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Abstract

Many sparse matrices have a natural block structure, ftaree arising from the discretisa-
tion of a physical domain. We give an algorithm for findingstblock structure from the matrix
sparsity pattern. This algorithm can be used for instanétemtive solver libraries in cases
where the user does not or can not pass this block structimeriation to the software. The
block structure can then be used as a basis for domain-desitiop based preconditioners.

1 I ntroduction

Sparse matrices can often be described as having a limitethbdth and a limited number
of nonzeros per row. However, this description does not dtige to a structure that is
visible to the naked eye. Many sparse matrices come fromeadised partial differential

equations on a physical domain in two or three space dimesadt@om the way the variable
numbering traverses the problem domain, in a natural wayekidtructure arises. In a
plot of the matrix sparsity pattern, blocks correspondmgries or planes in the domain,
or whole substructures, can be easily discerned.

Direct matrix solvers often ignore such a matrix structuneleed, succesful solvers are
based on renumbering the matrix, regardless the origidarorg. Examples are the Cuthill-
McKee ordering [3] which reduces the bandwidth of the mataind the multiple minimum
degree ordering [4] which more directy aims to minimiseifill-This approach succeeds
by virtue of the fact that such direct solvers are purely Hasethe structure of the matrix,
and disregard the numerical entries. Time to solution iy fuproperty of the structure and
independent of the numerics.

For iterative solvers such an approach is less desirabke tifife to solution is strongly
dependent on numerical properties, and only to a lesseedegr structural properties.
This issue is only exaccerbated by the incorporation of @gditioner in the iterative
scheme. It would then make sense — and we will show with an pkahow serious this
issue is — to take structure information into account in threstruction of a preconditioner.
In particular, for preconditioners that are based on pantihg of the domain, such as Schur
complement methods and Schwarz methods, one would aim tbdedomains chosen
correspond to domains arising naturally from the applacati

In cases where the user writes the full application and #hative solver, our story would
now end on the above note of recommendation. However, intipghcases, users may
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rely on an iterative solver library, and be limited to theeitfidce it provides for supplying
structural information in addition to the bare matrix e@stiLooking at this problem from
the side of the library developer, we can not always assuatathser has the opportunity,
sophistication, or time to supply such annotations to theima

We conclude that there is a legitimate opportunity for safevthat automatically deter-
mines a matrix structure. Such software could be incorpdraito existing iterative solver

libraries, where it would retrieve information that, besawf a fixed user interface, simply
can not be provided by the user. Another application for sbitware would be the Net-

Solve package [2]. We have proposed such a structuralipagitas part of a more general
intelligent black-box linear equation solver [1].

In the next two sections we describe two partitioning algpnis, one for regular matrices,
and one for general matrices. We conclude by giving a pracégample showing the
efficacy, and indeed necessity, or our partitioning apgroac

2 Regular matrix partitioner

If a matrix derives from a discretized PDE on a ‘brick’ domairhas a structure where
all blocks are of equal size. Facilitating the analysis &fct that all nonzero diagonals
are parallel to the main diagonal. For this regular case weldp a partitioner that finds
all possible block structures. The fact that there can beertttan one block structure is
due to the physical nature of the problem: blocks can coomdpo for instance lines or
planes in a three-dimensional domain. Our algorithm prdsésy successively discarding
outer diagonals, which would correspond to the connecti@t&een blocks, and finding
any block-diagonal structure in the remainder. We alwagg by symmetrising the matrix,
so that we need test only in, say, the lower triangle.

Fori=2...n
if the subblockA(i : n,1: ¢ — 1) is zero,
marks as a split point

Figure 1: Find starting points of block-diagonal blockggaithm outline)

Finding whether a matrix subblock is zero is a computatigredpensive routine; the prac-
tical implementation would test consecutive rows and aboce a zero element has been
found.

Fori=2...n
test all row segmentd(j,1:4 — 1) for j = i...n in succession,
if any is nonzeroj is not a split point;
continue with the next (outef)iteration
if all segments are zero, maitas a split point

Figure 2: Find starting points of block-diagonal blocksagtical implementation)
The algorithm for finding the block structure spit pointsien enclosed in a loop that finds

all valuesp such that the-th diagonal ofA is nonzero and thg + 1-st is zero. For such
values, we apply algorithm 1 to tl2® + 1 bandpart of4.

Matlab code implementing the whole algorithm can be founajipendix A.



3  General matrix partitioner

The algorithm above relied on the fact that the nonzero @ffidnals are parallel to the
main diagonal to discard the connections between blocksnfatrices from irreguar do-
mains, or regular domains that have already been subjezt@duthill-McKee ordering,

we can make no such assumption. What is more, the connedtiokstbcan be arbitrarily

close to the main diagonal, since the diagonal blocks carfi &eyosize, especially with the
Cuthill-McKee ordering, there are guaranteed to be botheland small blocks.

