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1 The dqds TransformH. Rutishauser introdu
ed the qd algorithm (not dqds) and the Z notation in1953/54, see [9℄, in 
onne
tion with transformations of 
ontinued fra
tions.However our interpretation is aimed at tridiagonal matri
es. WriteZ = (q1; e1; q2; e2; : : : ; en�1; qn; en)but, by 
onvention, en = 0. We asso
iate with Z two bidiagonal matri
esU = bidiag� 1 1 : 1 1q1 q2 : : qn�1 qn �and L = bidiag� 1 1 1 : 1 1e1 e2 : : en�1 � :Rutishauser's qds transform (qd with shifts) and the dqds transform ea
hwith shift � map Z into Ẑ where the asso
iated bidiagonals L̂, Û satisfyL̂Û = UL� �Iprovided that the transformation does not break down. However the formulaein dqds are di�erent from those in qds as shown later in this se
tion. Thealgorithms 
onsist of repeated appli
ations of the transforms with variousshifts � and it is obligatory to introdu
e �, the a

umulated sum of all shifts� used so far. At any stage in the algorithm, the 
urrent qd-array Z and the
urrent � de�ne a matrix �I + LUthat has the same eigenvalues as the matrix LU asso
iated with the originalZ. In exa
t arithmeti
 if initially Z is positive, and if all � = 0, then Z
onverges, very slowly, to(�1; 0; �2; : : : ; �n�1; 0; �n; 0)where �1 > �2 > : : : �n > 0, are the wanted eigenvalues. The shift � is usedto hasten 
onvergen
e. In pra
ti
e the algorithm uses de
ation: as soon asen�1 is negligible qn is de
lared an eigenvalue and n is repla
ed by n� 1.In exa
t arithmeti
 the LR, qds and dqds transforms are the same but theadvantage of qds and dqds is that L and U together hold more information1



than the produ
t UL used by LR and the advantage of dqds over qds is that,in the positive 
ase, in �nite pre
ision, dqds preserves the eigenvalues to highrelative a

ura
y (in the absen
e of under
ow) whereas qds does not. Nextwe o�er a few histori
al remarks.The �rst d in dqds stands for di�erential- a somewhat misleading adje
tive
oined by Rutishauser in his notes. The algorithm is quite distin
t from theLR and QR 
ows introdu
ed in the 1980's. See [1℄ and [12℄, [13℄.Rutishauser never used the dqds transform ex
ept with � = 0 and heseems to have invoked that option (we 
all it dqd) only when his preferred,and faster algorithm, qds or \qd with shifts", got into diÆ
ulties. He neverpublished the dqd algorithm. See [11, Appendix℄. The lower 
ase letters qdstand for quotient-di�eren
e, the name he 
hose in 1953/54 for his opera-tionally minimal implementation.The dqds algorithm was redis
overed independently by Fernando andParlett in 1992 and they showed that the extra multipli
ation, 
omparedto Rutishauser's qds, allowed dqds to 
ompute all the eigenvalues, howeversmall, to high relative a

ura
y. See [3℄. Here ends the histori
al 
ommen-tary.Here is the transform applied to a segment of Z, Z(i0 : n0), with shift � .dqds (1�) : d = q(i0)� �for i = i0; n0 � 1 doq̂(i) = d + e(i)temp = q(i+ 1)=q̂(i)ê(i) = e(i) � tempd = d � temp� �end forFor 
ontrast we present Rutishauser's qd transform with shiftqds: q̂(i0) = q(i0) + e(i0)� �for i = i0; n0 � 1 doê(i) = e(i) � q(i+ 1)=q̂(i)q̂(i+ 1) = (q(i+ 1) � ê(i)) + e(i+ 1) � �end for 2



No intermediate variables are needed in qds and the arithmeti
 e�ort is min-imal. Note that the intermediate quantity in dqds satis�esd(i+ 1) = q(i+ 1)� ê(i)� �:The initial array Z is rarely the primary data. For example, to 
ompute thesingular values of a bidiagonalB = bidiag� b1 b2 : bn�2 bn�1a1 a2 : : an�1 an �one de�nes qi = a2i , ei = b2i , i = 1; : : : ; n, and remembers, at the end, to takethe square roots of the eigenvalues (of B�B) whi
h are 
omputed by the dqdsalgorithm.Given a symmetri
 tridiagonal matrix T with diagonal entries �i, o�diagonals �i, i = 1; : : : ; n and a s
alar � su
h that �I + T is positive de�niteone 
omputes Z by Gaussian elimination as follows.q1 = �1 + �for j = 1; n� 1 doej = (�j=qj) � �jqj+1 = �j+1 � ej + �end forAn alternative, 
areful, expression for qj+1 isqj+1 = (max(�j+1; �)� ej) + min(�j+1; �):One must remember to subtra
t � from the eigenvalues 
omputed by thealgorithm in order to re
over those of T .1.1 Over
owIn [3℄ it was shown that dqds preserves eigenvalues to high relative a

ura
yin the absen
e of over
ow and under
ow. In this se
tion we identify andeliminate those ex
eptions that are "unne
essary".The 
on
erns of this subse
tion arise almost ex
lusively in single pre
isionwhere the exponent range is so small thatma
heps�6 over
ows andma
heps63



under
ows. The rest of the paper is independent of the material presentedhere. Example 1 is important to the understanding of dqds when the exponentrange is narrow.If Z is positive and if � < �min then the new qd-array Ẑ 
omputed by dqdswill also be positive. If � > �min then dmin = mini di will be negative and ifsome q̂(i) = 0 then the next d =1 and the one after that is1� 0� � whi
his re
orded (in IEEE 
onforming arithmeti
 units) as NaN (Not a Number).See [4℄.When dmin > 0 then the new variables q̂(i) and ê(i) are bounded by oldvalues: ê(i) � q(i + 1), q̂(i) = di + e(i) � q(i + 1) + e(i). However for thevariable temp we 
an only saytempi := q(i+ 1)=(di + e(i))� q(i+ 1)=e(i);� qmax=emin:Thus there is danger of over
ow unless the quantities qmax and emin aremonitored. Sometimes reversal of the qd array (see Se
tion 6.2) 
an avert anover
ow and sometimes a 
areful 
he
k for splitting (see Se
tion 3) 
an allowa tiny e(i) to be negle
ted. Unfortunately these measures are not suÆ
ientto avoid all over
ows and a small example is given next. Suppose that 1038and 10�38 are the thresholds for over
ow and under
ow.Example 1q e d (true) q̂ ê temp10�25 1020 10�25 1020 1020 11020 10�25 10�25 210�25 121020 12 (1020=10�25) = over
ow1020 1020 121020 321020 2310�25 23 (10�25=1020) = under
ow10�25 0 1310�25 1310�25 0 �����Even though Ẑ is well de�ned the algorithm dqds (1�) in Se
tion 1 provokesover
ow in temp. Looking ahead to Se
tion 3 we 
an say that even thoughe2 = 10�25 appears to be negligible 
ompared to its neighbors the 
riterionfor setting e2 to zero is not satis�ed and so the repla
ement of e2 by 0 wouldprovoke large relative 
hanges in the smaller eigenvalues. Note that thedeterminant �iqi is preserved by the transformation.4



The obvious remedy in this 
ase is simple but expensive.dqds (2�) : d = q(i0)� �for i = i0; n0 � 1 doq̂(i) = d + e(i)ê(i) = q(i+ 1) � (e(i)=q̂(i))d = q(i+ 1) � (d=q̂(i))� �end forThe quotients are bounded by one and over
ow will not o

ur. If � = 0 ordmin > 0 then no intermediate quantity ex
eeds �max(LU).Unfortunately dqds (2�) es
apes the disaster (S
ylla) of over
ow only tofall into the misfortune (Charybdis) of under
ow.q e d (
omp) q̂ (
omp) ê (
omp)10�25 1020 10�25 1020 10201020 10�25 1020(10�25=1020) = 0 10�25 10201020 1020 0 1020 10�2510�25 0 0 0 0Note that the determinant �iq̂i = 0 instead of 10�10 ! The small eigenvaluesof Ẑ have huge relative errors.There is a way out of the diÆ
ulty: test at ea
h step. The parametersfmin is the smallest number whose re
ipro
al is representable.dqds (safe): d = q(i0)� �for i = i0; n0� 1 doq̂(i) = d + e(i)if (q̂(i) = 0) thenê(i) = 0d = q(i+ 1)� �else if (safemin � q(i+ 1) � q̂(i)) thentemp = q(i+ 1)=q̂(i)ê(i) = e(i) � temp5



d = d � temp� �elsêe(i) = q(i+ 1) � (e(i)=q̂(i))d = q(i+ 1) � (d=q̂(i))� �end ifend forThis algorithm produ
es the 
orre
t values and, in general, is 
lose in arith-meti
 operations to dqds (1�) but it does su�er from tests in the inner loop.There is a subtle point to be made here. If � ex
eeds �min be
ause of anaggressive shift strategy then a d 
an be negative and a q̂ 
an vanish. Our
ode expe
ts this to happen and rea
ts appropriately. However when � = 0then, in exa
t arithmeti
, the dqd transform is well de�ned and may be usedas a default after a failure (di � 0) in dqds. Thus it is essential to have 
odethat 
an exe
ute a dqd step without over
ow or unne
essary under
ow. Bys
aling up the initial Z as mu
h as possible the o

urren
e of under
ow isminimized.Our poli
y is perhaps too 
autious. We keep variables emin and qmax upto date. As shown at the beginning of the se
tion temp � qmax=emin for anyshift � � �min. Our strategy is:if (safemin � qmax � emin) thenuse dqds (1�)elseuse dqd (safe) ( i.e. � = 0)end ifIt is not essential to for
e � = 0 in the safe version of dqds but we 
hose todo it.1.2 Under
owThe emphasis so far has been on over
ow. However under
ow, marked by
ushing to zero, also undermines the high a

ura
y property of the algorithm.If the true value of a variable is too small to be represented then there isnothing to be done. On the other hand we 
an have expressions of the form6



