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Abstract

Intelligent matteiis any material in which individual molecules or supra-ncolar
clusters function as agents to accomplish some purposelligent matter may be
solid, liquid or gaseous, although liquids and membranesparhaps most typical.
Universally programmablentelligent matter (UPIM) is made from a small set of
molecular building blocks that are universal in the sensg ttiiey can be rearranged
to accomplish any purpose that can be described by a compatgram. In effect, a
computer program controls the behavior of the materialattblecular level. In some
applications the molecules self-assemble a desired mapctste by “computing” the
structure and then becoming inactive. In other applicatitve material remains active
so that it can respond, at the molecular level, to its enwiremt or to other external
conditions. An extreme case is when programmable supragulalr clusters act as
autonomous agents to achieve some end. This report oudlioeg-year exploratory
research project to investigate the feasibility of UPIM.

1 Project Summary

Intelligent matteris any material in which individual molecules or supra-necolar clus-
ters function as agents to accomplish some purpose. fjgalimatter may be solid, liquid
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or gaseous, although liquids and membranes are perhapstypastl. Universally pro-
grammableintelligent matter is made from a small set of molecular dinify blocks that
are universal in the sense that they can be rearranged tmplisb any purpose that can
be described by a computer program. In effect, a computegrano controls the behavior
of the material at the molecular level. In some applicatitresmolecules self-assemble a
desired nanostructure by “computing” the structure and thecoming inactive. In other
applications the material remains active so that it canaiedpat the molecular level, to
its environment or to other external conditions. An extrezase is when programmable
supra-molecular clusters act as autonomous agents tovacdoene end.

Accomplishing the goals of universally programmable iigeht matter will require
the identification of a small set of molecular building bledkat is computationally uni-
versal. TheSK calculuga kind of combinatory logic) is a formal system that demupatsts
that such sets exist. It is capable of universal computatiohmakes use of only two sim-
ple operations on graphs, which are suggestive of moleputaesses. Computer scientists
have investigated the SK calculus extensively for sevesahdes as a basis for massively
parallel computer architectures, and the translation gififevel functional computer pro-
grams into SK structures is well understood. However, the&@Kulus may not be the best
choice for programmable intelligent matter.

This exploratory research project has four principal dofojes: (1) to develop a model
of computation compatible with the constraints of molecypli@cesses; (2) to identify at
least two universal sets of building blocks for programreahtelligent matter; (3) to de-
velop methods for interfacing with additional moleculai®ing blocks for sensing condi-
tions and causing effects in the external environment;d4)eivelop prototype simulation
software to investigate characteristics peculiar to mderccomputation.

Some of the methods are theoretical: (1) the constructioa wfathematical model
of computation compatible with the constraints of molecylieocesses, and (2) a mathe-
matical investigation of the properties (such as companatiuniversality) of some simple
graph operations resulting in at least two universal setsudfling blocks. The theoret-
ical investigation will be supplemented by (3) the develepinof simulation software to
investigate stochastic and other novel factors affectorgputation in a molecular context,
and (4) the use of the simulator to demonstrate the use ofgmogable intelligent matter
to implement several useful nanostructures, such as nae®and membranes with active
channels and cilia.

Since the resulting building blocks for universal prograatale matter are expected to
be individually simple and few in number, this project witbpide the information needed
by chemists to identify or synthesize the substances serftico implement universally
programmable intelligent matter. This will open the way &od the ability to produce
materials with a desired nanostructure and behavior ay/essiwe program computers
today. This project will take a first step toward a systemagiproach to nanotechnology
that will facilitate its rapid development.



2 Background

2.1 Approach to Universally Programmable Intelligent Matter

Intelligent matteiis any material in which individual molecules or supra-neolar clusters
function as agents to accomplish some purpose. Intelligeatter may be solid, liquid or
gaseous, although liquids and membranes are perhaps mastityin some applications
the molecules self-assemble a desired nanostructure bygeting” the structure and then
becoming inactive. In other, “interactive” applicatiohgtmaterial remains active so that it
can respond, at the molecular level, to its environment ather external conditions. An
extreme case is when programmable supra-molecular cdusteas autonomous agents to
achieve some end.

