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tLet LDLt be the triangular fa
torization of a real symmetri
 n�n tridiagonalmatrixso that L is a unit lower bidiagonal matrix, D is diagonal. Let (�;v) be an eigenpair,� 6= 0, with the property that both � and v are determined to high relative a

ura
yby the parameters in L and D. Suppose also that the relative gap between � and itsnearest neighbor � in the spe
trum ex
eeds 1=n; nj�� �j > j�j.This paper presents a new O(n) algorithm and a proof that, in the presen
e ofround-o� error, the algorithm 
omputes an approximate eigenve
tor v̂ that is a

urateto working pre
ision: j sin\(v; v̂)j = O(n"), where " is the round-o� unit. It followsthat v̂ is numeri
ally orthogonal to all the other eigenve
tors. This result forms partof a program to 
ompute numeri
ally orthogonal eigenve
tors without resorting to theGram-S
hmidt pro
ess.The 
ontents of this paper provide a high-level des
ription and theoreti
al justi�
a-tion for LAPACK (version 3.0) subroutine DLAR1V.
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11 Setting the S
eneA real symmetri
 n�n matrix has a full set of orthogonal eigenve
tors and users of softwareexpe
t 
omputed eigenve
tors to be orthogonal to working a

ura
y. Ex
ellent programsare available to diagonalize real symmetri
 matri
es so we 
ould say that the problem of
omputing orthogonal eigenve
tors is solved. Unfortunately users are always in a hurryand the standard programs require O(n3) arithmeti
 operations in diÆ
ult 
ases. The time
onsuming 
al
ulation in the standard QR algorithm is the a

umulation of O(n2) planerotations, ea
h of whi
h requires O(n) operations. Yet we must remember that it is thisa

umulation that guarantees numeri
ally orthogonal eigenve
tors however 
lose some ofthe eigenvalues may be and that is a beautiful feature of the QR-based algorithm.As values of n near 103 be
ome 
ommon and values ex
eeding 104 do o

ur it is hardto stop people dreaming of an O(n2) algorithm to do the job. An expert will point outthat it requires (8=3)n3 operations to redu
e a dense matrix to tridiagonal form so that anO(n2) algorithm is not possible. Nevertheless operation 
ounts, though useful, are not asure guide to exe
ution time on 
urrent 
omputers. Even with n ex
eeding 1000 there are
ases where the O(n3) redu
tion of a dense matrix to tridiagonal form T takes mu
h lesstime (10{20%) than 
omputing T 's eigenpairs. So it seems desirable to seek a guaranteedO(n2) algorithm for T 's eigenproblem.It is the presen
e of parallel distributed memory 
omputer systems that has vitalized thesear
h for algorithms that 
an 
ompute ea
h eigenve
tor of a tridiagonal matrix indepen-dently of the others. Ideally the n eigenvalues would be distributed to n pro
essors, alongwith a 
opy of the tridiagonal, and all n eigenve
tors would be 
omputed independently atthe same time and would turn out to be orthogonal to working a

ura
y.There are formidable obsta
les that impede the realization of this dream and these willbe reviewed in the next se
tion.This paper presents a useful step towards the goal. The main Theorem 9 in Se
tion 7shows that in spe
ial, but important, situations our new algorithm produ
es an eigenve
torthat is guaranteed to be within O(n") of the true eigenve
tor whenever the eigenvalue hasa relative separation from its neighbors that ex
eeds 1=n. It has been known for years thatinverse iteration 
an produ
e fully a

urate eigenve
tors whenever the eigenvalue has anabsolute separation that is above the average (�max � �min)=(n � 1). So our 
ontributionis to 
hange absolute to relative in the separation 
ondition. Our examples show thatthe resulting speedups 
an be dramati
 (from 822 se
onds to 6 se
onds). See Se
tion 8for details. To establish our result, roundo� errors in
luded, we were obliged to jettisonthe traditional representation of a tridiagonal matrix by its diagonal and next-to-diagonalentries. Instead, we use a bidiagonal fa
torization LDLT of a 
arefully 
hosen translate ofthe original tridiagonal T . Properties of L and D allow us to 
ompute eigenpairs of LDLTvery a

urately.The proof of the main Theorem 9 rests on the existen
e of relative perturbation resultsfor the bidiagonal fa
tors and on a spe
ial interpretation of the roundo� errors in di�erentialqd algorithms that yields what is 
alled mixed stability: 
arefully sele
ted small relativeperturbations of both the input and the output of our subroutines reveal the existen
e ofan exa
t relationship of the form �L �D �Lt� �I = ~N ~D ~N t, where ~N is a twisted fa
tor de�nedin Se
tion 4. The translation by � preserves eigenve
tors while shifting the eigenvalue of



2interest very 
lose to 0. The middle part of this paper presents the relevant error analysis.Although essential for our results this analysis will be indigestible for most readers but ittells us that 
hanges of only 3 or 4 units in the last digit of ea
h entry of the input L, Dand the output N̂ and D̂ (rather than 300 or 30000 units) suÆ
e to give the exa
t relation.Let us sket
h our new sequential algorithm that is based on the results of this paper.Compute the extreme eigenvalues of T and start with a base � at one end of the spe
trum.Compute the positive (or negative) de�nite fa
torization LDLt = �(T � �I) and �nd all itseigenvalues to high relative a

ura
y. Next �nd the eigenve
tors for all the shifted eigenval-ues ��� that have large relative gaps. If some eigenvalues remain without eigenve
tors thenpi
k a new base �new at, or 
lose to, one end of the remaining spe
trum. Perform a 
arefulfa
torization LnewDnewLtnew = LDLt � �newI and monitor element growth. If growth istoo great then perturb � (away from the 
luster) until growth is a

eptable. Then re�ne,to high relative a

ura
y, all new small eigenvalues with large relative gaps and 
omputetheir eigenve
tors. Repeat the pro
ess with suitable bases � until all eigenve
tors have been
omputed. A more detailed outline of this algorithm is given in [9℄ and [10℄.The organization of the paper is revealed in the list of 
ontents. Householder notation(
apital letters for matri
es, Greek lower 
ase for s
alars, and lower 
ase bold Roman forve
tors) is generally followed. Eigenvalues are ordered by �1 � �2 � �3 � � � � � �n.Se
tion 4 is derived from Chapter 4 of [9℄.2 DiÆ
ultiesThe quality of an approximate eigenve
tor y is measured by its residual. The basi
 resultthat goes ba
k to Temple in the 1930's, if not earlier, will be needed later. See [33, Chaps. 10and 11℄ for details and a proof.Theorem 1 Let A = At be a real matrix that has a simple eigenvalue � with normalizedeigenve
tor v. For any unit ve
tor y and a s
alar �, 
loser to � than to any other eigenvalue,j sin\(v;y)j � kAy � y�k=gap(�); (1)where gap(�) = minfj� � �j : � 6= �; � 2 spe
trum(A)g. In addition, the error in theeigenvalue is bounded by the residual norm, i.e.,j�� �j � kAy � y�k:The sad fa
t is that a small residual norm does not guarantee an a

urate eigenve
torwhen gap(�) is also small. On the other hand, a

urate approximations y and z to u andv respe
tively (where u and v are eigenve
tors), in the strong sense thatj sin\(u;y)j < n" and j sin\(v;z)j < n"; (2)where " is the roundo� unit, do ensure numeri
ally orthogonality of the 
omputed eigenve
-tors sin
e j 
os\(y;z)j � j sin\(u;y)j+ j sin\(v;z)j < 2n":



3Thus a

ura
y yields orthogonality. This observation is not as va
uous as it appears. Inthe QR algorithm the 
omputed eigenve
tors are a

eptable be
ause they are orthogonal(numeri
ally) and their residuals are small but they are not always a

urate in the senseof (2). Part of the explanation for this anomaly is that A may not determine some of itseigenpairs to high a

ura
y. Thus the eigenve
tor v used above may be highly sensitive assoon as there is un
ertainty in the entries of A and so the 
on
ept of a

ura
y goes outof fo
us. That is why, in the sense of (2), a

ura
y is not the only way, or even the bestway, to 
ompute numeri
ally orthogonal eigenve
tors. The QR algorithm does produ
e anumeri
ally orthonormal basis for all the invariant subspa
es that are well de�ned by thetridiagonal.Let us return to the residual norm. In general, the best we 
an hope for is to produ
eresiduals r = r(y) = Ay � y� satisfyingkrk � " � (�max � �min): (3)The average separation between eigenvalues is�max � �minn� 1 (4)and so, by (1) and (3), if gap(�) is above this average thenj sin\(v;y)j � (n� 1)"and a

ura
y is assured. On the other hand in the many 
ases when gap(�)� (4) then theresidual norm must be mu
h smaller than the right hand side of (3) in order to deliver su
ha

ura
y.In general we see no possibility for redu
ing the residuals without using higher pre
isionarithmeti
 in parts of the 
omputation. Instead we turn to spe
ial matri
es and spe
ialsituations, in parti
ular, to a symmetri
 tridiagonal matrix T . Our goal is to 
omputeresiduals satisfying krk = kTy � y�̂k � K"j�̂j; (5)for some modest 
onstant K independent of y and �̂, so thatj sin\(v;y)j � K"j�̂jgap(�̂) = K"relgap(�̂) : (6)Note that if �̂ = O("(�max � �min)) then (5) requires krk = O("2). How is that possiblesin
e even the rounded version of the `true' eigenve
tor may not a
hieve (5)?We 
an a
hieve (5) in the presen
e of three separate properties.(I) � must be determined to high relative a

ura
y by the matrix parameters.(II) The 
omputed �̂ must approximate � to high relative a

ura
y.(III) The ve
tor y must be 
omputed so that kr(y)k � j�� �̂j � "j�̂j.



4A tridiagonal matrix T is traditionally represented by its diagonal and o�-diagonalentries. We a
hieve Property I by dis
arding this representation in favor of LDLt = T � �Ifor a suitable shift � . Se
tion 3 shows the ne
essity for this 
hange of representation.Property II is then easily a
hieved by using bise
tion or, in the positive de�nite 
ase, by thedqds algorithm, see [13℄. Given a fa
torization LDLt, and a highly a

urate �̂, we 
an thinkof satisfying Property III by using inverse iteration. While traditional inverse iteration oftenworks well in pra
ti
e, we employ an elegant alternative that uses a rank-revealing twistedfa
torization of T � �̂I.A subtle point in our analysis is that (5) is a
hieved, not for T or LDLt but for a smallrelative perturbation of LDLt.Mu
h of this paper, from Se
tion 4 onwards, is devoted to a proof that Property III 
anbe a
hieved in the presen
e of roundo� error.3 Standard Tridiagonal Form is InadequateIn this Se
tion, we show that the standard representation of tridiagonals is inadequate forour purpose of 
omputing highly a

urate eigenve
tors. Re
ent work has shown that sometridiagonal 
lasses do determine all their eigenvalues to high relative a

ura
y. However formost tridiagonals small relative 
hanges in the diagonal and o�-diagonal entries 
an 
ausehuge relative 
hanges in the small eigenvalues.We now give a 
arefully 
ontrived example whi
h exhibits this relative instability evenwhen n = 3.Example 1 Consider the tridiagonalT1 = 24 1�p" "1=4p1� 7"=4 0"1=4p1� 7"=4 p"+ 7"=4 "=40 "=4 3"=4 35 ;and a small relative perturbation to the o�-diagonals of T1,T1 + ÆT1 = 24 1�p" "1=4(1 + ")p1� 7"=4 0"1=4(1 + ")p1� 7"=4 p"+ 7"=4 "(1 + ")=40 "(1 + ")=4 3"=4 35 :where " is a small quantity of the order of the ma
hine pre
ision. The two smallest eigen-values of T1 and T1 + ÆT1 are1�1 = "=2 + "3=2=8 +O("2); �1 + Æ�1 = "=2� 7"3=2=8 +O("2)�2 = "� "3=2=8 +O("2); �2 + Æ�2 = "� 9"3=2=8 +O("2)while �3 = 1 + "+O("2); �3 + Æ�3 = 1 + "+O("2):1we 
arefully 
onstru
ted this matrix to have the desired behavior whi
h may be veri�ed by using asymbol manipulator su
h as Maple [4℄ or Mathemati
a [40℄.