Thus we need a different test for whether a paioan be the start of a block. The test we
used is the following:

If ¢ is the start of a block, thej > i is the start of a block, if4;; # 0,
Aijj1=0,4;_1;-1 #0and4;_,; = 0.

We start off the algorithm by declaring thhis the start of a block.

This simple test formalises the common sense criteriunsihiagequent blocks correspond
to subsequent slices out of the domain, and that their régpdieginnings are connected,
as are their endings, and no beginning of one block can bestteahto the end of another.
Occasionally this test will be too stringent, so we keepkiseparately of those points for
which only the conditions ord;; andA;;_; are satisfied; we can use those points to restart
the process if needed. If there are several choices of gessiat split points, we choose
one that gives a block not too different in size from what weehancountered so far; we
use deviation from the average size as a measure.

As a first refinement of this test, we observe that testing nglsimatrix elements may
often not give the right results. Instead we test on whetts@mall subblock is zero. The
subblocks have the indicated matrix elements as a cornet. pgé have to choose the size
of the subblock; right now we ugg — 4)/10 as a crude heuristic, but more sophisticated
estimates are possible.

The above process will occasionally give blocks of dispasites; in a post-processing
step we merge small blocks with adjoining large blocks.

Matlab code implementing the whole algorithm can be fourakipendix B.

4  Practical application and further research

As a practical application we used the Bi-Conjugate Gradigorithm with an alternating

Schwarz preconditioner on a two-material problem withéadiferences in material coeffi-
cients; figure 3. The is almost regular in structure, butaéisediagonal block is smaller than
the rest, so an even distribution will not cut the block bcaniek. Additionally, because
of the way boundary conditions between the materials areratised, the off-diagonal

nonzero structure has gaps and a few outlying diagonals.

We do not plot the results of the regular splitting algoritbinsection 2, since it gives
precisely the structure as desired and expected. We givelwis of the output of the
general split algorithm (section 3): once with all splitsifial indicated (figure 4), and once
after consolidation of the small blocks (figure 5). We se¢tihegeneral algorithm finds all
the large blocks, and is only minimally confused by the gaphé off-diagonal sparsity.

We tested two matrices of the same sparsity domain, one sifnsitte 1641, and one of
medium size 5655; we simulated 8 processors throughouielfirst case (table 1) we see
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Figure 3: Matrix of a two-material problem

that the general split algorithm gives the same number ddtittns as the optimal split,
generated by the regular algorithm. The penalty for using\an splitting is a factor of
almost 4 in iterations. By comparison, we give the numberterations for the Jacobi
method. In the case of the larger matrix we see that throughifous circumstances the
general splitting performs marginally better than the fiogt’ one. Again there is a large
penalty for choosing incorrect blocks as the even splittings.

optimal splitting 73
general splitting 73
even splitting 261

jacobi preconditioner 494

Table 1: Iteration counts for differently split Schwarz poaditioners on a small matrix
problem

optimal splitting 145
general splitting 138
even splitting 465

jacobi preconditioner 1044

Table 2: Iteration counts for differently split Schwarz poaditioners on a medium size
matrix problem

There are some opportunities for refinement of the algostdeveloped here. In our al-
gorithms we used the ‘fact’ that the upper right corner of@chlin the upper triangle of
a matrix is zero. This fact does not hold if the differentigliation has periodic boundary
conditions. We aim to develop heuristics that can detestdase.
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Figure 4: Same matrix as figure 3, with all split points foundicated
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A  Software: Regular matrix partitioner

function [sinfo,structs] = bl ockstructures(A)

% function [sinfo,structs] = bl ockstructures(A)

%

% conmpute all possible block structures of a matrix

% sinfo(i,:) is i’'th band and |l ength of corresponding splits array;
% (nunber of blocks is one less than length of splits)

% structs(i,:) is i'th splits, padded with zeros.

b = bands(A);

sinfo = []; structs =[]; ol = 0;

for i=1:size(b,?2),
splits = bl ockstructure(bandpart (A b(i)));
if size(splits, 2)==2,
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Figure 5: Same matrix as figure 4, after consolidation of sblatks

fprintf(’'no useful partition for b=%l\n",b(i)); break; end;
| = size(splits,2); [mn] = size(structs);
if I==ol,
if ol >0, new = setdiff(splits,osplits);
if size(new, 1)>0,

fprintf(’ ERROR non-nested splits at band % of %d\n’,i,b(i));

end; end,
fprintf(’'band % of %l supersedes previous.\n',i,b(i));
sinfo(m:) = [b(i),l]; structs(m:) = [splits,zeros(1,n-1)];
el se,
fprintf(’band % of % gives % blocks.\n",i,b(i),I-1);
sinfo = [sinfo’ ,[b(i),lI]"']"; structs(m+l,1:1) = splits;
end;
ol =1; osplits = splits;
end;

fprintf(’ Number of partitions found: %l\n',size(structs,1));

function [splits] = blockstructure(A);

% function [splits] = blockstructure(A)

%

% make vector of splits points of the block structure
%l ast split is n+l.

