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Abstract

End-users of high-performance computing resources
have come to expect that consistent levels of performance
be delivered to their applications. The advancement of the
Computational Grid enables the seamless use of a multitude
of computing resources by these users. The combination of
these developments has generated a need for users to moni-
tor the end-to-end performance available to an application.
In addition, when performance degrades, users should be
alerted so that dynamic resource selection decisions can be
adjusted as necessary.

With this work, we present the NwsAlarm, a Java-based
utility that enables users to monitor performance levels
of any resource being monitored by the Network Weather
Service. The NwsAlarm requires no special privileges for
acquisition of this information and only that a user click
on a web-page link for invocation. More importantly,
the NwsAlarm allows administrators (or any user of the
NwsAlarm) to register and set expected performance lev-
els. When performance levels fall below these thresholds,
administrators are immediately notified via email. The
NwsAlarm uses prediction of performance measurements to
filter false alarm values. We exemplify the importance of
and accuracy achieved by the NwsAlarm with real exam-
ples of performance degradation caused by routing table
changes and loss of service on the Abilene, Internet-2 re-
search network used for experimentation with evolving Grid
software technology. On average,92% fewer false alarms
are raised by the NwsAlarm than if raw measurements are
used.�This work was sponsored by the NASA Information Power Grid
project and NASA Ames Research Center.

1 Introduction

As high-performance network connectivity proliferates,
end-users have come to expect delivered network perfor-
mance (and not just trunk capacity) to keep pace. In
addition, better end-to-end performance makes it possi-
ble to consider the use of distributed computing plat-
forms for applications that previously required expensive,
large-scale, and dedicated machines. The Computational
Grid [11, 3] is a new and successfully evolving distributed
computing metaphor for the seamless and dynamic acqui-
sition of resources from a heterogeneous, federated re-
source pool. In addition, “peer-to-peer” computing sys-
tems such a those developed by Entropia [8], ParaBon [19],
and SETI@Home [20] are attempting to harness unused but
ubiquitous computer capacity via the burgeoning internet-
work of high-performance connectivity.

These recent advances place a premium on the ability to
monitor theperformance deliverable to the application end-
to-end. Users need to ensure that the resources, for which
they are paying but which they do not own, meet expected
performance levels. System and network administrators re-
sponsible for appeasing this performance-hungry user-base
must be able to detect and, if possible anticipate, deficient
performance at the application level. The problem of perfor-
mance monitoring is further complicated by resource feder-
ation. Often, administrative policy prohibits public access
to low-level performance information for security and/or
proprietary reasons. Even if low-level information is pub-
lished, however, it is often difficult to translate it into a mea-
sure of performance delivered to the user.

In this paper, we describe a performance alarm system
based on theNetwork Weather Service(NWS) [25]. The
NWS is a user-level performance monitoring and forecast-
ing system designed to measure end-to-end resource perfor-
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mance in Computational Grid settings. It supports a vari-
ety of performance sensors (available CPU capacity, avail-
able core memory, end-to-end TCP/IP bandwidth and la-
tency, etc.) and operates completely without privileged user
access. Using the NWS as a backbone infrastructure, we
have developed a Java-based tool for visualizing continu-
ously generated NWS readings, and automatically trigger-
ing an email alarm when observed performance falls out-
side a specified range. The system draws heavily upon the
adaptive statistical forecasting techniques that are partof
the NWS [24] and their Java applet implementation [15].

Our results show that the NWS alarm system
(NwsAlarm) can accurately detect problems such as rout-
ing misconfiguration by dynamically analyzing end-to-end
network performance. It does this through its use of the Java
implementation of the NWS forecasters. We illustrate these
results with examples from the Abilene [1] experimental re-
search network — a network facility deployed, in part, to
support Computational Grid research. While we focus on
network performance in this paper, our system also works
for available CPU and memory, and will accept readings
from any other NWS sensors that are configured.

In the next section, we briefly describe the infrastruc-
tures from which the NwsAlarm was developed we detail
the implementation of the NwsAlarm itself. In Section 3 we
provide the experimental methodology used for this study.
Section 5, 6, and 7 contain our empirical results, the related
work, and our conclusions, respectively.