5Thus ����Æ�i�i ���� = (3� i)p"+O("); i = 1; 2and the relative 
hange in these eigenvalues is mu
h larger than the initial relative pertur-bations in the entries of T1. Similarly the 
orresponding eigenve
tors of T1 and T1 + ÆT1are: v1 = 2664 "1=4p2 (1 + p"2 ) +O("5=4)� 1p2 (1� p"2 ) +O(")1p2(1� 3"4 ) +O("3=2) 3775 ; v1 + Æv1 = 2664 "1=4p2 (1 + 5p"2 ) +O("5=4)� 1p2(1 + 3p"2 ) +O(")1p2(1� 2p") +O(") 3775 :andv2 = 2664 � "1=4p2 (1 + p"2 ) +O("5=4)1p2(1� p"2 ) +O(")1p2 (1 + 3"4 ) +O("3=2) 3775 ; v2 + Æv2 = 2664 � "1=4p2 (1� 3p"2 ) +O("5=4)1p2(1� 5p"2 ) +O(")1p2(1 + 2p") +O(") 3775 ;whereby ����Ævi(j)vi(j) ���� = O(p") for i = 1; 2 and j = 1; 2; 3:Sin
e a small relative 
hange of " in the o�-diagonal entries of T1 results in a mu
hlarger relative 
hange in its eigenvalues and eigenve
tors, we say that T1 does not determineits eigenvalues and eigenve
tor 
omponents to high relative a

ura
y. Consequently, in thefa
e of roundo� errors, it is unlikely that we 
an 
ompute numeri
ally orthogonal eigen-ve
tors without expli
it orthogonalization. To 
orroborate this, we gave the best possibleapproximations to �1 and �2 as input to the EISPACK and LAPACK implementations ofinverse iteration but turned o� all orthogonalization within these pro
edures. As expe
ted,we found the 
omputed ve
tors to have dot produ
ts as large as O(p"). 2In 
ontrast, when T is positive de�nite, the representations LDLt and ~L~Lt, where ~L =LD1=2, ea
h determine all the eigenvalues to high relative a

ura
y. See [8, Theorem 5.13℄ formore details. Thus these fa
tored forms are preferable to the standard form for eigenvalue
al
ulations.When D is not positive de�nite the situation is more 
ompli
ated. Often LDLt deter-mines its eigenvalues to high relative a

ura
y, parti
ularly the small ones. Of 
ourse wemay use the representation U�D�U t� derived from Gaussian elimination in reverse orderor even a twisted fa
torization. The important point is that the positive de�nite 
ase isnot the only one in whi
h some eigenvalues are determined to high relative a

ura
y by afa
tored form.Let LDLtv = v�, � 6= 0. An appropriate relative 
ondition number de�ned in [9℄ isrel
ond(�) := vtLjDjLtv=j�j:Note that when D is positive de�nite then rel
ond(�) = 1 but we do not need su
h stabilityfor our results. A value of rel
ond(�) su
h as 10 or 20 is adequate to ensure numeri
allyorthogonal eigenve
tors.The fo
us of this paper is on how to exploit high relative a

ura
y when it o

urs, notto give 
onditions for its o

urren
e. See Se
tion 5 and [30℄ for more details.



64 Computation with BidiagonalsIn the remaining pages, we show that we 
an 
ompute a very a

urate eigenve
tor when(i) rel
ond(�) is modest and (ii) � has a large relative gap. Our algorithm a
hieves thisby obtaining residual norms that are small in a relative sense. In this se
tion, we �rstreview twisted fa
torizations, and then present a novel \mixed" relative error analysis forthe methods that 
ompute them. This error analysis, given in Se
tion 4.3, is essential forour results; indeed a \standard" ba
kward error analysis turns out to be totally inadequate.4.1 Twisted Fa
torizationsIf �̂ is an extremely a

urate approximation to an eigenvalue � of T then T � �̂I is almostsingular. In order to 
ompute the eigenve
tor, i.e., to solve (T � �̂I)z � 0, we seek afa
torization that reveals this singularity. In the tridiagonal 
ase we 
an always 
onstru
tsu
h a fa
torization from the forward and ba
kward triangular fa
tors. This pro
edure isdes
ribed in [29℄ along with the ne
essary theory. For referen
e in later se
tions we quotehere the results we need, without proof, and add a few 
omments and re�nements.Suppose that LDLt � �̂I = L+D+Lt+ = U�D�U t�where L+ is unit lower bidiagonal and U� is unit upper bidiagonal. Note that by thedis
ussion in Se
tion 3, we have repla
ed T by LDLt. It may happen that neither D+ norD� reveals the rank. A twisted fa
torization, written asLDLt � �̂I = NkDkN tkis 
onstru
ted as follows. Nk and Dk are formed by fa
toring the matrix from top downand from bottom up meeting at row k. Nk takes rows 1 : k of L+ and rows k : n of U�.Thus row k has three nonzero entries (l+k�1 1 u�k )and Dk = diag(D+(1); : : : ;D+(k � 1); 
k;D�(k + 1); : : : ;D�(n)):Clearly, there are n su
h twisted fa
torizations, one for ea
h k = 1; : : : ; n. One su
h twistedfa
tor, with n = 6 and k = 3 is shown in Figure 1.The only new entry is 
k and it is of great importan
e. There are several formulae for
k and we will give some of them in Fa
t 2.Fa
t 1. 
�1k = etk(LDLt � �̂I)�1ek:Our twisted fa
torization will reveal the rank if 
k � � � �̂. Fa
t 1 implies that, in
ases of interest, there exists su
h a 
k (see Theorem 2 below). The goal is to �nd an



726666664 xx xx x xx xx xx
37777775Figure 1: Twisted Triangular Fa
tor Nk with n = 6, k = 3.appropriate index k and we do so by 
omputing 
k for every 
hoi
e of k, 1 � k � n, andthen 
hoosing an index whi
h gives a minimal or nearly minimal value to j
kj. The surpriseis that this 
an be done for little extra work as shown in Fa
t 2 below. The 
ase 
k = 1for all k 
an o

ur but we are free to 
hoose �̂ to avoid su
h situations, see also [9, Se
. 3.3℄.Fa
t 2. In exa
t arithmeti
,
k = � D+(k) +D�(k)� (dk�1l2k�1 + dk � �̂);D+(k)� (dklk)2=D�(k + 1):The expression in parentheses in the �rst formula above is the (k; k) entry of LDLt � �̂I(here dk = D(k; k) and lk�1 = L(k; k � 1)). More robust expressions are given in (16).We present next the relation of 
k to the spe
tral fa
torization of LDLt � �̂I using aneigenve
tor expansion. These results do not rely on the tridiagonal form.Let LDLt = V �V t. Repla
e LDLt by V �V t in Fa
t 1 to �nd, for ea
h k,1
k = jvj(k)j2�j � �̂ +Xi 6=j jvi(k)j2�i � �̂ ; (7)where � = �j is the eigenvalue 
losest to �̂ and its normalized eigenve
tor is vj . Theorem 2shows that the twist index k for whi
h jvj(k)j is large leads to a small value of 
k.Theorem 2 Let 
k be as in (7), where �̂ approximates �j, and let �j be isolated enough,i.e., j�j � �̂jgap(�̂) � 1M � 1n� 1 ;where M > 1 and gap(�̂) = mini 6=j j�i � �̂j. Then, for k su
h that vj(k) � 1=pn,j
kj � j�j � �̂jjvj(k)j2 � MM � 1 � nj�j � �̂j � MM � 1 :Proof. A proof is given in [9, Se
tion 3.2℄. 2Next we show how to exploit the twisted fa
torizations to 
ompute an a

urate approxi-mate eigenve
tor. Let z(k) be de�ned by (LDLt� �̂I)z(k) = ek
k where I = [e1;e2; : : : ;en℄



8and z(k)(k) = 1. Theorem 3 shows that z(k) enjoys a small relative residual norm undersuitable 
onditions and serves as an ex
ellent approximation to the eigenve
tor vj [15, 29℄.Note that our approximate eigenve
tor z(k) is a 
arefully 
hosen 
olumn of (LDLt� �̂I)�1.Theorem 3 Let 
k be as in (7), where �̂ approximates �j, �̂ 6= �j. Then, if vj(k) 6= 0, theresidual norm j
kjkz(k)k � j�j � �̂jjvj(k)j ;and thus for at least one k, j
kjkz(k)k � pnj�j � �̂j:Proof. A proof is given in [29, Se
tion 5℄ and [9, Se
tion 3.2℄, but we repeat it here forthe sake of 
ompleteness. Re
all that LDLt = V�V t. Thenz(k) = (LDLt � �̂I)�1ek
k;) kz(k)k2 = j
kj2eTk V (�� �̂I)�2V Tek;= j
kj2 nXi=1 jvi(k)j2j�̂� �ij2 ;) j
kjkz(k)k � j�j � �̂jjvj(k)j ; 8k:Noting that jvj(k)j � 1=pn for at least one k 
ompletes the proof. 2However (�̂; z(k)) is not the best approximate eigenpair be
ause �̂ is not the Rayleighquotient of z(k). By using the Rayleigh quotient we obtain a useful de
rease in residualnorm.Lemma 1 Let LDLt = T and (T � �̂I)z(k) = ek
k; z(k)(k) = 1. Then the Rayleighquotient � with respe
t to T � �̂I is �(z(k)) = 
k=kz(k)k2;and k(T � (�̂+ �)I)z(k)k=kz(k)k = 
kkz(k)k2 �kz(k)k2 � 1�1=2 :Proof. Write z for z(k), 
 for 
k, and note thatzt(T � �̂I)z = ztek
 = 
; sin
e z(k) = 1;and (T � (�̂+ �)I)z = ek
 � z�;k(T � (�̂+ �)I)zk2 = 
2 + kzk2�2 � 2
�;= 
2kzk2 �kzk2 � 1� : 2



94.2 qd-like Re
urren
esTo �nd an individual eigenve
tor we need to know the L+D+Lt+ and U�D�U t� de
omposi-tions. Algorithm 4.1 given below implements the transformationLDLt � �I = L+D+Lt+: (8)We 
all this the \stationary quotient-di�eren
e with shift"(stqds) transformation for his-tori
al reasons. The term was �rst 
oined by Rutishauser for similar transformations thatformed the basis of his qd algorithm �rst developed in 1954 [34℄, [36℄ and [37℄. Although (8)is not identi
al to the stationary transformation given by Rutishauser, the di�eren
es arenot signi�
ant enough to warrant inventing new terminology. The term `stationary' is usedfor (8) sin
e it represents an identity transformation when � = 0. Rutishauser used theterm `progressive' instead for the formation of U�D�U t� from LDLt � �I or of L+D+Lt+from UDU t � �I.In the rest of the paper, we will denote L+(i+ 1; i) by L+(i), U�(i; i+ 1) by U�(i) andthe ith diagonal entries of D+ and D� by D+(i) and D�(i) respe
tively.Algorithm 4.1 (stqds)D+(1) := d1 � �for i = 1; n� 1L+(i) := (dili)=D+(i) (9)D+(i+ 1) := dil2i + di+1 � L+(i)dili � � (10)end forWe now see how to eliminate some of the additions and subtra
tions from the abovealgorithm. We introdu
e the intermediate variablesi+1 = D+(i+ 1)� di+1;= dil2i � L+(i)dili � �; by (10)= L+(i)li(D+(i) � di)� �; by (9)= L+(i)lisi � �: (11)Using this intermediate variable, we get the so-
alled di�erential form of the stationaryqd transformation (dstqds). This term was again 
oined by Rutishauser in the 
ontext ofsimilar transformations in [34℄, [36℄. We will see later that the di�erential transformationsplay a 
ru
ial role in proving the main result of the paper, Theorem 9.Algorithm 4.2 (dstqds)-di�erential form of the stationary qd transformations1 := ��for i = 1; n� 1D+(i) := si + diL+(i) := (dili)=D+(i)si+1 := L+(i)lisi � �end forD+(n) := sn + dn