Although materials may be engineered for specific purpasesyill get much greater
technological leverage by designing a “universal matéwnddich, like a general-purpose
computer, can be “programmed” for a wide range of applicatioTo accomplish this,
we must identify a set of molecular primitives that can be borad for widely varying
purposes. In particulagniversally programmablmtelligent matter (UPIM) is made from
a small set of molecular building blocks that are univeraatlhie sense that they can be
rearranged to accomplish any purpose that can be descnbadcbmputer program. In
effect, a computer program controls the behavior of the riztat the molecular level.
The existence of such universal molecular operations nsigétn highly unlikely, but there
is suggestive evidence that it may be possible to discoveymthesize them.

Term-rewriting systemf.0, 18] are simple computational systems in which networks
are altered according to simple rewrite rules, which desgubstitutionghat have much
in common with abstract chemical reactions. (One partrcidam-rewriting system, the
lambda calculus, has been used already to model prebicgimical evolution [6, 7, 8].)
Term-rewriting systems have been extensively investiybie mathematicians and com-
puter scientists for several decades [4, 5].

One attractive feature of term-rewriting systems is thatyra them have th€hurch-
Rosser property2], which means, roughly, that substitutions can be donany order
without affecting the computational result [4, ch. 4]. Téfere these term-rewriting sys-
tems have been investigated as a possible basis for mgspalllel computer architec-
tures [5, 20]. This is an important property for a model of ewnllar computation, in which
molecular processes take place stochastically.

One class of term-rewriting systems, tb@mbinatory logic systeni8, 4, 9, 19], is
very relevant for programmable intelligent matter, for @ashbeen known since the early
twentieth century that there are several small sets of gutish operations that can be used
to program any Turing-computable function. One sudiiversalset is theSK calculus,
which comprises two simple substitution rules. TKwesubstitution is expressed by this
rewrite rule,

(KX)Y) = X,

which describes the transformation shown in Fig. 1, in whichndY represent any trees.
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Figure 1:K-Substitution

Figure 2:K-Substitution as a Molecular Process

In effect, since the value dKX), when applied to any’, is X, theK operation, when
applied toX yields the constant functiofK X ). This is the interpretation, but the compu-
tational effect is entirely expressed in the substitutiofig. 1.

It will be apparent that this substitution rule suggests éwdar process, but the equiv-
alent depiction in Fig. 2 makes the similarity more apparéntan be put in the style of a
chemical reaction, including reaction resources and wasteucts:

UA:KXY + Da — UX + DAyKaY.

HereA, K, D anda are functional groups, and, X andY represent arbitrary molecular
networks.D is a disposal operator ands a computationally inert place-holding group.
TheS operator is only slightly more complicated; it is defined bg tewrite rule,

(SX)Y)2) = (X2)(Y 2)).

There are two ways of interpreting it as a network substitytdepending on whether we
make a new copy of (Fig. 3) or share a single copy (Fig. 4). An important conseqe of



Figure 3:S-Substitution with Copying

Figure 4:S-Substitution with Sharing



the Church-Rosser property is that the two interpretatiead to the same computational
result, but the interpretations have practical differaneéich are discussed later.

It is important to stress the significance of 8t calculus: these two simple operations
are capable of computing anything that can be computed owligital computer. This is
certainly remarkable, and so it is surprising that theregaiiee a few other universal sets
of combinators. For example, the settofvith B’ andW is universal, where the latter two
operators are defined,

(B'X)Y)Z) = (Y(X2)),
(WX)Y) = ((XY)Y).

A third universal set comprisé§ and these three combinators:

(BX)Y)Z) = (X(Y2)),
(CX)Y) = (YX),
(W'X) = (XX).

There are also other universal sets and, indeed, some genétalines [4, sec. 5H] for
universality (i.e., the combinators must be able to delétmlicate, and permute). The
existence of multiple universal sets is very fortunate alose it implies that when we be-
gin to search for molecular implementations of these omerat we will have a greater
probability of finding reactions implementing at least omé/arsal set of substitutions.

The combination of the parallel computation permitted kg @hurch-Rosser property
and the simplicity of th&K calculus has led computer scientists to investigate it as-a b
sis for parallel computer architecture [5, 20]. There anepde algorithms for translating
functional computer programs inf networks, and considerable effort has been devoted
to optimizing them. Therefore, if we can identify molecupaiocesses corresponding to a
universal set of combinator§K, for example), then we can at least see the possibility of
writing a computer program and translating it into a molacprocess.

