
Distributed Dimension Redu
tion Algorithmsfor Widely Dispersed Data�Faisal N. Abu-Khzamy, Nagiza Samatovaz, George Ostrou
hovz,Mi
hael A. Langstonyx, and Al GeistzAbstra
tIt is well known that information retrieval,
lustering and visualization
an often be improvedby redu
ing the dimensionality of high dimensional data. Classi
al te
hniques o�er optimalitybut are mu
h too slow for extremely large databases. The problem be
omes harder yet whendata are distributed a
ross geographi
ally dispersed ma
hines. To address this need, an e�e
tivedistributed dimension redu
tion algorithm is developed. Motivated by the su

ess of the serial(non-distributed) FastMap heuristi
 of Faloutsos and Lin, the distributed method presentedhere is intended to be fast, a

urate and reliable. It runs in linear time and requires very littledata transmission. A series of experiments is
ondu
ted to gauge how the algorithm's emphasison minimal data transmission a�e
ts solution quality. Stress fun
tion measurements indi
atethat the distributed algorithm is highly
ompetitive with the original FastMap heuristi
.Keywords: Data Mining, Distributed Databases, Information Systems, Parallel and Distributed Algorithms1 Introdu
tionA set S of points in a d-dimensional spa
e often belong to an embedded manifold of dimensiond0 � d. Classi
 dimension redu
tion te
hniques [3, 8, 5℄
ompute an optimal k-dimensional rep-resentation of S for a spe
i�ed k � d and a given optimality
riterion. Te
hniques related toprin
ipal
omponents [3℄ begin with
oordinates of the points, whereas those related to multidi-mensional s
aling [8, 5℄ begin with a
omplete set of pairwise distan
es. All of these require at leastquadrati
 running time, making them reasonable redu
tion
andidates only as long as S is not toolarge. The fo
us of this paper, however, is on the
ase in whi
h S is of some immense size N , withits elements distributed a
ross a modest number s of lo
ations. This models a variety of timelyenvironments, for example, when massive data sets reside on a number of di�erent, geographi
allydispersed ma
hines. It is usually impra
ti
al or impossible to bring su
h data sets to a
entrallo
ation. Thus, our main obje
tive is to redu
e dimensionality in a way that does not requiremoving all the data, rather only some mu
h smaller representation of the data. A similar approa
his taken in [7℄. A redu
tion in dimensionality has been shown to help in data mining and related�Resear
h sponsored by the Laboratory Dire
ted Resear
h and Development Program of Oak Ridge NationalLaboratory (ORNL), managed by UT-Battelle, LLC for the U. S. Department of Energy under Contra
t No.DE-AC05-00OR22725.yDepartment of Computer S
ien
e, University of Tennessee, Knoxville, TN 37996{3450.zComputer S
ien
e and Mathemati
s Division, Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN37831{6367.xThis author's resear
h is supported in part by the National S
ien
e Foundation under grants EIA{9972889 andCCR{0075792, by the OÆ
e of Naval Resear
h under grant N00014{01{1{0608, and by the Tennessee Center forInformation Te
hnology Resear
h under award E01{0178{081.1

