
NetBuild (version 0.02)

Technical Report UT-CS-01-461

Keith Moore, Jack Dongarra
Innovative Computing Laboratory

Computer Science Department
University of Tennessee, Knoxville

{moore,dongarra}@cs.utk.edu

Abstract. NetBuild is a system for making it easy for programmers to incorporate standardized function
libraries into their programs, by freeing them from the need to have such libraries installed locally.
NetBuild accomplishes this by allowing users to link in function libraries which reside on network servers
as if they were installed locally. This report describes NetBuild’s goals, an initial implementation, and
issues with installation, configuration, user interface, librarian interface, and security.

1. Introduction

NetBuild is a system for making it easy for programmers to incorporate standardized function libraries into
their programs, by freeing them from the need to have such libraries installed locally. Instead, the libraries
reside on network-accessible servers. WhenNetBuild is invoked at compilation time (in lieu of the normal
compiler or linker), it determines which of the requested libraries are non-resident, downloads those which
are missing, and (using the system’s normal compiler or linker) links them in along with resident libraries.

NetBuild was designed with the following goals in mind:

• It should be easy to learn and to use, requiring few changes from the interfaces to which the
programmer is already accustomed. Ideally existing Makefiles, scripts, etc. should be usable
with few or no changes.

• It should free the programmer from the burden of configuring, compiling, installing, and
maintaining standardized function libraries on the programmer’s target platforms, while
providing equivalent results. It should therefore automatically select the most appropriate
version of a function library for the target platform when such is available, and ideally, be able
to automatically build the appropriate version if it is not available.

• Similarly, it should be able to use the most up-to-date version of a library available (in order to
obviate the need for local maintenance of those libraries). However, it should also be able to
ensure repeatable results across multiple compilations over time.

• It should have the ability to perform this function even for high-performance computing
applications which may need libraries (e.g. ATLAS [1]) which are finely tuned to the
characteristics of a particular target platform.

• It should not introduce new security threats to the user’s data, compilation environment, or
runtime environment.

• It should make efficient use of network resources so as to avoid unnecessary delay in
compilation

• It should be easy to install and configure, even for a non-privileged user.

• It should work in most Internet-connected environments, even those which require that external
URL access be made via a proxy, firewall, or NAT .

This report describes an initial implementation of NetBuild, and issues identified in the course of that
implementation effort.



-2-

2. Installation

There are two ways to install NetBuild - the automatic way and the manual way. They do essentially the
same thing but the manual way makes it more obvious what is happening.

Here’s the automatic way:

1.Download http://www.cs.utk.edu/˜moore/netbuild-installer.sh and save it in a writable directory.

2. Type
./netbuild-installer.sh

to run the installer script. This does everything you need to configure, compile, and install NetBuild.

Here’s the manual way:

1. Download the netbuild tar file from ftp://cs.utk.edu/pub/moore/NetBuild-0.02.tar. Be sure to use binary
mode.

2. Extract the contents of the tar file:
tar xvfp NetBuild-0.02.tar

3. Run the configure script to determine local system parameters:
cd NetBuild-0.02/src
./configure

Note: by default, configure expects that you want to install NetBuild in a subdirectory of your HOME area
named NetBuild. If you want it installed somewhere else you need to specify this on the comnmand-line.
For example:

./configure --prefix=/usr/local
4. Compile NetBuild by typing:

make
5. Install NetBuild by typing:

make install
Note: NetBuild needs to have the locations of various files compiled-in, so if you want to change the direc-
tory where NetBuild is installed after you have configured NetBuild, you must re-run configure, re-compile,
and re-install as follows:

make distclean
./configure --prefix=/new/prefix
make install

6. For most systems this will suffice to install NetBuild. On some hosts or platforms it may be necessary
to modify NetBuild’s configuration files (see below) so that NetBuild will understand peculiarities of the
local system’s compilers, linkers, or run-time environment.