a(b=
) whi
h will under
ow as written but 
an return a 
orre
t value whenrewritten as (a=
)b. Neither the (1�) nor the (2�) version is safe from these"unne
essary" under
ows but we 
an modify the test in the safe dqd givenabove so that su
h under
ows do not o

ur. The new test iselse if (safemin � q(i+ 1) � q̂(i) and safemin � q̂(i) � q(i+ 1)) thenWhen should safe dqd be invoked? In 
ontrast to over
ow we do not havean easily 
omputed lower bound on ê(i) nor q̂(i) so we test after ea
h dqdstransform. If emin = 0 or dmin = 0 we assume that the under
ow was notne
essary, we disregard Ẑ, and invoke safe dqd on Z. Su
h 
aution degradesperforman
e slightly on diÆ
ult 
ases but on the LAPACK test matri
es oftype 16 (wild exponent ranges) our 
ode, in single pre
ision, did 
ompute
orre
tly some tiny eigenvalues that had previously been re
orded as 0. Thesame phenomenon in double pre
ision is shown in Se
tion 15.2 The Prototype dqds AlgorithmThe �nal pro
edure for 
omputing the eigenvalues of a tridiagonal matrixwith the aid of the dqds algorithm is made 
ompli
ated by �ve features:splitting, 
ipping, ping-pong, an aggressive shift strategy,and over/under
ow.These features re
eive due attention above or below. For the moment letus ignore them and see how simple the resulting program 
an be. As ea
heigenvalue is a

epted the qd-array Z dis
ards the last q and the last e. Onewhile loop gives the whole pro
edure.while Z un�nished doexamine Z 0s �nal entries;if negligible then redu
e Z a

ordingly end ifif Z un�nished then
hoose a shift (less than �min)apply the dqds transform to Zend if 7



end whileThe body of the while loop given above 
onstitutes what we will 
all below`a good step'. It has three vital parts:1. De
ate any 
onverged eigenvalues2. Choose a shift3. Invoke dqds with that shiftThe whole pro
edure may be put in one line,while Z un�nished do take a good step end whileThe 
ompli
ations in the a
tual program are of two kinds. The low levelones are those hidden in the pro
edure Goodstep. The high level ones for
eus to embed our while loop inside another one.These high level troubles are not obvious. In order to guarantee highrelative a

ura
y the 
ode a

epts the limitation of 
omputing the eigenvaluesin monotone in
reasing order. Thus the 
ode is 
onstrained to bring thesmallest eigenvalue to the end of Z. However this 
annot be done if oneor more of the e-values in Z vanishes: No information 
an 
ross over azero ej. Consider, as an extreme 
ase, the array Z = (1; 0; 2; 0; 3). This
orresponds to the diagonal matrix (1; 2; 3). When the 0's are repla
ed bytiny positive numbers then the simple 
ode des
ribed above will waste mu
htime slowly 
onverting (1; 2; 3) into (3; 2; 1). This phenomenon was 
alled`disorder of the latent roots' by Rutishauser. If an e-value is negligible thenwe say that Z `splits' into two independent qd-arrays Z1 and Z2 that maybe pro
essed independently. A split enhan
es eÆ
ien
y but 
ompli
ates theprogram. Even to 
he
k for any negligible e's seems to require a pass throughthe Z-array and this will degrade performan
e. Details are dis
ussed inSe
tion 3.The program looks for the smallest eigenvalue to appear at the end of theqd-array. If, at some stage, the small entries in Z are at the beginning thenit is prudent to simply reverse the array. This is 
alled a 
ip.Flip(q1; e1; q2; e2; q3) = (q3; e2; q2; e1; q1):8



Flipping is equivalent to reversing the asso
iated tridiagonal matrix, anoperation that preserves the eigenvalues.Splitting and Flipping are high level 
ompli
ations. The ping-pong for-mulation and aggressive shifting are low level features that are dis
ussedlater.A swit
h to allow the user to sele
t either relative a

ura
y or absolutea

ura
y (error < �kTk) also 
ompli
ates the program and after extensivetests we have simply disabled this option be
ause the redu
tion in total timeusing absolute a

ura
y was only 10% or 15%.3 Splitting3.1 Monotoni
ity PropertiesIn order to justify the 
riteria for negle
ting an ei 
ertain properties of thetransforms are needed. These elementary results have not appeared elsewhereso we present them here. This subse
tion may be skipped without loss of
ontinuity.At any step in the algorithm we possess L, U , and � � 0 but might wishwe had �L and �U satisfying �L �U = LU + �I. So Lemma 1 
an be useful.Lemma 1 Let L and U be the bidiagonals asso
iated with the positive qd-array Z and let �Z be the qd-array asso
iated with �L and �U de�ned by�L �U = �I + LU; � > 0: (1)Then �ek < ek and �qk+1 > qk+1 + � for k = 1; : : : ; n � 1.Proof. By equating 
orresponding entries in (1)�q1 = q1 + �;�ek = ekqkq̂k ;�qk+1 = qk+1 + (ek � �ek) + �; k = 1; : : : ; n� 1:The relation �q1 � q1 + � is the base for an indu
tive argument: �qk � qk + �implies that �ek = (qk=�qk)ek < ek and hen
e �qk+1 > qk+1 + �. 2Even more useful than �L and �U would be the quantities �di that o

ur inthe dqd transform of �Z. Lemma 2 assures us that �di > �.9



Lemma 2 As in Lemma 1 let �L �U = LU+�I. Let f �dig be the auxiliary quan-tities that appear in the dqd transform of �Z = f�q1; �e1; : : : ; �en�1; �qng. Thendi > �; i = 1; 2; : : : ; n:Proof. In [3℄ it was shown that�dj = 1[(�L �U)�1℄jj :Sin
e Bjj � �max(B) for any matrix B that is diagonally similar to a positivede�nite matrix and sin
e �L �U (as well as its inverse) is su
h a matrix,dj � 1�max[(�L �U)�1℄ = �min(�L �U); j = 1; 2; : : : ; n:Thus dj � �min(LU + �I) = � + �min(LU) > �with stri
t inequality sin
e Z = fq1; e1; : : : ; en�1; qng is assumed positive inLemma 1. 2We will often be in possession of the auxiliary d's after invoking dqdswith a shift � > 0 on Z to produ
e another positive qd-array Ẑ. For testingej we would prefer to have auxiliary od's that 
ome from dqd (� = 0) appliedto Z. Fortunately 0 < di <odi, i = 1; : : : ; n.Lemma 3 Consider a su

essful dqds transform with shift � , 0 < � < �minthat maps Z into ~Z. Let fdi = di(� )gn1 be the asso
iated d's but write odi fordi(0). Then 0 < di <odi; i = 1; : : : ; n:Proof. From the dqds transform in Se
tion 1di+1 = didi + ei qi+1 � �whereas odi+1= odiodi +ei qi+110



for i = 1; 2; : : : ; n � 1. Initially d1 = q1 � � < q1 =od1. Sin
e x=(x + e) ismonotone in
reasing in x for x > 0, then if di <odi it follows thatdi+1 < odiodi +ei qi+1 � � < odiodi +ei qi+1 =odi+1 :By indu
tion the 
laim holds for i = 1; : : : ; n. 23.2 Results of Demmel/Kahan and LiFor this se
tion we revert to the bidiagonal 
ase. ThusB = bidiag� b1 b2 : bn�2 bn�1a1 a2 : : an�1 an �where ai = pqi, bi = pei. The goal is to �nd 
onditions on an o�-diagonalentry bk that permit it to be set to 0 without 
ausing a large relative errorin any singular value of B. In [2℄ several lemmas and theorems were provedto justify a 
riterion based on a 
ouple of re
urren
es. These re
urren
es arequite expensive. Later, in [6℄, Reng-Cang Li found alternative re
urren
esthat gave sharper (better) 
riteria for negle
ting bk. All the results mentionedabove are impressive, not to say intimidating. Indeed Li's paper [6℄ does notpresent his justi�
ation expli
itly but only as a Corollary of theorems in otherpapers [5, Th1℄. Those theorems require signi�
ant preparation on the partof the reader.We are not going to reprodu
e all that theory. Instead we explain, inmu
h simpler terms, why these 
riteria are appropriate and natural.When bk, 1 < k < n � 1, is set to 0 the resulting matrix is a dire
t sumof diag(B1; B2). The surprise is that B may be related to diag(B1; B2) as amultipli
ative perturbation:B = Dldiag(B1; B2); B = diag (B1; B2)Dr; (2)where Dl and Dr have the form � I FO I �11



An old result of Ostrowski (redis
overed by Eisenstat and Ipsen) says thatthe relative 
hange in any singular value due to annihilating bk is boundedby kDlDtl � Ik and by kDtrDr � Ik and k � k is the spe
tral norm. Thesebounds equal kFk+ kFk2 and when F is tiny they are essentially kFk.The old result 
omes from Weyl's theorem that says that no eigenvalueof a symmetri
 matrix 
an 
hange by more than the (spe
tral) norm of an(additive) perturbation. So, if ~� is any singular value of oB:= (B1; B2), thenit is only ne
essary to rewrite (2) above in the illuminating formBBt � ~�2I = Dl( oB oBt �~�2I)Dtl + ~�2(DlDtl � I): (3)The �rst term on the right is singular and the se
ond is an additive per-turbation with norm ~�2kDtlDl � Ik. Hen
e there is a singular value � of Bsatisfying j�2 � ~�2j � ~�2kDtlDl � Ik:So, j� � ~�j � ~�~� + � ~�kDtlDl � Ik < ~�kDtlDl � Ik: (4)On
e the idea of using Dl and Dr is absorbed it is not hard to �nd out whatF is in ea
h 
ase. Certainly it is a multiple of bk. Not only is 1bkF rank-onebut it has a single non-zero row or 
olumn, either the last 
olumn of B�11 orthe �rst row of B�12 . Indeed the re
urren
es mentioned above generate theentries in these two ve
tors. However Demmel/Kahan generate the 1-normwhereas Li generates the 2-norm of these ve
tors. This brings us to thequestion of 
ost.In the 
ontext of the singular value QR algorithm with zero shift appliedto B both 
riteria require 2n divisions to test all bk but the 1-norm requiresfewer multipli
ations. The mira
le is that in the 
ontext of the dqd algorithmthe auxiliary quantity dk is pre
isely k 1bkFk�2 for one of Li's tests (row 1 ofB�12 ). Thus kFk � " be
omes Li's testek := b2k � "2dk: (5)The other test (involving 
olumn 1 of B�11 ) would require running dqdon the reversed, or 
ipped qd array to produ
e auxiliary quantities odi, i =n; n � 1; : : : ; 1. Then one 
ould test ek � "2 odk+1 but that does not 
omefree. 12