%

[mn]=size(A);
splits = [1];
for i=2:m
J = find(A(i,:i-1));
if size(J,2)==0,
[1,J3]=find(A(i:m21:i-1));
if size(l,2)==0,
splits = [splits, i];
end;
end;
end,

br eak;



splits = [splits, mtl];

function [right,left] = bands(A)

% function [right,left] = bands(A)

%

%find all outer bands in the matrix, that is, diagonals

% such that the diagonal beyond it is entirely zero.

%

%right,left are arrays of positive nunbers, sorted up.

%if only one output is request, the union of left & right is returned.

[mn] = size(A);

right =[]; bp = n;
for b=n-1:-1:1,
d = diag(Ab); [I,J] = find(d);

if size(l,1)>0,
if b==bp-1, right = [b,right]; end;
el se, bp = b; end,
end;

left =[]; bp =n;
for b=n-1:-1:1,
d = diag(A -b); [I,3] = find(d);
if size(l,1)>0,
if b==bp-1, left = [b,left]; end;
el se, bp = b; end;
end,

if nargout==1, right = union(right,left); end,
function [M = bandpart (A, n);

% function [M = bandpart (A, n)

%

%n scalar: take the 2n+1 inner bands of A
% n vector: take part inside split points.

% see: bl ock_make

%

if size(n,2)==1,
if n>size(A 1)-1,

M= A
el se,
Metriu(A -n)-triu(A n+l);
end;
el se,
M = bl ock_nake(A, n);

end;

B Software: General matrix partitioner

function [pp, ppt] = find_cnm(A);
% function [pp,ppt] = find_cmA);

trace = 1;

%

%initially, get all points on the first
% sub/ super di agonal that allows a split
%

A = AtA’;

splits = bl ockstructure(bandpart (A 1));



if trace>0, fprintf('a priori block structure: %\n',vec2str(splits)); end;

%

% Find all blocks

%

[pp,rr] = all_blocks(A splits);

%

% Now find a string of blocks that |ooks |like CM
%set limts on growth

%

pp = string_of _bl ocks(pp,rr,splits,trace);
fprintf(’'block structure prelim %\n',vec2str(pp));

%

% post - processing to elimnate snall bl ocks

%

ppt = pp; pp = conpact _bl ocks(pp, 0);
fprintf(’block structure final: %\n',vec2str(pp));

L2%)
%% end of main function
L2 %)

%

% mai n function 1: all_bl ocks

%

function [pp,rr] = all_blocks(A splits);

[mn] = size(A);
nsplits = size(splits,2);
pp = sparse(nsplits,nsplits); rr = pp;

% Loop over all split points, and assume that they are the start of a bl ock;
%find all points that can be the end of that bl ock.
%
for first=l:nsplits-1,
this_split = splits(first);
%init; this also covers the case of the last block, for which the
% followi ng |l oop is not executed
p = ([first]; r = [first];
for next=first+l:nsplits-1,
next _split = splits(next); test_size = next_split-this_split;
add = 0; d = floor(test_size/10);
%first_split is first point of block of current block
% next_split is tentative first point of next block.
% Now t est whet her connected:
% 1/ first point not to last point
% 2/ first point to next first point
% 3/ previous |last point to next |ast point
% 4/ previous |last point not to next first point

tl = enpty_corner (A this_split,next_split-1,d,-d);

t2 = enpty_corner (A this_split,next_split,d,d);

t3 = enpty_corner(A this_split-1,next_split-1,-d,-d);
t4 = enpty_corner (A this_split-1,next_split,-d,d);

if t1==0 & t2>0,
if this_split==1] (t3>0 & t4==0), p = [p, next];
%if only conditions 1 and 2 are net, mark this as a restart point
elser =[r, next]; end; end,
end;
fprintf('%: blocks from%: %, restarts: %\n',...
first,this_split,vec2str(splits(p)),vec2str(splits(r)));



pp(first,1l:size(p,2)) = p; rr(first,1:size(r,2)) =r

end;

[1.J] = find(pp);
pp = full (pp(1l: max(max(1)), 1: max(max(Jd))));
[1,3] = find(rr);
rro= full (rr(1: max(max(1)), 1: max(max(Jd))));