appli
ations. For example, it
an assist in e�e
tive data visualization and reveal the way the dataare
lustered [4, 6℄.One of the major
hallenges resear
hers fa
e in dealing with massive sets of data is algorithms
alability as the sets grow in size. Algorithms that s
ale as
(N2) or higher qui
kly be
ome
omputationally infeasible. Moreover, in parallel and distributed algorithms, the
ost of datatransmission often dominates the exe
ution time. For these reasons, we seek a distributed dimensionredu
tion algorithm that not only runs in linear or almost-linear time, but also requires as littledata
ommuni
ation as possible.Among the various alternatives available, we have
hosen for exploitation the attra
tive FastMapheuristi
 [2℄. It
an be interpreted as an approximation to prin
ipal
omponents that operates onpairwise distan
es rather than
oordinates. FastMap is a linear-time serial algorithm. Even whendata obje
ts (points) are spe
i�ed only by their d-dimensional
oordinates, as they are in our
ase,FastMap runs in linear time and
an serve as a dimension redu
tion algorithm [6℄. We thereforewish to study the potential feasibility of distributed versions of this handy heuristi
. Of
oursethe naive method of bringing all data to a
entral lo
ation and then running FastMap requiresa prohibitive amount of data transfers. We
all this method Centralized FastMap, as opposedto our versions of Distributed FastMap. FastMap gained popularity in part be
ause of empiri
aldemonstrations of the quality of its solutions. For example, its quality was tested in [2℄ against thatof Multi-Dimensional S
aling [8℄ by measuring the pri
e/performan
e of ea
h algorithm. We willsimilarly measure the quality of our versions of Distributed FastMap by
omparing their results tothose of Centralized FastMap.In the next se
tion, we des
ribe FastMap in detail and dis
uss how it
an be used as a linear-time dimension redu
tion te
hnique. In Se
tion 3, we devise two versions of Distributed FastMap.Experimental results are presented in Se
tion 4. A �nal se
tion provides a summary of our workand some insights on the performan
e of our algorithms.2 An Overview of FastMapAssuming the distan
e between any two elements of S is given and obeys the triangle inequality,FastMap produ
es a k-dimensional representation of S by proje
ting its points onto k
arefullysele
ted orthogonal lines. In sele
ting ea
h suitable line, three points are
hosen: the �rst isarbitrary; the se
ond, Oa, is farthest from the �rst; the third, Ob, is farthest from the se
ond. Theaxis, analogous to a prin
ipal
omponent axis, is then de�ned solely by the pair (Oa; Ob), whoseelements are hen
eforth termed \pivots."FastMap pro
eeds iteratively. At the ith step, 1 � i < k, it �nds pivots to form the axis(Oai; Obi), and operates on the proje
tion of S on a hyperplane, Hi, orthogonal to all previouslysele
ted axes. Let d0(P;Q) denote the original distan
e between points P and Q, and let di(P;Q)denote the distan
e between the proje
tions of points P and Q on Hi. Using elementary Eu
lideangeometry as in [2℄, point P 's ith
oordinate, Pi, is determined by using di�1 in the formulaPi = di�1(Oai; P)2 + di�1(Oai; Obi)2 � di�1(Obi; P)22di�1(Oai; Obi)and di(P;Q) is determined by using d0 and the
oordinates just
omputed in the formuladi(P;Q) = qd0(P;Q)2 � �i�1j=1(Pj �Qj)2:Re
all that we are interested in the features problem. We must avoid
omputing all pairwisedistan
es between the elements of S, a task that would
onsume quadrati
 time. To ensure a linear2

FastMap(S; k)beginlet Proje
tionMatrix be a k � jSj matrixlet PivotsMatrix be a 2k � d matrixfor i = 1 to k dobegin(Oai; Obi) ChooseObje
ts(S; i)store (Oai; Obi) in PivotsMatrix
ompute Pi for ea
h point P in Sstore all Pi values in the ith row of Proje
tionMatrixendreturn Proje
tionMatrix and PivotsMatrixend Figure 1: The FastMap Heuristi
ChooseObje
ts(S; i)begin
hoose arbitrary point O

ompute distan
e di�1(O
; P) for ea
h point P in Ssele
t point Oai for whi
h di�1(O
; Oai) is maximum
ompute distan
e di�1(Oai; P) for ea
h point P in Ssele
t point Obi for whi
h di�1(Obi; Oai) is maximumreturn Oai and Obi as the ith pivot pairend Figure 2: The ChooseObje
ts Subroutinerunning time, distan
es are therefore
omputed only as they are needed. Pseudo
ode for (thefeatures version of) FastMap and its an
illary routine ChooseObje
ts is in Figures 1 and 2.3 Distributed FastMapWe assume that S is stored as a
olle
tion of disjoint data sets, one for ea
h of s distin
t ma
hines.Thus subset Si is assumed to be resident on ma
hineMi for i 2 [1; s℄. Ea
h element is stored in somed-dimensional representation. Pairwise distan
es are not given, but
an be
omputed as previouslydis
ussed. The obje
tive is to �nd k global axes of proje
tion so that, in a new k-dimensionalrepresentation, the original distan
es are preserved as mu
h as possible.The intuition behind our approa
h is as follows. FastMap tends to sele
t ea
h pair of pivotsso that they are widely separated and among the extreme points of a data set. If we have severaldata subsets then, by strategi
ally
hoosing a few points from ea
h one, the user might in generalexpe
t to wind up with a reasonable
olle
tion of points from whi
h to sele
t pivot pairs for the
ombined data set. We present two approa
hes. In ea
h, one of the ma
hines, say M1, will serve asa \merger." It will obtain pivots generated lo
ally on ea
h ma
hine (in
luding the merger ma
hineitself) and use them to
hoose global pivots.Our �rst algorithm uses all the
hosen points at one time. Ea
h ma
hine �rst runs FastMap,then sends its k lo
al pivot pairs to the merger ma
hine. When all pairs are re
eived, the merger3

