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Abstract

A new compact way to store a symmetric or triangular matrix called RPF
for Recursive Packed Format is fully described. Novel ways to transform
RPF to and from standard packed format is included. A new algorithm,
called RPC for Recursive Packed Cholesky that operates on the RPF
format is presented. Algorithm RPC is level 3 BLAS based and require
algorithms TRSM and SYRK that work on RPF. We thus introduce and
fully describe novel recursive algorithms RP_TRSM and RP_SYRK
that the RPC algorithm requires. It turns out, that both RP_TRSM
and RP_SYRK only call GEMM. Hence RPC mostly calls GEMM
during execution.

The advantage of this storage scheme compared to traditional packed
storage is demonstrated. First, both storage schemes use the minimal
amount of storage for the symmetric or triangular matrix. Second, RPC
gives a level 3 implementation of Cholesky factorization that only requires
standard full format GEMM whereas standard packed implementations
are only level 2. Hence, performance wise our RPC implementation is
decidedly superior.

‘We present performance measurements on several current architectures
that demonstrate order of magnitude improvements over the traditional
packed routines. Also SMP parallel computations on the IBM SMP com-
puter are made. The Graphs, which are attached in the appendix of the
paper, show that the RPC algorithms are superior by a factor of 2 to 9
over the traditional packed algorithms.
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1 Introduction

A very important class of linear algebra problems are those in which the coef-
ficient matrix A is symmetric and positive definite [5, 11, 23]. Because of the
symmetry it is only necessary to store either the upper or lower triangular part
of the matrix.

Lower triangular case Upper triangular case
1 1 8 15 22 29 36 43
2 9 9 16 23 30 37 44
3 10 17 17 24 31 38 45
4 11 18 25 25 32 39 46
5 12 19 26 33 33 40 47
6 13 20 27 34 41 41 48
7 14 21 28 35 42 49 49

Figure 1: The mapping of 7x 7 matrix for the LAPACK Cholesky Algorithm
using the full storage (LDA= 7 if in Fortran77)

Lower triangular case Upper triangular case
1 1 2 4 7 11 16 22
2 8 3 5 8 12 17 23
3 9 14 6 9 13 18 24
4 10 15 19 10 14 19 25
5 11 16 20 23 15 20 26
6 12 17 21 24 26 21 27
7 13 18 22 25 27 28 28

Figure 2: The mapping of 7 x 7 matrix for the LAPACK Cholesky Algorithm
using the packed storage

1.1 LAPACK POTRF and PPTRF subroutines

The LAPACK library[3] offers two different kind of subroutines to solve the same
problems, for instance POTRF! and PPTRF both factorize symmetric, positive

Four names SPOTRF, DPOTRF, CPOTREF and ZPOTRF are used in LAPACK for real
symmetric and complex Hermitian matrices[3], where the first character indicates the precision
and arithmetic versions: S — single precision, D — double precision, C — complex and Z — double
complex. LAPACK95 uses one name LA_POTRF for all versions[7]. POTRF and/or PPTRF
express, in this paper, any precision, any arithmetic and any language version of the PO
and/or PP matrix factorization algorithms.



definite matrices by means of the Cholesky algorithm. The only difference is
the way the triangular matrix is stored (see figures 1 and 2).

In the POTRF case the matrix is stored in one of the lower left or upper right
triangles of a full square matrix[16, page 64] 2, the other triangle is wasted (see
figure 1). Because of the uniform storage scheme, blocking and level 3 BLAS[8]
subroutines can be employed, resulting in a high speed solution.

In the PPTRF case the matrix is kept in packed storage ([1], [16, page 74,
75]), which means that the columns of the lower or upper triangle are stored
consecutively in a one dimensional array (see figure 2). Now the triangular
matrix only occupies the strictly necessary storage space but the nonuniform
storage scheme means that use of full storage BLAS is impossible and only the
level 2 BLAS[20, 9] packed subroutines can be employed, resulting in a low
speed solution.

To summarize, there is a choice between high speed with waste of memory
versus low speed with no waste of memory.

1.2 A new Way of Storing Real Symmetric and Complex
Hermitian and, in either case, Positive Definite Ma-
trices

Together with some new recursively formulated linear algebra subroutines, we
propose a new way of storing a lower or upper triangular matrix that solves this
dilemmal[14, 24]. In other words we obtain the speed of POTRF with the amount
of memory used by PPTRF. The new storage scheme is named RPF, recursive
packed format(see figure 4), and it is explained below.

The benefit of recursive formulations of the Cholesky factorization and the
LU decomposition is described in the works of Gustavson [14] and Toledo [22].
The symmetric, positive definite matrix in the Cholesky case is kept in full
matrix storage, and the emphasis in these works are the better data locality
and thus better utilization of the computers memory hierarchy, that recursive
formulations offer. However, the recursive packed formulation also has this
property.

We will provide a very short introduction on a computer memory hierar-
chy and the Basic Linear Algebra Subprograms (BLAS) before describing the
Recursive Packed Cholesky (RPC) and the Recursive Packed Format (RPF).

1.3 The Rationale behind introducing our New Recursive
Algorithm, RPC and the New Recursive Data Format,
RPF

Computers have several levels of memory. The flow of data from the memory
to the computational units is the most important factor governing performance
of engineering and scientific computations. The object is to keep the functional
units running at their peak capacity. Through the use of a memory hierarchy

2In Fortran column major, in C row major.



system (see figure 3), high performance can be achieved by using locality of
reference within a program. In the present context this is called blocking.
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Figure 3: A computer memory hierarchy

At the top of the hierarchy is a Central Processing Unit (CPU). It commu-
nicates directly with the registers. The number of the registers is usually very
small. A Level 1 cache is directly connected to the registers. The computer
will run with almost peak performance if we are able to deliver the data to the
L1 (level 1) cache in such way that the CPU is permanently busy. There are
several books describing problems associated with the computer memory hier-
archy. The literature in [10, 5, 11] is adequate for Numerical Linear Algebra
specialists.