To illustrate the idea, we will present, with little expldiwa, a program for computing
a nanotube. A single ring of the nanotube is computed by:

Ring(X,Y) = R,
where rec R = RingAux(X,Y, R),
RingAux(X,nil, R) = R,
RingAux(z : X,y :Y,R) = (z,y): RingAux(X,Y, R).
The function is given two molecular chaink, = (z1,...,z,) andY = (y1,...,ym). It
creates a ring of the;, each of which linked to the nextgroup in the ring, as well as to
the corresponding; (see Fig. 5). A nanotube is computed by creating a seriesikédi
rings:
Tube(nil, X,Y) = Ring(X,Y),
Tube(a : N, X,Y) = Ring[X, Tube(N, X,Y)].



Figure 5: Example: Single Ring of a Nanotube

Figure 6: Example: Nanotube Synthesized by UPIM



If N = (ay,...,a, 1) is any chain of lengtlw — 1, thenTube(N, X, Y") will compute a
nanotube of length, with = groups forming the sides of the tube, angroups forming its
terminus (Fig. 6). Our discussion of this example is of nsitgshort, but it will serve to
demonstrate how simple programs can generate useful mactses.

Intriguing as thé&K calculus is as a basis for universally programmable igfetit mat-
ter, it also illustrates some of the problems that the pregaossearch is intended to address.
As previously mentioned, term-rewriting systems assuraeametwork can be copied for
free, as illustrated in Fig. 3. This is certainly a bad asstiwngdor molecular computation,
in which the time to replicate a structure is at least prdpoél to the logarithm of its size.
It is also extremely wasteful, since when programs are cleadpo use only thé& andK
combinators, one often observes thaasperation replicates a structure, which is almost
immediately discarded byka. There are ways to avoid much of this needless replication (a
the expense of introducing additional primitive combimajpbut considerable replication
will remain.

The obvious solution is to use the sharing implementatiag. (F), since this does
not require any copying. It is the solution adopted in manplementations o6K on
conventional computers, in which one may have any numbepwitgrs to a single data
structure. However, this option does not seem to be possibtelecular computing, in
which each link connects only two groups of atoms.

There are some possible solutions to this problem, but thiépet be discussed at this
time. We raise the copying/sharing issue to show that thetcaints of molecular com-
puting are different from those of electronic computing.efidfore, while term-rewriting
systems, combinatory logic, and tB& calculus in particular are suggestive of how uni-
versally programmable intelligent matter might be implatee, we must be prepared to
develop new models of computation that are compatible viaéhconstraints of molecular
processes. Developing such a model is a principal objeofittee proposed research.

To extend the range of application of universally prograrmlaantelligent matter and
for other practical purposes, it is advisable to extend gt@fprimitive operations beyond
those minimally necessary for computational universgkty., S andK). For example,
we might want to addensor operationthat respond differently in different environmen-
tal conditions. For example, they might be sensitive totlighto the presence of some
chemical. The results of these tests could be used to cargrmlitional execution of the
program. In addition to such external input to the progrdns, also useful to have means
for external output, which can be accomplished vatfector operationsThese reactions,
when they take place, cause some noncomputational eftextt,as the release of a chem-
ical, the emission of light, or physical motion. They are afiehe ways that intelligent
matter can have an effect beyond its own internal compurtaki@configuration.

To some extent the sensors and effectors are ad hoc additiadhe basic computa-
tional framework (e.g.SK). However, they are fundamentally incompatible with it imeo
sense, for the time when their reactions take place is ysimflortant. They are termed
imperativeoperations and do not have the Church-Rosser propertyefdrer programs in-
corporating them must have means for controlling the timineir execution. Fortunately,



these issues have been addressed long ago in the design@achentation of functional
programming languages [12, and references therein], anck#ults of those investigations
can be applied to universally programmable intelligentterat

An issue not previously addressed is the production of a cutde combinator net-
work (e.g., arSK tree) from a macroscopic program, and the subsequent aéplcof a
large number of copies. Although finding a solution to thislppem is one of the objec-
tives of the proposed research project, a possible soleagonbe presented at this time.
Arbitrary combinator trees can be represented uniquelyaasnphesized strings, such as
“(((SK)S)(SK)).” Therefore, such a string could be encoded by chain of foolepular
groups &, k, p, q), such as pppskqsqpskqq” for the previous example. Thus we proceed
in stages. The program is compiled iriil§ trees (or other combinators); the trees are flat-
tened into parenthesized strings; and the strings are eddadnolecular chain structures
(e.g., DNA sequences), which are synthesized and replidatestandard techniques from
genetic engineering. The replicated program chains areectad back into (now molecu-
lar) networks by a simple set of substitution rules, implated chemically. (The problem
of replication error is discussed later.)