OneTime(Sj; k)beginLo
alPivots FastMap(Sj ; k)if j 6= 1 then beginsend Lo
alPivots to M1re
eive GlobalPivots from M1endelse beginPoints Lo
alPivotsfor i = 2 to s doPoints Points [Lo
alPivots re
eivedfrom MiGlobalPivots FastMap(Points,k)for i = 2 to s dosend GlobalPivots to Miendfor i = 1 to k do
ompute ith global
oordinate for all points inSj [GlobalPivotsend Figure 3: The OneTime Algorithmruns FastMap on the
omplete set of pivots, generates k global pairs, and broad
asts them to allother ma
hines. It is easy to see that this strategy runs in linear time and in
urs
ommuni
ation
ost O(ksd). Our se
ond algorithm is to iterate at ea
h
oordinate. This of
ourse requires moresend/re
eive
y
les. It also allows all ma
hines to work from the same proje
tion at ea
h iterationand so may provide better solutions. Pseudo
ode for ea
h pro
ess is in Figures 3 and 4.4 Experimental ResultsWe seek to
ompare the performan
e of these two fast versions of Distributed FastMap with Cen-tralized FastMap, bearing in mind that our obje
tive is to preserve distan
es as mu
h as possible.To a

omplish this we employ, as did the work reported in [2℄, the following well-known stressfun
tion stress = s�P;Q(d0(P;Q)� d0(P;Q))2�P;Qd0(P;Q)2where d0(P;Q) is the original distan
e between points P and Q and d0(P;Q) is the distan
e betweentheir images in the new k-dimensional spa
e. We refer the reader to [1℄ for a review of stressfun
tions and their appli
ations.We performed a variety of experiments, using both real and syntheti
 data. We ran our dis-tributed algorithms on di�erent ma
hines by randomly splitting ea
h data set into s equal parts.Some data sets were ordered by
lustering. Thus random splitting had the added bene�t of ensuringthat our results did not unintentionally take advantage of pre-
omputed stru
tures.Our results were roughly the same on all inputs. We illustrate with three sets of real data fromthe UC-Irvine repository of ma
hine learning databases and domain theories [9℄. From the data4

Iterative(Sj; k)beginif j 6= 1 then beginfor i = 1 to k dobegin(Oai; Obi) ChooseObje
ts(Sj ; i)send (Oai; Obi) together with their new i� 1
omponents to M1re
eive new values for (Oai; Obi) from M1
ompute the new ith
omponent, Pi, forall P 2 Sjendendelse beginPoints �for i = 1 to k dobegin(Oa1; Ob1) ChooseObje
ts(S1; i)Points Points [fOa1; Ob1gfor j = 2 to s dobeginre
eive (Oaj ; Obj) from Mj along withtheir new i� 1
omponentsPoints Points [fOaj ; Objgend(Oai; Obi) ChooseObje
ts(Points,i)for j = 2 to s dosend (Oai; Obi) to Mjendendend Figure 4: The Iterative Algorithmavailable at this site, we show representative results on the �les Pendigits.data, Glass.data, andWine.data in Table 1.The tables reported here bear out a
ommon theme. In all experiments, stress values remainedwithin about 20 per
ent of one another. Moreover, in a few
ases, one or the other version ofDistributed FastMap even provided better results than did Centralized FastMap. For example, theIterative algorithm performed best for large values of k and s on the Pendigits data. On the otherhand, for small k and large s, the Iterative version performed worst with about 20 per
ent in
reasein stress value.The highly
ompetitive behavior of all three algorithms may be due to the following tradeo�s.Although the Iterative version works from the same proje
tion on ea
h ma
hine on every iteration,the number of points available at ea
h iteration on the merger ma
hine is always larger for theOneTime version (ex
ept on the last iteration). Also, both distributed versions get several pivot5