The memories near the CPU (registers and caches) have a faster access to
CPU than the memories further away. The fast memories are very expensive
and this is one of the reason that they are small. The register set is tiny. Cache
memories are much larger than the set of registers. However, L1 cache is still
not large enough for solving scientific problems. Even a subproblem like matrix
factorization does not fit into cache if the order of the matrix is large.

A special set of Basic Linear Algebra Subprograms (BLAS) have been de-
veloped to address the computer memory hierarchy problem in the area of Nu-
merical Linear Algebra. The BLAS are documented in [20, 9, 8, 6]. BLAS are
very well summarized and explained for Numerical Linear Algebra specialists
in [10, 5].

There are three levels of BLAS: Level 1 BLAS shows vector vector opera-
tions, Level 2 BLAS shows vector matrix (and/or matrix vector) operations,
and Level 3 BLAS shows matrix matrix operations.

For Cholesky factorization one can make the following three observations
with respect to the BLAS.

1. Level 3 implementations using full storage format run fast.

2. Level 3 implementations using packed storage format rarely exist. A level 3

implementation was previously used in [16], however, at great program-
ming cost. Conventional Level 2 implementations using packed storage



format run, for large problem sizes, considerably slower than the full stor-
age implementations.

3. Transforming conventional packed storage to RPF and using our RPC
algorithm produces a Level 3 implementation using the same amount of
storage as packed storage.

1.4 Overview of the Paper

Section 2 describes the new packed storage data format and the data transfor-
mations to and from conventional packed storage. Section 2.1 describes con-
ventional lower and upper triangular packed storage. Section 2.2 discusses how
to transform in place either a lower or upper trapezoid packed data format to
recursive packed data format and vice versa. Section 2.3 describes the possi-
bility to transpose the matrix while it is reordered from packed to recursive
packed format and vice versa. Finally, in Section 2.4 the recursive aspects of
the data transformation is described. These four subsections describe the in
place transformation pictorially via several figures.

In Sections 3.1 and 3.2, recursive TRSM and SYRK, both which work on
RPF, are described. Both routines do almost all their required floating point
operations by calling level 3 BLAS GEMM. Finally, in Section 3.3, the RPC
algorithm is described in terms of using the recursive algorithms of Sections 3.1
and 3.2. Asin Section 2, all three algorithms are described pictorially via several
figures. Note that the RPC algorithm only uses one Level 3 BLAS subroutine,
namely GEMM. Usually the GEMM routine is very specialized, highly tuned
and done by the computer manufacturer. If not, the ATLAS[25] GEMM can be
used.

Section 4 explains that the RPC algorithm is numerically stable.

Section 5 describes performance graphs of the packed storage LAPACK]|3]
algorithms and of our recursive packed algorithms on several computers; the
most typical computers like COMPACQ, HP, IBM SP, IBM SMP, INTEL Pen-
tium, SGI and SUN were considered (figures 11, ..., 17). All these results
show that the recursive packed Cholesky factorization (RP_PPTRF) and the
solution (RP_PPTRS) are 4 — 9 times faster than the traditional packed sub-
routines. There are three more graphs. One demonstrates successful use of
OpenMP[17, 18] parallelizing directives (figure 18). The second graph shows
that the recursive data format is also effective for the complex arithmetic (fig-
ure 19). The third one shows the performance of all three algorithms for the
Cholesky factorization (POTRF, PPTRF and RP_PPTRF) and the solution
(POTRS, PPTRS and RP_PPTRS) (figure 20).

Section 6 discusses the most important developments in this paper.

2 The recursive packed storage

A new way to store triangular matrices in packed storage called recursive packed
is presented. This is a storage scheme by its own right, and a way to explain it,



is to describe the conversion from packed to recursive packed storage and vice
versa (see figures 2 and 4).

Lower triangular case

1
2 4
3 5 6
7 11 15 19
8 12 16 20 21
9 13 17 22 24 26
10 14 18 23 25 27 | 28
Upper triangular case
1 2 3 7 10 13 16
4 ) g8 11 14 17
6 9 12 15 18
19 20 22 24
21 23 25
26 27
28

Figure 4: The mapping of 7 x 7 matrix for the Cholesky Algorithm using the
recursive packed storage. The recursive block division is illustrated.

2.1 Lower and upper triangular packed storage

Symmetric, complex hermitian or triangular matrices may be stored in packed
storage form (see LAPACK Users’ Guide [3], IBM ESSL Library manual[l6,
pages 66-67] and figure 2). The columns of the triangle are stored sequentially
in a one dimensional array starting with the first column. The mapping between
positions in full storage and in packed storage for a triangular matrix of size m
is,

A i)j UPLO
I1<j<m -

APt (j-1)j/2 1<i<j U 3
1<j<m _p
APir-nem—i/2 | j<i<m L

The advantage of this storage is the saving of almost half 4 the memory
compared to full storage.

3For UPLO = ’U’ upper triangular and for UPLO = ’L’ lower triangular of A is stored.
4At least m x (m — 1)/2. This formulae is a function of LDA (leading dimension of A)
and m in Fortran77. The saving in Fortran77 is m X (2 x LDA —m — 1)/2.



2.2 Reordering of a lower and upper trapezoid

— Packed storage

P m-p

LAPACK packed storage memory map

| l l l LI L1 l [ [ [ T[]
m(m + 1)/2 words

buffer [~ T =11 p(p — 1)/2 words

Recursive packed storage memory map

[~ 171 | | | I | [ [ 11
m(m + 1)/2 words

Figure 5: Reordering of the lower packed matrix. First, the last p — 1 columns
of the leading triangle are copied to the buffer. Then, in place, the columns of
the accentuated rectangle are assembled in the bottom space of the trapezoid.
Last, the buffer is copied back to the top of the trapezoid.