2.2 Potential of Universally Programmable Intelligent Matter

Before presenting the specific objectives of this reseatati]l be worthwhile to discuss
briefly some of its potential applications. First, howeweis necessary to contrast univer-
sally programmable intelligent matter with some other narkess related ideas.

Programmable matteil4, 15, 16, 17] is an approach to computation based ondattic
like arrays of simple computational elements; cellulaoaudta (such as Conway’s “game
of life”) are examples. Although techniques from the “praxgpmable matter paradigm”
certainly will be applicable to universally programmalieiligent matter, there are dif-
ferences in objective: programmable matter seems to bedateprimarily for implemen-
tation on electronic digital computers, and computatiamaersality does not seem to be
a goal.

Complex adaptive mattédCAM) has been under investigation at Los Alamos National
Laboratory as an approach to adapting matter or materiadsdesired functionality by
a quasi-evolutionary process comprising amplificationis@mr variation, and filtering.
Again, the goals are different, but there are several iatgiens with the proposed research.
First, like ours, their focus is on molecular processeserathan electronic computation.
Second, CAM techniques might be used for synthesizing fonat groups implementing
universal sets of molecular operators. Third, such a usateset might provide building
blocks for the quasi-evolutionary CAM process. (Indeed,haee already begun investi-
gating statistical properties of “soups” 8K complexes, which might be used as the raw
materials of the CAM process [13, 21].)

Smart Matteiis being developed at the Xerox Palo Alto Research Centelorig-term
goals are quite similar to those of intelligent matter, a&eel in this proposal. However,
the current focus seems to be on small (but not moleculaijlibgi blocks that combine



sensor, computation, and actuation functions. That isgta is MEMS (Micro-Electro-
Mechanical Systems) rather than nanotechnology. Ceytdialever, intelligent matter, in
our sense, will benefit from the more general techniquesstfiduted control and embed-
ded computation that might come out of the Smart Matter ptoje

Returning now to possible applications of universally pemgmable intelligent matter,
these applications may be static or dynamic (or interakctiBy a static application we
mean one in which the intelligent matter computes into arliegum state, and is inactive
thereafter. Therefore static applications are most ofiezctbd toward generating some
specialized material with a computationally defined nammstire. On the other hand,
dynamicor interactiveapplications never terminate, but always remain ready spaed
to their environment in some specified way; they are the trsiyart” materials. We will
briefly mention a few potential applications of each kind.

Programs are ideally suited to creating complex data strest which can be converted
to complex physical structures by means of universally mognable intelligent matter.
Networks, chains, tubes, spheres, fibers, and quasi dmgstatructures are all straightfor-
ward to compute. The network resulting from such a companatiill be composed of
computational groups (e.d, K, A) as well as inert groups, which are manipulated by the
computation but do not affect it. Typically, in these apations the computational phase
will be followed by a chemical phase in which the computadiogroups are replaced by
substances appropriate to the application (a sort of ‘fpzttion”). In addition to the ex-
amples already mentioned, such an approach could be usgdtheesize membranes with
pores or channels of a specified size and arrangement (deéer@ither deterministically
by the program or stochastically by molecular processes).

A number of applications are suggested by the requiremdrtaglementing small,
autonomous robots. Some of these will be controlled by vensd analog neural networks,
but to achieve densities comparable to mammalian cortexnflli®sn neurons per square
cm., with up to several hundreds of thousands of connectiadl), we will need to be able
to grow intricately branching dendritic trees at the naa@escGeneration of such structures
is straightforward with UPIM (e.g., using-systems [11]). The sensor and effector organs
of microrobots will also require very fine structures, whidRIM can be programmed to
generate.