As Li remarks at the end of [6℄ the introdu
tion of nonrestoring shiftsinto dqds 
ompli
ates the situation signi�
antly. That is the fo
us of Se
tion3.4.3.3 In the BeginningIt is worthwhile to apply both of Li's tests at the start of the algorithm. Thevariables emin and qmax are formed when the data are 
he
ked. If (emin >"2qmax) then there will be no splits and the standard dqds subroutine maybe employed in the interest of eÆ
ien
y.The following example shows that there may be no splits on the originaldata and yet after one dqd transform the new array may have all its e'snegligible. This en
ourages us to apply Li's tests for at least two iterations.Example 2 (From No Splits to All Splits) Consider a Toeplitz qd-arrayof order 10 with qi = ", all i, and ei = "�1. Here " is the single pre
isionroundo� unit, " � 10�7. In single pre
ision "6 under
ows.On the �rst dqd transform there are no splits. Moreover q̂i = "�1, i =1; : : : ; n� 1, êi = ", i = 1; : : : ; n� 1, but q̂n = "19 = under
ow = 0. On these
ond dqd transform the �rst n � 1 d's 
ompute to "�1 and, by Li's test,ea
h êi is then set to 0. If we applied Li's reverse test to the array Ẑ all d'swould be 0 and no splits would be re
orded.pseudo 
ode for initial 
he
ks for splitsinput: Z = (q; e); emin; qmax
ip Z if warrantedif (emin � "2qmax) thenapply Li's reverse test on Z;dqd: Z �! Ẑ with Li's test;(emin is updated)else�  � 0dqds: Z �! Ẑ(emin is updated)end ifupdate qmax (= maxi q̂(i))13



if (emin � "2qmax) thenapply Li's reverse test on Ẑ;dqd: Ẑ �! Z with Li's test;(emin is updated)else�  � 0dqds: Ẑ �! Z(emin is updated)end ifOn 
ompletion the latest qd-array is in Z, the old array is in Ẑ and allpossible splitting using both of Li's tests have been re
orded.It is possible to repeat this testing 
y
le until no new splits are re
ordedbut we de
ided to run it just twi
e.3.4 When to Negle
t ejThere are, at least, two obsta
les to invoking Li's test inside the main whileloop. First the algorithm uses dqds with � > 0 for most steps. Li's testis still valid when � > 0, by Lemma 3, but will be stri
ter than ne
essary.Se
ond is the presen
e of �, the a

umulated shift. We want the eigenvaluesof �I + LU , not of LU alone. It is not 
heap to in
orporate � into Li's
riterion.From a pra
ti
al point of view the presen
e of � has lead us to a verysimple set of tests. Sin
e � is a lower bound on the eigenvalues of �I + LUthe following test is always valid.� �-test: if ej � "2� then set ej to 0.Li was thinking of an implementation of dqd that would test ej within theinner loop and thus at every step of the algorithm. In order to keep our dqdstransform free of tests the 
he
king for a split will be a separate 
al
ulationundertaken only when the variable emin is small enough. The 
ode presentedhere keeps this test 
al
ulation as 
heap as possible.This leaves us with the task of using Li's test in some form be
ause the �-test is useless when � = 0 and even when � is tiny. Our solution is to exploitthe ping-pong implementation of the algorithm. For our purposes here itmeans that two qd-arrays are available, OldZ and Z. Their eigenvalues di�er14



by � . Let odi denote the auxiliary variables 
omputed in the dqds transformof OldZ to Z. From the algorithm in Se
tion 1qi =odi + old ei; i = 1; 2; : : : ; n� 1:Consequently odi 
an be re
overed as qi � old ei. Li's test applied to OldZ is`negle
t old ei if old ei � "2di = "2(qi � old ei)'. Sin
e 1 + "2 
omputes to 1the test may be simpli�ed.� Li's test: negle
t old ek if old ek � "2qk.Note that setting old ek to 0 would automati
ally for
e ek to 0 sin
eek = old ek � old qk+1qk :Moreover, in `�nite pre
ision', if old ek is negligible thenodk+1 = old qk+1 odkodk +old ek � �= old qk+1 � �just as though old ek were 0.Thus, at no 
ost, we 
an dis
over a split but with a one step delay.It is not ne
essary to re
ognize splits as soon as they are warranted.The only danger in delaying a valid split is that the smallest eigenvaluemight be trapped in the upper part of the qd-array. This 
ould produ
e thewret
hed situation that the shifts would be 
onstrained by the top part andso not hasten 
onvergen
e of the bottom part. This would degrade eÆ
ien
yseverely.When should our two tests be invoked? Sin
e our implementation keepsthe variables emin and qmax up to date it is natural to invoke the testing looponly when old emin � "2qmax or emin � "2�: (6)This guarantees that if a split is warranted by our tests then the loop will beinvoked.The way splits are marked is dis
ussed next.15



3.5 Marking SplitsThe Z-array may split up into many subarrays. In order to keep the 
odesimple the dqds transform is applied only to the last unsplit segment i0 : n0.The parameter n0 never in
reases and de
reases when, and only when, aneigenvalue is de
ated. Until a segment is �nished i0 never de
reases andin
reases when, and only when, a split o

urs in i0 : n0.Suppose that the �rst split o

urs at ej when the value of � is �0. Thesegment 1 : j of Z then freezes until the segment j + 1 : n is �nished. Bythat stage � = �00 � �0. When 
omputation resumes on segment 1 : j it isessential to know the old value �0. The only book-keeping required when asplit o

urs is to re
ord the 
urrent value �. The natural pla
e to keep thisinformation is in the lo
ation of the negligible ej. The negative sign atta
hedto � signals that a split has o

urred.The pseudo-
ode for the segment Splt
k (short for Split Che
k) �nds theindex `splt' where the last negligible e-value o

urs.Splt
k: splt i0� 1for k  i0; n0� 3 doif ek negligible thenek  ��splt kend ifend forBy 
onstru
tion of i0, either i0 = 1 or else e(i0�1) < 0. Several e's may befound negligible during one 
all of Splt
k, ea
h one is marked (by ��) butonly the last one is re
orded by splt. Thus after ea
h 
all to Splt
k the newsegment is given by i0 splt+ 1:The loop stops at k = n0 � 3 be
ause en�2 and en�1 are 
he
ked at everystep. When they be
ome negligible we have de
ation, not a split.4 The High Level ProgramWhen splitting is in
orporated into the program there must be an inner loopto diagonalize the last unsplit segment and an outer loop over the separate16



segments. This stru
ture demands one extra pie
e of book-keeping in theouter loop. The 
hoi
e of shift makes heavy use of information obtained inthe previous dqds transform. At the start of a new unsplit segment there isno previous dqds transform available. Inside the inner while loop there is noway to know whether the 
urrent segment is new and so the outer loop mustset a 
ag to signal this situation. We may do this by setting the variabledmin to a negative value. The 
urrent segment is always Z(i0 : n0).Input Z(1 : n); a positive qd-array (but e(n) = 0):
all Prologue (dis
ussed in Se
tion 10)n0 = nwhile (n0 � 1) do� = �e(n0) * reset � �i0 = n0 * seek i0 �while (i0 > 1 and e(i0� 1) > 0) do i0 = i0� 1 end whiledmin = �0 * signal a new segment *while (i0 � n0) do
all Goodstep(i0; n0; Z; �; dmin)if emin is small enough then
he
k for splits; update i0; emin; qmax;end ifend whileend while
all Epilogue (dis
ussed in Se
tion 11)Later we will 
ompli
ate the while loop that �nds i0 so that it 
omputes qminand emax as well. These values give us a 
heap lower bound on the Gersgorindisks. We set dmin = �max(0; qmin � 2pqminemax) and give justi�
ation inSe
tion 6.3.1 but here is the motivation.When Z's matrix is 
lose to one of low rank a stage will o

ur when allthe small eigenvalues have been found and the smallest eigenvalue of theremaining Z array is far from 0. Our shift strategy shifts too 
autiously inthis situation and � = qmin � 2pqminemax is a mu
h better start than � = 0.17



For example, in one 
ase all e's were O(10�15) and all q's were O(10�1). Thusat the start of a new unsplit segment the variable dmin 
arries a reasonableshift that overrides the regular 
hoi
es be
ause it is 
agged by not beingpositive.5 Low Level Compli
ationsPseudo
ode for Goodstep(i0; n0; Z; �; dmin):1. while (e(n0� 1) or e(n0� 2)) negligible dore
ord eigenvaluesredu
e n0end whileif (n0 < i0) return end if2. if warranted then
ip qd arrayupdate qmax, eminend if3. if no danger of over
ow or new segment then
hoose a shift4. repeat
all dqds; output dmin; eminif (shift too big or dmin=NaN or under
ow) thenif (dmin < 0) then
hoose another shiftelse (a NaN or under
ow)
all safe dqd; output dmin; eminend ifend ifuntil dmin > 0else
all safe dqd; output dmin; eminend if5. update � 18