2 NwsAlarm Implementation

The NwsAlarm monitors performance levels, predicts fu-
ture performance levels, displays the data graphically, and
reports “performance faults” (occasions when predicted
performance does not match expected levels) to adminis-
trators when they occur. To enable this functionality, the
NwsAlarm extends the Network Weather Service [24] and
the JavaNws [15].

2.1 The Network Weather Service

The Network Weather Service (NWS) is a distributed, gen-
eralized system for producing short-term performance fore-
casts based on historical performance measurement. The
goal of the system is to characterize and forecast dynam-
ically the performance deliverable to the application level
from a set of network and computational resources. Such
forecasts have been used successfully to implement dy-
namic scheduling agents for Grid applications [21, 4], and
to choose between replicated web pages [2].

The NWS takes periodic measurements of the currently
deliverable performance (in the presence of contention)
from each resource and uses numerical models to generate

forecasts of future performance levels dynamically. Fore-
cast data is continually updated and distributed so that re-
source allocation and scheduling decisions may be made
at run time based onexpected levels of deliverable per-
formance. The NWS forecasts provide difficult to obtain,
statistical estimates of available service quality from each
resource of interest, as well as the degree to which those
estimates are likely to be accurate [23].

Since the NWS measures and forecasts performance de-
liverable to the application level, it is implemented using
the same communication and computation mechanisms that
applications use resulting in forecasts that accurately re-
flect the true performance an application can expect to ob-
tain. Separate implementations of the NWS have been
developed using sockets and for the Globus/Nexus [10]
and Legion [12] metacomputing environments, each of
which provides a software infrastructure that supports high-
performance distributed and parallel computing.

2.2 The JavaNws

The JavaNws is a Java implementation of a subset of the
NWS toolkit that provides measurement and prediction for
network resources. The JavaNws measures the TCP/IP
socket performance (bandwidth and round-trip time) be-
tween the user’s desktop and the web server from which the
JavaNws applet was downloaded. Predicted performance is
computed from the measurements by the applet and both are
visualized in real-time. The JavaNws enables users to cir-
cumvent the need to explicitly install and maintain an NWS
network monitoring process and any special-purpose visu-
alization software; NWS measurement and forecast data are
delivered to the users web browser in real-time. Previous
work with the NWS and Java-based applications indicates
that basing transfer decisions on NWS forecast data can dra-
matically improve execution performance [9, 22].

2.3 The NwsAlarm

Like JavaNws, the NwsAlarm is written in Java and requires
no installation or special privileges for execution and access
to the vast amount of performance data collected by the
NWS. A Java-language implementation is important since
it enables security, portability, and instant invocation on
the user’s desktop using the applet execution model. The
NwsAlarm enables visualization of performance foranyre-
source currently monitored by the NWS (CPU, memory,
networking) as well as the network performance between
the web server and the desktop. In addition, administrators
can use the NwsAlarm to set performance thresholds and to
send alarms are when expected performance levels degrade.

The NwsAlarm consists of two parts: The applet that
executes on the user’s desktop and the server program lo-
cated at the machine from which the applet is downloaded.
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Upon NwsAlarm invocation, the server program, started as
a background process, requests and acquires the list of avail-
able hosts from an NWS name server. This list is transfered
to the NwsAlarm applet on the user’s desktop and is dis-
played as a tree of choices as shown in Figure 1. A user
can select any host, any available resource (CPU, memory,
network performance, etc.) associated with that host, and
the destination host if the network resource is chosen. The
list can be refreshed by the user at any time to acquire a new
list updated with any, dynamically added, resources.

The selection made by the user is communicated by the
NwsAlarm applet to the server program which obtains and
returns the associated measurement from the NWS name
server. If the selection is the desktop, then a series of ex-
periments are performed to measure the connectivity be-
tween the desktop and server, just as in JavaNws [15].
For any selection, the resulting measurement is given to
the NwsAlarm forecasters (a Java implementation of the
NWS forecasters) to predict future performance of the re-
source. The measurements and predictions are then dis-
played graphically for the user as in Figure 2.