Of course, we should not neglect the potential of univeygabgrammable intelligent
matter to do conventional computation, such as solving biagiete problems by mas-
sively parallel computation. For example, we might reficanany copies of a program
to test a potential solution, then mix them in a reaction ®essth structures representing
possible solutions, and wait for equilibrium to determiéual solutions. The advantage
of our approach to this kind of search problem over othersh 8 DNA computation, is
that our nanoscale test molecules are programmable.

Dynamic intelligent matter is interactive in the sense tha& continually monitoring
its environment and capable of responding according tadgrnam. That s, itis in a state
of temporary equilibrium, which can be disrupted by changelke environment, resulting
in further computation and behavior as the material seelesveeguilibrium.
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For example, a membrane with channels, such as mentionee,abould be made
active by having the channels open or close in response iooanvental conditions, in-
cluding control commands transmitted optically or cherhycaThe program located in
each channel is simple: in response to its sensor statedtiiseeone or the other of two ef-
fectors, blocking the channel or not. The sensor and theunediould determine whether
the channel is sensitive to global conditions (e.g., over@mical environment or ambient
illumination) or to its local environment (e.g., molecutadight in its immediate vicinity).

Similarly, unanchored or free-floating molecular clusi{erg., in colloidal suspension)
may react to their environment and change their configuratiws affecting physical prop-
erties of the substance, such as viscosity or transparedcyhey might polymerize or
depolymerize on command. Unanchored supramolecular niegwoight also operate as
semiautonomous agents to recognize molecules or molemdigurations, and act upon
them in some intended way (e.g. binding toxins or pollutarii®wever, such applications
will require the agents to operate in a medium that can supp@yeactants needed for
computation.

These sorts of active intelligent matter will find many apations in autonomous mi-
crorobots. For example, active membranes can serve aggérsducers, responding to
conditions in the environment and generating electridaénaical or other signals. They
can also be programmed to self-organize into structuresldaf preprocessing the input
(e.g., artificial retinas or cochleas). Further, it is a dempodification of a membrane with
channels to make a membrane with cilia that flex on commanan&ans of local commu-
nication, the cilia may be made to flex in coordinated pagteBimilarly we may fabricate
artificial muscles, which contract or relax by the coordaubaction of microscopic fibers.
Universally programmable intelligent matter may also aeva systematic approach to
self-repair of autonomous robots and other systems, sireceobot’s “tissues” were cre-
ated by computational processes, then they can remaint@dtgactive, ready to restore
an equilibrium disrupted by damage. Less ambitiously, nedtecan be programmed to
signal damage or other abnormal conditions.

To tie the foregoing ideas together we may present the typroaess of developing an
application of universally programmable intelligent neatt

1. Write a program in an appropriate high-level programmargguage to create the
desired nanostructure or to exhibit the desired interadighavior at the nanoscale.
Debug and simulate the execution of the program on a coreltcomputer.

2. Compile the program into a combinator tree (e.g., a n&&wbb, K and other com-
binators).

3. Simulate (on a conventional computer) the substitutenthe network, but subject
to molecular constraints (e.g., including reactant cotregions, substitution errors,
etc.).

4. On a computer, flatten the combinator tree into a stringesgmting a sequence of
DNA bases.
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5. Use this string to guide the synthesis of a DNA sequence.

6. Replicate the DNA sequence until the required number piesoof the program are
produced.

7. Use the translation or tree-building substitutions testnuct a molecular combinator
tree from each DNA string. (An intermediate RNA stage cowddubed, if required.)

8. Supply reactants for the computational substitutiong.,(8, K, A, D groups), and
allow the reaction to proceed to equilibrium.

9. If the application is static, wash out or otherwise eliatenany remaining reaction
waste products.

10. If the application is static, substitute permanentaepment groups for computa-
tional groups by ordinary chemical processes (if requingthle application).

2.3 Problems

In this section we will summarize some of the problems thadne be solved in order to
make universally programmable intelligent matter a rgadihd which therefore define the
objectives for the proposed exploratory research project.

We need a model of computation that respects the constiEimt®lecular processes.
For example, as explained above, our model cannot assurheefiiecation is free, or
that a functional group can be linked to (“pointed at”) by arlimited number of other
groups. Such a model of molecular computation might be a fication of the network-
substitution model, or it might be a completely differentdab (For example, we are
investigating a model based on permutation of link partioig.)