10In the next se
tion we will show that the above di�erential algorithm has some ni
eproperties in the fa
e of roundo� errors.We also need to 
ompute the transformationLDLt � �I = U�D�U t�:whi
h we 
all the \progressive quotient-di�eren
e with shift"(qds) transformation. Thefollowing algorithm gives an obvious way to implement this transformation.Algorithm 4.3 (qds)U�(n) := 0for i = n� 1; 1;�1D�(i+ 1) := dil2i + di+1 � U�(i+ 1)di+1li+1 � � (12)U�(i) := (dili)=D�(i+ 1) (13)end forD�(1) := d1 � U�(1)d1l1 � �As in the stationary transformation, we introdu
e the intermediate variablepi = D�(i)� di�1l2i�1; (14)= di � U�(i)dili � �; by (12)= diD�(i+ 1)(D�(i+ 1)� dil2i )� �; by (13)= diD�(i+ 1) � pi+1 � �: (15)Using this intermediate variable, we get the di�erential form of the progressive qd trans-formation,Algorithm 4.4 (dqds)-di�erential form of the progressive qd transformationpn := dn � �for i = n� 1; 1;�1D�(i+ 1) := dil2i + pi+1t := di=D�(i+ 1)U�(i) := litpi := pi+1t� �end forD�(1) := p1Note that we have denoted the intermediate variables by the symbols si and pi to standfor stationary and progressive respe
tively.



11We also need to �nd all the 
k's in order to 
hoose the appropriate twisted fa
torizationfor 
omputing the eigenve
tor. Sin
e (LDLt)k;k+1 = dklk, Fa
t 2 in Se
tion 4.1 leads to
k = D+(k)� (dklk)2D�(k + 1) ;= sk + dk � (dklk)2D�(k + 1) ; by (Algorithm 4:2)= sk + dkD�(k + 1) �D�(k + 1)� dkl2k� :Substituting from (14), (15) and (11) in the above equation, we 
an express 
k by any ofthe following formulae: 
k = 8<: sk + dkD�(k+1) � pk+1;sk + pk + �;pk + L+(k � 1)lk�1sk�1: (16)In the next se
tion, we will see that the top and bottom formulae in (16) are `better'for 
omputational purposes. To reveal the near-singularity of LDLT � �I, we 
hoose r asthe index where j
kj is minimum. The twisted fa
torization at position r is given byLDLt � �I = NrDrN tr ;where Dr = diag(D+(1); : : : ;D+(r � 1); 
r ;D�(r + 1); : : : ;D�(n)) and Nr is the 
orre-sponding twisted fa
tor, see the beginning of Se
tion 4.1. It may be formed by the following\di�erential twisted quotient-di�eren
e with shift"(dtwqds) transformation whi
h is justthe appropriate blend of Algorithms 4.2 and 4.4.Algorithm 4.5 (dtwqds) s1 := ��for i = 1; r � 1D+(i) := si + diL+(i) := (dili)=D+(i)si+1 := L+(i)lisi � �end forpn := dn � �for i = n� 1; r;�1D�(i+ 1) := dil2i + pi+1t := di=D�(i+ 1)U�(i) := litpi := pi+1t� �end for
r := sr + drD�(r + 1) � pr+1



12Note: In 
ases where we have already 
omputed the stationary and progressive transforma-tions, i.e., we have 
omputed L+, D+, U� and D�, the only additional work needed fordtwqds is one multipli
ation and one addition to 
ompute 
r.In the next se
tion, we exhibit desirable properties of the di�erential forms of our qd-like transformations in the fa
e of roundo� errors. Before we do so, we emphasize that theparti
ular qd-like transformations presented in this se
tion are new. Similar qd re
urren
eshave been studied by Rutishauser [34℄, [36℄ and [37℄, Henri
i [20℄, [21, Chapter 7℄, Fernandoand Parlett [13℄, and Yao Yang [41℄.4.3 Roundo� Error AnalysisFirst, we introdu
e our model of arithmeti
. We assume that the 
oating point result of abasi
 arithmeti
 operation Æ satis�esfl(x Æ y) = (x Æ y)(1 + �) = (x Æ y)=(1 + Æ)where � and Æ depend on x, y, Æ, and the arithmeti
 unit but satisfyj�j < "; jÆj < "for a given " that depends only on the arithmeti
 unit. We shall 
hoose freely the form (�or Æ) that suits the analysis. As usual, we will ignore O("2) terms in our analyses. We alsoadopt the 
onvention of denoting the 
omputed value of x by x̂.Ideally, we would like to show that the di�erential qd transformations introdu
ed inSe
tion 4.2 produ
e an output that is exa
t for data that is very 
lose to the input matrix.Sin
e we desire relative a

ura
y, we would like this ba
kward error to be relative. However,our algorithms do not admit su
h a pure ba
kward analysis (see [41℄ for a ba
kward analysiswhere the ba
kward errors are absolute but not relative). Nevertheless, we will give a hybridinterpretation involving both ba
kward and forward relative errors.The best way to understand our �rst result is by studying Figure 2. Following Rutishauser,we merge elements of L and D into a single array,Z := fd1; l1; d2; l2; : : : ; dn�1; ln�1; dng:Likewise, the array !Z is made up of elements !di and !l i, Ẑ+ 
ontains elements D̂+(i), L̂+(i)and so on. The a
ronym ulp in Figure 2 stands for units in the last pla
e held. It is thenatural way to refer to relative di�eren
es between numbers. When a result is 
orre
tlyrounded the error is not more than half an ulp.Notational Guide. In all results of this se
tion, numbers in the 
omputer are representedby letters without any overbar, su
h as Z, or by \hatted" symbols, su
h as Ẑ+. Forexample in Figure 2, Z represents the input data while Ẑ+ represents the output dataobtained by exe
uting the dstqds algorithm in �nite pre
ision. Intermediate arrays,su
h as !Z and _Z+, are introdu
ed for our analysis but are typi
ally unrepresentablein a 
omputer's limited pre
ision. Note that we have 
hosen the symbols! and_ inFigure 2 to indi
ate a pro
ess that takes rows and 
olumns in in
reasing order, i.e.,from \left to right" and \top to bottom". Later, in Figure 3 we use  and ^ toindi
ate a \right to left" and \bottom to top" pro
ess.
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6-
?!Z _Z+
Z Ẑ+

dstqdsexa
t
dstqds
omputed
hange ea
hdi by 1 ulp,li by 3 ulps. 
hange ea
h_D+ (i) by 2 ulps,_L+ (i) by 3 ulps.

Figure 2: E�e
ts of roundo� | dstqds transformationFigure 2 states that the 
omputed outputs of the dstqds transformation (see Algo-rithm 4.2), D̂+(i) and L̂+(i) are small relative perturbations of the quantities _D+ (i) and_L+ (i) whi
h in turn are the results of an EXACT dstqds transformation applied to the per-turbed matrix represented by !Z. The elements of !Z are obtained by small relative 
hangesin the inputs L and D. Analogous results hold for the dqds and dtwqds transformations(see Algorithms 4.4 and 4.5). As we mentioned above, this is not a pure ba
kward erroranalysis. We have put small perturbations not only on the input but also on the output inorder to obtain an exa
t dstqds transform. This property is 
alled mixed stability in [3℄ and[6℄ but note that our perturbations are relative ones. A trustful reader may wish to skipthe proofs but the very spe
ial `interpretation' of the roundo� errors is the ro
k on whi
hour results are founded.Theorem 4 Let the dstqds transformation be 
omputed as in Algorithm 4.2. In the absen
eof over
ow and under
ow, the diagram in Figure 2 
ommutes and !di (!l i) di�ers from di(li) by 1 (3) ulps, while D̂+(i) (L̂+(i)) di�ers from _D+ (i) (_L+ (i)) by 2 (3) ulps.Proof. We write down the exa
t equations satis�ed by the 
omputed quantities.D̂+(i) = (ŝi + di)=(1 + "+);L̂+(i) = di li(1 + "�)(1 + "=)=D̂+(i) = di li(1 + "�)(1 + "=)(1 + "+)ŝi + di ;and ŝi+1 = L̂+(i) liŝi(1 + "Æ)(1 + "��)� �1 + "i+1 :In the above, all "'s depend on i but we have 
hosen to single out the one that a

ounts forthe subtra
tion as it is the only one where the dependen
e on i must be made expli
it. Inmore detail the last relation is(1 + "i+1)ŝi+1 = di l2i ŝiŝi + di (1 + "�)(1 + "=)(1 + "+)(1 + "Æ)(1 + "��)� �:The tri
k is to de�ne !di and !l i so that the exa
t dstqds relation!s i+1 = !di !l 2i !s i!s i + !di � � (17)
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6-
? Z Ẑ�
Z Ẑ�

dqdsexa
t
dqds
omputed
hange ea
hdi by 3 ulps,li by 3 ulps. 
hange ea
hD̂� (i) by 2 ulps,Û� (i) by 4 ulps.

Figure 3: E�e
ts of roundo� | dqds transformationis satis�ed. This may be a
hieved by setting!di = di(1 + "i);!s i = ŝi(1 + "i); (18)!l i = li s(1 + "�)(1 + "=)(1 + "+)(1 + "Æ)(1 + "��)1 + "i :In order to satisfy the exa
t mathemati
al relations of dstqds,_D+ (i) = !s i + !di; (19)_L+ (i) = !di !l i!s i + !di ; (20)we set _D+ (i) = D̂+(i)(1 + "+)(1 + "i);_L+ (i) = L̂+(i)s (1 + "Æ)(1 + "��)(1 + "�)(1 + "=)(1 + "+)(1 + "i) (21)and the result holds. 2A similar result holds for the dqds transformation.Theorem 5 Let the dqds transformation be 
omputed as in Algorithm 4.4. In the absen
eof over
ow and under
ow, the diagram in Figure 3 
ommutes and  di ( l i) di�ers from di(li) by 3 (3) ulps, while D̂�(i) (Û�(i)) di�ers from D̂� (i) (Û� (i)) by 2 (4) ulps.