2.4 NwsAlarm: Degradation Detection

The NwsAlarm also provides users with a mechanism to
alert administrators of degradation in performance. The
administrator sets performance thresholds and registers
his/her email address with the NwsAlarm. When perfor-
mance drops below a threshold, the administrator is notified
via email.

Two types of performance thresholds are available in the
NwsAlarm. The first is a performance value that must be
maintained; if a measurement is less than the given value,
it is considered a degradation. The administrator can in-
dicate the number of such events that must occur before
he/she is alerted. The second type of threshold is the num-
ber of communication errors between the desktop and the
server and the server and the NWS name server. If the
number of errors exceeds the given threshold the adminis-
trator will be notified. Such errors occur if either the server
from which the NwsAlarm applet was downloaded or the
name server becomes unavailable due to network partition,
other catastrophic failure, or transfer timeout. For the re-
mainder of this paper, we focus on network resources, how-
ever, any resource the NWS can access can be monitored by
NwsAlarm.

3 Experimental Methodology

For the results described in this paper, we gathered data
between a machine at the University of Tennessee (UT)
and th University of California, San Diego (UCSD). The
predominant network technology between these two hosts

Figure 1: The NwsAlarm console. The console provides
users with a click-able tree menu of machines for which
NWS resource data is configured. The list can be refreshed
to acquire dynamically added resources. For each machine,
a list of resource types is given (network bandwidth and
round-trip time, CPU availability and load, memory usage,
etc). By selecting bandwidth or round-trip time, a list of the
available destinations is given. In addition, network perfor-
mance between the desktop and the server from which the
NwsAlarm applet is downloaded is available for selection
(“desktop”). The measurement data and predicted perfor-
mance of the resource selected is displayed in graph form
once selected.
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Figure 2: NwsAlarm performance visualization. When a
user makes a resource selection from the console, the mea-
surement data (light or pink points) and predicted perfor-
mance (dark or blue points) is displayed. The y-axis is a
range of measurement values in the units associated with
the resource type (here the resource is bandwidth and the
units are Mb/s) and x-axis is time. Summary data is pro-
vided to the right of the graph.

is Abilene [1]. Abilene is an advanced backbone net-
work that supports the development and deployment of
the new applications being developed within the Internet2
community. Abilene connects regional network aggrega-
tion points, called gigaPoPs, to support the work of Inter-
net2 universities as they develop advanced Internet applica-
tions. It is characterized by high-bandwidths and relatively
high round-trip times induced by large geographic distance.
When Abilene fails or routing tables change, the link can
degrade to the use of the common carrier between the hosts.

Measurements of link performance were made from May
7th, 1999 through September 25th, 2000. We used the NWS
to collect the data1 The measurements were made at ap-
proximately 30 second intervals. We collected both band-
width and round-trip time values.

In addition to these measurements, we logged tracer-
oute [14] data between the two machines at 1-hour inter-
vals. Traceroute is a UNIX utility that uses the IP protocol
to provide a trace of the network route between two ma-
chines. This data is used in our results section (Section 5)
to confirm that performance faults detected by NwsAlarm
correspond to incorrectly initialized routing tables.1Our prior work shows that there is little, if any, significantdifference
between measurements gathered using Java and those generated by a C
program [16].

4 Degradation Discovery Using Pre-
diction

Since end-to-end network performance is highly variable
from one moment to the next, we must ensure that the
NwsAlarm is able to distinguish between random fluctua-
tions and true performance trends so that alarms are raised
accurately. Network performance, in particular, is highly
variable from one moment to the next. If an alarm were
triggered every time a low performance measurement oc-
curs, many false alarms will be generated. To enable accu-
rate alarm detection, the NwsAlarm compares “predicted”
performance data thresholds set by the NwsAlarm user. The
thresholds represent the performance expectation that the
user has for the monitored resources. The forecasts rep-
resent the expected performance for the resource based on
past history. The role of forecasting in this setting is to re-
move the random noise from the measurement history to
reveal the “true” performance signal. A fault is defined to
be when this true signal falls outside the specified range.