3. Using NetBuild

In order to use NetBuild the directory containing thenetbuild command must be in the user’s PATH.
A shell script namednetbuild is installed inprefix/bin (which is equivalent to
$HOME/NetBuild/bin if the default prefix is used). A user of sh, ksh, or bash would type

PATH=$HOME/NetBuild/bin:$PATH
export PATH

while a csh or tcsh user would type
set path = ( ˜/NetBuild/bin $path )

The file$HOME/NetBuild/bin/netbuild is a shell script which may be used on different platforms
(as long as each one has NetBuild installed in the same location), and may be copied to other directories.
However if the other components of NetBuild are reinstalled in a different directory, copies of thenet-
build shell script must also be updated.



-3-

Thenetbuild command creates a special compilation environment which contains substitute versions
of the system’s normal compilers or linkers. Thesesubstitutes (we call them shims) parse the comand-line
options that are passed to the compiler, determine which libraries are being requested, determine whether
any of these libraries is not resident on the system, and attempt to download any missing libraries. Finally
the real compiler or linker is invoked with suitable options to cause it to link in the libraries that have been
downloaded in addition to any locally installed libraries.

The shims are stored in a special directory (normally$HOME/NetBuild/ platform/lib ). Typing
netbuild command

causescommand to be executed in a modified enviroment where the PATH environment variable has
been updated to contain that directory prior to any other directory. The netbuild command thus creates an
environment where any attempts to invoke these compilers are intercepted by NetBuild.This modified
PA TH is only used when compiling something under NetBuild.

So for instance
netbuild f77 xyzzy.f -llapack -lblas

would invoke f77 in a NetBuild compilation environment. NetBuildmight then realize that the requested
librarieslapackandblaswere not resident on the system and download appropriate versions, before invok-
ing the realf77 compiler. Similarly,

netbuild make
would invoke themake command in the special compilation environment which would in turn be inherited
by any compilers invoked by make. This allows NetBuild to be used without changes to existing Make-
files.

4. Demo programs

Under the demos subdirectory are the source codes for two demo programs - dgeev and dgesv. To
compile either of these programs using netbuild, cd to the appropriate directory and type

netbuild make
Since these programs use the lapack and blas libraries, NetBuild will download the lapack and blas
libraries if they are needed. If you want to try compiling them without NetBuild for comparison, type

make clean; make
At the present time there are two libraries installed for use by NetBuild - lapack and blas. These libraries
are available for three platforms: alphaev6-dec-osf5.0, i686-pc-linux-gnu, and sparc-sun-solaris2.7. Other
libraries can be added.

5. Implementation

The heart of NetBuild is a C program that runs on several UNIX-derived and UNIX-like platforms. It
works as follows:

• The program checks the name by which it was invoked. If that name ends innetbuild , it
adds the directory containing NetBuild’s shims to the PATH and treats the remainder of the
command-line as a command to be invoked with the modified PATH.

• Otherwise, NetBuild parses the command-line arguments as if it were the compiler or linker,
identifying options that specify libraries to be linked

• For each of these libraries, NetBuild determines whether those libraries are already installed on
the local system.



-4-

• For each of the libraries that are not installed, NetBuild consults one or more network servers
in an attempt to find libraries which match the characteristics of the target platform. When it
finds such a library it will download it to the local system. Previously downloaded libraries
are cached so they are not downloaded again if they hav enot changed.

• The authenticity and integrity of the libraries is verified, and if valid, the libraries are installed
in local directories which are private to NetBuild.

• The system compiler or linker is then invoked with extra options to force the newly-
downloaded libraries to be linked in along with the resident ones.

The current implementation is characterized as prototype rather than production code. It is intended as a
proof-of-concept and a testbed for new features rather than a code base for use by ordinary users. A
production version of NetBuild would need to pay much more attention to security and robustness issues.

Details of the implementation are discussed below.