15Proof. The proof is similar to that of Theorem 4. The 
omputed quantities satisfyD̂�(i+ 1) = (di l2i (1 + "�)(1 + "��) + p̂i+1)=(1 + "+); (22)t̂ = di(1 + "=)=D̂�(i+ 1);Û�(i) = lit̂(1 + "Æ) = di li(1 + "=)(1 + "Æ)(1 + "+)di l2i (1 + "�)(1 + "��) + p̂i+1 ;p̂i = (di=D̂�(i+ 1))p̂i+1(1 + "=)(1 + "ÆÆ)� �1 + "i ;) (1 + "i)p̂i = di p̂i+1di l2i (1 + "�)(1 + "��) + p̂i+1 (1 + "=)(1 + "ÆÆ)(1 + "+)� �:Note that the above "'s are di�erent from the ones in the proof of the earlier Theorem 4.As in Theorem 4, the tri
k is to satisfy the exa
t relation, p i =  di  p i+1 di  l 2i +  pi+1 � �; (23)whi
h is a
hieved by setting  di = di(1 + "=)(1 + "ÆÆ)(1 + "+); pi = p̂i(1 + "i); (24)and  l i = li s(1 + "�)(1 + "��)(1 + "i+1)(1 + "=)(1 + "ÆÆ)(1 + "+) ; (25)so that  di  l 2i = di l2i (1 + "�)(1 + "��)(1 + "i+1):The other dqds relations, D̂� (i+ 1) =  di  l 2i +  p i+1; (26)Û� (i) =  d i  l i di  l 2i +  pi+1 ; (27)may be satis�ed by settingD̂� (i+ 1) = D̂�(i+ 1)(1 + "+)(1 + "i+1);Û� (i) = Û�(i)1 + "Æs (1 + "�)(1 + "��)(1 + "ÆÆ)(1 + "=)(1 + "+)(1 + "i+1) : (28)2By 
ombining parts of the analyses for the dstqds and dqds transformations, we 
analso exhibit a similar result for the twisted fa
torization 
omputed by Algorithm 4.5. InFigure 4, the various Z arrays represent 
orresponding twisted fa
tors that may be obtained
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6-

?�Z ~Zk
Z Ẑk

dtwqdsexa
t

dtwqds
omputed
hange ea
hdi by 1 ulp, 1 � i < k,li by 3 ulps, 1 � i < k,dk by 4 ulps, lk by 3 12 ulps,di by 3 ulps, k < i � n,li by 3 ulps, k < i < n.

hange ea
h_D+ (i) by 2 ulps, 1 � i < k,_L+ (i) by 3 ulps, 1 � i < k.~
k by 2 ulps, ~U�(k) by 4 12 ulps,D̂� (i) by 2 ulps, k < i � n,Û� (i) by 4 ulps, k < i < n.

Figure 4: E�e
ts of roundo� | dtwqds transformationby \
on
atenating" the stationary and progressive fa
tors. In parti
ular, for any twistposition k,Ẑk := fD̂+(1); L̂+(1); : : : ; L̂+(k � 1); 
̂k; Û�(k); D̂�(k + 1); : : : ; Û�(n� 1); D̂�(n)g;~Zk := f_D+ (1);_L+ (1); : : : ;_L+ (k � 1); ~
k; ~U�(k); D̂� (k + 1); : : : ; Û� (n� 1); D̂� (n)g;while �Z := f!d1;!l 1; : : : ;!l k�1; �dk; �lk; : : : ; l n�1; dng:Ẑk and ~Zk represent the twisted fa
torizationsN̂kD̂kN̂ tk and ~Nk ~Dk ~N tkrespe
tively (note that � is a 
on
atenation of the symbols_ and ^, while � may also bederived by 
on
atenating  and !).Theorem 6 Let the dtwqds transformation be 
omputed as in Algorithm 4.5. In the absen
eof over
ow and under
ow, the diagram in Figure 4 
ommutes and !di (!l i) di�ers from di(li) by 1 (3) ulps for 1 � i < k, �dk (�lk) di�ers from dk (lk) by 4 (312 ) ulps, while  di ( l i)di�ers from di (li) by 3 (3) ulps for k < i � n. On the output side, D̂+(i) (L̂+(i)) di�ersfrom _D+ (i) (_L+ (i)) by 2 (3) ulps for 1 � i < k, 
̂k ( ~U�(k)) di�ers from ~
k ( ~U�(k)) by 2(412 ) ulps, while D̂�(i) (Û�(i)) di�ers from D̂� (i) (Û� (i)) by 2 (4) ulps for k < i � n.Proof. The 
ru
ial observation is that for the exa
t stationary transformation (i. e., (17),(19) and (20)) to be satis�ed for 1 � i � k � 1, roundo� errors need to be put only ond1; d2; : : : ; dk�1 and l1; l2; : : : ; lk�1. Similarly for the progressive transformation (i. e., (23),



17(26) and (27)) to hold for k+1 � i < n, roundo� errors need to be put only on the bottompart of the matrix, i.e., on dk+1; : : : ; dn and lk+1; : : : ; ln�1.Next we turn to the entries asso
iated with the twist position k. By the top formulain (16), 
̂k =  ŝk + dkD̂�(k + 1) p̂k+1(1 + "�= )(1 + "�ÆÆ)!�(1 + "k):Note that in the above, we have put the supers
ript � on some "'s to indi
ate that they areidenti
al to the 
orresponding "'s in the proof of Theorem 5. By (18) and (22),(1 + "k)
̂k = !sk1 + "+k + p̂k+1 � dk(1 + "�= )(1 + "�ÆÆ)(1 + "�+)dk l2k(1 + "�� )(1 + "���) + p̂k+1 ;) (1 + "k)(1 + "+k )
̂k = !sk + p̂k+1(1 + "�k+1) � dk(1 + "�= )(1 + "�ÆÆ)(1 + "�+)(1 + "+k )dk l2k(1 + "�� )(1 + "���)(1 + "�k+1) + p̂k+1(1 + "�k+1) :Note that we are free to attribute roundo� errors to dk and lk in order to preserve exa
tmathemati
al relations at the twist position k. In parti
ular, by setting~
k = 
̂k(1 + "k)(1 + "+k );�dk = dk(1 + "�= )(1 + "�ÆÆ)(1 + "�+)(1 + "+k );�lk = lks (1 + "�� )(1 + "���)(1 + "�k+1)(1 + "�= )(1 + "�ÆÆ)(1 + "�+)(1 + "+k ) ;and re
alling that  pk+1= p̂k+1(1 + "�k+1) (see (24)), the following exa
t relation holds,~
k = !sk + �dk  pk+1�dk �l2k+  pk+1 :In addition, the exa
t relation ~U�(k) = �dk �lk�dk �l2k+  pk+1holds if we set ~U�(k) = Û�(k)1 + "�Æ s(1 + "�� )(1 + "���)(1 + "�ÆÆ)(1 + "+k )(1 + "�= )(1 + "�k+1)(1 + "�+) ; (29)where "�Æ is identi
al to the "Æ of (28). Note that sin
e �dk �l2k = dk  l 2k the (k+1)-st diagonalelement in ~Zk remains D̂� (k + 1) as:�dk �l2k+  pk+1 =  dk  l 2k +  pk+1 = D̂� (k + 1); from (26): 2Note: A similar result may be obtained if 
k is 
omputed by the last formula in (16).



185 Perturbations of Produ
ts of BidiagonalsThis se
tion studies the e�e
t of small relative 
hanges in the nontrivial entries of L andD on the eigenvalues and eigenve
tors of LDLt. However LDLt should be thought of asthe most familiar of the n twisted fa
torizations and the results below extend, with smallmodi�
ations, to any twisted fa
torization.5.1 Multipli
ative FormFor the sake of 
ompleteness, we present the following well-known lemma and its proof.Lemma 2 Let L be a unit bidiagonal matrix with no zero o�-diagonal entries. Independentrelative perturbations in the o�-diagonals may be represented by the two-sided s
alingE�1LEwhere E = diag(e1; : : : ; en) is a diagonal s
aling matrix unique to within a 
onstant multiple.Proof. Let Lij�ij represent the perturbation of Lij. The equations to be solved areLi+1;ieiei+1 = Li+1;i�i+1;i; 1 � i < n:Letting en = 1 we get en�1 = �n;n�1. De
reasing the index i further, we getei = ei+1 � �i+1;i = n�1Yj=i �j+1;j i = n� 1; n� 2; : : : 1: 2Independent relative perturbations to nonzero entries of D are dire
tly represented bya diagonal s
aling matrix that we 
hoose to write as F 2. Thus independent relative pertur-bations to the non-trivial entries of L and D lead to the perturbed matrix�T = E�1LEFDFELtE�1 (30)5.2 Perturbation BoundsLet (�;u) be an eigenpair of LDLt, � 6= 0, kuk = 1. We may write �T in (30) in standardmultipli
ative form as �T = GtLDLtG; (31)where G := L�tFELtE�1 (32)is an upper triangular matrix sometimes 
lose to I. There is an eigenpair (��; �u) of �Tasso
iated with (�;u) and we want to investigate the 
loseness of � to �� and u to �u. We�rst look at the published bounds, in terms of G, on j�� ��j and j sin\(u; �u)j. For our 
aseof a single eigenve
tor, not a subspa
e, the results of Ipsen and Eisenstat [11℄ and Ren-CangLi [24℄ are extremely 
lose to ea
h other. Sin
e Li 
hose to keep u expli
it in his bounds weuse a slight variant of the bound (3.5) from [24℄:



19Theorem 7 (Variant of Theorem 3.1 in [24℄) There is an eigenpair (��; �u) of �T , with�� 6= 0, su
h that j sin\(u; �u)j � k(I �G�1)uk+ k(Gt �G�1)ukrelgap(�) (33)where relgap(�) := minfj�� ��j : �� 6= ��; det[ �T � ��I℄ = 0gj�j :A bound on j�� ��j=j�j 
omes from a residual norm by standard te
hniques. Try (G�1u; �)as an approximate eigenpair of �T ;�r := �TG�1u�G�1u�kG�1uk= (Gtu�G�1u)�kG�1uk ; by (31):By Theorem 1, j�� ��j � k�rk = kGtu�G�1uk j�jkG�1uk : (34)Note that (34) and (33) yield uniform relative 
ondition numbers for all the eigenvalues andeigenve
tors respe
tively sin
ej�� ��jj�j � k(GtG� I)G�1ukkG�1uk � kGtG� Ik; (35)and j sin\(u; �u)j � kI �G�1k+ kGt �G�1krelgap(�) : (36)Writing E = I +�1, E�1 = I +�2, EF = I +�3 and (EF )�1 = I +�4, it 
an be shownthat kI �G�1k � k�1k+ 
ond(L)k�4k(1 + k�1k);kGt �G�1k � k�1k+ k�2k+ 
ond(L) fk�3k(1 + k�2k) + k�4k(1 + k�1k)g ;and kGtG� Ik � k�2k(2 + k�2k) + 
ond(L)k�3k(1 + k�2k)2(2 + 
ond(L)k�3k):Thus, after substituting the above values in (35) and (36), we 
an de�nerel
ond(�) := 1 + 
ond(L);and rel
ond(u) := (1 + 
ond(L))�1 + 1relgap(�)�for all eigenpairs (�;u) of LDLt. Hen
e when L is well-
onditioned, all eigenpairs of LDLtare \relatively robust".



20However, we have en
ountered many 
ases where L is ill-
onditioned, and some of theeigenpairs of LDLT , often its small eigenvalues and 
orresponding eigenve
tors, are deter-mined to high relative a

ura
y. To get bounds that make a distin
tion between di�erenteigenpairs we need to retain the ve
tor u in the bounds (33) and (34).Thus we manipulate (33) into a revealing form using (32). Write L = I+ oL and exploitthe bidiagonal form of L to pass the diagonal matrix EF to the other side of L. FromLemma 2, E = diag(e1; : : : ; en) and F = diag(f1; : : : ; fn) satisfyen = 1; ej = (1 + �j)ej+1; 1 � j < n;fj = p1 + "j; 8 j:It may be veri�ed that LEF = EF (L+H1 oL) (37)where H1 = diag�0; (1 + �1)f1f2 � 1; : : : ; (1 + �n�1)fn�1fn � 1� :Hen
e, to �rst order, kH1k � h := maxi j�ij+ kF 2 � Ik: (38)Note that in 
ontrast to the bound on E there is no fa
tor of n in h. In Se
tion 7 weshall give spe
i�
 values to maxi j�ij and maxj j"j j, the relative 
hanges in the li and djrespe
tively. Use (37) to �nd thatGt = E�1LEFL�1= E�1EF (L+H1 oL)L�1= F (I +H1 oL L�1):In order to keep our bound (49) as simple as possible we derive an expression, in (40), forG�1 that avoids the inverse of I +H1 oL L�1. As in (37), we 
an write(EF )�1Lt = (Lt+ oLt H2)(EF )�1 (39)where H2 = diag�0; 11 + �1 f2f1 � 1; : : : ; 11 + �n�1 fnfn�1 � 1� ;with kH2k � h, to �rst order. Hen
e, by (39),G�1 = EL�t(EF )�1Lt = (I +E( oL L�1)tE�1H2)F�1: (40)