The use of predicted values is the key difference between
this system and all others. Prediction enables the NwsAlarm
to identify events that are imperceptible if the trace data is
graphed and observed visually. In this section we provide
two cases, the first in which fault occurrences are obvious
and a second in which they are not, to motivate the function
of the NwsAlarm.

A common event that causes disruptions in network per-
formance is a routing table change. Often, it is diffi-
cult for local network administrators and backbone service
providers to keep routing tables synchronized. When the
routing tables are incorrectly set, connectivity may be dis-
rupted entirely. This type of fault is easy for local admin-
istrators to detect since users will begin calling the hapless
administrators almost immediately to discuss the network
outage and to constructively suggest possible courses of ac-
tion. However, it is also possible for the routing tables to be
set incorrectly causing network traffic to take a functioning
but heavily congested path. In this case, connectivity qual-
ity is degraded, but since users expect a certain amount of
performance variation (which is difficult to quantify) they
may not report such problems to the overworked network-
ing staff.

An example of this second type of routing table problem
is illustrated in the following output generated by the tracer-
oute utility.

Wed May 10 00:30:09 EST 2000
1 R5HM01V277.NS.UTK.EDU (128.169.92.1) 0.937 ms 0.745 ms 0 .804 ms
2 192.168.101.3 (192.168.101.3) 2.296 ms 1.366 ms 1.588 ms
3 UTK-GATECH.NS.UTK.EDU (128.169.50.246) 33.318 ms 33.19 0 ms 32.945 ms
4 atla.abilene.sox.net (199.77.193.2) 33.475 ms 33.017 ms 34.511 ms
5 hous-atla.abilene.ucaid.edu (198.32.8.33) 46.454 ms 45 .876 ms 45.739 ms
6 losa-hous.abilene.ucaid.edu (198.32.8.21) 77.904 ms 77 .352 ms 77.955 ms
7 USC--

abilene.ATM.calren2.net (198.32.248.85) 78.006 ms 78.31 1 ms 77.959 ms
8 UCSD--USC.POS.calren2.net (198.32.248.34) 81.943 ms 81 .173 ms 81.286 ms
9 sdsc2--

UCSD.ATM.calren2.net (198.32.248.65) 83.004 ms 87.349 ms 93.498 ms
10 cse-rs.ucsd.edu (132.239.254.45) 83.513 ms 83.264 ms 83 .408 ms
11 conundrum.ucsd.edu (132.239.55.213) 91.528 ms * 91.058 ms
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Figure 3: Sub-trace from 5-month Abilene bandwidth trace data. The data is a 2-hour trace Friday, June 9 starting at
approximately at 5:00am. (a) contains measurement values only, (b) contains measurement and predicted values, and (c)
contains just the predicted values. Two vertical lines indicating a routing table change in the associated traceroute data
from the same period are also included. Horizontal threshold lines indicated the bandwidth below which the routing table
change can be detected. In this case, it is obvious from the measurement data when the change takes place. However, we
show that this is rarely the case. Using prediction, with theNwsAlarm (predicted values), fewer false alarms are raised
and a tighter threshold can be set. False alarms occur when the value drops below the threshold while the Abilene link is
in use in this scenario.
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Figure 4: Sub-trace from 5-month Abilene bandwidth trace data. The pair is a 24-hour trace Friday, June 1 starting at
approximately midnight. The left graph contains measurement and predicted values, and the right only the predicted
values. Two vertical lines indicating a routing table change in the associated traceroute data from the same period are also
included. A horizontal threshold line indicate the bandwidth below which the routing table change should be detected.
It is difficult using a human eye and measurement values to determine when the change occurs. The NwsAlarm using
prediction, however, can effectively and accurately raisealarms only when the common carrier (QWest) is in use.