5.1. Option parsing

Since NetBuild is invoked as if it were the normal system compiler or linker, NetBuild needs to be able to
understand options that vary from one compiler or linker to another. NetBuild therefore has a configurable
parser for command-line options. The parser can be configured on a per-host, per-platform, and per-
compiler basis.

The parser need not understand the syntax and semantics of each option. It needs to know which options
require additional arguments (so that subsequent arguments beginning with a hyphen are not treated as
separate options), which options specify libraries to be linked, and which options specify local directories
which should be searched. In the future, it may also need to be aware of options which specify static or
dynamic linking (the current version only supports static linking), and options which specify variants of the
compiler’s target platform (so that it can use the correct libraries if the specified target is different than the
default one).

5.2 Searching for local libraries

NetBuild must search local directories to determine whether some of the requested libraries are already
resident. Sincethese directories vary from one target platform to another and from one compiler to another
on the same platform, the list of directories which NetBuild consults is configurable. In addition, any
directories specified on the command-line are also consulted. Finally, since naming conventions vary from
one platform to another, NetBuild can be configured to understand the file naming conventions for libraries
on the local platform.For instance, library "foo" might be matched by any of libfoo.a , libfoo.so,
or libfoo.so.1.2.

5.3 Identifying target platform characteristics

NetBuild currently uses the GNUconfig.guess program to determine a canonical name for the target
platform. Thisis a string which is generally of the formCPUtype- vendor- OSname whereOSname
also contains a version number. This is nowhere nearly precise enough for NetBuild to meet its goals, but
this naming scheme is more-or-less consistently used by a large number of software packages, and it is
useful as a starting point. Eventually NetBuild will want to detect many more features, including compiler
and version, number of CPUs, CPU instruction set extensions (and whether those are supported by the
operating system), cache sizes, etc., to allow for more effective matching of available libraries.



-5-

5.4 Identifying available network-resident libraries

NetBuild consults an external web server to identify which libraries might be available for a particular
platform. Inorder to find which versions of library foo are available, NetBuild downloads a file named
BASEURL/foo. That file consists of lines of the form

platform URL

which indicate that the library namedfoo for platform platform can be found atURL. Eventually this
format will need to be extended to allow constraints to be specified (e.g. only for use with CPUs supporting
MMX extension), and perhaps also to allow preferences to be specified (library X is better than Y if data
cache size exceeds Z).

Currently NetBuild only supports downloads over HTTP, thus the URLs must all behttp URLs.

5.5 Library container file format

NetBuild currently expects downloaded libraries to be in gzip-compressed tar format. The actual library
archive is expected to be a component of the tar file. The URL which is specified above includes a
"fragment identifier" (#suffix) which contains the name of the component of the tar archive to be
extracted. Thearchive may also contain other components. After downloading the tar file the archive is
extracted, renamed as necessary, and copied to the cache directory.

We are using this container file format in order to make immediate use of pre-compiled libraries on the
netlib software repository [3,4,5]. In the future, it may be necessary to change the format or to change
NetBuild to support multiple container file formats.

5.6 Caching

NetBuild caches files that are downloaded from network so that they are not downloaded again unless
necessary. The cache is currently maintained on a per-user basis due to security concerns associated with
maintaining a shared cache. Libraries downloaded from servers are stored in a directory whose name is
derived from a hash of the (canonicalized) URL from which the library was obtained; a separate metadata
file contains the last-modified date of that URL. Subsequent attempts to download that file use the HTTP
"if-modified-since" directive which causes the file to be downloaded only if it has been changed. Note that
the last change date of the container file which is downloaded may be different than the last change date of
the actual library.

5.7 Authenticity and Integrity verification

A module which performs authenticity and integrity verification has been implemented but not yet
incorporated into NetBuild. This module uses GNU Privacy Guard (GPG) [6] to verify digital signatures.
The signatures can be created with GPG or any of sev eral PGP variants. Becausethe trust model for
netbuild libraries is different from that of normal PGP signatures (just because you trust a signature on a
library to be authentic does not mean you trust that it’s okay to execute that library on your computer), the
signatures used by NetBuild are kept on a separate key ring in a separate directory.