21Letting P1 = H1 oL L�1 and P2 = E( oL L�1)tE�1H2, we 
an writeGt = F (I + P1); and G�1 = (I + P2)F�1: (41)Given Gt and G�1 in the above form,k(Gt �G�1)uk = k(F � F�1)u+ (FP1 � P2F�1)uk� kF � F�1k+ hkFkk oL L�1uk+ hkEkkE�1kkF�1kkj oL L�1jtjujk;� hkEkkE�1kkF�1k�1 + k oL L�1uk+ kj oL L�1jtjujk� ; (42)sin
e kF � F�1k � kF 2 � Ik kF�1k � h kF�1k, by (38). Note that jM j denotes the matrixwith entries jmij j. In order to derive rel
ond(�) from (34), we need to bound kG�1uk frombelow. From (41), FG�1u = (I + P t1)�1u;) kG�1uk � k(I + P t1)�1ukkFk : (43)Writing u = (I + P t1)(I + P t1)�1u = (I + P t1)�1u+ P t1(I + P t1)�1u, we getk(I + P t1)�1uk � 11 + kP1k : (44)By (43) and (44), and using P1 = H1 oL L�1,kG�1uk � 1kFk(1 + hk oL L�1k) : (45)Hen
e, by (34), (42) and (45),j�� ��jj�j � hkEkkE�1kkF�1kkFk(1 + hk oL L�1k) �1 + k oL L�1uk+ kj oL L�1jtjujk� ; (46)when
e we de�ne (assuming that hk oL L�1k � 1)rel
ond(�) := 1 + k oL L�1uk+ kj oL L�1jtjujk: (47)Furthermore,k(I �G�1)uk = k(I � F�1)u� P2F�1uk;� kI � F�1k+ hkEkkE�1k kF�1k kj oL L�1jtjujk;� hkEkkE�1k kF�1k �1 + kj oL L�1jtjujk� ; (48)where the last inequality above holds sin
e F is diagonal, thus implyingkI � F�1k � kF�1k kF � Ik � kF�1k kF 2 � Ik � h kF�1k; by (38):



22By (33), (42) and (48),j sin\(u; �u)j � hkEkkE�1k kF�1k �1 + kj oL L�1jtjujk+ 1 + k oL L�1uk+ kj oL L�1jtjujkrelgap(�) ! : (49)The above bound persuades us to de�nerel
ond(u) := �1 + k oL L�1uk+ kj oL L�1jtjuj k��1 + 1relgap(�)� : (50)Thus, from (46), (47) and (49), (50) we havej�� ��jj�j � hkEkkE�1kkF�1kkFk rel
ond(�);j sin\(u; �u)j � hkEkkE�1kkF�1k rel
ond(u); (51)where h is de�ned in (38).In 
ases where there is no element growth when fa
toring T into LDLt, say k oL k � 0:96,then k oL L�1k � k oL kkL�1k;� k oL k1� k oL k � 24; (52)and, from (50), rel
ond(u) � 49�1 + 1relgap(�)�for all eigenve
tors of LDLt.This result shows the importan
e of not automati
ally using LDLt but 
hoosing thetwisted fa
torization NDN t with minimal k oN k. An extreme example is the followingmatrix, with � � 1:diag(T ) = diag(1; 1 + �2; : : : ; 1 + �2); Ti;i+1 = � for all i.The fa
torization LD+Lt, with twist at n, has D+ = I, oL= � diag([1; : : : ; 1℄;�1)whereas the bottom-up fa
torization, UD�U t, with twist at 1, has oU� ��1 diag([1; : : : ; 1℄;+1)and D� � diag(�2(1�n); �2; : : : ; �2+1). The omitted entries in D� in
rease slowly from �2to �2 + 1.So, as in (52), k oU U�1k � ��1=(1� ��1) = (� � 1)�1. For this fa
torization,rel
ond(u) = �k1+ oU U�1uk+ k j oU U�1jt juj k��1 + 1relgap(�)�� �1 + 2� � 1��1 + 1relgap(�)�



23for all u, whereas rel
ond(u) for LD+Lt is mu
h larger.The relative 
ondition numbers given in (50) and (47) are spe
i�
 to ea
h eigenvalue,and we use them in the proof of Theorem 9 in Se
tion 7. However, as we dis
uss in the nextse
tion, these rel
onds are not entirely satisfa
tory.5.3 Element GrowthThe above analysis suggests that element growth (k oL L�1k � 1) is dangerous. However, wehave found that the presen
e of element growth does not prevent some of the eigenve
torsof LDLt, usually those with small eigenvalues, from being relatively robust. The relativerobustness of (�;u) seems to be governed by Dhillon's relative 
ondition number�rel(�) := utLjDjLtuj�j = utLjDjLtujutLDLtuj ; (53)introdu
ed in [9℄, and in many 
ases the rel
ond(u) given in (50) is too pessimisti
. Unfortu-nately, as yet we have not been able to prove a guaranteed bound in terms of (53). We haveestimates that are 
orre
t to �rst order but no bounds. The small relative perturbationsrelevant to our algorithm, i.e., E and F , are not independent and it may be ne
essary to usethis property. In [31℄ one of us 
onne
ted the study of LDLt to an inde�nite (or hyperboli
)singular value de
omposition. We report on these results but will not give proofs. WriteD = �
�, 
 = sign(D), and � = �2sign(�). Then if LDLtu = u�, kuk = 1, we write�Ltu = p�;L�
p = u�sign(�);pt
p = sign(�):The new quantity p is 
alled the left 
-singular ve
tor of �Lt. It is not hard to see that�rel(�) de�ned above in (53) equals kpk2. There is an expression for the `relative' derivativeof � with respe
t to ea
h of the entries of �Lt, namely the diagonal elements Æi = pjdij,and o�-diagonals bi := liÆi. Theorem 2 of [31℄ shows that for � > 0 and !i = 
ii,�(k) := Æk� � ���Æk = kXi=1 u(i)2 � sign(�) k�1Xj=1 !jp(j)2�(k) := bk� � ���bk = sign(�) kXi=1 !ip(i)2 � kXj=1 u(j)2:It was shown that j�(k)j � kpk2 and j�(k)j � kpk2. The total `relative derivative' of � isbounded by (2n � 1)kpk2. When 
 = I then kpk = 1 and we re
over the known (almost)attainable bound in [7℄.Our �rst order perturbation analysis (derivation omitted) reveals the dominant role ofp in determining relative robustness. Let �" := maxi;jfj�ij; j"j jg where li �! li(1 + �i),di �! di(1 + "i) and T = LDLt. Then for (�;u) we 
an show thatjÆ�j � j�j 2 n�1Xk=1 j�(k)j + kpk2! (�"+ �"2) + ut oL jDj oLt u �"2 +O(kÆTk2): (54)



24Re
all that Æ� = �� �� = utÆTu+O(kÆTk2).In order to get a bound on tan\(u; �u) we must refer to all eigenpairs and put subs
riptson �;u;p and on the �'s, denoting by �j(k) the �(k) for the triplet (�j;uj;pj). In additionwe must de�ne the quantity	ij :=  n�1Xk=1 j�i(k)j ����pj(k)pi(k) ����+ j�j(k)j ���� pi(k)pj(k) ����!+ jpijt jpjj:Then, for the jth eigenve
tor uj,j tan\(uj ; �uj)j � 24Xi 6=j  	ijpj�i�j jj�i � �jj !2351=2 (�"+ �"2)+ �"2 24Xi 6=j  pj�i�j jj�i � �j j n�1Xk=1 �����i(k)pi(k) �j(k)pj(k) ����!2351=2 +O(kÆTk2): (55)The leading term in (55) is 
ompli
ated. It is well approximated, for very small �j , by	jj 24Xi 6=j j�i�jj(�i � �j)2351=2 �"and 	jj < (2n� 1)kpjk2.In the 
ases we have examined, the quantities in (54) and (55) have been realisti
 andmu
h smaller than our rel
ond(u) in Se
tion 5.2. The se
ond term in (54) is not, in general,proportional to � and we hope to show that it is 
an
elled by the O(kÆTk)2 term in theexpansion of Æ� as a power series. We hope that future work will show that the �rstorder terms do, in fa
t, dominate the higher order ones and then we may in
orporate amore realisti
 de�nition of rel
ond(u), namely the leading term in (55), into the bounds ofTheorem 9.We emphasize that relative perturbation theory is not the main 
on
ern of this paper.More analysis of relative 
ondition numbers is given in [30, 32℄. For the rest of this paperwe assume that all rel
onds are bounded by a modest 
onstant like 10.6 Algorithm for an Eigenve
torThe method presented below is 
lose in spirit to the one presented by Godunov and his 
o-workers in the USSR in 1985, see [16℄ and [17℄. They formulated the idea of taking the topentries in the ve
tor from one sequen
e and the bottom entries from another one and then
hoosing the right index at whi
h to join the two pie
es into an a

urate eigenve
tor. Inde-pendently Fernando dis
overed a similar idea in terms of running the well known two-termre
urren
e for D+, both forwards from D+(1) and ba
kwards from D+(n) = 0, and thenjoining the two sequen
es where they are 
losest. In [29℄, Parlett and Dhillon formulatedand proved Theorems 2 and 3 in Se
tion 4 whi
h show that at least one twisted fa
torizationmust reveal the size of the smallest eigenvalue, thus yielding an a

urate eigenve
tor.



25However neither Godunov nor Fernando reap the full reward for 
hoosing the best pla
eto join two pie
es.The reasons are quite di�erent in the two 
ases. Godunov et. al. 
arefully sele
tapproximate eigenvalues on opposite sides of the true eigenvalue for the two sequen
es thatprovide the eigenve
tor entries. However they need dire
ted rounding in order to establishtheir bounds in �nite pre
ision arithmeti
. Dire
ted rounding is available in most modern
omputer hardware sin
e it is part of the IEEE 
oating point standard[1℄; however, modernprogramming languages do not make it available to the user. Fernando does not 
onsiderthe e�e
ts of roundo� error but, as with Godunov et. al., 
omputes the two fa
torizationsfrom a translate of the original matrix T that may not de�ne its eigenvalues to high relativea

ura
y. The 3 � 3 example in Se
tion 3 illustrates the problem. The algorithm given byFernando in Se
tion 5 of [15℄, even with highly a

urate eigenvalue approximations, yieldseigenve
tors with error ex
eeding p".Thus we use the LDLt representation instead of the diagonal and o�-diagonal elementsof T . Even use of a good representation is not enough to ensure that the residual normk(LDLt� �̂I)zk = O("j�� �̂j) for the 
omputed z. For example, if Rutishauser's stationaryqd algorithm were used to 
ompute L+ and D+ satisfying LDLt� �̂I = L+D+Lt+ we 
ouldnot prove our main result, Theorem 9 in the next se
tion. That result requires a se
ondinnovation, beyond the use of LDLt, namely use of the di�erential qd algorithms introdu
edin Se
tion 4.2 to 
ompute the entries of the twisted fa
tors. The 
ommutative diagramsin Se
tion 4.3 are not valid for Rutishauser's implementation. Hen
e the LDLT represen-tation and di�erential qd transformations are 
ru
ial to our goal of 
omputing orthogonaleigenve
tors when relative gaps are large. We now give details of our algorithm.Algorithm Getve
Assume that �̂ is mu
h 
loser to one eigenvalue of LDLt than to any other.I. Fa
tor LDLt � �̂I = L+D+Lt+ by the dstqds transform (Algorithm 4.2).II. Fa
tor LDLt � �̂I = U�D�U t� by the dqds transform (Algorithm 4.4).III. Compute 
k, k = 1; : : : ; n by the top formula of (16). Pi
k an r su
h that j
rj =mink j
kj. Then NrDrN tr = LDLt � �̂I is the desired twisted fa
torization, see Se
-tion 4.1.IV. Form the approximate eigenve
tor z by solving N trz = er whi
h is equivalent tosolving NrDrN trz = er
r via z(r) = 1;For i = r � 1; : : : ; 1; z(i) = � �L+(i)z(i + 1); z(i+ 1) 6= 0;�(di+1li+1=dili)z(i+ 2); otherwise:For j = r; : : : ; n� 1; z(j + 1) = � �U�(j)z(j); z(j) 6= 0;�(dj�1lj�1=djlj)z(j � 1); otherwise:V. If wanted, 
ompute znrm = kzk and v = z=znrm.