It is assumed that the matrices are stored in column major order, but the
concepts in the paper are fully applicable also if the matrices are stored in row
major order. As an intermediate step to transform a packed triangular ma-
trix to a recursive packed matrix, the matrix is divided into two parts along
a column thus dividing the matrix in a trapezoidal and a triangular part as
shown in fig. 5 and 6. The triangular part remains in packed form, the
trapezoidal part is reordered so it consists of a triangle in packed form, and
a rectangle in full storage form. The reordering demands a buffer of the size
of the triangle minus the longest column. The reordering in the lower case,
fig. 5, takes the following steps. First the columns of the triangular part of
the trapezoid are moved to the buffer (note that the first column is in cor-
rect place), then the columns of the rectangular part of the trapezoid are
moved into consecutive locations and finally the buffer is copied back to the
correct location in the reordered array. If p in figure 5 is chosen to [m/2]
the rectangular submatrix will be square or deviate from a square only by a
single column. The buffer size is p(p — 1)/2 and the addresses of the lead-



Packed storage L

LAPACK packed storage memory map

LT l [ [ . l l l l l |
m(m + 1)/2 words

(m—p)(m—p—1)/2 words £S5 15 1 ] buffer

Recursive packed storage memory map

LT 1 I | | | | M
m(m + 1)/2 words

Figure 6: Reordering of the upper packed matrix. First, the first m —p — 1
columns of the trailing triangle are copied to the buffer. Then, in place, the
columns of the accentuated rectangle are assembled in the top space of the
trapezoid. Last, the buffer is copied back to the bottom of the trapezoid.

ing triangle, the rectangular submatrix and the trailing triangle are given by,
o1
e 1+p(p+1)/2

o 1+mp—pp—1)/2

After the reordering the leading and trailing triangles are both in the same
lower or upper packed storage scheme as the original triangular matrix. The
reordering can be implemented as subroutines,

subroutine TPZ_TO_TR(m,p, AP)

and
subroutine TR_TO_TPZ(m,p, AP)

where TPZ_TO_TR means the reordering of the trapezoidal part from packed
format to the triangular-rectangular format just described. TR_TO_TPZ is the
opposite reordering.



2.3 Transposition of the rectangular part

The rectangular part of the reordered matrix are now kept in full matrix storage.
If desired, this offers an excellent opportunity to transpose the matrix while it is
transformed to recursive packed format. If the rectangular submatrix is square
the transposition can be done completely in-place. If it deviates from a square by
a column, a buffer of the size of the columns is necessary to do the transposition,
for this purpose we can reuse the buffer used for the reordering.

2.4 Recursive application of the reordering

The method of reordering is applied recursively to the leading and trailing tri-
angles which are still in packed storage, until finally the originally triangular
packed matrix is divided in rectangular submatrices of decreasing size, all in
full storage. The implementation of the complete transformation from packed
to recursive packed format, P_TO_RP is (compare the figures 2 and 4),

recursive subroutine P_TO_RP(m, AP)
if (m > 1) then
p=|m/2]
call TPZ_TO_TR(m,p, AP)
call P.TO_RP(p, AP)
call P.TO_RP(m —p, AP(1+ mp—p(p—1)/2))
end if

end

and the inverse transformation from recursive packed to packed, RP_TO_P is,

recursive subroutine RP_TO_P(m, AP)
if (m > 1) then
p=|m/2]
call RP_TO_P(p, AP)
call TR_.TO_TPZ(m,p, AP)
call RP_TO_P(m —p, AP(1+ mp —p(p—1)/2))
end if

end

The examples shown here concerns the lower triangular matrix, but the upper
triangular transformation, and the transformation with transposition follows
the same pattern. The figure 7 illustrates the recursive division of small lower
and upper triangular matrices.
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Figure 7: The lower and upper triangular matrices, in recursive packed storage
data format, for m = 20. The rectangular submatrices, shown in the figures,
are kept in full storage in column major order, in the array containing the whole
matrices.

3 Recursive formulation of the Cholesky algo-
rithm and its necessary BLAS

Two BLAS[6] operations, the triangular solver with multiple right hand sides,
TRSM? and the rank k update of a symmetric matrix, SYRK are needed for the
recursive Cholesky factorization and solution, RP_PPTRF® and RP_PPTRS][2].
In this section RP_.TRSM, RP_.SYRK, RP_.PPTRF and RP_PPTRS are for-
mulated recursively and their use of recursive packed operands are explained.
TRSM, SYRK, PPTRF and PPTRS operate in various cases depending of the
operands and the order of the operands. In the following we only consider single
specific cases, but the deduction of the other cases follows the same guidelines.
All the computational work in the recursive BLAS routines RP_TRSM and
RP_SYRK (and also RP_.TRMM) is done by the non recursive matrix-matrix
multiply routine GEMM][19, 25]. This is a very attractive property, since GEMM
usually is or can be highly optimized on most current computer architectures.
The GEMM operation is very well documented and explained in [12, 13, 6].
The speed of our computation depends very much from the speed of a good
GEMM. Good GEMM implementations are usually developed by computer
manufacturers. The model implementation of GEMM can be obtained from

50n naming of TRSM, SYRK, HERK and GEMM see footnote of POTRF on page 1.
6The prefix RP_ indicates that the subroutine belongs to the Recursive Packed library, for
example RP_PPTREF is the Recursive Packed Cholesky factorization routine.
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netlib [6]; it works correctly but slowly. The Innovative Computing Labora-
tory at the University of Tennessee in Knoxville developed an automatic system
called ATLAS[25] which usually can produce a very fast GEMM subroutine. An-
other automatic code generator scheme for GEMM was developed at Berkeley[4].

In ESSL, see [1], GEMM and all other BLAS are produced via blocking and
high performance kernel routines. For example, ESSL produces a single kernel
routine, DATB, which has the same function as the ATLAS on chip GEMM
kernel. The principles underlying the production of both kernels are similar.
The major difference is that ESSL’s GEMM code is written by hand whereas
ATLAS’ GEMM code is parametrized and run over all parameter settings until
a best parameter setting is found for the particular machine.