Wed May 10 01:30:17 EST 2000
1 R5HM01V277.NS.UTK.EDU (128.169.92.1) 0.783 ms 0.801 ms 0 .681 ms
2 192.168.101.3 (192.168.101.3) 1.612 ms 1.794 ms 1.471 ms
3 R7SM99.NS.UTK.EDU (128.169.54.8) 1.988 ms 2.281 ms 1.977 ms
4 205.171.49.165 (205.171.49.165) 20.043 ms 20.200 ms 20.4 49 ms
5 atl-core-02.inet.qwest.net (205.171.21.45) 20.042 ms 2 0.600 ms 20.267 ms
6 wdc-core-03.inet.qwest.net (205.171.5.241) 30.911 ms 3 1.092 ms 30.964 ms
7 wdc-core-01.inet.qwest.net (205.171.24.10) 30.988 ms 3 1.422 ms 30.979 ms
8 chi-core-02.inet.qwest.net (205.171.5.227) 54.913 ms 5 6.092 ms 55.025 ms
9 chi-core-03.inet.qwest.net (205.171.20.30) 55.234 ms 5 5.718 ms 55.063 ms

10 chi-brdr-01.inet.qwest.net (205.171.20.66) 55.479 ms 55.740 ms 55.463 ms
11 s2-0-1.chi-bb1.cerf.net (134.24.103.153) 71.576 ms 71 .121 ms 72.423 ms
. . .
17 pos1-0-0-155M.san-
bb1.cerf.net (134.24.29.190) 143.320 ms 141.121 ms 140.45 9 ms
18 sdsc-gw.san-bb1.cerf.net (134.24.12.26) 189.463 ms 36 7.079 ms 149.953 ms
19 bigmama.ucsd.edu (192.12.207.5) 122.431 ms 130.265 ms 1 21.961 ms
20 cse-rs.ucsd.edu (132.239.254.45) 105.015 ms 112.668 ms 103.970 ms
21 conundrum.ucsd.edu (132.239.55.213) 104.508 ms * 133.3 20 ms

This trace was generated by a pair of systems that are in-
tended to route packets between themselves over Abilene at
all times. Abilene provides more consistent performance,
less contention, and, as can be seen from the output, fewer
hops in many cases. A loss of Abilene service can impact
the end-to-end performance experienced by users. If an ad-
ministrator is aware of the loss of service he/she may be
able correct the problem before users are inconvenienced.
The NwsAlarm is designed to be used in this setting to alert
administrators and users impacted by a change in network
performance.

Figure 3(a) shows a two hour trace in which a routing
table change occurs. Bandwidth (in Mb/s) was measured
between two hosts, one at the University of Tennessee,
Knoxville, the other at the University of California, San
Diego. The y-axis for this and all other graphs in this paper
is time and the x-axis is bandwidth in Mb/s. (a) contains
measurement values only, (b) contains measurement (dark)

and predicted (light) values, and (c) contains predicted val-
ues only, for clarity. Two vertical lines indicating a routing
table change in the associated traceroute data from the same
period are also included. Horizontal threshold lines indi-
cated the bandwidth below which the routing table change
can be detected. In this case, it is obvious from the mea-
surement data when the change takes place.

The measurement data alone indicates that approximately
midway through the trace there is a loss in performance
on the link. Traceroute data collected for the same pe-
riod confirms that the routing table changed from Abilene
to common carrier (QWest in this case). The routing ta-
ble changes are indicated by two vertical lines within the
graph with the textual link type (Abilene or common car-
rier (QWest)) given in each section of the resulting divided
graph. Using a threshold of 0.3Mb/s (horizontal red line on
the graph) we are able to visually identify the occurrence of
the event. That is, when the bandwidth measurements fall
below 0.3Mb/s, they indicate, in this scenario, that a rout-
ing table change occurred. The NwsAlarm, using predicted
values also discovers the routing table change and is able to
do so using an even tighter threshold of 0.5Mb/s.