As written above Step 4 
ould give rise to an in�nite loop. For the sake ofeÆ
ien
y we want to es
ape this loop after 3 steps at most. The 
hoi
e � = 0ensures a su

essful transform but the phenomenon of `late failure', dis
ussedlater, exhorts us not to pani
 and so set � = 0 immediately. Frequently afailed shift is too large only in the 5th de
imal pla
e of �min.The various parts of Goodstep are dis
ussed in turn below.6 A Good Step6.1 Test for Eigenvalues (Eigtest)Convergen
e Versus De
ationIn this se
tion let n = n0. The goal of the dqds transform is to drive qn,the last q, to zero. Even if qn = 0 it is still not valid to de
ate, i. e. to redu
en by 1, be
ause en�1 must also be negligible. Note that, with � = 0,ên�1 = en�1qn=q̂n�1 = qn � en�1dn�1 + en�1 < qn;so that one more transform, after qn is negligible, will ensure that the newen�1 will also be negligible.However we shall not retain this way of thinking be
ause 
onvergen
e (isqn 
lose enough to 0?) is se
ondary to de
ation (n  n � 1 or n � 2) andthat is what we seek. If en�1 = 0 then qn + � is an eigenvalue however largeqn may be.
19



A

epting EigenvaluesWe 
he
k en�2 as well as en�1 be
ause there is a short se
tion of 
odethat 
omputes the eigenvalues in the 2�2 
ase to high relative a

ura
y. SeeSe
tion 8.From Se
tion 3.4 en�1 is negligible if old en�1 � "2qn�1 or en�1 � "2�.Similarly en�2 is negligible if old en�2 � "2qn�2 or en�2 � "2�. By usingLi's reverse test we may negle
t en�1 if en�1 � "2qn and en�2 if en�2 �"2qn�1(qn=(qn+en�1)). This is be
ause the dqd algorithm on the 
ipped arrayyields dn = qn and dn�1 = qn�1qn=(qn + en�1). Sin
e a+ b � 2max(a; b) wehave invoked the following simple tests (perhaps these tests are too severe):if old en�1 � "2qn�1 or en�1 � "2(� + qn) then negle
t en�1if old en�2 � "2qn�2 or en�2 � "2�� + qn�1 qnqn + en�1� then negle
t en�2:Note that the se
ond test is only invoked when en�1 is not negligible, so thedivision is proper. We have softened the test on the old values by multiplying"2 by 104. This was the largest value that 
aused no deterioration in a

ura
yon our LAPACK test bed of matri
es.When en�2 is negligible the simple de
ating 
ode isbig = larger root of trailing 2� 2 submatrix (Se
tion 8)qn = qnqn�1=big + �qn�1 = big + �n = n� 2These simple 
odes be
ome more 
ompli
ated in the ping-pong implementa-tion dis
ussed in Se
tion 9. The 
ode that tests en�1 and en�2 is in a repeatloop so that 
ontrol passes out of this segment only when either n0 < i0 orelse neither en�1 nor en�2 is negligible. Goodstep is 
omplete if n0 < i0.6.2 Che
k for FlippingThe goal of the algorithm is to drive q(n0) to 0. If q(i0) < q(n0) then itseems plausible that 
onvergen
e would be faster if the array were 
ipped.In prin
iple one 
ould make more elaborate s
hemes for 
he
king whether20



the smallest eigenvalue is `lo
ated' near the top of the matrix. To introdu
ea bias against 
ipping we demand that1:5q(i0) < q(n0):A rival test would demand that 2q(i0)e(i0) < q(n0)e(n0� 1) before 
ippingbut so far we have used the simpler test.We make the 
he
k only after an eigenvalue has been de
ated at theprevious step (signaled by n0in > n0) or when the segment is `new', i. e. hasjust been passed from the outer while loop. After 
ipping we set dmin to�0 so that the 
ipped array is treated as `new'. Thusif (dmin < 0 or n0in > n0) thenif(1:5q(i0) < q(n0)) then
all Flipif (n0in:gt:n0) dmin = �0 end ifupdate emin and qmaxend ifend if6.3 Choi
e of ShiftAt an abstra
t level both qds (Rutishauser's qd with shifts) and dqds areequivalent to LR and two LR steps are equivalent to one QR step. So onemight expe
t 
onvergen
e rates to be similar. The advantage of dqds overthe other transforms is the auxiliary variable d and the fa
t that dmin is anin
reasingly good approximation to �min. Se
tion 6.3.2. The index of dmin(i. e. the index j su
h that dj = dmin) 
an also be useful in `lo
ating' �minbefore it migrates to the end of the array.The 
hief feature of the implementation given here is the de
ision todispense with dmin's index. To make up for this omission we unroll the lasttwo steps of dqds and re
ord dn, dn�1, dn�2 as well as dmin, dmin1, dmin2,where dmin1 = mini�n�1 di and dmin2 = minj�n�2 dj. These six values givethe index of dmin in the asymptoti
 regime when dmin = dn, or dn�1, ordn�2.It 
ould be the 
ase that the use of dmin's index 
an be made 
ost e�e
-tive, but that is for the future. 21



Our shift strategy is essentially one long if-statement giving a di�erentvalue to the shift � for ea
h of about 10 di�erent situations. Ea
h formulauses information from the previous dqds-transform, in parti
ular the last 3values of the auxiliary variable d.At the start of pro
essing a new segment of Z there is no previous trans-formation. This situation is signaled by dmin � 0. In early versions of thisprogram we used the obvious 
hoi
e� = 0when dmin < 0, be
ause we seek the smallest eigenvalue. Now we use theGersgorin shift when it positive.6.3.1 The Gersgorin ShiftIf the minimum point among all Gersgorin disks is positive then it serves asa better shift than 0. A straightforward 
omputation of this point mini(qi +ei �pqiei�1 �pqi+1ei) 
osts more than a dqds transform be
ause of all thesquare roots. Our shift strategy ensures that most of the time the minimumGersgorin point is negative. It is only when the e's are mu
h smaller thanthe q's that it is appropriate to 
onsider Gersgorin. We use a 
rude lowerbound qmin�2pqminemax be
ause qmin and emax are 
heap to 
ompute in theloop that �nds i0 at the start of a new segment. Moreover we only updateqmin and emax while qmin � 4emax so that, in most 
ases, this 
al
ulationstops almost immediately. In spe
ial 
ases (all q's > 0:01, all e's < 10�9) thisfeature is most valuable.6.3.2 Use of dminAt ea
h 
all of Goodstep there are four situations at ea
h 
hoi
e of shift: atStep 1 Eigtest found either 0, 1, 2, or more than 2 eigenvalues.The �rst situation is the basi
 one and the others are variations on the �rst.Before des
ribing the sele
tion we re
all some results on eigenvalue bounds.See [8, Se
tions 4.5 and 11.7℄.Let kxk = 1, � = �(x) = x�Ax, r = r(x) = Ax� x� for any symmetri
matrix A. Let � be the 
losest eigenvalue of A to � and let gap be thedistan
e of � from the rest of A's spe
trum. Then� > �� krk; (7)22



� > �� krk2=gap: (8)Our main appli
ation of this result is to a tridiagonal T with x = (0; : : : ; 0; 1)�.In that 
ase � = �n; krk = �n�1:In our appli
ation �2n�1 = qnen�1 and T = symmetrized UL, as shown atthe end of this subse
tion.We also re
all some results on the intermediate quantities dj 
omputedby the dqds transform with shift � . See [3℄.If � = 0 then 1dj = [(UL)�1℄jj < 1�min(UL) : (9)If � > 0 then �j(Û L̂) = �j(UL)� �;dmin � �min(Û L̂);1dj � [(Û L̂)�1℄jj:As � in
reases from 0 to �min(UL) so does dmin de
reasefrom 1=maxj [(UL)�1℄jj to 0:Thus the smaller the value of dmin the better it approximates �min(Û L̂) withequality when, and only when, dmin = 0. However dmin is always too bigand we would prefer to have a lower bound. Our program is set up to reje
t,as a failure, any dqds transform in whi
h dmin is not positive. The penaltyfor 
hoosing � too large is a wasted dqds transform, ex
ept in the 
ase oflate failure dis
ussed below, and in view of all this we use a fairly aggressive
hoi
e of shift and hope to keep failures at the 2 or 3% level.In order to keep the dqds transform as simple as possible we re
orddmin = min1�j�n dj but not its lo
ation. To make up for this loss we `unroll'the last two steps of the dqds transform and this yields, at no 
ost, 6 usefuld-values: dn, dn�1, dn�2, and dmin, dmin1, dmin2. Heredmin1 = min1�j�n�1 dj ;dmin2 = min1�j�n�2 dj :23



Our shift formulae make heavy use of these 6 values.It may turn out that giving up the pre
ise lo
ation of dmin, when it isless than n� 2, is a ta
ti
al error. More study is needed.One more rather subtle point must be borne in mind. Let Mn�1 denotethe leading prin
ipal (n � 1) � (n � 1) submatrix of M . Let Tn denote thesymmetrized version of UL = UnLn. ThenTn�1 6= sym(Un�1Ln�1):The matri
es di�er only in the last diagonal entries whi
h are respe
tivelyqn�1 + en�1 and qn�1. Now dmin1 approximates �min(Un�1Ln�1) while wewant to approximate �min(Tn�1). When dmin1 = dn�1 then we expe
t theasso
iated eigenve
tor of Un�1Ln�1 to be dominated by its last entry. Sowe sometimes use some fra
tion ' of dmin1 + 12en�1 as an approximation to�min(Tn�1). The 
hoi
e of ' has been a worry. We use ' = 0:75 but have notheory to ba
k it up.Now we turn to our shift sele
tion. It is a long if-then-else statement.In order to simplify expressions (for humans) we use�n = qn = dn; �n�1 = pqnen�1;�n�1 = qn�1 + en�1; �n�2 = pqn�1en�2�n�3 = pqn�2en�3:By taking en�1 as an approximate eigenve
tor of Tn�1 and using its resid-ual norm we 
on
lude that some eigenvalue ex
eeds �n�1 �p�2n�1 + �2n�2.This is easier for us than the Gersgorin value �n�1 � �n�1 � �n�2.In the a
tual 
ode n is repla
ed by n0.6.3.3 No Eigenvalues Found in Eigtest (n0in = n0)The variable n0in is the value of n0 on entry to Eigtest.Case 1. If dmin � 0 then � = �dmin.This is the 
ase 
orresponding to a new qd-segment. No old informationavailable. See Se
tion 6.3.1.Cases 2 and 3. dmin = dn and dmin1 = dn�1.24



