The Effect of Timeout Prediction and Selection on Wide Area
Collective Operations

James S. Plank Rich Wolski Matthew Allen

Department of Computer Science
University of Tennessee
Knoxville, TN 37996-3450
[plank,rich,allen]@cs.utk.edu

Technical Report CS-01-457
University of Tennessee
Department of Computer Science

March 27, 2001

For the the publication status of this paper and paperset:fiom it, see:
http://www.cs.utk.edu/"plank/plank/papers/CS-01-457 .html

1 Introduction

The current trend in high performance computing is to exmmdputing platforms across wider and wider areas. This
trend is manifested by the national efforts in Computati@réd computing [2, 6, 7, 8, 12], and commercial endeavors
such as Entropia [5], Parabon [11], and United Devices [A3]computational processes attempt to communicate over
wider areas, the need to identify and tolerate failurestgrea and most communication software packages, initially
developed for tightly coupled computing environments (tahte example is MPI [9]), do not deal with exceptional or
faulty conditions smoothly.

Most wide-area communication libraries base their mespagsing on TCP/IP sockets. TCP/IP has been designed to
keep most networking applications functioning smoothlyhie face of link and node failures, and message congestion.
However, its failure semantics as presented to a messagmpdibrary are limited, and high-performance applmagi
often have a difficult time running robustly in the presentfaiures.

In this paper, we address one important exceptional camditdentification of network failures using timeouts. We
first discuss why this is an important problem, and the typacshocsolutions to it. We then propose a timeout identifi-
cation method that uses online monitoring and predictiaetdimeout values and use them for failure identificatioe. W
then show results of a primitive wide-area application iagilores the implications of setting timeouts in both sienpl
ways and using an adaptive technique based on the Networth&/e2ervice [16].

2 The Problem of Failure Identification

One fact of computing on the Internet is that failures do ac€he failure with which we will concern ourselves is one
where a socket connection is no longer valid. This appeaasimning process as one of the two following scenarios:

e The process is performingraad() operation on the socket, and the read will never completausezeither the
writer is gone, or the correspondimgite() operation has been partitioned away from the reader.

e The process is performingverite() operation on the socket, and the bytes will never get to theae

For a wide-area application to be successful, these twaasiosmmust result in the identification of a failure so that
the application may deal with it appropriately. The metho€isiealing with the failure are beyond the scope of this
paper. They may involve aborting the program and startireyvaattempting a reconnection of the socket to retry the
communication, or perhaps performing rollback recoverg &aved state so that the loss of work due to the failure is
minimized [1, 3, 4]. No method of dealing with the failure llle successful, however, unless the failure is properly
identified.

The default failure identification method in TCP/IP sockista method of probing called “keep-alive.” At regular
intervals, if a socket connection is idle, the operatingeysof one side of the socket attempts to bounce a packet
(typically a packet with a previously acknowledged seqeenanber) off the other side. If an acknowledgement response
is not forthcoming within a preset threshhold time, thes B$sumed that there has been a failure, and that the camecti
should be broken. Reads from or writes to that connectionfadynand the application may take appropriate steps.

We term this threshhold time timeout Unfortunately, this default keep-alive mechanism is rfogreat practical
use. The main reason is that the timeout values are typciatlyiser-settable. They differ from machine to machine or
operating system vendor to operating system vendor, aiydéhe to be arbitrarily chosen. Thirty seconds is common,
although IETF RFC 1122 specifies only that the keep-alive tira less than 120 minutes (two hours) by default [10].
Keep-alive timing is typically set when the operating sysie configured. Its primary use to to allow server processes
to reclaim used network state if clients quietly disconné&ar performance-oriented applications that use TCP $scke
for interprocess communication, the standard keep-allges can cause serious performance degradations.

It is possible to turn off keep-alive probing on a socket. ded, by default on most Unix systems, sockets are not
conditioned to use keep-alive. When keep-alive is disghitegifirst scenario above (a read not being satisfied) is never
identified by the operating system, since no probing is paréal to see if the writer is alive. The second scenario is only
identified when the reader shuts down the connection anghé@sating system explicitly refuses to accept packets from
the writer. If the reader’'s machine becomes unreachaldeytiier simply attempts retransmission of its messagé unti
the kernel socket buffer fills or some unspecified retry lisiteached. The typical remedy is for the application iteelf
choose a timeout value for each connection, and to use thedifiial mechanism to interrupt an indefinitely-blocked
read() or write() call.