Assuming that we stay with something like the combinatogydmetwork-substitution
model, then we need a solution to the replication/sharinglem. One promising solution,
which we have been investigating, is to implement a “lazylication operation. With
such an operation the two “copies” can begin to be used eviEmebthe replication is
complete. (The Church-Rosser property guarantees they sg#fsuch simultaneous use
and replication.) Discarding such a partially replicatédicture causes the replication
process to be prematurely terminated, thus decreasingevestources.

We need one or more universal sets of molecular primitivesctieal experience with
combinator programming has shown that it is usually moreiefit to use more than the
theoretically minimum set of combinators. For example,rmpfuding the identity function
orl combinator [I.X) = X], many of the self-canceling replications and deletionsloa
eliminated. However, we will have to keep in mind that thecédficy tradeoffs of molecu-
lar computing are not the same as those of conventional congp(e.g., substitutions take
place asynchronously and in parallel, but require physesdurces). Other combinators,
which are not necessary from a mathematical perspectivst, Ioetincluded because of the
structures they create. For example, Yheombinator is used to construct cyclic structures
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(i.e., self-sharing structures), whereas its definitioterms ofS andK constructs poten-
tially infinite branching structures, which are mathenmelticequivalent to cycles, but not
physically equivalent.

As previously discussed, interactive applications of arsally programmable intelli-
gent matter will require sensor and effector operationse 3énsors will assume two or
more different configurations, or react in two or more deferways, depending on some
external condition (presence of light, a chemical speei&s). For example, a sensor could
produce either of two different molecular groups, suckKdgepresentingrue, which se-
lects the first alternative) an@l) (representindalse, which selects the second), or their
equivalents. Therefore, we need to determine a general Wagarporating sensors and
effectors into programs. However, a more serious problerangrolling the execution time
of sensors and effectors in a computational model in whidistutions can take place at
any time and in parallel. There are ways of delaying suligtits in combinatory networks
(for example, by “abstracting” [1, 4] a dummy variable frohein), but it is not clear
whether this is the best approach, or whether we should usieeedt model that provides
more direct control over time of execution.

Certainly, one of the strengths of the combinatory logicrapph to molecular compu-
tation is the Church-Rosser property, which means thatisutisns can take place in any
order without affecting the result of computation, but thare some issues that must be
resolved. For example, if a program has two alternativediras, selected by a conditional
operation, then we may have substitutions taking place th bcanches simultaneously.
Even though it will not affect the result of computation, iaynbe wasteful to process a
program structure that will not be needed. However, thesewsrse problem. If programs
are written in the natural recursive way (such as®Rug and Tube examples above), then
it is possible that all the reaction resources could go tansee expansion of conditional
arms that will end up being discarded. There are ways to gbigeproblem within the
combinatory logic framework. (For example, we can delaydihestitutions within a net-
work by “abstracting” [1, 4] from it an argument, which is pided only when we want
the substitutions to proceed.) However, there may be maeetdsolutions to the prob-
lem, such as those used in ordinary programming languagemgmtations, which can be
adapted to the molecular context.

Similar problems arise in the implementation of interaetintelligent matter, that is,
intelligent matter that does not compute to a stable statierdmains active. A rewriting
system, such as tH&K calculus, is by its nature “compute once” because the pnogsa
consumed in the process of computation. Indeed, this gityikm a chemical reaction is
one of its virtues in the context of molecular computationowdver, it is a problem in
the context of interactive intelligent matter, since it mgahat a program, once executed,
does not exist to execute a second time. There are at leagtdigatial solutions to this
problem. The standard solution, used in the network-suwitisth implementation of pro-
gramming languages, is to use a combinator sucH &mentioned above) to replicate a
program structure whenever it is needed. Another solutionldvbe a molecular process
to “interpret” a fixed program structure, much as in an ordirtagital computer. However,
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aside from the fact that this gets quite far away from netwsukstitution and its advan-
tages, it has serious problems of its own, which come fromnigamnultiple functional
groups simultaneously “reading” (and thus linking to) tlegram structure.

Although there are many similarities between term-rewgitsystems and molecular
processes, there are also important differences, which beuaddressed in a theory of
molecular computing. For example, the relative rates oftreas can be controlled by
the concentrations of the reactants and other conditiarcé, 8s temperature. This can be
exploited for nonstandard uses of network substitution: éxample, we may have two
or more conflicting sets of substitution rules for a set of esalar operators, and we can
determine which are applied, or their relative probabitifypeing applied, by controlling
the concentrations of the reactants needed for the aleerog sets. This permits prob-
abilistic control of the nanostructures generated. Or wg heve different substitutions
performed in different stages of a process. Computatioratsmbe controlled by external
fields or other gradients for various purposes, such asiegeatiented structures. Such
considerations raise problems and potentials that are oemddels of computation.