This is the asymptoti
 
ase that determines the rate of 
onvergen
e (amisleading term when we strive for between 3 and 4 iterations per eigenvalue,on average). Our goal is to use (8) in the tests given in Se
tion 6.3.2 and sowe must appproximate �min(Tn�1)��n by a value gap1. To do this we guessat gap2 to approximate �min(Tn�2)� �n�1.gap2 = 34dmin2� �n�1:Now we estimate gap1 byif (gap2 > 0) and gap22 > �2n�2 thengap1 = �n�1 � �2n�2gap2 � dnelsegap1 = �n�1 �q�2n�1 + �2n�2 � dn;end ifFinally if (gap1 > 0 and gap12 > �2n�1) then� = max(dn � �2n�1gap1 ; 12dn) (Case 2)else (Gersgorin)8>>>><>>>>: x1 = maxf0; dn � �n�1g; row n;x2 = maxf0; �n�1 �p�2n�1 + �2n�2g; row n � 1;� = maxf13dn; minfx1; x2gg (Case 3)end ifNote that � � dn=2 (Case 2) or � � dn=3 (Case 3). Here lies the aggressionin our shift strategy.We expe
t Case 2 to o

ur often. The formulae are simpler than thosefor Cases 4 and 5 and give good a

ura
y. Nevertheless it is possible that theapproximations used for Case 4 would be even better when used in Case 2.More study is needed.Case 4. Not quite asymptoti
. 25



(a) dmin = dn but dmin1 6= dn1.(b) dmin 6= dn but dmin1 = dn1.WarningThe long analysis that follows for (a) and (b) uses new re�ned bounds andleads to only 20 lines of 
ode and approximately 4 divisions. It may beskipped without loss of 
ontinuity. LetL = bidiag� pq1 pq2 pq3 : pqn�1 pqnpe1 pe2 : : pen�1 � :For (a) 
onsider one step of inverse iteration starting with endn and yieldingz. (LtL� �I)z = L̂L̂tz = endn = enq̂n:Sin
e L̂�1en = en=pq̂n,L̂tz = enpq̂n ;z(n) = 1;z(i) = �z(i� 1)pêi=q̂i; i < n:As shown in Se
tion 7, the Rayleigh quotient �(z) satis�es�(z) = dminkzk2 ;and kL̂L̂tz � z�(z)kkzk = �(z)pkzk2 � 1:Thus there is an eigenvalue � of L̂L̂t satisfying�(z)(1 �pkzk2 � 1) � � � �(z): (10)and this fun
tion is a useful lower bound provided that kzk2 � 2. In theabsen
e of a satisfa
tory estimate ofgap(�) = minfj�� �j : � 6= �; � an eigenvaluegwe do not employ a re�ned bound. 26



How a

urately should ' = kzk2� 1 be estimated? The re
urren
e for 'is simple: initial 
ondition: term = ên�1=q̂n�1; ' = 0;' = '+ termfor i = n� 2; 1;�1 doold = term (11)term = term � êi=q̂i' = '+ termend forOur �rst 
onsideration is to run the loop until two 
onse
utive terms are lessthan 1% of the 
urrent '; repeat until100max(term; old) < ':If ' � 1 then the lower bound in (10) is negative and our e�ort is wasted.However, in the spirit of an aggressive strategy we wish to 
hoose � � dmin=4in these 
ases. Consequently when ' � 9=16 we will not employ (10). So werepeat the for loop until100max(term; old) < ' or 9=16 < ':We then in
rease the 
omputed ' by 5% to 
ompensate for trun
ating theloop. Finally set 
 = dmin andif (' < 9=16) thenshift = 
 1 �p'1 + ' (12)elseshift = 
4end ifFor (b) (dmin 6= dn but dmin = dn1) 
reate a twisted fa
torizationLtL � �I = NN t with twist at n � 1. Here N t = L̂t ex
ept for the last two27



rows shown below. See [7℄. N requires three new values: 
n�1; oen�1; oqn. Thelast three rows of the right twisted fa
tor N t are shown here.264 pq̂n�2 pên�2 00 p
n�1 00 qoen�1 qoqn 375By equating entries in LtL� �I = oLt oL we �ndoqn= qn � � ; oen�1= qnen�1= oqn; sn�1 = �� (1 + en�1= oqn)and, from the 
ode given in Case 5 below,
n�1 = dn�1 + sn�1 + �;= dn�1 + [sn(en�1= oqn)� � ℄ + �= dn�1 � �en�1=(qn � � ) < dn�1 = dmin: (13)Our estimate of �min is based on one step of inverse iteration starting fromen�1
n�1 (in 
ase (a) we started with endn):(LtL� �I)z = NN tz = en�1
n�1:Sin
e Nen�1 = en�1p
n�1,N tz = en�1p
n�1;z(n� 1) = 1;z(i) = �z(i� 1)pêi=q̂i; i < n� 1;z(n) = �qoen�1 = oqn= �pqnen�1=jqn � � j:In addition �(z) = 
n�1kzk2kNN tz � z�(z)kkzk = �(z)pkzk2 � 1:28



We 
an use the same loop (11) as in Case (a) but with di�erent initial 
on-ditions, namely term = ên�2=q̂n�2' = z(n)2 = qnen�1=(qn � � )2:Compute 
n�1 from (13), set 
 = 
n�1, and the same 
ode (12) may be usedas in Case (a) for shift.Case 5. dmin = dn�2.This 
ondition suggests the use of a twisted fa
torization of LtL��I withtwist at position n � 2. The upper part of the fa
torization is given by L̂L̂tbut we do not have the lower part. Write LtL� �I = oLt oL. The lower part ofoL is 26664 qoen�3 qoqn�2qoen�2 qoqn�1qoen�1 qoqn 37775and the di�erential stationary algorithm yieldssn = ��oqn= = qn + snoen�1 = qn(en�1= oqn)sn�1 = sn(en�1= oqn)� �oqn�1 = qn�1 + sn�1oen�2 = qn�1(en�2= oqn�1)sn�2 = sn�1(en�2= oqn�1)� �:29



That is all that we need. The lower part of the twisted fa
tor N t is266666666664 pq̂n�3 pên�3p
n�2qoen�2 qoqn�1qoen�1 qoqn 377777777775 :The quantity 
n�2 is given by
n�2 = q̂n�2+ oqn�2 �(qn�2 + en�2 � � )= (dn�2 + en�2) + (qn�2 + sn�2)� (qn�2 + en�2 � � )= dn�2 + sn�2 + �= dn�2 + [sn�1(en�2= oqn�1)� � ℄ + �= dn�2 + sn�1(en�2= oqn�1);= dn�2 + sn�1[en�2=(oqn�1 +sn�1)℄:Write the twisted fa
torization as LtL� �I = NN t and de�ne z byNN tz = en�2
n�2; z(n� 2) = 1:Thus N tz = en�2p
n�2;z(n� 1) = �qoen�2 = oqn�1z(n) = �z(n� 1)qoen�1 = oqn =qoen�2oen�1 =(oqn�1 oqn)z(i) = �z(i+ 1)pêi=q̂i; i < n� 2�(z) = 
n�2=kzk2z(n� 1)2 + z(n)2 = oen�2oqn�1  1 + oen�1oqn != en�2qn�1(qn�1 + sn�1)2 �1 + en�1qn(qn + sn)2� :30



Thus the new entries, oq and oe, are not needed expli
itly and the variables = sn�1 = �� (1 + en�1=(qn � � )) suÆ
es.As in Case 4 we sum the z(i)2; i 6= n � 2, until the sum settles down to1% or ex
eeds 9=16 whi
hever 
omes �rst. In the latter 
ase we use 14� as adefault shift. Otherwise, using our latest estimate of kzk2,� = ��1 �pkzk2 � 1� � 
n�2 �1�pkzk2 � 1� =kzk2:Re
all that sn�1 < 0 and the virtue of the approximations used above lies inthe use of 
n�2 and 
n�2 < dn�2 = dmin.Case 5 
osts approximately 5 divisions (3 for the loop).Case 6. dmin 6= dn nor dn�1 nor dn�2.This is the typi
al situation in early stages. Too mu
h 
aution 
an provokevery slow 
onvergen
e, too little 
aution provokes too many failures. Oures
ape is to in
rease the fra
tion of dmin used if Case 6 o

urred at theprevious step. This information is available free of 
harge.if (Case 6 last step) thenf = 14 + 34felse if (Case 6 just failed)f = 112elsef = 14end if� = f � dminLet us 
onsider a few instan
es of Case 6. If dmin is mu
h too large so thatthe sele
tion � = 14dmin 
auses failure, and not a late failure, then � is resetto 14� , i. e. dmin=16. If that su

eeds we use � = 112 (new dmin) the nexttime. On the other hand if dmin is 
lose to �min and �min � maxj ej thenimprovement with dmin=4 will be modest be
ause the shift is too 
autious.However the next iteration uses (1=2) (new dmin) and, after that, if Case 6persists, (2=3)(new dmin) and then (7=9)(new dmin). At some stage eitherCase 6 no longer holds or a failure o

urs and � is redu
ed.31



The treatment of Case 6 is the weak point of this implementation. If theprogram is given a qd-array that has almost 
onverged (small e's) to eigenval-ues in non-monotoni
 order then the 
al
ulation will reorder the eigenvaluesslowly. The smaller the e's the slower is the reordering. Fortunately these
ases seem to be rare.6.3.4 One Eigenvalue Found in Eigtest (n0 = n0in � 1)We note that the values dn and dmin refer to the eigenvalue a

epted inEigtest and de
ated. Thus we are in the position of `no eigenvalues found'Se
tion 6.3.3 but with less information. Essentially dmin  dmin1, dn  dn�1 , et
. We 
ould try to imitate the strategy in Cases 2 and 3 but withno natural 
andidate for gap2. Instead we use a more powerful but moreexpensive 
hoi
e that we 
all re�ned Rayleigh quotient and des
ribe, in de-tail, in Se
tion 7. Stri
tly speaking this is not an O(1) formula for � but, inextensive tests, it 
ost no more than 6 divisions (the minimum is 4).Cases 7 and 8. if (dmin1 = dn�1 and dmin2 = dn�2) then
ompute � (Rayleigh quotient) and krkgap = 12dmin2 � �if (gap > 0 and gap2 > krk2) then� = max��� krk2=gap; 13dmin1�else� = max��� krk; 13dmin1�end ifend ifThese 
hoi
es 
orrespond to formulae (8) and (7) at the beginning of Se
-tion 6.3.2. 32