3.1 Recursive TRSM based on non-recursive GEMM

Fig. 8 shows the splitting of the TRSM operands. The operation now consists
of the three suboperations,

X AL = aBp RP_TRSM
Blg = B12 — a71X11A2Tl GEMM
XlgAg; = aBlg RP_TRSM

Based on this splitting, the algorithm can be programmed as follows,

recursive subroutine RP_TRSM (m,n,a, AP, B)
if (n ==1) then
doi=1m
B(i,1) = aB(i,1)/AP(1)

end do
else
p=|n/2]

call RP_TRSM (m,p,a, AP, B)
call GEMM('N')T",m,n —p,p,—a~', B,AP(1 +np — p(p — 1)/2),
n—p,1,B(l,p+1))
call RP_TRSM (m,n —p,a, AP(1+np—p(p—1)/2),B(1,p+ 1))
end if
end

3.2 Recursive SYRK based on non-recursive GEMM

Fig. 9 shows the splitting of the SYRK operands. The operation now consists
of the three suboperations,
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P NP P NP P NP
T T
11 Ao
X11 Xi2 * T = aByg aB; | M
22

Figure 8: The recursive splitting of the matrices in the RP_TRSM operation for
the case where SIDE=Right, UPLO=Lower and TRANSA=Transpose.

Cii = BCu +ad Al RP_SYRK
Cyy = pCs + O[AglA{l GEMM
Cyy = pCo + sy A;l RP_SYRK

Based on this splitting, the algorithm can be programmed as follows,

recursive subroutine RP_SYRK (m,n,a, A, 3, CP)
if (m ==1) then
CP(1) = pCP(1)
doj=1m
CP(1) = CP(1) + aA(1, §)?
end do
else
p=lm/2)
call RP_SYRK (p,n,a, A, 3, CP)
call GEMM('N')T",m —p,p,n,a, A(p+ 1,1), A,
B,CP(1+p(p+2)/2))
call RP_SYRK(m —p,n,a, A(p+1,1),5, CP(1 + mp —p(p—1)/2)
end if
end

3.3 Recursive PPTRF and PPTRS based on recursive
TRSM and recursive SYRK

Fig. 10 shows the splitting of the PPTRF operand. The operation now consists
of four suboperations,
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P ahy,
Ci1 BCiy
M P G BC1 aAyy
G2 BC2
P M P P M P N

Figure 9: The recursive splitting of the matrices in the RP_SYRK operation

for the case where UPLO=Lower and TRANS=No transpose.

All
A21
A22
AZQ

L L,
Lo L,
Agy — Loy LY
Ly»Li,

RP_PPTRF
RP_TRSM
RP SYRK
RP_PPTRF

Based on this splitting the algorithm can be programmed as follows,

recursive subroutine RP_PPTRF (m, AP)

if (m ==1) then
AP(1) = \/AP(1)
else
p=|m/2]

call RP_PPTRF (p, AP)

call RP_TRSM (m — p,p,1.0, AP, AP(1+p(p+1)/2),m — p)

call RP_SYRK(m — p,p,—1.0,AP(1+ p(p+1)/2),
m —p, 1.0, AP(1+mp— (p
call RP_PPTRF(m —p, AP(1 4+ mp—p(p

end if

end

~1)/2
—-1)/2

)
)

The solution subroutine RP_PPTRS performs consecutive triangular solu-
tions to the transposed and the non-transposed Cholesky factor. This routine

is not explicitly recursive, as it just calls the recursive RP_TRSM twice.

4 Stability of the Recursive Algorithm

The paper [24] shows that the recursive Cholesky factorization algorithm is
equivalent to the traditional algorithms in the books[5, 11, 23]. The whole the-
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Figure 10: The recursive splitting of the matrix in the RP_PPTRF operation
for the case where UPLO=Lower.

ory of the traditional Cholesky factorization and BLAS (TRSM and SYRK) al-
gorithms carries over to the recursive Cholesky factorization and BLAS (TRSM
and SYRK) algorithms described in Section 3. The error analysis and stability
of these algorithms is very well described in the book of Nicholas J. Higham[15].
The difference between LAPACK algorithms PO, PP and RP” is how inner
products are accumulated. In each case a different order is used. They are all
mathematically equivalent, and, stability analysis shows that any summation
order is stable.

5 Performance results

IBM 4 x PowerPC 604e @ 332 MHz
IBM Power2 @ 160 MHz
SUN UltraSparc 1T @ 400 MHz
SGI R10000 @ 195 MHz
COMPAQ Alpha EV6 @ 500 MHz
HP PA-8500 @ 440 MHz
INTEL Pentium III @ 500 MHz

Table 1: Computer names

The new recursive packed BLAS (RP_-TRSM and RP_SYRK), and the new
recursive packed Cholesky factorization and solution (RP_PPTRF and RP_PPTRS)
routines were compared to the traditional LAPACK subroutines, both concern-
ing the results and the performance. The comparisons were made on seven

Tfull, packed and recursive packed.
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different architectures, listed in the Table 1. The result graphs are attached in
the appendix of this paper. The double precision arithmetic in Fortran90[21]
was used in all cases.

IBM-PPC ESSL 3.1.0.0 -lesslsmp
IBM-PW2 ESSL 2.2.2.0 -lesslp2
SUN Sun Performance Library 2.0 -lsunperf
SGI Standard Execution Environment 7.3  -lblas
COMPAQ DXML V3.5 -ldxmp_ev6
HP HP-UX PA2.0 BLAS Library 10.30 -lblas
INTEL ATLAS 3.0 BETA -latlas

Table 2: Computer library versions

The following procedure was used in carrying out our performance tests.

On each machine the recursive and the traditional routines were compiled
with the same compiler and compiler flags and they call the same ven-
dor optimized, or otherwise optimized, BLAS library. The BLAS library
versions can be seen in Table 2.

The compared recursive and traditional routines received the same input
and produced the same output for each time measurement. The time
spent in reordering the matrix to and from® recursive packed format is
included in the run time for both RP_PPTRF and RP_PPTRS. For the
traditional routines there was no data transformation cost.

The CPU time is measured by the timing function ETIME except on the
PowerPC machine, which is a 4 way SMP. On this machine the run time
was measured by the wall clock time by means of a special IBM utility
function called RTC. Except for the operating system no other programs
were running during these test runs.

For each machine the timings were made for a sequence of matrix sizes
ranging from n = 300 to n = 3000 in steps of n = 100. In case of the
HP and Intel machines the matrix size starts at n = 500. We start at
n = 500 because the resolution of the ETIME utility was too coarse. The
number of right hand sides were taken to be nrhs = n/10. Due to memory
limitations on the actual HP machine, this test series could only range to
n = 2500.