26Remark 1 In Step IV above, a zero entry in an eigenve
tor requires spe
ial handling. Forexample, when z(i+ 1) = 0, i < r, we use the (i+ 1)-st equation of the tridiagonal system(LDLT � �̂I)z = er
r to 
onne
t z(i) with z(i + 2). The 
ase when z(j) = 0, j > r, ishandled similarly.Remark 2 It is possible to avoid some 
omputation in Steps I and II by using Gers
hgorindisks. In parti
ular, it is easy to show that if the eigenvalue is not 
ontained in the i-thGers
hgorin disk, then r 6= i. See [9, Se
. 3.4.1℄ for details.Remark 3 The above algorithm 
an also be used to improve the a

ura
y of �̂. ByLemma 1, 
r=kzk2 is the Rayleigh Quotient 
orre
tion to �̂ and so it 
an double the numberof 
orre
t digits when �̂ is not quite a

eptable.Remark 4 The ve
tor z sometimes has small numeri
al support. During the 
omputationof z this situation 
an be dete
ted as follows. We 
ontinue the re
urren
e for z until 2
onse
utive entries fall below " in magnitude. In many 
ases all further entries of z 
an beset to 0. Suppose jz(i�1)j < " and jz(i)j < ", i < r. If the elements z(j), j < i�1, are set tozero then equations i�2 and i�1 of (LDLt� �̂I)z = er
r are no longer satis�ed and resultin a residual that equals �i�2(z(i�1)ei�2� z(i�2)ei�1), where �i�2 = D+(i�2)L+(i�2).For the 
omputed ve
tor z to be a

urate (see Theorem 1), we must ensure thatjD+(i� 2)L+(i� 2)j (jz(i� 1)j + jz(i � 2)j) < " � gap(�̂);where z(i � 2) = �L+(i � 2)z(i � 1). Similarly when i > r and both z(i � 1) and z(i) dipbelow " we set the elements z(j), j > i, to 0 ifjD�(i)U�(i� 1)j (jz(i)j + jz(i+ 1)j) < " � gap(�̂);where z(i + 1) = �U�(i)z(i). Thus all our 
omputed ve
tors have a �rst and last nonzero
omponent and we 
all the index set f�rst:lastg the numeri
al support of z and sojsupp(z)j = last� first+ 1: (56)Note that in exa
t arithmeti
 the �rst and last entries of an eigenve
tor of an unredu
edtridiagonal matrix are nonzero but in pra
ti
e they are often extremely small, and so theabove situation is not so un
ommon.There is more to be said about the support. Before z is 
omputed all the f
ig are
omputed in order to �nd the smallest among them. By Lemma 11 in [29℄, as �̂! �j ,
r
i ! vj(i)2vj(r)2 ; (57)where vj is �j 's eigenve
tor. This suggests that if 
i > 
r="2 then z(i) may be negle
ted andit might be argued that this gives us a better way to approximate supp(z) at the time r is
hosen. Unfortunately, ma
hine pre
ision is sometimes not suÆ
ient to put �̂ 
lose enoughto �j for (57) to hold for indi
es where jvj(i)j � p". However, when j�̂� �j j = O("j�̂j) theabove strategy almost always gives us the 
orre
t list of indi
es with jvj(i)j � p" (see (7)).



27Remark 5 It is not essential that j
rj be minimal. In prin
iple one keeps a list of indi
esi su
h that j
minj < j
ij < 2j
minj, and 
an 
hoose r to be any of these indi
es.Remark 6 Suppose �̂ approximates �j . In the next se
tion we will show that in thepresen
e of roundo� errors, the 
omputed ve
tor z satis�esj sin\(z;vj)j = O nj�j � �̂jgap(�̂) ! = O n"j�̂jgap(�̂)! = O n"relgap(�̂)! ;and thus z is an a

urate eigenve
tor when relgap(�̂) = O(1). A natural question to askis: 
an su
h an a

urate approximation be 
omputed when the relative gap is smaller, say,relgap(�̂) = p"? A tempting solution is to extend Algorithm Getve
 to do a step of inverseiteration: (LDLT � �̂I)y = z ) (LDLT � �̂I)2y = 
rer. The tempting argument is thatby doing so, j sin\(y;vj)j = O nj�j � �̂j2gap(�̂)2 ! = O n"2relgap(�̂)2! ;sin
e the eigenvalues of (LDLT��̂I)2 are just (�i��̂)2. When relgap(�̂) = p", this strategyseems to yield an a

urate eigenve
tor y.Unfortunately this simple solution does not work. In our experien
e the extra step ofinverse iteration in
reases the a

ura
y by a fa
tor of .1 or .01 and not by a fa
tor of p" asthe above reasoning indi
ates. As the analysis of the next se
tion will show, this failure isdue to the presen
e of roundo� errors and the relative perturbation theory of Se
tion 5.The 
ase of relgap(�̂) � 1=n requires radi
ally di�erent strategies. One strategy is totake a new shift to improve the relative gaps and to stay with the z ve
tor. This is notthe subje
t of this paper but the interested reader may see [9, 10℄ for details. Very tight
lusters of eigenvalues that are well-separated from the rest of the spe
trum may also behandled by the overlapping submatrix ideas of [27℄ and [28℄.7 Bounds on A

ura
y (Proof of Corre
tness)The formal analysis begins here. We start by showing that the ve
tor ẑ 
omputed byAlgorithm Getve
 is very 
lose to a ve
tor ~z that obeys the exa
t relationship (58), where~Nr and ~Dr are perturbed fa
tors determined by step IV of the algorithm.Theorem 8 Let N̂r and D̂r, ~Nr and ~Dr be the twisted fa
tors represented by Ẑr and ~Zrrespe
tively in Figure 4 (see also Theorem 6 and Figure 5). Let ẑ be the ve
tor 
omputedin Step IV of Algorithm Getve
, and let ~z be the exa
t solution of~Nr ~Dr ~N tr~z = ~
rer: (58)Then, barring under
ow, ẑ is a small relative perturbation of ~z. Spe
i�
ally,ẑ(r) = ~z(r) = 1;ẑ(i) = ~z(i) � (1 + �i); i 6= r; j�ij � 5ji� rj"; (59)where " is the ma
hine pre
ision.



28Proof. The above bound a

ounts for the roundo� errors in the re
urren
e in Step IV ofAlgorithm Getve
. For now, assume that no 
omponent of ẑ is zero (so that only the topformulae for ẑ(i) and ẑ(j+1) in Step IV are used). The matrix ~Nr, built out of _L+ and Û�,was de�ned in Theorem 6 so that the equality �L �D�Lt � �̂I = ~Nr ~Dr ~N tr holds. Thus ~Nr is agiven matrix, not to be modi�ed, in the 
ontext of this theorem. Be
ause of the roundo�error in multipli
ation the top entries of ẑ 
omputed in Step IV of Algorithm Getve
 satisfyẑ(i) = �L̂+(i)ẑ(i+ 1)(1 + "i); i < r;and the bottom entries satisfyẑ(i) = �Û�(i� 1)ẑ(i� 1)(1 + "i); i > r; (60)where j"ij � ". In 
ontrast, the ideal ve
tor ~z satis�es~z(i) = � _L+ (i)~z(i+ 1); i < r; (61)and ~z(i) = � Û� (i� 1)~z(i� 1); i > r:Sin
e ẑ(r) = ~z(r) = 1, we may de�ne �r = 0 and trivially write ẑ(r) = ~z(r)(1 + �r)with j�rj � 4(r � r)". Now pro
eed by indu
tion as i de
reases in order to prove (59).Examine (21) to �nd thatL̂+(i) = _L+ (i)(1 + Æi);where jÆij < p(1 + ")6 � 1 = 3" +O("2) for all i < r:Thusẑ(i� 1) = � _L+ (i� 1)(1 + Æi�1)ẑ(i)(1 + "i�1);= � _L+ (i� 1)(1 + Æi�1)~z(i)(1 + �i)(1 + "i�1); j�ij � 4(r � i)" by indu
tion;= ~z(i� 1)(1 + Æi�1)(1 + �i)(1 + "i�1); by (61)= ~z(i� 1)(1 + �i�1); thus de�ning �i�1 � (1 + �i)(1 + Æi�1)(1 + "i�1)� 1;j�i�1j � (1 + j�ij)(1 + ")3(1 + ")� 1 = [4(r � i) + 4℄"+O("2); as 
laimed:For the lower half of ẑ, i � r, the argument is similar with Û� and Û� involved insteadof L̂+ and _L+. Note that Û� is related to Û� by (29) and (28), whi
h, respe
tively, involve112 and 1 more ulps than (21).To begin, de�ne �r = 0 so that j�rj � 5(r�r)". For i = r+1, (59) holds sin
e (29) gives4:5 ulps for Û� (r) in (60), while "r+1 = 0 (be
ause ẑ(r) = 1). For i > r + 1, (28) gives 4ulps and "i gives one more ulp for an in
rease of at most 5 ulps ea
h time i in
reases. Thus(59) holds for all values of i.We now 
onsider the 
ase when an eigenve
tor entry vanishes, i.e., ẑ(i+ 1) = 0. In this
ase the alternate formulae in Step IV of Algorithm Getve
 are used to 
ompute the nexteigenve
tor entry, i.e., if i < r thenz(i) = �(di+1li+1=dili)z(i + 2); (62)



29where di and li are elements of the input matri
es L and D. Examining the relationsbetween di and !di, and between li and!l i in the proof of Theorem 4, we 
an see that theprodu
t dili = !di!l i (1 + �i) = _D+ (i) _L+ (i)(1 + �i); j�ij � 3"; i < r:Thus the term (di+1li+1=dili) in (62) 
ontributes 6 ulps, and 
ombining these with the 4arithmeti
 operations in (62), we 
an writeẑ(i) = �(!di+1!l i+1 = !di!l i)ẑ(i+ 2) � (1 + Æi);where jÆij � 10" (a 
loser analysis reveals that jÆij � 8"). Thus (59) holds in this 
ase also.The 
ase when ẑ(i) = 0, i > r 
an be handled similarly. 2Corollary 1 (to Theorem 8) Under the hypotheses of Theorem 8,j sin\(~z; ẑ)j � 5"jsupp(ẑ)j+O("2)where jsupp(ẑ)j is the numeri
al support of ẑ as de�ned in (56).Proof. First we establish a general result on elementwise perturbation of ve
tors whi
hshows that the term jsupp(ẑ)j above 
ould be repla
ed by a weighted standard deviation ofthe relative 
hanges to ẑ's entries.Let 0 6= v 2 Rn and let �v be given by �v(i) = (1 + �i)v(i). For expressions 
on
erningthe angle \(v; �v) there is no loss in assuming that kvk2 = vtv = 1. We writeavg(�i;v) = X �iv(i)2;var(�i;v) = X �2i v(i)2 � avg(�i;v)2;std. dev.(�i;v) = pvar(�i;v):Now, j 
os2 \(v; �v)j = (�vtv)2�vt�v= 1 + 2 P �iv(i)2 + (P �iv(i)2)21 + 2 P �iv(i)2 +P �2i v(i)2j sin2 \(v; �v)j = P �2i v(i)2 � (P �iv(i)2)21 + 2 P �iv(i)2 +P �2i v(i)2� var(�i;v)1 + 2 avg(�i;v) + avg(�i;v)2 ; sin
e avg2 �X �2i v(i)2;) j sin\(v; �v)j � std. dev.(�i;v)1 + avg(�i;v) :A 
rude but simple bound on the numerator is maxi j�ij and, if ea
h �i = O("), then1 + avg(�i;v) = 1 + O("). Finally substitute ~z for v and ẑ for �v and use (56) and (59) toverify that maxi j�ij � 5"(last� r) + 5"(r � first) � 5"jsupp(ẑ)j: 2
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? � ~Nr ~Dr ~N tr~z = er ~
r�L �D �Lt � �̂I = ~Nr ~Dr ~N tr ,) (�L �D �Lt � �̂I)~z = er~
r:

� N̂rD̂rN̂ tr; ẑ�LDLtu = u�
��L �D �Lt�u = �u�� dtwqdsexa
t

dtwqds
omputed3 to 312 ulps in L1 to 4 ulps in D 2 ulps in ~Dr3 to 412 ulps in ~Nr
Figure 5: Relationships 
onne
ting u to ẑ.The following theorem is the heart of the paper. Figure 5 lays out the essentials givenin Figure 4 and should be 
onsulted.Theorem 9 Let (�;u) be an eigenpair of the real symmetri
 unredu
ed tridiagonal matrixLDLt with kuk = 1. Let �̂ be an a

urate approximation 
loser to � than to any othereigenvalue of LDLt and let ẑ be the ve
tor 
omputed in Step IV of Algorithm Getve
 inSe
tion 6 using �̂, N̂r, D̂r, and twist index r. Let �L and �D be the perturbations of L andD determined by the error analysis of Se
tion 4.3 and let (��; �u) be the eigenpair of �L �D�Ltwith �� the 
losest to �̂. Let " denote the roundo� unit. Thenj sin\(ẑ;u)j � 5jsupp(ẑ)j" + j��� �̂jj�u(r)jgap(�̂) + 7:5" rel
ond(u) +O(n2"2): (63)Here jsupp(ẑ)j is the numeri
al support of ẑ de�ned in (56) andgap(�̂) := minfj�̂� ��j; �� 6= �� 2 spe
trum of �L �D �Ltg:For the de�nition of rel
ond(u) see Se
tion 5.Proof. There are three terms in the upper bound on sin\(ẑ;u) be
ause we 
onne
t ẑ tou via two `ideal' ve
tors ~z, �u and ea
h transition 
ontributes a term: ẑ �! ~z, ~z �! �u,�u �! u, see Figure 5. Re
all from Theorem 6 that the matri
es �L, �D, ~Nr, ~Dr depend on�̂ and were de�ned so that the equality�L �D�Lt � �̂I = ~Nr ~Dr ~N tr (64)



31holds. That was the 
ulmination of the error analysis in Se
tion 4.3. Re
all that ~Dr(r) = ~
r.Then ~z is de�ned as the exa
t solution of~Nr ~Dr ~N tr~z = er~
r: (65)First 
onsider ẑ and ~z. Theorem 8 shows that ea
h ~z(i) is of the form ẑ(i)(1 + �i) andCorollary 1 proves that j sin\(ẑ; ~z)j < 5"jsupp(ẑ)j+O("2): (66)Next 
onsider ~z and �u. Combine (64) and (65) and then invoke Theorem 3, in Se
tion 4,to �nd that j~
rjk~zk � j��� �̂jj�u(r)j :By Theorem 1, j sin\(�u; ~z)j < j��� �̂jj�u(r)jgap(�̂) : (67)Finally 
onsider �u and u. The left side of Figure 5 indi
ates that �u and u are relatedthrough the matrix perturbations given in Se
tion 5 (see Lemma 2):LDLt �! �L �D �Lt = E�1LEFDFELtE�1:From Theorem 6, no entry in L 
hanges by more than 3 ulps ex
ept for the entry at thetwist whi
h 
hanges by at most 3:5". By Lemma 2, the largest entry in I � E is boundedby �3(n� 1) + 12	 " so that max �kEk; kE�1k� � 1 + 3n": (68)The perturbation F 
omprises half the ulps needed for 
hanges to entries of D, namely 12for i < r, 2 for i = r and 32 for i > r (see Figure 4 and Theorem 6). Thusmax �kFk; kF�1k� � 1 + 2": (69)By (38), h � 3:5"+ 4" = 7:5": (70)Substituting (68), (69) and (70) into the perturbation bound (51) we obtain,j sin\(u; �u)j � 7:5" f1 + (6n+ 2)"g rel
ond(u) +O(n2"2): (71)Note that rel
ond(u) has the term relgap(�) in the denominator, see (50). Adding the
ontributions in (66), (67), and (71) yields the theorem's bound on j sin\(ẑ;u)j. 2



32The above theorem is the main result of this paper. We now examine its impli
ationsin obtaining numeri
ally orthogonal eigenve
tors from Algorithm Getve
. The best we 
anhope for is that j sin\(ẑ;u)j = O n "relgap(�̂)! ; (72)where relgap(�̂) = gap(�̂)=j�j. Let us examine (63) to understand the 
onditions underwhi
h (72) 
an be a
hieved. The �rst term in (63) is always O(n"). The se
ond term(with �u(r)) requires that the twist index should not be perversely 
hosen. We aim forj�u(r)j = k�uk1 but as long as j�u(r)j is above average, 1=j�u(r)j � pn. When � is relativelywell-
onditioned, i.e., rel
ond(�) = O(1), then it is possible to 
ompute �̂ su
h that j�̂���j �K"j�̂j, and so the middle term is O(n"=relgap(�̂)). Note that with our de�nition we 
anhave relgap(�̂) � 1 and to obtain an a

urate eigenve
tor in this 
ase, it is not ne
essaryto 
ompute �̂ to full relative a

ura
y. However whenever relgap(�̂) < 1 then it is essentialto 
ompute �̂ so that j�̂ � ��j � K"j�̂j. The �nal term in the bound depends entirely onrel
ond(u), whi
h is a property of the fa
torization LDLt. For most LDLt, rel
ond(u) isbounded by M=relgap(�) where M is a modest 
onstant; see Se
tion 5 for more details.Thus (72) holds when (i) rel
ond(�) = O(1), (ii) rel
ond(u) = O(1=relgap(�̂)), and (iii) �̂is 
omputed a

urately enough (often to high relative a

ura
y).The reader may have noti
ed that the bound (63) 
ontains quantities from both thefa
torizations LDLt and �L �D�Lt, for example gap(�̂) in the middle term is with respe
t tothe eigenvalues of �L �D �Lt. Re
all that �L �D �Lt is an intermediate fa
torization 
reated solelyfor our roundo� error analysis. We 
ould try and obtain a bound just in terms of the inputfa
torization LDLt, as in our stated goal at the beginning of the paper, see (6). Howeverwe 
hoose not to do so sin
e we invoke Algorithm Getve
 only when relgap(�̂) is not toosmall (> 1000") and rel
ond(�) and rel
ond(u) are modest, implying that �� and �u are 
loseto � and u respe
tively. Thus we 
an preserve the spirit of (63) by repla
ing the eigenvaluesand eigenve
tors of �L �D�Lt by those of LDLt; a formal argument is possible but is messyand does not add to our exposition, so we omit it.The following 
orollary summarizes a typi
al situation in whi
h Algorithm Getve
 isinvoked.Corollary 2 In addition to the assumptions of Theorem 9 suppose that (i) r is su
h that�u(r) � 1=pn, (ii) �̂ is 
omputed to satisfy j�̂ � ��j=j�̂j < K", (iii) relgap(�̂) ex
eeds 2�8,and (iv) rel
ond(u) �M . Thenj sin\(ẑ;u)j < 5n"+ 28Kpn"+ 7:5M": 28 Numeri
al ExamplesWe �rst 
ompare and 
ontrast the behavior of Algorithm Getve
 on two 3� 3 tridiagonals.These aptly illustrate various aspe
ts of the theory.



33Example 1 First 
onsider the matrixT0 = 24 1 p" 0p" 7"=4 "=40 "=4 3"=4 35where " is the ma
hine pre
ision (" � 2:2�10�16 in IEEE double pre
ision). The eigenvaluesof T0 are : �1 = "=2 +O("2); �2 = "+O("2); �3 = 1 + "+O("2);while the 
orresponding normalized eigenve
tors arev1 = 264 �p"=2 +O("3=2)1p2(1 + "4) +O("2)� 1p2(1� 3"4 ) +O("2) 375 ; v2 = 264 �p"=2 +O("3=2)1p2 (1� 5"4 ) +O("2)1p2 (1 + 3"4 ) +O("2) 375 ; v3 = 24 1� "2 +O("3)p"+O("3=2)"3=24 +O("5=2) 35 :The exa
t triangular fa
torization is given by T0 = Lexa
t0 Dexa
t0 (Lexa
t0 )T , whereLexa
t0 = 24 1 0 0p" 1 00 1=3 1 35 ; and Dexa
t0 = 24 1 0 00 3"=4 00 0 2"=3 35 :When applying Algorithm Getve
 to the above matrix, we observe the following.1. The fa
torization 
omputed in IEEE double pre
ision arithmeti
, L0D0LT0 , turns outto be exa
t, i.e., L0 = Lexa
t0 and D0 = Dexa
t0 .2. The 
omputed eigenvalues �̂i satisfyj�̂i � �ij � 2"j�̂ij; 1 � i � 3:3. For ea
h �̂i, 
(i)k 
an be 
omputed by applying Steps I-III of Algorithm Getve
. The
omputed values are
(1) = 24 1:11 � 10�162:46 � 10�322:46 � 10�32 35 ; 
(2) = 24 2:22 � 10�164:93 � 10�324:93 � 10�32 35 ; 
(3) = 24 4:44 � 10�16�2:00�1:00 35 :Algorithm Getve
 
hooses r = 2 for �̂1, r = 2 for �̂2, and r = 1 for �̂3. Note that forthe �rst two eigenvalues j
rj = O("2) = O("j�ij)� "kT0k.4. The eigenve
tors v̂i 
omputed in Step IV of Algorithm Getve
 are su
h thatmax jv̂Ti v̂j j = 1:66 � 10�16 < "; 1 � i � 3; 1 � j < i;max jv̂i(k)� vi(k)jjvi(k)j = 8:88 � 10�16 < 4"; 1 � i � 3; 1 � k � 3:Amazingly ea
h eigenve
tor entry is 
omputed to high relative a

ura
y, even the tinyv3(3) entry.