Thus, applications must choose one of two methods to petf@itane identification — either use the default keep-alive
probing with its limitations, or turn off keep-alive prolgnand use some sort of heuristic to perform its own failure
identification, typically by setting its own timeout valuddegardless, there are important tradeoffs to the sefecfithe
timeout value. Large timeouts impose less stress on theonletlut they greaten the latency of failure detection, Wwhic
in turn reduces the performance of the applications thgtarlaccurate failure detection to proceed efficiently. $mal
timeouts impose more stress on the network, and additigilaly may be too aggressive in labeling a sluggish network
as failed. For example, suppose an application processesrfaminutes between communication. If the network
happens to be unavailable for a majority of that ten minuteriral, it does not affect the application so long as the
network is restored when the application needs to commteida such a situation, a small timeout value will impede
application performance, as it will force the applicatiorrécover from a failure that is not preventing the applmati
from proceeding.

3 Static vs. Dynamic Timeouts

There are two ways that an application may select timeoutatieally or dynamically. Obviously, static timeouts are
simple to implement. However, they have two limitationsrsEia static timeout value, especially if it is arbitrarily
chosen, may not by ideal for an application and networkingrenment. Second, even if a static timeout starts out jdeal
a changing network or application may result in its beingideal. For this reason, we explore dynamic timeouts.

Dynamic timeouts require more complexity in implementatémd also need to be chosen to have effective values.
We propose to use monitoring and prediction to select tirteedlhat is, a connection monitors its past communication
parameters and predicts a timeout value that is most likehgsult in a correct identification of a failure. We base our
prediction on the Network Weather Service (NWS) [16].

The NWS uses an adaptive time-series forecasting methggadacchoose among a suite of forecasting models based
on past accuracy. Each modelin the suite is used to prediebaumement that has been previously recorded. Since both
the past values and the predictions of them are availakifepitssible to chacaterize each forecasting method acaprdi
to the accuracy of its forecasts in the past. At the time actastfor an unknown value is required, the forecasting ntetho

(&

K2

%
Q%Q O Q(,/@ @ Q,)OQ

(//‘
& % @
% 4’— KA %, 6‘% %, “m,
" % 0@ ‘e, 06’0'/) %, % ‘9’ ", O@ o, @o' &% @o' 0@
7 %, 27 A &, ¢ % 7 ¢ "9,

(%

Figure 1: Topology for a 31-node tree-based reduction.

having the lowest aggregate error so far is selected. Betfottecast, and the aggregate forecasting error (repezbast
mean-square error) are presented to the client of the NW&sdisting API [14].

As such we can use the NWS to determine a timeout for each netwnnection based on previous response time
readings. The NWS can forecast the time required to send aagesand receive a response. The forecasting error
provides a measure of how accurate this estimate is likebhetdBy adding the error to the estimate, we have a “worst-
case” (in terms of accuracy) estimate for the response time.

For example, if the NWS predicts that a message responseailir in 20 seconds, and the mean-square forecasting
error is 16seconds?, then one can use the error deviation (the square-root aht#ten-square forecasting error) as an
estimate of how much “slack” to build into the prediction.€eT@stimate plus two deviations (8 seconds in this example)
would set the timeout at 28 seconds.

In order for this methodology to be successful, the timeoetljgtion must improve upon a static timeout selection in
one of two ways:

o It correctly identifies a failure in a shorter time periodritthe static timeout.

o It correctly identifies a non-failure state by waiting longjean the static timeout.

In the sections below, we use a very simple application ondewarea network to explore this methodology.

4 Experimental Validation

We choose a simple application to test the effects of timdetdrmination. This is performing a maximum reduction on
a set of values. Specifically, we hawecomputing nodes, each of which holds a setrofalues. Let thg-th value of

401 [40

w
o
I
w
o
I

hlhul \l I‘ “ | |

bl

IH|| ‘i\ hﬂ 1
bl o
i i N"Nu “lh| |

L

N
o

Reduction Time (sec)
N
@

Reduction Time (sec)

*ﬁ

104

0 1000 2000 3000 4000 0 500 1000 1500 2000 2500
Test Number Test Number
Collection 1 Collection 2

Figure 2: Scatter plotp of reduction times as a function sf ieimber for both 31-node collections.

nodei bea;'-. When the reduction is complete;., is the same for any fixed value pfand is equal to the maximum value
of a/, for all i.

We perform this reduction by arranging the nodes into a lldree, an example of which is depicted in Figure 1. The
reduction proceeds in two phases. In the first phase, vahegsassed up the tree from children to parents, calculating
maximum values as they are passed. At the end of this ph@smdhnode- holds the proper values af.. The second
phase is a broadcast of all thg down the tree. When the second phase is complete, each; mudés correct values
of at.