Case 9, non-asymptoti
 
ase.� = 8<: 12 dmin1; if dmin1 = dn�1;14 dmin1; otherwise:6.3.5 Two Eigenvalues Found in Eigtest (n0 = n0in � 2)In this situation dn; dn�1; dmin1 all refer to de
ated quantities. However there�ned Rayleigh quotient option is available. For gap we use the Gersgorindisk for the 
urrent �n�1 provided that en�1 < qn�1=2.Case 10, asymptoti
 
ase.if (dmin2 = dn�2 and 2en�1 < qn�1) then
ompute � (Rayleigh quotient) and krkgap = �n�1 � �n�2 � �if (gap > 0 and gap2 > krk2) then� = max�� � krk2=gap; 13dmin2�else� = max��� krk; 13dmin2�end ifend ifThese 
hoi
es 
orrespond to formulae (8) and (7) at the beginning of Se
-tion 6.3.2.Case 11, non-asymptoti
 
ase. � = 14 dmin2.6.3.6 More Than Two Eigenvalues Found in EigtestSet � = 0.6.4 Failure LoopIf � > �min(UL) then dj < 0 for some j < n in the dqds transform.33



The o

urren
e of NaN (Not a Number)Suppose that q̂i > 0 for i < j, but q̂j = 0. Thendj = �ej < 0temp = qj+1=q̂j = +1êj = ej � temp = +1dj+1 = dj � temp� � = �1q̂j+1 = dj+1 + ej+1 = �1temp = qj+2=q̂j+1 = �0êj+1 = ej+1 � temp = �0dj+2 = dj+1 � temp� � = (�1) � (�0)� � = NaN:Thus division by 0 for j < n � 2 
auses all variables after dj+2 to be NaN,in
luding dmin. Our response is to set � = 0. The test is as followsif (dmin 6= dmin) then f go to safedqdg end if:In IEEE arithmeti
 NaN is the only value not equal to itself. The payo� forhaving NaNs is that our inner loop in dqds is free of tests.Convergen
e Masked by Negative dnSometimes all values of d are positive ex
ept the last whi
h is so smallthat we have 
onvergen
e, in parti
ular � + qn is evaluated as �. In su
h a
ase it is a pity to invoke another dqds transform just be
ause dn = qn < 0.if (dmin < 0 and dmin1 > 0 and ên�1 is negligibleand jq̂nj is negligible) thenq̂n  � 0dmin � jdminjend ifNote that with the ping-pong implementation (Z �! Ẑ, Ẑ �! Z) q̂ andê here, will be
ome q and e at the next invo
ation of Eigtest and will for
ede
ation.Late failureIf dmin1 > 0 but dmin = dn < 0 then we have `late failure'. This wasintrodu
ed by Rutishauser in [10℄ and spe
ialized to our 
ase in [3℄. There34



it is shown that � + dmin is an extremely a

urate lower bound on �min sothis is our next shift and is guaranteed to su

eed.Early failureWhen dmin1 < 0 then we set �  �=4 and try again. This is a somewhatpani
ky rea
tion be
ause in many 
ases � is less than 0.1% too big. Howeverthere are 
ases when � is mu
h too large and we want a rapid des
ent of �to 0. We allow two su

essive early failures before we set � = 0 to ensuresu

ess.Here is the pseudo-
ode for this segmentrepeat
all Dqds(�; dmin)it = it+ 1if (dmin 6= dmin) then� = 0else if (dmin < 0) thenif (two times here) then� = 0else if (dmin1 > 0) then� = � + dminelse� = 14 �end ifend ifuntil dmin � 06.5 Che
k for a SplitIn the 
ontext of a ping-pong implementation (Z ! ZZ; ZZ ! Z) we only
he
k for splits after `pong' steps ZZ ! Z. This is be
ause it is only e-valuesthat are marked with ��, not ee-values. Re
all that it is only after a 
all toSplt
k that the top index i0 
an in
rease. See Se
tion 3.35



The 
ode only invokes this 
he
k if old emin < 104 "2 old qmax or if emin < "2�and so a split is likely to be found. The test must also update emin and qmaxin 
ase a split is found.7 Rayleigh Quotient Residual BoundsWe present some new eigenvalue bounds that exploit the Cholesky fa
toriza-tion and so we begin with more generality than needed for dqds. Let u beany unit ve
tor and 
onsider one step of inverse iteration using any symmet-ri
 matrix A. We invoke a spe
i�
 A later. We employ a slightly unusualnormalization. Write Av = u
; vtu = 1:Then �(v) = vtAvkvk2 = 
kvk2and sor = r(v) = (Av � v�)kvk ;= u
kvk � v
kvk3 ;= 
kvk3 �ukvk2 � v� :krk = 
kvk3 �kvk4 + kvk2 � 2kvk2�1=2 ; ( be
ause vtu = 1)= 
kvk2 �kvk2 � 1�1=2 = � �kvk2 � 1�1=2 :Invoke the lower bound (8) from Se
tion 6.3.2. The eigenvalue � 
losest to �satis�es � � �� krk2gap= � �1� (kvk2 � 1)�gap � : (14)The 
loser kvk is to 1 the better is the bound. Now apply (14) to the 
asewhen A = BtB; u = (0; : : : ; 0; 1)t; and dmin = dn:36



HereB = bidiag� pe1 pe2 : pen�2 pen�1pq1 pq2 : : pqn�1 pqn � :The 
ondition dmin = dn (= qn) suggests that the last entry in v, v(n) =utv = 1, is dominant. Solving BtBv = u
shows that 
 = qn = dn and v(j) = �pej=qj � v(j + 1), j = n � 1; : : : ; 2; 1.Denote v(1 : n� 1) by x to �ndkvk2 = 1 + kxk2;= 1 + n�1Xj=1  n�1Yi=j eiqi! :and � = qn1 + kxk2 ;so that � � ��1 � kxk2�gap � :Our idea is to use this formula provided thatx2n�1 = en�1qn�1 � 12and to 
al
ulate kxk2 
orre
t to 1% More pre
iselyj = n� 1prod = ejqjsum = prodrepeatj = j � 1oldprod = prodprod = prod ��ejqj�sum = sum+ produntil (100 �max(prod; oldprod) < sum)sum = 1:05 � sum37



Note that we 
ontinue until two su

essive terms are less than sum=100 andthen we in
rease our estimate of kxk2 by 5%. We measured the number oftimes through the loop for our test matri
es and the largest value was 3. Toestimate gap we use the default pro
edure in Se
tions 6.3.4 and 6.3.5;gap =8<: 34dmin2� �; one eigenvalue found�n�1 � �n�2 � �; two eigenvalues found:Finally if (gap > 0 and gap2 > �2 � kxk2) thenuse (8) for � (�� krk2=gap)elseuse (7) for � (�� krk)end if8 The 2� 2 CaseThere is a spe
ial subroutine SLAS2 in the BLAS for the a

urate 
ompu-tation of the singular values of a 2 � 2 bidiagonal matrix. To invoke it herewould require the extra
tion of pq1, pq2, pe1 and the subsequent squaringof the output. There has to be a better way. There is also a subroutineSLAE2 for 
al
ulating the eigenvalues of a 2 � 2 real symmetri
 matrix butits use would not guarantee high relative a

ura
y.Our response is to ta
kle the 
ase on its own merits. We seek the eigen-values of � q1 + e1 pq2e1pq2e1 q2 � :We may arrange that q1 � q2. Rutishauser's formulae for the eigenvalues,see [8, Chapter 9℄, are q1 + e1 + tpq2e1; q2 � tpq2e1where t � 0 is the smaller root of the quadrati
t2 + 2� Æpq2e1� t� 1 = 038



and Æ = (q1 � q2) + e12 � e12 :A standard formula for t is t = pq2e1Æ +pÆ2 + q2e1and the larger root r may be written asr = q1 + e1 + q2e1� : (15)In order to avoid large intermediate quantities � is 
omputed from� = � Æ[1 +p1 + (q2e1=Æ)=Æ℄; if q2(e1=Æ) < Æ;Æ +pÆ(Æ + q2e1=Æ); otherwise :Note that e1=Æ < 2 and � > pq2e1. So the third term in (15) satis�esq2e1� � pq2e1 � pq1e1 � 12(q1 + e1)and is below the mean of the �rst two terms. The smaller root 
omes fromdividing the produ
t q1q2 by the larger root r.From Rutishauser's formulae the smaller root isq2 � tpq2e1 = pq2(pq2 � tpe1)and 0 � t < 1. Thus if e1 � (ma
heps)2q2 then the eigenvalues are q1 and q2to working pre
ision and there is no need to 
ompute �. The only subtra
tionin the whole 
al
ulation is q1 � q2 � 0.High relative a

ura
y follows from the fa
t that our algorithm 
an beinterpreted as one step of the dqds algorithm with shift s = the smaller rootand dqds enjoys high relative a

ura
y in the nonnegative 
ase, see [3℄. Morepre
isely q̂1 = �, q̂2 = 0, and the larger root isr = q̂1 + ê1 + s = ((q1 � s) + e1) + e1q2̂q1 + s:39



Pseudo
ode for the 2� 2 Caseif (q1 < q2) then swap (q1; q2) end ifif (e1 > ma
heps2q2) thent = ((q1 � q2) + e1)=2s = q2(e1=t)if (s � t) thens = q2e1=(t(1 +p1 + s=t))elses = q2e1=(t+pt(t+ s))end ift = q1 + (s+ e1)q2 = q2(q1=t)q1 = tend ifroot1 = q1(+�)root2 = q2(+�)9 Ping-pong ImplementationRutishauser realized that in the 
ontext of a 
ontinued fra
tion it is some-what unnatural to give di�erent names, q and e, to the variables and so heintrodu
ed Z = (q1; e1; q2; e2; : : : ; en�1; qn; en)instead. This format a
knowledges the `lo
ality' in qd algorithms. The nextstep is to allo
ate two arrays, say Z and ZZ to the algorithm. So that dqdsmaps Z to ZZ or vi
e versa.There are two bene�ts that a

rue from doubling the storage.1. The ping-pong implementation alternates the mappings Z ! ZZ andZZ ! Z and wastes no time simply moving variables from one lo
ationto another.2. In 
ase of failure, when the shift � ex
eeds �min, it is trivial to try againwith a new shift. The old array was not altered.40



