
lude thetime
onsumed by
onverting from pa
ked to re
ursive pa
ked storage and vi
eversa. All routines
all the optimized ATLAS BLAS (ZGEMM).

33

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRF performance on Intel Pentium III 500 MHz

Recursive(L)
Recursive(U)

LAPACK(L) Full
LAPACK(U) Full

LAPACK(L)
LAPACK(U)

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500 3000 3500 4000

M
flo

p/
s

matrix size

D_RP_PPTRS performance on Intel Pentium III 500 MHz, NRHS=N/10

Recursive(L)
Recursive(U)

LAPACK(L) Full
LAPACK(U) Full

LAPACK(L)
LAPACK(U)

Figure 20: Performan
e of the re
ursive Cholesky fa
torization and solutionon INTEL Pentium III, � 500 MHz. The
urves on this �gure
ompare allthree Cholesky fa
torization and solution algorithms. The LAPACK full stor-age (DPOTRF and DPOTRS), the LAPACK pa
ked storage (DPPTRF andDPPTRS) and RPC (fa
torization and solution) algorithms. The re
ursive re-sults in
lude the time
onsumed by
onverting from pa
ked to re
ursive pa
kedstorage and vi
e versa. All routines
all the optimized ATLAS BLAS routines.