Table 1: Comparison of algorithms on data from UC-Irvine repository.Pendigits Data, Original Dimension d = 16Redu
ed s = 1 s = 4 s = 8Dimension Centralized FastMap OneTime Iterative OneTime Iterativek = 2 0.434022 0.434359 0.43434 0.503303 0.528707k = 3 0.31065 0.378843 0.365004 0.366627 0.34608k = 4 0.271444 0.261565 0.263866 0.320987 0.224068k = 5 0.199701 0.248389 0.206782 0.209538 0.153991Glass Data, Original Dimension d = 9Redu
ed s = 1 s = 4 s = 8Dimension Centralized FastMap OneTime Iterative OneTime Iterativek = 2 0.482818 0.476746 0.481473 0.476746 0.482818k = 3 0.397119 0.397119 0.373308 0.397119 0.397119k = 4 0.154114 0.154114 0.185656 0.154114 0.165018Wine Data, Original Dimension d = 13Redu
ed s = 1 s = 4 s = 8Dimension Centralized FastMap OneTime Iterative OneTime Iterativek = 2 0.0014384 0.00143578 0.00142489 0.00142489 0.00142489k = 3 0.00116799 0.00117015 0.00115875 0.00115625 0.00115625k = 4 0.00107843 0.00107104 0.00106995 0.0010678 0.0010678

6

point pairs on the merger ma
hine at ea
h iteration. Choosing the best of these may outweigh thedisadvantage of not
onsidering all data points at on
e.5 Con
lusionsIn this paper we present two Distributed FastMap algorithms for mapping high dimensional obje
tsdistributed a
ross geographi
ally dispersed ma
hines into points in lower dimensional spa
e, so thatdistan
es between the obje
ts are preserved as mu
h as possible. Transferring all lo
al data to a
entral lo
ation and running the Centralized FastMap would require O(nd) data transmission,where n is the number of obje
ts and d is the number of features. Our Distributed FastMapalgorithms require only O(ksd) data transmission, where s is the number of data lo
ations and kis the dimensionality of the proje
ted spa
e. Empiri
al results on both syntheti
 and real datasetsshow that our Distributed FastMap algorithms di�er by at most 20 per
ent in a

ura
y, sometimesgiving a loss and sometimes some gain, when
ompared to the Centralized FastMap.Referen
es[1℄ T. F. Cox and M. A. A. Cox. Multidimensional s
aling. Chapman & Hall, Bo
a Raton, 2001.[2℄ C. Faloutsos and K. Lin. FastMap: A fast algorithm for indexing, data-mining and visualizationof traditional and multimedia datasets. In M. J. Carey and D. A. S
hneider, editors, Pro
eedingsof the 1995 ACM SIGMOD International Conferen
e on Management of Data, 1995.[3℄ H. Hotelling. Analysis of a
omplex of statisti
al variables into prin
ipal
omponents. J. Edu
.Psy
h., 24:417{441,498{520, 1933.[4℄ H. Kargupta, W. Huang, K. Sivakumar, and E. Johnson. Prin
ipal
omponent analysis fordimension redu
tion in massive distributed data sets. Knowledge and Information Systems,3:422{448, 2001.[5℄ J. B. Kruskal. Nonmetri
 multidimensional s
aling: a numeri
al method. Psy
hometri
a,29:115{129, 1964.[6℄ J. E. Otoo, A. Shoshani, and S. W. Hwang. Clustering high dimensional massive s
ienti�
dataset. JIIS, 17:147{168, 2001.[7℄ Y. Qu, G. Ostrou
hov, N.F. Samatova, and A. Geist. Prin
ipal
omponent analysis for di-mension redu
tion in massive distributed data sets. In Workshop on High Performan
e DataMining at the Se
ond SIAM International Conferen
e on Data Mining, Washington, DC, pagein press, 2002.[8℄ W. S. Torgerson. Multidimensional s
aling: I. theory and method. Psy
hometri
a., 17:401{419,1952.[9℄ University of California, Irvine. Repository of ma
hine learning databases and domain theories.See http://i
s.u
i.edu/pub/ma
hine-learning-databases.
7