We have gone one more step in this dire
tion. In order to improve `lo
al-ity' even more we use one array Z of length 4n, de�ned as followsZ = (q1; qq1; e1; ee1; q2; qq2; e2; ee2; : : : ; qn; qqn; en; een)where the last two values en and een are treated as zero. This notation ishard on humans but ni
e for 
omputers. The asso
iation isq(j) = Z(4j � 3); e(j) = Z(4j � 1)qq(j) = Z(4j � 2); ee(j) = Z(4j):To distinguish between ping and pong we use the integer variable pp; pp = 0for ping, and pp = 1 for pong. Here is the dqds transform in Z notationwithout the 
ode for dmin and emin.d = Z(1 + pp) � �for j = 1; n� 1Z(4j � pp � 2) = d+ Z(4j + pp � 1)temp = Z(4j + pp + 1)=Z(4j � pp � 2)Z(4j � pp) = Z(4j + pp � 1) � tempd = d � temp� �end forZ(4n � pp � 2) = dIn order to avoid unne
essary index 
al
ulations the loop is written out twi
e,one for pp = 0, the other for pp = 1. The 
al
ulation moves through Z witha lo
al range of 6 indi
es at most. The reader is referred ba
k to Se
tion 1.1that justi�es the use of this fast dqds 
ode when safemin � qmax � emin.The LAPACK 
onvention that the user supply q's and e's as separatearrays prevents the use of Rutishauser's sensible idea of a single qd arrayand neutralizes our extension to permit the whole algorithm to operate ona single array Z of length 4n. Our approa
h would not 
onfer an advantageuntil 4n ex
eeds the 
a
he size.We have experimented with writing separate subroutines for ping andpong, thus removing the variable pp from the 
ode. On some platforms thedi�eren
e in speed is noti
eable but not enough to persuade us to use it.A test in the inner loop, (if d � 0) return ,is needed for arithmeti
 unitsthat do not 
onform to IEEE754. See Se
tion 13 for more details.41



10 PrologueCautious programming requires that we 
he
k that the input is proper,namely1. initial index � �nal index2. 0 � Z(i), all i.If either 
ondition fails 
al
ulation is halted immediately with err set to anappropriate value.However there is more work to do. The top subroutine expe
ts to re
eivethe data in Rutishauser's Z format, q(1); e(1); q(2); e(2); : : : and it must berearranged for the ping-pong implementation des
ribed in Se
tion 9. This iseasily done by moving items from last to �rst, i. e.for k = 2 � n; 2; �1Z(2 � k) 0Z(2 � k � 1) Z(k)Z(2 � k � 2) 0Z(2 � k � 3) Z(k � 1)end forAt the same time we 
ompute the sum of the data whi
h happens to be thetra
e of LU . At this time diagonal arrays are easily dete
ted.Note that if the tra
e is 0 then all the eigenvalues are 0 and the program
an terminate immediatelywith no 
al
ulation. Finally, if tra
e > 0 then it issensible to s
ale Z by 2m so that tra
e �2m is 
lose to (over
ow threshold)1=2.This devi
e makes better use of the exponent range of the number represen-tation but 
are must be taken to avoid over
ow in intermediate quantities
reated in 
hoosing shifts.11 EpilogueAt the start of EpilogueZ = (q1; qq1; e1; ee1; q2; qq2; e2; ee2; : : :)42



but all the e's are negligible. The eigenvalues are in the q's.Move all q's to the front: Z(k)  Z(4k � 3), k = 1; n. Then we sort theq's, if ne
essary, into monotone de
reasing order and, at the same time, wenote the positions of any breaks in monotoni
ity in the q's. This knowledgeis relevant if a standard sort routine is eventually repla
ed by a merge-sortroutine. m = 0for k = 1; nif (Z(k � 1) < Z(k)) thenm = m+ 1Z(3 � n+m) = kend ifend forFinally any s
aling done in Prologue is undone and the sum of the eigenvaluesis 
omputed and stored in Z(2n + 1) for 
omparison with the tra
e that isstored in Z(2n + 2). The value of m is stored in Z(3n).12 Absolute or Relative A

ura
y?The attra
tion of the dqds algorithm is that it 
an 
ompute all the eigenvaluesof a positive array with high relative a

ura
y with either small or no penaltyin time 
ompared with, say, the root free QR algorithm. That is �ne, butsuppose that the user is satis�ed with absolute a

ura
y and wants speed.How mu
h faster will our algorithm perform if the a

eptan
e tests in Eigtestare relaxed? In addition we ask whether our algorithm 
an be modi�ed ni
elyto allow either 
hoi
e, relative or absolute, by the user? More pre
isely wedo not want a parameter `absrel' passed down into the low level 
ode. ThediÆ
ulty is that for relative a

ura
y the test for 
onvergen
e is qn < ��and � is 
hanging at ea
h step whereas for absolute a

ura
y we demandqn < �kZk.An ingenious solution was proposed by I.S. Dhillon. Create an extraparameter eigtest and update it in the 
ode in exa
tly the same way as �.However eigtest is initialized to 0 for relative a

ura
y and to maxi(qi + ei)for absolute a

ura
y. With this me
hanism eigtest gradually rises from43



maxi(qi + ei) to maxi(qi + ei) + �max < 2�max. Any quantity less than" eigtest is set to zero.We found only a 10% or 15% speed up when using absolute a

ura
yinstead of relative. This was deemed insuÆ
ient improvement to warrantin
lusion.13 Non-IEEE PlatformsIf the 
omputer system does not permit 
oating point ex
eptions su
h as`divide by zero' or `0 �1' then it is ne
essary to make a test (d < 0) inside theinner loop of dqds. Su
h a test prevents the eÆ
ient pipelined implementa-tion of the 
ode and 
auses a signi�
ant degradation of performan
e on somema
hines. The reader is referred ba
k to Se
tion 1.1 where a two divisionversion of dqd is presented. To make the 
ode safe it is ne
essary to insertan extra test immediately after q̂(i) = d + e(i),if (d < 0) return:To permit our 
ode to run on any platform we pass a logi
al parameter ieeeto the dqds subroutine. If ieee is true then dqds (1 /div) is used, otherwisethe 2 division plus test version des
ribed here.This slowdown in dqds (2�) raises a subtle point. The dqd transform(� = 0) 
annot fail and there is no need for the test (d < 0). Now ithappens that ea
h iteration after whi
h an eigenvalue is dete
ted usuallyemploys a tiny or zero value of � . This suggests an alternative strategy forthe subroutine Eigtest. Instead of looking for negligible en�1 (de
ation) theprogram should 
he
k for 
onvergen
e (qn negligible) and when this o

ursthe next iteration invokes dqd, not dqds, to make en�1 negligible. On average25% of the iterations would use dqd with a resulting redu
tion in exe
utiontime. We have not implemented this strategy in order to keep the IEEE andnon-IEEE versions as 
lose as possible to ea
h other.14 Fatal ErrorsIf the program terminates satisfa
torily the value of err is 0. On exit, apositive value of err signals premature termination 
aused by a fatal error.The �rst two 
ases 
on
ern invalid data. Table 1 below gives the meaningatta
hed to positive values. Re
all the nin is the length of the q-array.44



err Subroutine Meaning1 prologue nin < 12 prologue bad data: e(i) � 0 or q(i) � 0, for some i.3 geteigs a split was marked by a positive value in e4 geteigs 
urrent blo
k of Z not diagonalizedafter 10n iterations (in inner while loop)5 geteigs termination 
riterion of outer while loopnot met. Program 
reated more than ninunredu
ed blo
ks.Dis
ussion of Table 1.2. The program is intended to run on positive data, q(i) > 0, i = 1; nin,e(i) > 0, i = 1; nin � 1. However zero values of e indi
ate that Z is adire
t sum of unredu
ed subarrays and the program deals with this 
asenaturally. We do not allow zero values of q be
ause su
h data does not
ome from the LU fa
torization of a positive de�nite tridiagonal matrix.The values 3 and 5 should never o

ur. They indi
ate violations ofthe logi
 of the 
ode.3. The program inspe
ts the e-array for negligible values. Any su
h valueis overwritten by �(
urrent value of �, the a

umulated shifts). Whenthe time 
omes to pro
ess a segment that was split o� at an earlier stagethe 
ode sear
hes from the bottom for the �rst nonpositive e-value andsets � to its negation. This value should never be negative.4. We have set a maximumvalue, 
alled big, on the number of dqds trans-formations allowed to diagonalize an unredu
ed se
tion. We have setbig to 10n for an array of length n. This is equivalent to 5n QR itera-tions ex
ept that our shift strategy is more powerful than the Wilkinsonshift for tridiagonals. The 
ode terminate with err = 4 if 
onvergen
eo

urred but was not dete
ted by Eigtest.5. The outer while loop is over the unredu
ed subarrays of Z. With ninentries in q the maximal number of subarrays is nin. So whila shouldnever attain the value nin+ 1. 45