One characteristic of molecular computation which distisges it from electronic
computation is the high probability of error in moleculaopesses. Therefore, we will
need to develop means (both chemical and computationadgftreasing the probability of
such errors, for correcting them when they occur, or foriasguhat results are insensitive
to them. Further, unpublished preliminary investigationcate that a certain fraction of
randomSK trees will result in nonterminating, expansive, chain tieas [13, 21]. (The
probability of termination decreases with increasing mandree size.) This is a poten-
tial problem, since it suggests that a sizable fraction dstution errors could result in
runaway chain reactions that could use up all the reactisourees.

Network substitution is based on the mathematical defimiioa graph: dimensionless
nodes linked by edges; normally the geometrical arrangewfathe nodes and length of
the edges is irrelevant. However, molecular groups occuptefvolumes, and there are
constraints on the locations of bonds and lengths of linlgnaups, which are some of
the constraints that need to be accommodated in a theory leicodar computing (e.g.,
compare Figs. 1 and 2). Folding of program networks could iaferfere with substitution
operations, and so we will have to find chemical means of keppetworks extended.

Interactive applications must be provided with an adeqgsiap@ly of reactants to assure
that substitutions can take place when they are suppos€ettainly, some of the reactants
can come from the recycled products of previous reactionspthers will require fresh
raw materials. The same considerations will apply in stpiglications that involve long
or complex chain reactions. There are several possibleigofuto this problem, but the
choice depends on the specifics of the UPIM application. kample, if the networks
are attached to solid substrates (e.g., membranes, spongadicles), then reactants may
be made to flow over them (thus also clearing away waste ptedul€ the networks are
in colloidal suspension or free-floating in a fluid, then taats are easy to add; waste
products might be removed by osmosis, filtering, precijitatetc.

Thse are just a few of the ways in which universally progratimatelligent matter
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differs from conventional computation and use of term-remg systems.

3 Objectives

Given the preceding discussion of some of the problems thist tve addressed in order
to make universally programmable intelligent matter a sascwe can now present the
objectives of the proposed one-year exploratory reseamjbqi.

3.1 Mathematical Model of Molecular Computation

The first objective is to develop a mathematical model of wualEr computation that, on
the one hand, incorporates the most important constramtsalecular processes and,
on the other, is at a sufficiently high level of abstractioratwid irrelevant complexities
of the processes. As already remarked, the model must tedpedact that only two
functional groups can be connected by a linking group, aaditiiks are of (approximately)
fixed length and make their connections at (approximatetgpfibond angles. At this time
we anticipate that the model will be based on mathematiagtgtheory, incorporating
the geometrical constraints on link length and orientatidinis unclear to what extent
energy relationships need to be incorporated into the modet goal will be to develop
a mathematical framework that is independent of partigoemitive substitutions (e.g$
andK) and other operations (e.g., sensors and effectors).

3.2 Universal Setsof Operators

The second objective will be to identify at least two unietisets of primitive operators.
SK is, of course, a primary candidate, but there are othersgasiomed above, which may
be more suitable from the perspective of simplicity or samil to molecular processes.
In addition, whichever mathematically complete set is emosve will have to extend it
to solve the replication/sharing problem, as well as to lanckation of cyclic structures
(e.g.,Y), destruction/recycling of discarded structures (&)y.and other bookkeeping and
practical necessities. To the extent possible, these @steaperations will be kept inde-
pendent of the choice of universal operators.

3.3 Interface Operators

We cannot anticipate the various molecular sensor andteffeperators that may be dis-
covered or synthesized in the future. However, at this steggean develop general in-
terface techniques that allow these operators to be intjrato the combinatory logic
framework. For example, sensor substitutions may prodithereof two groups, which
function as the truth valuesue or false. Accommodation of imperative sensor and ef-
fector operations will also require a solution to the problef controlling their execution
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time. Fortunately, we know of two potential solutions (lzhea bracket abstractiorl, 4]
andtoken passing and there are doubtless others.