The operation counts for Cholesky factorization and solution are

NFPp,. =n®/3 and NFPg, = 2 (nrhs)n?,

8However it is only necessary to perform the to transformation in RP_PPTRF and no
transformation in RP_PPTRS, to get the correct results.
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where n is the number of equations and nrhs the number of right hand
sides. These counts were used to convert run times to Flop rates.

Ten figures (figure 11, ..., figure 20) show performance graph comparisons,
between the new RPC algorithms and the traditional LAPACK algorithms. The
RPC algorithms use the RPF data format in all comparisons. As mentioned the
cost of transforming from packed format to RPF and from RPF to packed format
is included in the both the recursive packed factor and solve routines. The
LAPACK subroutines DPPTRF, ZPPTRF, DPPTRS and ZPPTRS use packed
data format, and DPOTRF and DPOTRS use full data format. Figure 20
compares all three algorithms RPC, LAPACK full storage and LAPACK packed
storage.

Every figure has two subfigures and one caption. The upper subfigure shows
comparison curves for Cholesky factorization. The lower subfigures show com-
parison curves of forward and backward substitutions. The captions describe
details of the performance figures. The first seven figures (Figure 11, ..., 17)
describe the same comparison of performance on several different computers.

5.1 The IBM SMP PowerPC

Figure 11 shows the performance on the the IBM 4-way PowerPC 604e 332 MHz
computer.

The LAPACK routine DPPTRF (the upper subfigure) performs at about
100 MFlops. Performance of the "U’ graph is a little better than the 'L’ graph.
Performance remains constant as the order of the matrix increases.

The performance of the RPC factorization routine increases as n increases.
The *U’ graph increases from 50 MFlops to almost 600 MFlops and the 'L’ graph
from 200 MFlops to 650 MFlops. The U’ graph performance is better than the
'L’ graph performance. The relative ("U’, 'L’) RPC algorithm performance is
(4.9, 7.2) times better than the DPPTRF algorithm for large matrix sizes.

The performance of the RPC solution routine (the lower subfigure) for the
'L’ and "U’ graphs are almost equal. The DPPTRS routine performs about
100 MFlops for all matrix sizes. The RPC algorithm curve increases from 250
MFlops to almost 800 MFlops. The relative ("U’, °’L’) performance of the RPC
algorithm is (5.7, 5.5) times faster than the DPPTRS algorithm for large matrix
sizes.

The matrix size varies from 300 to 3000 on these subfigures.

5.2 The IBM Power2

Figure 12 shows the performance on the IBM Power2 160 MHz computer.

The LAPACK routine DPPTRF (the upper subfigure) "U’ graph performs
at about 200 MFlops, the 'L’ graph performs at about 150 MFlops. There is no
increase in both graphs as the size of the matrix grows.

The performance graphs of the RPC factorization routine both increase, the
U’ graph from 300 to a little more than 400 MFlops, and the 'L’ graph from
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200 MFlops to 450 MFlops. The 'L’ graph is better than the U’ graph when
the matrix sizes are between 750 and 3000. The 'U’ graph is better than the
'L’ graph when the matrix sizes are between 300 and 750. Both graphs grow
very rapidly for matrix sizes between 300 and 500. The relative ("U’, 'L’) RPC
algorithm performance is (1.9, 3.1) times faster than the DPPTRF algorithm
for large matrix sizes.

The performance of the RPC solution routine (the lower subfigure) for the
'L’ and ’U’ graphs are almost equal. The performance of the DPPTRS algorithm
stays constant at about 250 MFlops decreasing slightly as n ranges from 300 to
3000. The performance of the RPC algorithm increases from 350 to more than
500 MFlops. The relative ("U’, 'L’) RPC algorithm performance is (2.3, 2.3)
times faster than the DPPTRS algorithm for large matrix sizes.

The matrix size varies from 300 to 3000 on these subfigures.

5.3 The Compaq Alpha EV6

Figure 13 shows the performance on the the COMPAQ Alpha EV6 500 MHz
computer.

The LAPACK routine DPPTRF (the upper subfigure) "U’ graph performs
better than the 'L’ graph. The difference is about 50 MFlops. The performance
starts at about 300 MFlops, increases to 400 MFlops and than drops down to
about 200 MFlops.

The performance of the RPC factorization routine increases as n increases.
Both graphs (the 'U’ and 'L’ graphs) are almost equal. The U’ graph is a
little higher for matrix sizes between 300 and 450. The relative ("U’, ’'L’) RPC
algorithm performance is (3.4, 5.0) times faster than the DPPTRF algorithm
for large matrix sizes.

For the routine DPPTRS the shape of the solution performance curves (the
lower subfigure) for the 'L’ and 'U’ graphs are almost equal. The performance
of the DPPTRS routine decreases from 450 to 250 MFlops as n increases from
300 to 3000. The RPC performance curves increases from about 450 MFlops
to more than 750 MFlops. The performance ("U’, ’L’) of the RPC algorithm is
(3.3, 3.3) times faster than DPPTRS algorithm for large matrix sizes.

The matrix size varies from 300 to 3000 on these subfigures.

5.4 The SGI R10000

Figure 14 shows the performance on the the SGI R10000 195 MHz computer,
on one processor only.

The LAPACK routine DPPTRF (the upper subfigure) "U’ graph performs
better than the L’ graph for matrix sizes from 300 to about 2000, after which
both the "U’” and the 'L’ graphs are the same. The DPPTRF performance slowly
decreases.

The performance of the RPC factorization routine ("U’ and ’L’ graphs) in-
creases from about 220 to 300 MFlops as n increases from 300 to about 1000,
and stays constant as n increase to 3000. The relative ("U’, 'L’) RPC algorithm
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performance is (4.9, 4.9) times faster than the DPPTRF algorithm for large
matrix sizes.

For the routine DPPTRS the shape of the solution performance curves (the
lower subfigure) for the 'L’ and 'U’ graphs are almost equal. The performance
of the DPPTRS routine decreases from 130 MFlops to 60 MFlops as n increases
from 300 to 3000. The Performance of the RPC solution routine increases in the
beginning, and then runs constantly at about 300 MFlops. The performance
(’U’, 'L’) of the RPC algorithm is (5.1, 5.2) times faster than the DPPTRS
algorithm for large matrix sizes.