However, consider the data shown in Figure 4. This 24-
hour sub-trace of bandwidth data is between the same pair
of hosts during different time period. In the left graph,
both measurements (dark) and predicted (light) values are
shown. The right graph contains only the predicted values.
In this example, it is very difficult to detect visually when
the routing tables were correctly initialized, and when they
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were set erroneously using only measurement data.
The NwsAlarm (prediction) values, however, effectively

and accurately indicate when changes occur. Accuracy is
determined by the number of alarms that are falsely sent; in
this case, when a value is below threshold and the Abilene
network is in use. Raising many false alarms makes it diffi-
cult for administrators to efficiently distinguish when prob-
lems actually occur. The right graph exemplifies the accu-
racy of the NwsAlarm: the predicted values only fall below
threshold when the common carrier is in use. In particular,
the 0.3Mb/s threshold value that worked for measurement
data in Figure 3 is ineffective as a threshold in this latter
example. The reverse is not true, however. In both cases,
using a 0.5Mb/s threshold and the NWS forecasts (instead
of the measurements) accurately detects the routing faults.

It should be pointed out that traceroute data alone can be
used to discover such faults. There are several advantages
to using end-to-end measurements taken at the application
level over lower-level mechanisms such as traceroute. First
traceroute is a setuid program which makes it inappropri-
ate for many security settings. Indeed, access to low-level
monitoring features is often carefully controlled and is dif-
ficult to manage. Application-level performance, however,
must be measurable or applications will not function. More
importantly, however, the NwsAlarm methodology is gen-
eral. In the case of network faults, we can call upon tracer-
oute to verify the efficacy of the system, but traceroute it-
self might prove a better choice in some settings. For re-
sources without analogous low-level measurement utilities
(i.e. non-paged real memory on Unix systems) NwsAlarm
is also applicable (although its accuracy is more difficult to
verify). It is our conjecture that since the performance fault
detection methodology we describe in this paper is effective
in cases where it can be verified, it will also be effective in
the cases where it can’t.

5 NwsAlarm Validation

The NwsAlarm is able to identify accurately events that
cause changes in expected performance levels. It does this
by monitoring changes in forecasted values as opposed to
raw data measurements. In this section, we verify this accu-
racy by comparing the number of false alarms that are raised
when measurement data alone is compared against perfor-
mance thresholds, and when forecast data is used instead.

In our first example we monitored the bandwidth on an
ISDN link between between the University of Tennessee
and the home of a local user in Knoxville, Tennessee. This
data is displayed in Figure 5. We show both the measure-
ment and the forecasted data taken at 10 second intervals
and collected over a period of 5 hours. The left graph shows
both the measurement (dark) and forecasted (light) data to-
gether. The right graph contains only the forecasted values

(from the left graph) for clarity. In addition, each graph
contains an NwsAlarm threshold line (in red for colored
version) at0:4Mb/s. This indicates an arbitrary threshold
set by an administrator. For the measurement data case, a
measured value below this threshold causes an alarm to be
triggered. Similarly, for the forecast case, an alarm is trig-
gered when the forecast value falls below0:4Mb/s.

During the measurement period, four large transfers were
made causing a reduction in available bandwidth. In addi-
tion, the network failed in the 3rd and 4th hours (as indi-
cated on each graph). The NwsAlarm was used to indicate
when failures or low bandwidth availability occurred. The
total number of alarms that should have be sent in this sce-
nario is 136. Using measurements to evaluate threshold lim-
its cause 32 alarms to be falsely sent; using the NwsAlarm
predicted values, only 2 false alarms were sent. Unlike our
other examples, the NwsAlarm is used in this scenario to
distinguish events that have no other low-level measurement
facility, namely, the loss of bandwidth due to contention. If
the link was intended to be free of other traffic, the alarms
would have been indicative of either a routing problem (i.e.
other traffic was erroneously being routed over the link) or
a security breech.

The NwsAlarm can also be used to alert administrators to
loss in Abilene service, as described in the previous section.
If Abilene becomes unavailable, either due to catastrophic
failure or routing table misconfiguration, users, expecting
the quality of service Abilene provides, can be alerted using
the NwsAlarm.