345. Instead of Algorithm Getve
, we 
an use one step of inverse iteration,(L0D0Lt0 � �̂iI)xi = random ve
tor;to 
ompute the eigenve
tors. These 
omputed ve
tors also turn out to be a

urateand numeri
ally orthogonal (however, the tiny v3(3) entry is not 
omputed to highrelative a

ura
y). Note that the analysis of Se
tion 7 does not extend to randomright-hand sides.6. Both 
(3)2 and 
(3)3 are O(1) while the 
orresponding eigenve
tor entries are O(p")and O("3=2) respe
tively. Thus the numeri
al support of an eigenve
tor 
annot solelybe determined by the magnitudes of 
i, and illustrates our 
omments at the end ofRemark 4 in Se
tion 6. 2Example 2 The above matrix T0 is a \benign" example. Our se
ond example, also dis-
ussed in Se
tion 3, is a harder 
ase.T1 = 24 1�p" "1=4p1� 7"=4 0"1=4p1� 7"=4 p"+ 7"=4 "=40 "=4 3"=4 35 ;The eigenvalues of T1 are�1 = "2 + "3=28 +O("2); �2 = "� "3=28 +O("2); �3 = 1 + "+O("2):while the 
orresponding normalized eigenve
tors arev1 = 2664 "1=4p2 (1 + p"2 ) +O("5=4)� 1p2 (1� p"2 ) +O(")1p2(1� 3"4 ) +O("3=2) 3775 ;v2 = 2664 "1=4p2 (1 + p"2 ) +O("5=4)� 1p2(1� p"2 ) +O(")� 1p2 (1 + 3"4 ) +O("3=2) 3775 ;v3 = 264 1� p"2 +O(")"1=4(1 + p"2 ) +O("5=4)"5=44 (1 + p"2 ) +O("9=4) 375 :In exa
t arithmeti
, T1 = Lexa
t1 Dexa
t1 (Lexa
t1 )T , whereLexa
t1 = 264 1 0 0"1=4p1�7"=41�p" 1 00 1�p"3 1 375 ; and Dexa
t1 = 264 1�p" 0 00 3"4(1�p") 00 0 "(8+p")12 375 :On this example, Algorithm Getve
 behaves quite di�erently than on T0 from Example 1:1. The 
omputed fa
torization L1D1LT1 does not have high relative a

ura
y. The rela-tive errors in L1(2);D1(2) and D1(3) are as large as 4:97 � 10�9.2. Consequently, some of the 
omputed eigenvalues �̂i do not have high relative a

ura
ywith respe
t to the eigenvalues of T1. In parti
ular,j�̂i � �ij � 10�9j�̂ij; for i = 1; 2:Unlike �1 and �2, the third eigenvalue �3 is 
omputed to high relative a

ura
y, i.e.,j�̂3 � �3j = O("). However, the important point is that all the �̂i have high relativea

ura
y with respe
t to the eigenvalues of L1D1LT1 .



353. The values of 
(i)k 
omputed by Steps I-III of Algorithm Getve
 are
(1) = 24 �4:13 � 10�24�7:40 � 10�32�9:86 � 10�32 35 ; 
(2) = 24 �6:62 � 10�24�9:86 � 10�32�9:86 � 10�32 35 ; 
(3) = 24 2:22 � 10�161:49 � 10�8�1:00 35 :Algorithm Getve
 
hooses r = 2 for �̂1, r = 2 for �̂2, and r = 1 for �̂3. Note that forthe �rst two eigenvalues j
rj = O("2)� "kTk.4. The eigenve
tors v̂i 
omputed in Step IV of Algorithm Getve
 are numeri
ally orthog-onal, i.e., max jv̂Ti v̂j j = 5:55 � 10�17 < "; 1 � i � 3; 1 � j < i:But as in the 
ase of the 
omputed eigenvalues, the relative errors in the 
omputedeigenve
tors (with respe
t to the eigenve
tors of T1) are mu
h larger than O("), i.e.,max jv̂i(k)� vi(k)jjvi(k)j = 3:72 � 10�9; 1 � i � 2; 1 � k � 3:All 
omponents of the third eigenve
tor v3 are 
omputed to high relative a

ura
y.5. The following inverse iteration step:L1D1Lt1 � �̂iI = L+D+LT+; (73)L+D+LT+ xi = random ve
tor;also leads to 
omputed eigenve
tors that are numeri
ally orthogonal when the dstqdstransformation is used to 
ompute (73). From our experien
e, the use of a twistedfa
torization in Algorithm Getve
 does not appear to be essential in pra
ti
e; inverseiteration using dstqds also works well. However, twisted fa
torizations are more elegantto use, have better numeri
al behavior and allow us to prove the a

ura
y of ouralgorithm.6. When the diagonal and o�-diagonal elements of T1 are dire
tly used to 
omputeeigenvalues and eigenve
tors (either by using inverse iteration or twisted fa
torizationsas in Algorithm Getve
), the dot produ
ts between the 
omputed eigenve
tors are aslarge as 10�8. See Example 1 in Se
tion 3 for an explanation of this failure. Thus theuse of L1D1LT1 is essential for a
hieving numeri
al orthogonality in this 
ase. 2The above example beautifully illustrates our te
hniques. We do not promise highrelative a

ura
y for eigenvalues and eigenve
tors of the given tridiagonal matrix. In fa
t,it is unrealisti
 to hope for su
h a

ura
y as explained in Se
tion 3. However, we get a\good" fa
torization of the tridiagonal, and then pro
eed to 
ompute its eigenvalues andeigenve
tors to high a

ura
y, whi
h automati
ally leads to orthogonality.Example 3 Our third example isT2 = 264 :520000005885958 :519230209355285:519230209355285 :589792290767499 :36719192898916:36719192898916 1:89020772569828 2:7632618547882 � 10�82:7632618547882 � 10�8 1:00000002235174 375



36with eigenvalues �1 � "; �2 � 1 +p"; �3 � 1 + 2p"; �4 � 2:0:Note that the interior eigenvalues have relgap(�i) = O(p"). When we apply Algorithm Getve
to the LDLT fa
torization of T2, the 
orresponding 
omputed eigenve
tors havejv̂T2 v̂3j = 1:12 � 10�8 = O(p"):As dis
ussed in Remark 6 in Se
tion 6, inverse iteration appears to be a natural remedy to
ure the problem. However even after ten inverse iteration stepsjv̂T2 v̂3j = 3:45 � 10�9 = O(p"):Thus the simple approa
h of using multiple inverse iteration steps does not lead to numeri
alorthogonality, as explained in Remark 6. For an approa
h that 
an a
hieve orthogonalityin this situation, see Chapter 5 in [9℄. 28.1 Timing ComparisonsAlgorithm Getve
 
an lead to substantial speedups over earlier LAPACK software2 to 
om-pute eigenve
tors when the relative gaps between eigenvalues are O(1) but the absolutegaps are less than 10�3. We illustrate this speedup on four examples in Table 1. Matri
esof the �rst type have eigenvalues in an arithmeti
 progression,�i = i � "; i = 1; 2; : : : ; n� 1; and �n = 1:The se
ond type has eigenvalues that 
ome from a uniform random distribution in the inter-val ["; 1℄. The third type are the Toeplitz tridiagonal matri
es with 2's on the diagonals and1's as the o�-diagonal elements, with eigenvalues �i = 4 sin2[i(n+ 1)�2 ℄. The �nal example
omes from a real appli
ation in 
omputational quantum 
hemistry | more spe
i�
ally itarises in the modeling of the biphenyl mole
ule using M�ller-Plesset theory [9℄. Most ofthe eigenvalues of this positive de�nite 966� 966 Biphenyl matrix are small 
ompared to itsnorm. See Figure 6 for a plot of its eigenvalues and their relative gaps.In Table 1 we 
ompare the speed of Algorithm Getve
 to various existing algorithms. Inour implementation, we fa
tor T = LDLt and then use the dqds software in LAPACK (sub-routine DLASQ1) to 
ompute all eigenvalues of LDLt to high relative a

ura
y before invok-ing Algorithm Getve
. DSTEIN and TINVIT are inverse iteration routines from LAPACKand EISPACK respe
tively that perform Gram-S
hmidt orthogonalization when eigenval-ues have small absolute gaps, in parti
ular, when j�i+1 � �ij � 10�3kTk. DSTEQR usesthe QR iteration to 
ompute orthogonal eigenve
tors[22℄ while DSTEDC is the Divide andConquer 
ode in LAPACK[19℄. Table 1 shows that on most examples, Algorithm Getve
is about two orders of magnitude faster than DSTEIN, TINVIT and DSTEQR. Also see2sin
e we �rst wrote this paper, our software has been in
orporated in the latest release of LAPACKwhere Algorithm Getve
 appears as subroutine DLAR1V
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Time Taken (in se
onds)Matrix Matrix LAPACK EISPACK LAPACK LAPACK AlgorithmType Size DSTEIN TINVIT DSTEDC DSTEQR Getve
125 0.21 0.14 0.01 0.13 0.04Arithmeti
 250 1.30 0.73 0.04 0.99 0.12Progression 500 8.36 4.42 0.20 7.76 0.40(" apart) 1000 91.98 40.10 1.26 91.18 1.512000 824.00 335.41 6.66 3212.80 6.77125 0.11 0.10 0.05 0.13 0.04Uniform 250 0.44 0.38 0.26 1.04 0.11Distribution 500 1.81 1.55 1.63 7.78 0.38(" to 1) 1000 91.74 6.25 12.87 91.65 1.542000 823.63 336.04 161.60 1308.26 6.34125 0.12 0.10 0.05 0.13 0.02(1,2,1) 250 0.44 0.38 0.17 0.94 0.09Matrix 500 1.95 1.60 1.09 7.25 0.331000 13.23 7.58 8.84 100.79 1.412000 821.85 130.64 109.91 1737.15 5.94Biphenyl 966 85.11 33.78 9.71 238.42 2.41Table 1: Timing Results
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38that Algorithm Getve
 is several times faster than DSTEDC on three of the four matrixtypes, and is 
omparable in speed on the �rst example where DSTEDC is very fast dueto de
ation of 
lustered eigenvalues. The reader should observe the O(n2) behavior of Al-gorithm Getve
 whereas the other subroutines, in general, show an O(n3) behavior3. Allalgorithms delivered adequate numeri
al orthogonality on the test 
ases.9 Singular Ve
torsA natural appli
ation of the pro
edures analyzed in this paper is to 
ompute the SVD ofa bidiagonal matrix Lt: Lt = U�V t, U t = U�1, V t = V �1. Sin
e LLt = V �2V t, theCholesky fa
tor of the symmetri
 positive de�nite matrix LLt is the initial input and so theoutput of our method is V whose 
olumns are the right singular ve
tors of Lt.What must be done to 
ompute U? The tempting formulau = Ltv=�; � 6= 0;solve Lu = 0; � = 0;is well-known to be trea
herous. Orthogonal v's do not give rise to orthogonal u's be
auseof the 
an
ellation in forming Ltv.A better way is to invoke Algorithm Getve
 again, as shown below. Note that a naturaloperation on bidiagonal and diagonal arrays is to `
ip' them: L �!� L. In pra
ti
e theorder of the entries is reversed. Formally� L = ~ILt ~Iwhere ~I is the reversal matrix, ~I = (en; : : : ;e1) when I = (e1; : : : ;en). For diagonalmatri
es 
ipping is just reversal. If 
ost were of no 
onsequen
e then U 
ould be 
omputedby 
ipping the given Lt, 
alling our algorithm, and reversing the output. The justi�
ationis that (� L)(� Lt) = (~ILt ~I)(~ILt ~I)t= ~ILtL~I = ~IU�2U t ~I:The defe
t of the high level pro
edure mentioned above is that the singular values willbe 
omputed twi
e; a signi�
ant waste. The remedy is to apply the reversal me
hanismlo
ally. When an eigenvalue (�2) has been 
omputed our algorithm invokes Algorithms 4.2and 4.4 to obtain a double fa
torization and, after sele
ting an index, the desired singularity-revealing twisted fa
torization. From this 
omes the singular ve
tor v. In order to 
omputeu it is only ne
essary to reverse L, apply Algorithms 4.2 and 4.4 again, sele
t a possiblydi�erent index, and form the 
orresponding twisted fa
torization. Then Algorithm Getve
,in Se
tion 6, will yield f~Iug. In other words very little extra 
ode is needed in order to
ompute u as well as v.However even the use of Getve
 outlined in the previous paragraph is not adequate. Itprodu
es matri
es U and V that are orthogonal to working pre
ision but the extra 
oupling3all timings were measured using Fortan BLAS on a 333-MHz UltraSPARC pro
essor



39relations kLtv � u�k = O("kLk) and kLu� v�k = O("kLk) may fail when singular valuesare 
lustered.In an interesting re
ent dissertation [18℄, Benedi
t Grosser has presented 
oupling rela-tions that 
onne
t fa
torizations of LLt � �2I and LtL � �2I. By for
ing these relationsto hold for the 
omputed fa
torizations he found a way to use our Algorithm Getve
 andsatisfy all the desired properties to working a

ura
y:Ltv � u� � 0; Lu� v� � 0; U tU � I � 0; V tV � I � 0:This algorithm is to be
ome part of the LAPACK library.A
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