The matrix size varies from 300 to 3000 on these subfigures.

5.5 The SUN UltraSparc II

Figure 15 shows the performance on the the SUN UltraSparc IT 400 MHz com-
puter.

The LAPACK routine DPPTRF (the upper subfigure) "U’ and 'L’ graphs
show almost equal performance when n > 1500. These functions start between
200 and 225 MFlops and then decrease down to about 50 MFlops.

For the RPC factorization routine, the performance of the U’ and ’L’ graphs,
are also almost equal over the whole interval. Their function values start from
250 MFlops, quickly rise to 350 MFlops and then slowly increase to about 450
MFlops. The RPC factorization (’U’, ’L’) algorithm is (9.7, 10.2) times faster
than the DPPTRF algorithm for large matrix sizes.

The performance of the RPC solution routine (the lower subfigure) for the 'L’
and ’U’ graphs are almost equal. The DPPTRS performance graphs decreases
from 225 to 50 MFlops. The performance for the RPC solution graphs increases
from 330 to almost 450 MFlops. The RPC solution ("U’, 'L’) algorithm is (10.0,
9.4) times faster than the DPPTRS algorithm for large matrix sizes.

The matrix size varies from 300 to 3000 on these subfigures.

5.6 The HP PA-8500

Figure 16 shows the performance on the the HP PA-8500 440 MHz computer.

The LAPACK routine DPPTRF (the upper subfigure) "U’ and 'L’ graphs
are decreasing functions. The U’ graph function values go from about 370 to
100 MFlops. The 'L’ graph function goes from 280 to about 180 MFlops.

The performance of the RPC factorization graphs are increasing functions as
the matrix size increases from 1000 to 3000. The performance varies for matrix
sizes between 500 and 1500. The "U’ graph function values range from about
700 MFlops to almost 800 MFlops, the L’ graph function values range from 600
MFlops to a little more than 700 MFlops. The RPC algorithm ("U’, °L’) is (4.7,
6.7) times faster than the DPPTRF algorithm for large matrix sizes.

The performance of the RPC solution routine (the lower subfigure) for the 'L’
and "U’ graphs are almost equal. The DPPTRS routine performance decreases
from 300 MFlops to 200 MFlops. The RPC algorithm curve increases from 550
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MFlops to almost 810 MFlops. The RPC algorithm ("U’, ’L’) is (5.2, 5.0) times
faster than the DPPTRS algorithm for large matrices in the solution case.
The matrix size varies from 500 to 2500 on these subfigures.

5.7 The INTEL Pentium III

Figure 17 shows the performance on the INTEL Pentium IIT 500 MHz computer.

The LAPACK routine DPPTRF (the upper subfigure) "U’ and 'L’ graphs
are decreasing functions. The U’ graph function ranges from about 100 to 80
MFlops. The 'L’ graph function ranges from less than 50 to about 25 MFlops.

For the RPC factorization routine the 'U’ and the 'L’ graphs are almost
equal. The graphs are increasing functions from about 200 to 310 MFlops.
The RPC factorization algorithm ("U’, ’L’) is (4.2, 9.2) times faster than the
DPPTRF algorithm for large matrices.

The performance of the RPC solution routine (the lower subfigure) for the 'L’
and "U’ graphs are almost equal. The DPPTRS performance graphs decreases
from about 80 to about 50 MFlops. The RPC algorithm curves increases from
240 to about 330 MFlops. The RPC algorithm ("U’, °’L’) is (5.9, 6.0) times faster
than the DPPTRS algorithm for large matrices.

The matrix size varies from 500 to 3000 on these subfigures.

5.8 The IBM SMP PowerPC with OpenMP directives

Figure 18 shows the performance on the the IBM 4-way PowerPC 604e 332 MHz
computer.

These graphs demonstrate successful use of OpenMP[17, 18] parallelizing
directives. The curves LAPACK(L), LAPACK(U), Recursive(L) and Recur-
sive(U) are identical to the corresponding curves of figure 11. We compare curves
Recursive(L), Recursive(U), Rec.Par(L) and Rec.Par(U). The Rec.Par(L) and
Rec.Par(U) curves result from double parallelization. The RPC algorithms call
a parallelized DGEMM and they are parallelized themselves by the OpenMP
directives.

The Rec.Par(L) curve is not much faster than Recursive(L), sometimes it
is slower. The Rec.Par(U) is the fastest, specially for large size matrices. The
doubly parallelized RPC algorithm (Rec.Par(U)) is about 100 MFlops faster
than the ordinary RPC algorithm (Recursive(U)). The relative ("U’; 'L’) RPC
factorization algorithm performance is (5.6, 7.6) times faster than the DPPTRF
algorithm for large matrices.

The RPC double parallelization algorithm for the solution (lower subfigure)
exceeds 800 MFlops. The relative ("U’, ’L’) RPC solution algorithm performance
is (6.5, 6.6) times faster than the DPPTRF algorithm for large matrices.

The matrix size varies from 300 to 3000 on these subfigures.

5.9 The INTEL Pentium III running Complex Arithmetic
Figure 19 shows the performance on the INTEL Pentium IIT 500 MHz computer.
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This figure demonstrate the successful use of RPC algorithm for Hermitian
positive definite matrices. The performance is measured in Complex MFlops.
To compare with the usual real arithmetic MFlops the Complex MFlops should
be multiplied by 4.

The LAPACK routine ZPPTRF (the upper subfigure) 'U’ graph performs a
little better than the 'L’ graph. These routine performs at about 80 MFlops.

The RPC Hermitian factorization routine U’ graph performs better than
the 'L’ graph. The RPC performance graphs are increasing functions. They
go from 240 up to 320 MFlops. The RPC Hermitian factorization algorithm
(U, ’L’) is (3.8, 4.3) times faster than the ZPPTRF algorithm for the large size
matrices.