V</hi|e not all distributed applications use a methodologshsas this, reductions (and similarly barriers) are common
in parallel programming. For instance, many communicdtlmaries (e.g. MPI) contain basic primitives for reductso
We do not claim, however, that the method of reduction we tiolate this work is optimal. Rather, we use it to provide
some insight into the importance of timeout tuning for digtted applications that include reductions.

To test the effect of timeout determination on the wide angaused two collections of thirty-one machines. The first
had the following composition:

e 11 machines from the University of Tennessee in Knoxvibdéélledutk.edu).

e 8 from the University of lllinois at Urbana-Champaigrifc.edu).

e 5 from the University of California at San Diegodsd.edu).

e 2 from Harvard Universitytl{arvard.edu).

¢ 2 from the University of Minnesotaumn.edu).

e 1 from Vrije Univeristy in the Netherlands¢.nl).

¢ 1 from the Internet2 Distributed Storage Project in Hawiaipgi.edu).

¢ 1 from the Internet2 Distributed Storage Project in Chagh] North Carolina fcni.net).

Note, this is a collection of twenty-nine machines from tbatnental United States, one from Hawaii, and one from
Europe. We arranged the machines into a five-level tree dstddpn Figure 1. We did not try to cluster machines from
a single location, so that we more closely approximate agancbllection of widely-dispersed machines.

1000 cCollection1 ~ .---""""TTT ===
--- Collection 2 -~

IN o ©
i ? i

Percentage Correct Identification

N
i

Timeout (sec)

Figure 3: Percentage of correct failure identifications tayis timeouts.

The second collection substituted twosd.edu machines for the Internet2 machines, as the Internet2 meshi
were down for maintenance.

We performed 4453 reductions of 16K integers (64 Kbytes) olieCtion 1, and 2939 reductions on Collection 2.
Scatter plots of the maximum reduction times for each rednetre plotted in Figure 2. The connectivity to the Intehet
machines was the limiting link in Collection 1, which is resgible for the larger reduction times. When these machines
were removed from the tests, the reduction times were ldWereover, they show more variability as a result of network
traffic (The tests of Collection 1 were done over a three daipdestarting March 9, 2001, and the tests of Collection 2
were done over a one-day period starting March 18, 2001. Weaoliect more results over a longer period for the final

paper).

4.1 Static Timeouts

We wrote our reduction so that it identified a failure if anydedook more than 45 seconds to perform the reduction.
Given this metric, there were ten timeouts in Collection id aone in Collection 2. If we assume that a 45-second
timeout correctly identifies failures, then Figure 3 digpldow shorter timeouts fare in correctly identifying faés.
Note that in this case, the true failures are indeed idedtifieshorter timeouts, but the shorter timeouts also inctigre
identify slowness as failure. The interesting feature sfgnaph is that the two collections, though similar in cosipon,
have vastly different characteristics, and depending erd#finition of “optimal,” require different timeout valuésr
optimality. For example, suppose we define optimal to be hiogtest timeout that correctly identifies at least 95 percen
of the failures. Then Collection 1 would employ a 27-secdntebut, and Collection 2 would employ a 17-second
timeout.

In the final paper, we will also explore different timeoutsdifferent nodes, since the location of a node on the tree
affects its timeout value.

4.2 Dynamic Timeouts

To assess the effectiveness of dynamic timeout deterromatve fed the reduction times into the Network Weather
Service forecasting mechanism. For each reduction, the Niv&s up with a forecast of the next reduction time, plus
two error metrics — a mean forecasting error to this point, amean square forecasting error. We use these values to
assess seven different timeout determination strategies:

100 100

90 90

80 80

70 70

Percentage Correct
Percentage Correct

60+ 60+

50+

50+

Jo18 + 4
1011852 + 4
ASPIIB + o

ASPIIBLZ + 4
ASPIIBLE + o
ASPUIBLY + 4
Jo18 + 4
1011852 + 4
ASPIIB + o
ASPIIBLZ + 4
ASPIIBLE + o
ASPUIBLY + 4

Collection 1 Collection 2

Figure 4: Percentage of correct failure identificationgffigr seven different dynamic timeout selection methods.

e F: the forecast itself
e F +i*error : the forecast plustimes times the mean errar= 1, 2.
e F +i*errdev: the forecast plustimes the error deviation (square root of the mean squaoe)eir=1, 2, 3, 4.

We plot the effectiveness of these strategies for both ciidies in Figure 4. Since the forecast is an estimate of
the next reduction time, setting the timeout to the foretsaebviously a bad strategy, because any reduction thas take
slightly longer will fail prematurely. This is reflected irigure 4. However, when the error metrics are added in, the
dynamic timeout determinations become much better. In bolllections, adding two times the error deviation brings
the correct timeout determination above 95 percent.