%
% auxi |l iary function enpty_corner
%

% test whether a corner of nmatrix (coordinate plus i/j
% positive result: elenments nonzero, zero result: enpty

%

function res = enpty_corner(A/i,j,di,dj)
[mn] = size(A);

if i<l | i>m res = 0;

el se,

offset) is enpty

if di<0, iO=nex(1,i+di); il=i; else, i0=i; il=min(mi+di); end;
if dj<0, jOo=nax(1,j+dj); jl=j; else, jO=j; jl=mn(n,j+dj); end;

res = norn(A(i0:i1,j0:j1),inf);
end;

%

% mai n function 2 string_of_bl ocks

%

function pp = string_of _blocks(pp,rr,splits,trace);

% control paraneters

growmth = 1.5;

% set up

nsplits = size(splits,2);

start = 1; p = [start]; big_block = 0;

% we | oop nmaxi mally to the nunber of splits, in practice nuch |ess,

% see the break command at the end of the | oop

for seq=l:nsplits-1,
% | ook at all possible blocks fromthis point
[1,J] = find(pp(start,:)); last_p = max(max(J));
[1,3] = find(rr(start,:)); last_r = max(max(J));
ps = pp(start,2:last_p); rs =rr(start,2:last_r);

if trace>0, fprintf('@d => % : choices are % %\n', ...
start,splits(start),vec2str(splits(ps)),vec2str(splits(rs)));

% t ough case: there is no continuation;

% use a restart block, which satisfies a |l ess stringent test

if last_p==1,
%first see if we can restart the process
if last_r>1,
if trace>0, fprintf(’'.. stuck; restarting\n’);
%find a block that doesn’t grow too fast

end;

next = decent_bl ock(rs,start,splits, growth, big_bl ock, trace);

% if we cannot even restart the process, just take

el se, next = start+1;

if trace>0, fprintf(’'.. really stuck; taking the
%in the regul ar case, look at all possibilities for

%if we are only starting the process, just take the

el seif big_block==0, next = pp(start,last_p);

the next bl ock
next block\n');

the end point;

bi ggest junp

if trace>0, fprintf('.. starting out; just take the biggest.\n");

end;

end; end;

end;



% otherwise, limt growth
el se,

next = decent_bl ock(ps, start, splits,growh, big_bl ock, trace);
end;

% updat e paraneters
p = [p,next]; this_size = splits(next)-splits(start);
bi g_bl ock = nmeax(bi g_bl ock, t hi s_si ze);

%if we have exhausted the matrix, quit.
if next>=nsplits, break; else, start = next; end;
end,

pp = splits(p); %convert to real nunbering.

%
% auxiliary function decent_bl ock
%
% find continuation canditate that doesn’t grow too fast
%result next is index in array nexts
%
function next = decent_bl ock(nexts, start,splits, growh, big_bl ock,trace)
| ast = size(nexts, 2);
for pos=last:-1:1,
next = nexts(pos);
next _size = splits(next)-splits(start);
i f next_size<=growt h*bi g_bl ock,
if trace>0,
fprintf(’'.. based on growth taking %=#% out of %\n’,...
next, pos, | ast); end;
break; end;
end;

%

% mai n function 3 conpact_bl ocks

%

function pp = conpact_bl ocks(pp, trace);

ppt = pp; np = size(ppt,2); pp =[]; last_size = 0; avg_size = 0; nb = 0;

for p=1:np-1,
this_size = ppt(1, p+1)-ppt(1,p);
if p>1, %general block: test whether too snall
if this_size<avg_size/6, %if it’'s snmall, accumulate it
if r>0, %if we are already accunul ati ng,
if p==np-1, add =r; %if last block, flush
else, %in general, add and flush if big enough
cum = cumtt hi s_si ze;
if cunpb*avg_size/6; add =r; else, add = 0; end; end;
else, %if we are not accunul ating, start doing it now
if p==np-1, add = p; %if last block, flush
% in general, renmenber where we started
else add = 0; r = p; cum= this_size; end,

end;
else, add = p; end; %if the block is not too small, just accept
else, %first block: add
add = 1; end,
i f add>0,

if trace>0, fprintf(’accepting block %d: %\n',p,ppt(1,p)); end;
| ast _size = this_size; avg_size = nb*avg_si ze+this_si ze;
pp = [pp, ppt(1,add)]; nb = nb+l; avg_size = avg_si ze/ nb;
r =0;
else, if trace>0, fprintf(’'nerging block %d: %\n',p, ppt(1,p)); end;
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end;
end;

pp = [pp, ppt(1,np)];
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