The performance of the RPC solution routine (the lower subfigure) for the
'L’ and "U’ graphs are almost equal. The ZPPTRS performance decreases from
about 108 to 80 MFlops. The RPC solution algorithm increases from about 240
up to more than 320 MFlops. The RPC algorithm ("U’, °L’) is (3.9, 3.7) times
faster than the ZPPTRS algorithm for large Hermitian matrices.

The matrix size varies from 500 to 3000 on these subfigures.

5.10 The INTEL Pentium III with all three Cholesky Al-
gorithms

Figure 20 shows the performance on the INTEL Pentium IIT 500 MHz computer.

The graphs on this figure depict all three Cholesky algorithms, the LAPACK
full storage (DPOTRF and DPOTRS) algorithms, the LAPACK packed storage
(DPPTRF and DPPTRS) algorithms and the RPC (factorization and solution)
algorithms.

The LAPACK packed storage algorithms (DPPTRF and DPPTRS) are pre-
viously explained on figure 17.

The DPOTRF routine (the upper subfigure), for both the U’ and 'L’ cases,
performs better than the RPC factorization routine for smaller matrices. For
larger matrices the RPC factorization algorithm performs equally well or slightly
better than the DPOTRF algorithm.

The performance of the DPOTRS algorithms (U’ and 'L’ graphs) are better
than the RPC performance for this computer.

However, the POTRF and POTRS storage requirement is almost twice the
storage requirement of the RPC algorithms.

The matrix size varies from 500 to 3000 on these subfigures.

6 Conclusion

We summarize and emphasize the most important developments described in
our paper.
e A recursive packed Cholesky factorization algorithm based on BLAS Level 3
operations has been developed.
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The RPC factorization algorithm works with almost the same speed as
the traditional full storage algorithm but occupies the same data storage
as the traditional packed storage algorithm. Also see bullet 4.

The user interface of the new packed recursive subroutines (RP_PPTRF
and RP_PPTRS) is exactly the same as the traditional LAPACK sub-
routines (PPTRF and PPTRS). The user will see identical data formats.
However, the new routines run much faster.

Two separate routines are described here: RP_PPTRF and RP_PPTRS.
The data format is always converted from LAPACK packed data format
to the recursive packed data format before the routine starts its operation
and converted back to LAPACK data format afterwards. The RP_PPSV
subroutine exists in our package which is equivalent to the LAPACK PPSV
routine. In the RP_PPSV subroutine the data is not converted between
the factorization and the solution.

New recursive packed Level 3 BLAS, RP_TRSM and RP_SYRK, written
in Fortran90[21] were developed. They only call the GEMM routine.
This GEMM subroutine can be developed either by the computer manufac-
turer or generated by ATLAS system[25]. The ATLAS generated GEMM
subroutine is usually compatible with the manufacturer developed routine.

Acknowledgements

This research was partially supported by the LAWRA project, the UNIeC col-
laboration with the IBM T.J. Watson Research Center at Yorktown Heights.
The last two authors were also supported by the Danish Natural Science Re-
search Council through a grant for the EPOS project (Efficient Parallel Algo-
rithms for Optimization and Simulation).

References

[1]

[2]

[3]

R.C. Agawal, F.G. Gustavson, and M. Zubair. Exploiting functional par-
allelism on power2 to design high-performance numerical algorithms. IBM
Journal of Research and Development, 38(5):563-576, September 1994.

B.S. Andersen, F. Gustavson, A. Karaivanov, J. Wasniewski, and P.Y.
Yalamov. LAWRA - Linear Algebra with Recursive Algorithms. In
R. Wyrzykowski, B. Mochnacki, H. Piech, and J. Szopa, editors, Pro-
ceedings of the 3" International Conference on Parallel Processing and
Applied Mathematics, PPAM’99, pages 63-76, Kazimierz Dolny, Poland,
1999. Technical University of Czestochowa.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.



[4]

22

J. Bilmes, K. Asanovi¢, C.W. Chin, and J. Demmel. Optimizing ma-
trix multiply using PHIPAC: a portable, high-performance, ansi ¢ coding
methodology. In Proceedings of the International Conference on Supercom-
puting, Vienna, Austria, Jul 1997. ACM Sigarc.

J.W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia,
1997.

J. Dongarra et al. BLAS (Basic Linear Algebra Subprograms).
http://www.netlib.org/blas/. Ongoing Projects at the Innovative Compu-
ting Laboratory, Computer Science Department, University of Tennessee
at Knoxville, USA.

J. Dongarra and J. Wadniewski. High Performance Linear Algebra Package
— LAPACKO90. In P.M. Pardalos and S. Rajasekaran, editors, Advances in
Randomized Parallel Computing, volume 5 of Combinatorial Optimization,
pages 241-275. Kluwer Academic Publishers, 1999. Available also from
http://www.netlib.org/lapack/lawns/lawn134.ps.

J. J. Dongarra, J. Du Croz, L. S. Duff, and S. Hammarling. A set of Level 3
Basic Linear Algebra Subprograms. ACM Trans. Math. Soft., 16(1):1-28,
March 1990.

J. J. Dongarra, J. Du Croz, S. Hammarling, and Richard J. Hanson. An
extended set of FORTRAN basic linear algebra subroutines. ACM Trans.
Math. Soft., 14(1):1-32, March 1988.

J.J. Dongarra, I.S. Duff, D.C. Sorensen, and H.A. van der Vorst. Numerical
Linear Algebra for High—Performance Computers. STAM, 1998.

G. Golub and C. F. Van Loan. Matriz Computations. Johns Hopkins
University Press, Baltimore, MD, third edition, 1996.

F. Gustavson, A. Henriksson, I. Jonsson, B. Kagstrém, and P. Ling. Re-
cursive Blocked Data Formats and BLAS’ for Dense Linear Algebra Algo-
rithms. In B. Kagstrom, J. Dongarra, E. Elmroth, and J. Wagéniewski, edi-
tors, Proceedings of the 41" International Workshop, Applied Parallel Com-
puting, Large Scale Scientific and Industrial Problems, PARA’98, number
1541 in Lecture Notes in Computer Science Number, pages 195-206, Umea,
Sweden, June 1998. Springer.