3.4 Simulation Tool

Some issues in universally programmable intelligent matie be settled mathematically.
For example, it is relatively easy to prove that a set of giimicombinators is universal
(assuming that the result has not already been proved intdrature). It will also be
straightforward to prove some results on possible netwedngetries and on the control
of imperative operators. However, some other results willlifficult to obtain by analysis,
and for these investigations we intend to develop a simardtol.

The basic functionality of the simulator will be to performbstitutions based on pro-
vided rewrite-rules for the primitive combinators, incing sensors and effectors. There
must be means for reading in simulated molecular networkshains and for displaying
them during simulation or at its end.

The simulator also needs to be able accommodate factoraréanportant in molec-
ular computing. For example, substitutions should be peréal randomly, with probabil-
ity of substitution being proportional to reactant concatiwns. Reactant depletion and
replenishment should be modeled, so that we can investigaiieuse to control compu-
tation. The simulator must also allow us to investigate tifieces of substitution error by
controlling the error rates of the operations. The simulsbmuld allow simulation of spa-
tially fixed networks (such as those anchored to substratesibedded in gels) as well as
free-floating networks (such as those in fluids or colloids).

3.5 Demonstration Applications

We intend to use the simulator to implement several simppdiegtions to investigate the
potential of universally programmable intelligent mattat this time, we are considering
the following demonstrations:

1. nanotubes of specified diameter and length,

2. membranes with pores of specified diameter and density;

3. membranes with cilia that flex in a specified direction upommand,;
4. arotating flagellum.

These are not complex problems from the standpoint of purgadation, but we need to
understand the issues that arise when they are implemermiedunarly.
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4 Plan

4.1 Mathematical M odel

The mathematical model must be established before any afttier tasks can progress.
The actual mathematical definition will be straightforwartte it has been decided what
should be included in it and what left out. We have allocatedadiths to the development
of the model.

4.2 Primitive Operators

Once the model is established we can begin to select a setsaf dperators, as small
and simple as possible, but including those necessary fopatational universality, cyclic

processing, bookkeeping, and typical sensors and efectiowe decided to explore new
universal sets of combinators, then we will have to prover theiversality, but that is

generally straightforward (just use them to program a knanimersal set). More difficult

will be settling on at least one feasible solution to the icgtion/sharing problem and to
an approach to the control of interactive intelligent matte the process of evaluating
the primitives, several of the demonstration applicatmilsbe programmed. This task is
estimated to take 4—6 months and will be conducted by the PI.

4.3 Simulator

Once the mathematical model is complete (Sec. 4.1), spatndicand implementation of
the simulation can begin and proceed in parallel with thec®n of primitive operators
(Sec. 4.2). A Graduate Research Assistant will implemeatstmulator, a task which is
estimated to take 4—6 months.

4.4 Demonstration Applications

Once the simulator is running we will be able to begin to tést demonstration appli-
cations. These will be “hand coded” in the combinatory ptives, unless we happen to
decide on a set of combinators (suchS#d) for which translators are already available.
At first we will run them under ideal (error-free) conditiores time permits we will begin
to investigate the effects of substitution errors, redctamcentrations, etc. This task, in
which both the Pl and a GRA will participate, is estimatedatiket 3 months.

5 Summary

In this section we summarize the relevance of universalbg@mmable intelligent mat-
ter to the research themes of the Nanoscale Science andeenigip Program. Univer-
sally programmable intelligent matter will provide a sys#gic, general approach to the
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production ofnanoscale systems since it will permit the synthesis of any structure de-
scribable by a computer program. Further, because the ialatean be active, we may
have dynamic control of permeability, viscosity and othbygical characteristics. Uni-
versally programmable intelligent matter will contribitenanoscale devices and system
architecture by providing a systematic way of synthesizing nanostriestuseful for com-
putation and control, including sensors and actuators. eMimportantly, it will provide

a new technology for computing that will be better suitedi® molecular scale than are
conventional technologies. If successful, universallygpammable intelligent matter will
provide a systematic approachrt@nufacturing processes at the nanoscale by allowing
the creation and assembly of nanosystems to be controlletblscular programs. Finally,
universally programmable intelligent matter will allow tescreate systems and materials
inspired bybiosystems at the nanoscale, such as active membranes, very dense neural
networks, sensors, and motor systems such as cilia andidflagel
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