To get an idea of what the predicted timeouts are using thibode see Figure 5, where the predicted timeouts are
plotted along with the reduction times. Note that in botHexdlons, the timeout values follow the trends in the data,

reacting to the changing network conditions accordingly.
As before, in the final paper we will analyze the effect of ihgeeiach node perform prediction rather than calculating

a single timeout for each reduction.

4.3 Conclusion

In order for high performance applications to run effedtiageross the wide area, failure identification must be penéxl

by the message-passing substrate. In this paper we hawsedshe effect of static and dynamic timeout determination
on a wide-area collective operation. Though the data igdidhiit shows that a single system-wide timeout is certainly
effective for multiple computing enviroments. Additiolyalwe show that dynamic timeout prediction via the Network
Weather Service can be extremely effective, even when ttveonle conditions change over time.

Our long-term goal with this research project is to develapessage-passing library suited to the development of
high performance applications that can execute on the wige J his library will be based on the communication prim-
itives of EveryWare, a project that has sustained high perémce in an extremely wide-area, heterogeneous progessin
environment [15]. We view the issue of failure identificati@ central first step toward the effective development af thi

library.

5 Acknowledgements

This material is based upon work supported by the Nation&r8e Foundation under grants ACI-9701333, ACI-
9876895, EIA-9975015 and CAREER grants 0093166 and 97033@ditional support comes from the NASA In-
formation Power Grid Project, and the University of TeneesSenter for Information Technology Research.

40

w
o
I

Reduction Time (sec)
N
Q

Reduction Time (sec)

104

— (F+2*msesqrt) -- 99.8% correct
(F+msesqrt) -- 98.2% correct

— (F+2*msesqrt) -- 96.8% correct‘

0 1600 2000 3000 4000 0 500 1000 1500 2000 2500
Test Number Test Number
Collection 1 Collection 2

Figure 5: Reduction times along with dynamic timeout detaations using Network Weather Service forecasts plus
mean square error metrics.

References

[1] A. Agbaria and J. S. Plank. Design, implementation, aedgrmance of checkpointing in NetSolve. Iimerna-
tional Conference on Dependable Systems and Networks (BO@SDCCA-8) pages 49-54, June 2000.

[2] H. Casanova and J. Dongarra. NetSolve: A network servesélving computational science problem$he
International Journal of Supercomputer Applications andtHPerformance Computind1(3):212-223,1997.

[3] Y. Chen, J. S. Plank, and K. Li. CLIP: A checkpointing tdoi message-passing parallel programsS€07: High
Performance Networking and Computjr&an Jose, November 1997.

[4] E. N. Elnozahy, L. Alvisi, Y-M. Wang, and D. B. Johnson. Arsey of rollback-recovery protocols in message-
passing systems. Technical Report CMU-CS-99-148, Caeridglion University, June 1999.

[5] Entropia web page ahttp://www.entropia.com/

[6] I. Foster and C. Kesselman. Globus: A metacomputingstfucture toolkit.International Journal of Supercom-
puter Applications11(2):115-128, Summer 1998.

[7] 1. Foster and C. Kesselmarthe Grid: Blueprint for a New Computing Infrastructurdlorgan Kaufmann, July
1998.

[8] A. S. Grimshaw, W. A. Wulf, and The Legion Team. The Legiasion of a worldwide virtual computeCommu-
nications of the ACM40(1):39-45, January 1997.

[9] Message Passing Interface Forum. MPI: A message-ppsgarface standardnternational Journal of Supercom-
puter Applications8(3/4), 1994.

[10] Network Working Group, R. Braden, ed. Requirementdrieernet hosts — Communication layers. IETF RFC 1122
(http://www.ietf.org/rfc/rfc1122.txt), October 1989.

[11] Parabon Computation, web page fattp://www.entropia.com/

[12] T. Tannenbaum and M. Litzkow. The Condor distributedgassing systemDr. Dobb’s Journa) #227:40-48,
February 1995.

[13] United Devices, web page dtttp://www.ud.com/

[14] R. Wolski. Dynamically forecasting network perforntausing the network weather servicguster Computing
1998. http://mww.cs.utk.edu/rich/publications/nws-tr.ps. gz.

[15] R. Wolski, J. Brevik, C. Krintz, G. Obertelli, N. Springnd A. Su. Running EveryWare on the computational grid.
In SC99 Conference on High-performance Compuytivgvember 1999.

[16] R. Wolski, N. Spring, and J. Hayes. The network weatleevise: A distributed resource performance forecasting
service for metacomputingFuture Generation Computer System$(5):757—-768, 1999 http://www.cs.
utk.edu/"rich/publications/nws-arch.ps.gz .