GPG is used in NetBuild prototypes because it is easy to interface to, readily available, and presumably free
of patent issues. However the current implementation requires that GPG be installed in addition to
NetBuild. To make it easier for the user to install NetBuild, it would be preferable for the signature
verification code to be incorporated directly. A later version of NetBuild might use a different signature
format, or support multiple formats.



-6-

5.8 Server r equirements

NetBuild is designed to use ordinary HTTP servers. Itcurrently requires no CGI or other active content on
the server, nor does it depend on server-native file naming conventions. We currently use Apache servers,
but any other HTTP server should also work.

6. Future Directions

In the future, we intend to add the following features to NetBuild:

• amore flexible system of matching object libraries to target platform characteristics, sufficient
to allow (for example) the best available ATLAS library for the target platform to be selected.

• support for using NetBuild to create libraries to be used by NetBuild, with automatic tagging
and cataloging of those object libraries with the proper attributes to allow for effective
matching, and (perhaps) support to invoke compilers so that they generate maximally portable
and/or maximally efficient code, as needed.

• support for dynamic libraries, including the ability to bind to a library at run-time rather than at
link-time.

• ability of NetBuild to know about, and make use of, inter-library dependencies

• support for automatically compiling missing libraries from source code

• support for verification of libraries using digital signatures

• caching via a shared cache directory

7. Acknowledgements

Matt Smith wrote an initial implementation of NetBuild which influenced the current version. Susan
Blackford, Eric Grosse, and Piotr Luszczek are gratefully acknowledged for helping to fine-tune this
version.

8. References

[1] R. Clint Whaley, Jack Dongarra. ‘‘A utomatically Tuned Linear Algebra Software’’. Proceedings,
Supercomputing 1998 conference.
http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Whaley814/INDEX.HTM

[2] R. Whaley, A. Petitet, Jack Dongarra. ‘‘A utomated Empirical Optimization of Software and the
ATLAS Project’’ Parallel Computing, 27 (1-2) p. 3-25, 2001.

[3] JackJ Dongarra and Eric Grosse.‘‘ Distribution of mathematical software via electronic mail’’
Communications of the ACMv 30, n5 (May. 1987), pp403 - 407.
http://www.acm.org/pubs/articles/journals/cacm/1987-30-5/p403-dongarra/p403-dongarra.pdf

[4] Shirley Browne, Jack Dongarra, Eric Grosse, and Tom Rowan. ‘‘The Netlib Mathematical Software
Repository,’’ D-Lib Magazine, September 1995. Electronic journal,
http://www.cnri.reston.va.us/home/dlib/september95/09contents.html

[5] Netlib - http://www.netlib.org

[6] GnuPrivacy Guard. http://www.gnupg.org/



-7-

Appendix - NetBuild file layout (and how to uninstall)

The NetBuild installation process stores files in the following directories relative to prefix. By default
prefix is $HOME/NetBuild.

• prefix/bin - contains a shell script named netbuild which determines the current platform
and invokes the correct binary netbuild for that platform. this allows NetBuild users who
access multiple platforms to put a single platform-independent directory in their PATH.

• prefix/lib - contains the config.guess shell script, which determines the current platform

• prefix/ cputype-vendor-osname/bin - contains the netbuild binary for that
platform

• prefix/ cputype-vendor-osname/lib - contains symlinks pointing to netbuild for
each of the compilers on that platform

• prefix/ cputype-vendor-osname/etc - contains configuration files for that platform

In addition, NetBuild caches library files in$HOME/.netbuild/cache and writes temporary files
(when downloading) in$HOME/.netbuild/temp.

NetBuild may therefore be uninstalled by typing:
rm -r $HOME/NetBuild $HOME/.netbuild

and by removing$HOME/NetBuild/bin from yourPATH.