F. Gustavson, A. Henriksson, I. Jonsson, B. Kagstrom, and P. Ling. Super-
scalar GEMM-based Level 3 BLAS — The On-going Evolution of Portable
and High-Performance Library. In B. Kagstrom, J. Dongarra, E. Elmroth,
and J. Wagniewski, editors, Proceedings of the 4" International Workshop,
Applied Parallel Computing, Large Scale Scientific and Industrial Problems,
PARA’98, number 1541 in Lecture Notes in Computer Science Number,
pages 207-215, Umea, Sweden, June 1998. Springer.



23

[14] F.G. Gustavson. Recursion leads to automatic variable blocking for dense
linear-algebra algorithms. IBM Journal of Research and Development,
41(6), November 1997.

[15] N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 1996.

[16] IBM. IBM Engineering and Scientific Subroutine Library for AIX, Version
3, Volume 1 edition, December 1997. Pub. number SA22-7272-0.

[17] IBM. XL Fortran AIX, Language Reference, first edition, Dec 1997. Version
5, Release 1.

[18] IBM. XL Fortran AIX, User’s Guide, first edition, Nov 1997. Version 5,
Release 1.

[19] B. Kagstrom, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High-
Performance Model Implementations and Performance Evaluation Bench-
mark. ACM Trans. Math. Software, 24(3):268-302, 1998.

[20] C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for Fortran usage. ACM Trans. Math. Soft., 5:308
323, 1979.

[21] M. Metcalf and J. Reid. FORTRAN 90/95 Ezplained. Oxford University
Press, Oxford, UK, second edition, 1996.

[22] S. Toledo. Locality of Reference in LU Decomposition with Partial Pivoting.
SIAM Journal of Matriz Analysis and Applications, 18(4), 1997.

[23] L.N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, Philadelphia,
1997.

[24] J. Wasniewski, B.S. Andersen, and F. Gustavson. Recursive Formula-
tion of Cholesky Algorithm in Fortran 90. In B. Kagstrom, J. Dongarra,
E. Elmroth, and J. Wagéniewski, editors, Proceedings of the 4" Interna-
tional Workshop, Applied Parallel Computing, Large Scale Scientific and
Industrial Problems, PARA’98, number 1541 in Lecture Notes in Computer
Science Number, pages 574-578, Umea, Sweden, June 1998. Springer.

[25] R.C. Whaley and J. Dongarra. Automatically Tuned Linear Algebra Soft-
ware (ATLAS). http://www.netlib.org/atlas/, 1999. University of Ten-
nessee at Knoxville, Tennessee, USA.



Appendix: Performance Graphs
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Figure 11: Performance of the recursive Cholesky factorization and solution on
IBM 4 x PowerPC 604e, @ 332 MHz. The recursive results include the time
consumed by converting from packed to recursive packed storage and vice versa.

All routines call the optimized BLAS for the PowerPC architecture.
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D_RP_PPTRF performance on IBM Power2 160 MHz
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Figure 12: Performance of the recursive Cholesky factorization and solution on
IBM Power2, @ 160 MHz. The recursive results include the time consumed by
converting from packed to recursive packed storage and vice versa. All routines
call the optimized BLAS for the Power2 architecture.
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Figure 13: Performance of the recursive Cholesky factorization and solution
on COMPAQ Alpha EV6, @ 500 MHz. The recursive results include the time
consumed by converting from packed to recursive packed storage and vice versa.
All routines call the optimized BLAS for the Alpha architecture.
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Figure 14: Performance of the recursive Cholesky factorization and solution on
SGI R10000 @ 195 MHz. The recursive results include the time consumed by
converting from packed to recursive packed storage and vice versa. All routines
call the optimized BLAS for this SGI architecture.
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D_RP_PPTRF performance on SUN UltraSparc Il 400 MHz
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Figure 15: Performance of the recursive Cholesky factorization and solution
on SUN UltraSparc II, @ 400 MHz. The recursive results include the time
consumed by converting from packed to recursive packed storage and vice versa.
All routines call the optimized BLAS for this SUN architecture.
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D_RP_PPTRF performance on HP PA-8500 440 MHz
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Figure 16: Performance of the recursive Cholesky factorization and solution on
HP PA-8500, @ 440 MHz. The recursive results include the time consumed by
converting from packed to recursive packed storage and vice versa. All routines
call the optimized BLAS for this HP architecture.
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D_RP_PPTRF performance on Intel Pentium [l 500 MHz
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Figure 17: Performance of the recursive Cholesky factorization and solution
on INTEL Pentium III, @ 500 MHz. The recursive results include the time
consumed by converting from packed to recursive packed storage and vice versa.
All routines call the optimized ATLAS BLAS.
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D_RP_PPTRF performance on IBM 4-way PowerPC 604e 332 MHz
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Figure 18: Performance of the recursive Cholesky factorization and solution
on IBM 4 x PowerPC 604e, @ 332 MHz. The recursive results include the
time consumed by converting from packed to recursive packed storage and vice
versa. All routines call the optimized BLAS for the PowerPC architecture.
These graphs demonstrate successful use of OpenMP parallelizing directives.
The Rec.Par(L) and Rec.Par(U) curves are results of the doubly parallelized
RPC algorithms. They call the parallelized ESSL DGEMM and are parallelized
themselves by the OpenMP directives.
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Z_RP_PPTRF performance on Intel Pentium 1ll 500 MHz
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Figure 19: Performance of the recursive Hermitian Cholesky factorization and
solution on INTEL Pentium III, @ 500 MHz. The recursive results include the
time consumed by converting from packed to recursive packed storage and vice
versa. All routines call the optimized ATLAS BLAS (ZGEMM).
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D_RP_PPTRF performance on Intel Pentium [l 500 MHz
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Figure 20: Performance of the recursive Cholesky factorization and solution
on INTEL Pentium III, @ 500 MHz. The curves on this figure compare all
three Cholesky factorization and solution algorithms. The LAPACK full stor-
age (DPOTRF and DPOTRS), the LAPACK packed storage (DPPTRF and
DPPTRS) and RPC (factorization and solution) algorithms. The recursive re-
sults include the time consumed by converting from packed to recursive packed
storage and vice versa. All routines call the optimized ATLAS BLAS routines.