To empirically evaluate the accuracy of the NwsAlarm
in this situation, we present four different traces of Abi-
lene data from the link between the University of Ten-
nessee, Knoxville, and the University of California, San
Diego (UCSD) in Figures 6 and 7. Bandwidth values are
shown in Mb/s (y-axis) at approximately 30 second inter-
vals. The length of the traces varies for each pair of graphs,
but is given along the x-axis. Two graphs are shown for
each trace period.

The left graph of each pair again shows the measurement
(dark) and predicted (light) data. The right graphs help to
distinguish the two series by providing only the predicted
data. A NwsAlarm threshold value of0:5 Mb/s was used
in this study and is indicated by the horizontal (red) line on
each graph. Each time a value is below the threshold line, it
indicates that an alarm has been sent to an administrator of
the link. To verify that the NwsAlarm accurately determines
routing table changes, we have imposed two vertical lines
on each graph indicating when such events occurred in our
traceroute data logged over the same period.

The goal of the NwsAlarm in this scenario is to send
an alarm only when the Abilene service degrades to com-
mon carrier. Common carrier is indicated on the graphs
as “QWest”. Once Abilene service has resumed, no fur-
ther alarms should be sent. Obviously, if raw measurements

7



0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600 700 800 900 1000

B
an

d
w

id
th

 M
b

/s

NwsAlarm
Threshold

Hour 1 Hour 3 Hour 5

Large Transfers

Network
Failures

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600 700 800 900 1000

B
an

d
w

id
th

 (
M

b
/s

)

NwsAlarm
Threshold

Network
Failures

Large Transfers

Hour 1 Hour 3 Hour 5

Figure 5: 5-hour ISDN bandwidth trace data. The left graph shows both the measurements (dark-colored series) and NWS
predicted values (light-colored series) taken at 30 secondintervals. The right graph shows only the predicted values for
clarity. The x-axis is time and the y-axis is bandwidth in Mb/s. Three large transfers occurred during the trace and two
network failures. The NwsAlarm is used to identify these events. A horizontal line is shown at0:4 Mb/s, this value is the
NwsAlarm threshold value. Alarms are sent when predicted values fall below this threshold. Using actual measurements
to send alarms cause inaccurate, false alarms.

Table 1: Comparison of false alarm count using NWS-
predicted values and raw measurement data in the
NwsAlarm. Use of predicted values enable more accurate
error detection.

Predictions Raw Measurements
Sub-trace False Alarms False Alarms
Figure 6a 0 298
Figure 6b 112 477
Figure 7a 0 250
Figure 7b 13 494

Avg 31 380

are used to determine when to send an alarm, many false
alarms occur. Using the NwsAlarm results in far fewer
false alarms. These counts are shown in Table 5. On aver-
age, 92% fewer false alarms are sent using NwsAlarm with
NWS-predicted values.

6 Related Work

Much research has gone into the measurement and predic-
tion of resource performance. For network performance
specifically, the authors in [6] describe characteristics and
theoretical predictability but do no on-line analysis as is

provided by the NwsAlarm. Carter et.al. perform dynamic
probing of networks with bprobe [5], and use basic fore-
casting techniques to predict short term performance. The
prediction utilities of NWS-based tools are more sophis-
ticated than those used in bprobe, although it is possible
that even simple forecasting techniques will be effective.
Bprobe, however, is not designed to detect and signal per-
formance faults in the way NwsAlarm does.

In [7], Downey describes the effectiveness and limita-
tions of using pathchar [13], a tool for measurement of
bandwidth, round-trip time, average queue length, and loss
rate, to predict Internet link characteristics. Pathchar is im-
plemented using ICMP echo and/or port-unreachable pack-
ets and require super-user privileges. While the tool and
Downey’s analysis of its use are exceptional, he points out
that in many wide area settings (such as Abilene) pathchar
may yield erroneous readings. In particular, the predictions
it makes for application-deliverable bandwidth performance
can be substantially in error. Since the NWS uses end-to-
end measurements, it does not suffer from these inaccura-
cies. An advantage of pathchar, however, is that it does not
require “hard collaboration”, but the NWS does.