15 Timings and ComparisonsAs mentioned in Se
tion 1 the 
ode may be used to 
ompute singular valuesof a bidiagonal matrix B as well as the eigenvalues of a symmetri
 tridiagonalmatrix T.Here are the 
odes used in the 
omparisons.DBDSQR 1.0 (the original LAPACK 1.0 
ode for singular values). Thisis based on the Demmel-Kahan (1991) algorithm whi
h uses a neatly 
odedbidiagonal QR transformation with 0 shift to 
ompute the small singularvalues to high relative a

ura
y. When the singular values less than kBk=103have been found the program swit
hes to the standard shift strategy for thesake of eÆ
ien
y.DSTERF (the Pal-Walker-Kahan version of root free QR). This is LA-PACK's 
urrent program for 
omputing eigenvalues of T. In general the smalleigenvalues are not 
omputed to high relative a

ura
y be
ause they are notdetermined to high relative a

ura
y by the entries in T.DLASQ1 2.0 (the LAPACK 2.0 routine for singular values of B). This isthe �rst implementation of dqds. Work on the 
ode was begun in Berkeley in1992 and was 
ompleted independently by K.Vin
e Fernando in 1994. The
ode does not assume IEEE arithmeti
. The program was delivered withoutenough do
umentation to understand the reasons for the various features andit turned out to be signi�
antly slower than DSTERF (=PWK) for �ndingeigenvalues. This presents the user with a trade-o� between high relative a
-
ura
y (when the data warrants it) and speed whereas the original promiseof the dqds algorithm (see [3℄) was that it might dominate PWK on both
ounts. The new 
ode is sometimes faster and sometimes slower than PWKbut the timings are 
lose ex
ept on the SUN Ultra 30.We now mention a few results from extensive tests on the new version.Arithmeti
 E�ort. On all 
ases in our 
hallenging 
olle
tion of test matri
es# divisions < 3n2;where n is the order of the matrix. It is more informative to give an operation
ount rather than the number of iterations. The 
oeÆ
ient 3 was a pleasantsurprise. 46



Reje
tion rate. (shift ex
eeds �min) This varies between 0 and 6% but isusually under 2% ex
ept for the nastiest test matri
es. Re
all that the shiftstrategy must balan
e the (obvious) 
ost of a reje
ted transform and the(subtle) 
ost of shifts that are too 
autious. Clearly there is room for furtherstudy of this feature.IEEE platforms. There is a signi�
ant performan
e payo� for using IEEEarithmeti
, in parti
ular in�nity and NaN arithmeti
 (see details below). TheIEEE mode permits the 
ode to remove a test from the inner loop of the dqdstransform, see Se
tion 13.Notation. Hen
eforth IEEE and non-IEEE refer to the LAPACK 3.0 DLASQ1subroutine (it supersedes DLASQ1 2.0). The average speedups are as followsin Table 1, for 3 ma
hines: an HP712, IBM RS6000, and SUN Ultra 30 (theresults on the HP712 and IBM RS6000 were obtained with the LAPACK 3.0
ode, June 30, 1999, while on the SUN Ultra 30 with the LAPACK 3.0 
ode,modi�ed on De
ember 14, 1999).WarningThere are ma
hines (SGI, for example) whi
h provide an IEEE option onlyby slowing down every arithmeti
 operation and thus negating the goal ofthe IEEE 
oating point standard. On su
h ma
hines the non-IEEE versionof the new 
ode should be 
hosen.HP712 IBM RS6000 SUN Ultra 30non-IEEE / IEEE 1.70 1.80 1.28DLASQ1 2.0 / IEEE 2.97 3.16 2.64DSTERF / IEEE 0.92 1.02 0.65Table 1: IEEEPerforman
e Comparisons.Here are the results on 9 test matri
es, whi
h are des
ribed below, for thesame ma
hines used in Table 1.Here is the how the tables are organized. There are 6 rows:Row (1) matrix dimension 47



Row (2) Runtime(IEEE) in se
ondsRow (3) Runtime(non-IEEE) / Runtime(IEEE). This measures the bene�t ofIEEE arithmeti
. High relative a

ura
y is attained.Row (4) Runtime(DLASQ1 2.0) / Runtime(IEEE). The ratios measure advan-tages of the new 
ode for IEEE ma
hines.Row (4*) Runtime(DLASQ1 2.0) / Runtime(non-IEEE). The ratios measure therelative eÆ
ien
y of the two versions of dqds whi
h ignore the advan-tages of IEEE arithmeti
.Row (5) Runtime(DBDSQR 1.0) / Runtime(IEEE). The ratios measure im-provement over the Demmel-Kahan (QR) algorithm.Row (6) Runtime(DSTERF) / Runtime(IEEE). This row shows that there is lit-tle or no time penalty (ex
ept on SUNs) for 
omputing the eigenvaluesto high relative a

ura
y.There are 10 
olumns, the last nine for the 9 test matri
es, and the �rst forthe Average over all these. All runs are double pre
ision.HP712From Table 2, we see that IEEE speeds up the 
ode 27% to 83%, 70% onaverage. The speed up over DLASQ1 2.0 is 1.40x to 7.48x, average 2.97x.The speedup over the DBDSQR 1.0 averages 4.88x. The 
ode is sometimesfaster and sometimes slower than DSTERF, 8% slower on average, but fasterif Matrix #4 is omitted.IBM RS6000From Table 3, we see that IEEE speeds up the 
ode 57% to 102%, 80% onaverage. The speed up over DLASQ1 2.0 is 1.34x to 8.52x, average 3.16x.The speedup over DBDSQR 1.0 averages 5.37x. The 
ode is sometimes fasterand sometimes slower than DSTERF, 2% faster on average, 8% if Matrix #4is omitted.SUN Ultra 30From Table 4, we see that IEEE speeds up 34%, 28% on average. The speedup over DLASQ1 2.0 is 1.15x to 7.82x, average 2.64x. The speedup over48



Avg #1 #2 #3 #4 #5 #6 #7 #8 #9(1) 330 494 496 500 966 1687 2000 2000 2053(2) 0.08 0.21 0.25 0.01 0.77 2.59 3.92 3.72 2.95(3) 1.70 1.61 1.78 1.83 1.27 1.73 1.77 1.75 1.76 1.82(4) 2.97 1.40 7.48 1.78 4.18 1.57 1.60 1.40 1.52 5.82(4*) 1.78 0.87 4.20 0.97 3.29 0.91 0.90 0.80 0.86 3.20(5) 4.88 3.36 4.51 8.82 3.00 4.66 4.72 5.10 4.62 5.14(6) 0.92 0.66 1.01 1.21 0.27 0.99 0.99 1.09 1.01 1.09Table 2: HP712Avg #1 #2 #3 #4 #5 #6 #7 #8 #9(1) 330 494 496 500 966 1687 2000 2000 2053(2) 0.08 0.20 0.24 0.01 0.73 2.68 4.36 3.88 2.85(3) 1.80 1.68 1.92 1.95 1.57 1.89 1.85 1.56 1.79 2.02(4) 3.16 1.48 8.52 1.95 5.29 1.82 1.69 1.34 1.59 4.73(4*) 1.74 0.88 4.44 1.00 3.37 0.96 0.91 0.86 0.89 2.34(5) 5.37 3.68 4.90 9.55 5.43 5.17 4.76 4.78 4.66 5.44(6) 1.02 0.69 1.23 1.24 0.57 1.21 1.11 0.97 1.12 1.10Table 3: IBM RS6000DBDSQR 1.0 averages 2.75x. The 
ode is 35% slower than DSTERF onaverage, 31% if Matrix #4 is omitted.Avg #1 #2 #3 #4 #5 #6 #7 #8 #9(1) 330 494 496 500 966 1687 2000 2000 2053(2) 0.04 0.08 0.06 0.004 0.40 1.40 1.94 2.04 1.57(3) 1.28 1.23 1.34 1.29 1.20 1.26 1.28 1.33 1.27 1.28(4) 2.64 1.23 7.82 1.35 4.61 1.25 1.27 1.15 1.19 3.91(4*) 2.06 1.00 5.85 1.04 3.86 0.99 0.99 0.86 0.94 3.04(5) 2.75 2.11 3.29 3.74 2.24 2.54 2.51 3.03 2.46 2.81(6) 0.65 0.51 0.89 0.72 0.34 0.66 0.64 0.77 0.65 0.71Table 4: SUN Ultra 3049



Des
riptions of test matri
es: all ex
ept #7 and #8 have 
lusters of 
losevalues.#1 
330. This is a glued Wilkinson matrix-type bidiagonal B. Start with an11 by 11 bidiagonal with diag = (1,11,21,31,41,51,41,31,21,11,1) and 10o�-diagonal 1's. 30 
opies of this are joined together by an o�-diagonalentry 
 = 10�4.The next 2 matri
es were produ
ed by Dr. I. S. Dhillon, IBM, Almaden.#2 inder 494. The eigenvalues are sele
ted in geometri
 progression fromma
heps to 1.0 but with a random sign. The leftmost eigenvalue wasapproximately -0.86 so the matrix was translated by 0.86 to make itssmallest eigenvalue ma
heps. Consequently there is a 
on
entration at0.86.#3 inder 496. A tight 
luster of 247 eigenvalues at ma
heps, another tight
luster of 248 at 2.0, and a singleton at 1.0.#4 lapa
k 500. A random bidiagonal matrix with ea
h entry of the formex where x is 
hosen uniformly from the interval [2 ln(ulp); �2 ln(ulp)℄.For double pre
ision ulp � 2 � 10�16.Three symmetri
 tridiagonal matri
es supplied by George Fann of thePa
i�
 Northwest Laboratories (Washington). They arise from re-du
tion to tridiagonal form of matri
es generated in the modeling ofmole
ules using Moller Plesset theory. The �rst two arrived positivede�nite and the third was made so by a suitable translation. Their
hief feature is the presen
e of large 
lusters of eigenvalues agreeing tomore than three de
imals.#5 fann 966, #6 fann 1687, #9 fann 2053#7 tridiagonal [1 2 1℄ matrix.#8 bidiagonal from random normal(0,1) dense matrix (a "random" exam-ple).Additional experiments. 50



Additional tests were performed on the SUN Ultra 30, using matri
es de�nedin the same way as #4 above. We looked at the smallest eigenvalues ofthe matri
es to see the e�e
ts of under
ow, as shown in Tables 5, 6 and7. We have paid a modest performan
e penalty in order to guard againstunne
essary under
ows, see Se
tion 1.2, and these examples show the reward.DLASQ1 2.0 does not deliver high relative a

ura
y in the small eigenvaluesin these admittedly extreme 
ases.Referen
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