Dinda et.al. articulate the predictability of CPU load
in [18]. The NwsAlarm can also predict CPU load and
availability using the same forecasters as those used for
network performance prediction. NWS-based tools differ
in that the forecasters are computationally less intensive
while offering similar accuracy. In [17], the authors use raw
transfer time and CPU load of mirrored World Wide Web
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Figure 6: Sub-traces from 5-month Abilene bandwidth trace data. Pair (a) is from a 31-hour trace starting June 1 at
approximately 5:30am; (b) from a 83-hour trace starting August 11 at approximately 12:38pm. The left graph shows both
the measurements (dark-colored series) and NWS predicted values (light-colored series) taken at 30 second intervals.The
right graph shows only the predicted values for clarity. Thex-axis is time and the y-axis is bandwidth in Mb/s. The
NwsAlarm was used to determine when Abilene connectivity degraded to common carrier (QWest) and when service
resumed. A horizontal line is shown at0:5 Mb/s, this value is the NwsAlarm threshold value. Alarms aresent when
predicted values fall below this threshold. Using actual measurements to send alarms cause inaccurate, false alarms as
indicated by the data. NwsAlarm accurately indicates loss and restoration of Abilene service.
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Figure 7: Sub-traces from 5-month Abilene bandwidth trace data. Pair (a) is from a 22-hour trace starting May 24 at
approximately 3:21am; (b) from a 83-hour trace starting May26 at approximately 3:55am. The left graph shows both
the measurements (dark-colored series) and NWS predicted values (light-colored series). The right graph shows only
the predicted values for clarity. The x-axis is time and the y-axis is bandwidth in Mb/s. The NwsAlarm was used to
determine when Abilene connectivity degraded to common carrier (QWest) and when service resumed. A horizontal line
is shown at0:5 Mb/s, this value is the NwsAlarm threshold value. Alarms aresent when predicted values fall below
this threshold. Using actual measurements to send alarms cause inaccurate, false alarms as is apparent from the data.
NwsAlarm accurately indicates loss and restoration of Abilene service.

10



servers to determine which server sites should be selected
at any given time. This work differs from the NwsAlarm
for the same reasons noted above. The NwsAlarm can be
used to visualize raw and predicted data between a user’s
desktop and any server, mirrored or otherwise, at which the
NwsAlarm is installed. This way, users can dynamically de-
termine which server (if mirrored) to use and change his/her
decision when alerted by the NwsAlarm.

7 Conclusion

Knowledge of end-to-end performance deliverable to an ap-
plication enables users to make informed decisions about
the use of available resources. Tools are needed to aid users
by measuring and visualizing available performance and by
alerting users when expected performance degrades. In this
paper, we present a tool, the NwsAlarm, which displays
this available performance (CPU, memory, or network per-
formance), reports short-term performance forecasts, and
alerts users to unexpected degradations. Administrators of
Grid-computing infrastructures can use the latter to main-
tain expected performance levels or to inform users when
they are unable to do so.

We illustrate the utility of the system by demonstrating
how it is able to detect erroneous routing table configu-
rations by dynamically analyzing end-to-end performance
measurements. By comparing forecasts to user-specified
thresholds, the NwsAlarm accurately identifies periods of
time during which the routing tables are correctly config-
ured between a pair of hosts, and periods when they are
misconfigured causing a performance degradation. In ad-
dition, the system correctly detects link contention and, of
course, link outage.

To investigate the efficacy of forecasting, we compare
the number of false performance alarms that are generated
when raw measurement data is used as a trigger, and when
NWS forecasts are used to trigger and alarm. On average,92% fewer alarms are raised by the NwsAlarm than if raw
bandwidth measurements are used to detect performance
changes. Since the forecasting techniques effectively filter
random fluctuations from the performance traces they are
able to reduce the number of false alarms that are caused
by typical random variation. The NwsAlarm is fully im-
plemented and in use at various web-sites across the United
States. It can be downloaded in applet form and executed
from http : ==nws:
s:utk:edu=JavaNws.
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